WO2015170449A1 - 内燃機関の排出ガス浄化装置 - Google Patents

内燃機関の排出ガス浄化装置 Download PDF

Info

Publication number
WO2015170449A1
WO2015170449A1 PCT/JP2015/002122 JP2015002122W WO2015170449A1 WO 2015170449 A1 WO2015170449 A1 WO 2015170449A1 JP 2015002122 W JP2015002122 W JP 2015002122W WO 2015170449 A1 WO2015170449 A1 WO 2015170449A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage state
oxygen storage
exhaust gas
sensor
output
Prior art date
Application number
PCT/JP2015/002122
Other languages
English (en)
French (fr)
Inventor
康弘 川勝
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015002150.7T priority Critical patent/DE112015002150T5/de
Priority to US15/308,972 priority patent/US20170067386A1/en
Publication of WO2015170449A1 publication Critical patent/WO2015170449A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure is an invention related to an exhaust gas purification device for an internal combustion engine in which exhaust gas sensors for detecting an air-fuel ratio of the exhaust gas are installed upstream and downstream of the exhaust gas purification catalyst of the internal combustion engine.
  • the air-fuel ratio of the exhaust gas is detected upstream and downstream of the exhaust gas purification catalyst for the purpose of increasing the exhaust gas purification rate of the exhaust gas purification catalyst.
  • An exhaust gas sensor air-fuel ratio sensor or oxygen sensor
  • main feedback control is performed to feedback-correct the fuel injection amount so that the air-fuel ratio of the exhaust gas upstream of the catalyst becomes the upstream target air-fuel ratio.
  • the target air-fuel ratio of the main feedback control is corrected so that the air-fuel ratio of the exhaust gas downstream of the catalyst becomes the downstream target air-fuel ratio based on the output of the downstream exhaust gas sensor, or the main feedback “Sub-feedback control” for correcting the control feedback correction amount or the fuel injection amount is performed.
  • the change in sensor output is delayed with respect to the actual change in air-fuel ratio.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-170453
  • a constant current circuit provided outside the downstream exhaust gas sensor
  • the output characteristics of the downstream exhaust gas sensor can be changed by passing a constant current between the sensor electrodes.
  • the air-fuel ratio in the catalyst becomes lean with respect to the purification window by flowing a constant current in a direction that accelerates the lean detection of the downstream exhaust gas sensor. Can be detected early by the downstream exhaust gas sensor.
  • the correction by the sub-feedback control when the correction by the sub-feedback control is in the rich direction, it is determined that the air-fuel ratio in the catalyst becomes rich with respect to the purification window by flowing a constant current in a direction that accelerates the rich detection of the downstream exhaust gas sensor. To enable early detection with the side exhaust gas sensor. As a result, the correction direction by the sub-feedback control can be switched before or when the catalyst purification performance starts to decline, so the period during which the catalyst purification performance can be maintained at a high level (the air-fuel ratio in the catalyst is purified). The period that can be maintained in the window) can be lengthened, and the exhaust emission can be reduced.
  • the control can be performed at the highest speed. Therefore, when the oxygen storage state of the catalyst is in a neutral state, the state in which the air-fuel ratio in the catalyst is maintained in the purification window is the highest (that is, it is highly robust against fluctuations in the air-fuel ratio upstream of the catalyst). State), the oxygen storage state of the catalyst is estimated based on the air-fuel ratio upstream of the catalyst, and the oxygen storage state of the catalyst is controlled to be maintained in a neutral state based on the estimated value, It is considered that the fastest and high robustness can be achieved at the same time.
  • the problem to be solved by the present disclosure is to provide an exhaust gas purifying device for an internal combustion engine that can quickly suppress deterioration in the estimation accuracy of the oxygen storage state of the catalyst.
  • an exhaust gas purification device includes an exhaust gas purification catalyst for an internal combustion engine, an upstream exhaust gas sensor that detects an air-fuel ratio of the exhaust gas on an upstream side and a downstream side of the catalyst, and a downstream side A side exhaust gas sensor and a constant current supply unit that changes the output characteristics of the downstream side exhaust gas sensor by flowing a constant current between the sensor electrodes of the downstream side exhaust gas sensor. Further, the exhaust gas purifying device estimates the oxygen storage state of the catalyst based on the output of the upstream side exhaust gas sensor, and estimates the oxygen storage state based on the estimated value of the oxygen storage state and the output of the downstream side exhaust gas sensor.
  • An estimation value correcting unit that corrects an estimated value of the oxygen storage state so as to determine the estimation accuracy and suppress deterioration of the estimation accuracy, and a sensor output characteristic control unit.
  • the sensor output characteristic control unit causes a constant current to flow in a direction to accelerate the rich detection of the downstream exhaust gas sensor. Control the constant current supply.
  • the sensor output characteristic control unit causes a constant current to flow in a direction to accelerate the lean detection of the downstream side exhaust gas sensor.
  • the constant current supply unit is controlled.
  • the change in the air-fuel ratio in the catalyst (that is, the change in the actual oxygen storage state of the catalyst) can be detected early based on the output of the downstream side exhaust gas sensor. Therefore, it is possible to detect early deterioration of the estimation accuracy of the oxygen storage state. As a result, it is possible to quickly correct the estimated value of the oxygen storage state of the catalyst so as to suppress the deterioration of the estimation accuracy of the oxygen storage state of the catalyst, and to quickly suppress the deterioration of the estimation accuracy of the oxygen storage state of the catalyst.
  • FIG. 1 is a diagram illustrating a schematic configuration of an engine control system according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the configuration of the sensor element.
  • FIG. 3 is an electromotive force characteristic diagram showing the relationship between the air-fuel ratio (excess air ratio ⁇ ) of exhaust gas and the electromotive force of the sensor element.
  • FIG. 4A is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 4B is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 5 is a time chart for explaining the behavior of the sensor output.
  • FIG. 6A is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 6B is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 6A is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 6B is a schematic diagram showing the state of gas components around the sensor element.
  • FIG. 7 is an output characteristic diagram of the oxygen sensor when the lean response / rich response is enhanced.
  • FIG. 8 is a time chart showing an execution example of sensor output characteristic control.
  • FIG. 9 is a time chart showing another execution example of the sensor output characteristic control.
  • FIG. 10 is a flowchart showing the flow of processing of the oxygen storage state estimation routine.
  • FIG. 11 is a flowchart showing the process flow of the neutral control routine.
  • FIG. 12 is a flowchart showing the flow of processing of the estimated value correction routine.
  • FIG. 13 is a flowchart showing the flow of processing of the sensor output characteristic control routine.
  • the intake pipe 12 of the engine 11 is provided with a throttle valve 13 whose opening degree is adjusted by a motor or the like, and a throttle position sensor 14 for detecting the opening degree (throttle position) of the throttle valve 13. Further, a fuel injection valve 15 that performs in-cylinder injection or intake port injection is attached to each cylinder of the engine 11, and a spark plug 16 is attached to the cylinder head of the engine 11 for each cylinder. The air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 16.
  • the exhaust pipe 17 of the engine 11 is provided with a catalyst 18 such as a three-way catalyst that purifies CO, HC, NOx and the like in the exhaust gas.
  • a catalyst 18 such as a three-way catalyst that purifies CO, HC, NOx and the like in the exhaust gas.
  • an air-fuel ratio sensor 20 linear A / F sensor
  • an oxygen sensor 21 O2 sensor
  • a downstream exhaust gas sensor O2 sensor
  • this system includes a crank angle sensor 22 that outputs a pulse signal every time a crankshaft (not shown) of the engine 11 rotates by a predetermined crank angle, an air amount sensor 23 that detects an intake air amount of the engine 11, Various sensors such as a cooling water temperature sensor 24 for detecting the cooling water temperature of the engine 11 are provided. Based on the output signal of the crank angle sensor 22, the crank angle and the engine speed are detected.
  • the outputs of these various sensors are input to an electronic control unit (ECU) 25.
  • the ECU 25 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state.
  • the throttle opening (intake air amount) and the like are controlled.
  • the ECU 25 determines that the air-fuel ratio of the exhaust gas upstream of the catalyst 18 is upstream based on the output of the air-fuel ratio sensor 20 (upstream exhaust gas sensor).
  • Main F / B control is performed for feedback (F / B) correction of the air-fuel ratio (fuel injection amount) so that the target air-fuel ratio becomes the target air-fuel ratio.
  • the oxygen sensor 21 has a sensor element 31 having a cup-type structure.
  • the sensor element 31 is configured such that the entire element is accommodated in a housing or an element cover (not shown), and is disposed in the exhaust pipe 17 of the engine 11.
  • the solid electrolyte layer 32 (solid electrolyte body) is formed in a cup shape in cross section, an exhaust side electrode layer 33 is provided on the outer surface, and an air side electrode layer 34 is provided on the inner surface. It has been.
  • the solid electrolyte layer 32 is made of an oxygen ion conductive oxide sintered body in which CaO, MgO, Y 2 O 3, Yb 2 O 3, or the like is dissolved as a stabilizer in ZrO 2, HfO 2, ThO 2, Bi 2 O 3, or the like.
  • Each of the electrode layers 33 and 34 is made of a noble metal having high catalytic activity such as platinum, and the surface thereof is subjected to porous chemical plating or the like.
  • Electrode layers 33 and 34 form a pair of counter electrodes (sensor electrodes).
  • An internal space surrounded by the solid electrolyte layer 32 is an atmospheric chamber 35, and a heater 36 is accommodated in the atmospheric chamber 35.
  • the heater 36 has a heat generation capacity sufficient to activate the sensor element 31, and the entire sensor element 31 is heated by the heat generation energy.
  • the activation temperature of the oxygen sensor 21 is, for example, about 350 to 400 ° C.
  • the atmosphere chamber 35 is maintained at a predetermined oxygen concentration by introducing the atmosphere.
  • the outside of the solid electrolyte layer 32 (electrode layer 33 side) is an exhaust atmosphere
  • the inside of the solid electrolyte layer 32 (electrode layer 34 side) is an air atmosphere.
  • An electromotive force is generated between the electrode layers 33 and 34 in accordance with the difference in partial pressure. That is, the sensor element 31 generates different electromotive force depending on whether the air-fuel ratio is rich or lean.
  • the oxygen sensor 21 outputs an electromotive force signal corresponding to the oxygen concentration (that is, the air-fuel ratio) of the exhaust gas.
  • the exhaust-side electrode layer 33 of the sensor element 31 is grounded, and the microcomputer 26 is connected to the atmosphere-side electrode layer 34.
  • a sensor detection signal corresponding to the electromotive force is output to the microcomputer 26.
  • the microcomputer 26 is provided in the ECU 25, for example, and calculates the air-fuel ratio based on the sensor detection signal.
  • the microcomputer 26 may calculate the engine rotation speed and the intake air amount based on the detection results of the various sensors described above.
  • the actual air-fuel ratio of the exhaust gas changes sequentially, and may change repeatedly between rich and lean.
  • the detection response of the oxygen sensor 21 is low, there is a concern that the engine performance may be affected due to this. For example, when the engine 11 is operating at a high load, the amount of NOx soot in the exhaust gas increases more than intended.
  • the detection response of the oxygen sensor 21 when the actual air-fuel ratio changes between rich and lean will be described.
  • the actual air-fuel ratio the actual air-fuel ratio downstream of the catalyst 18
  • the component composition of the exhaust gas changes.
  • the output change of the oxygen sensor 21 with respect to the air-fuel ratio after the change is delayed. Specifically, at the time of the change from rich to lean, as shown in FIG.
  • the output change of the oxygen sensor 21 will be described with reference to the time chart of FIG.
  • the sensor output (the output of the oxygen sensor 21) changes between the rich gas detection value (0.9 V) and the lean gas detection value (0 V) according to the change in the actual air-fuel ratio. Change.
  • the sensor output changes with a delay with respect to the change in the actual air-fuel ratio.
  • the sensor output changes with a delay of TD1 with respect to the change of the actual air-fuel ratio when changing from rich to lean, and the sensor output is delayed with respect to the change of the actual air-fuel ratio when changing from lean to rich. It has come to change.
  • a constant current circuit 27 as a constant current supply unit is connected to the atmosphere side electrode layer 34, and the constant current Ics is supplied by the constant current circuit 27 to the ECU 25 (microcomputer). 26), the output characteristic of the oxygen sensor 21 is changed by flowing a current in a predetermined direction between the pair of sensor electrodes 33 and 34 (between the exhaust side electrode layer 33 and the atmosphere side electrode layer 34). The detection response is changed.
  • the microcomputer 26 sets the direction and amount of the constant current Ics flowing between the pair of sensor electrodes 33 and 34, and controls the constant current circuit 27 so that the set constant current Ics flows.
  • the constant current circuit 27 supplies the constant current Ics to the atmosphere-side electrode layer 34 in either the forward or reverse direction, and the constant current amount can be variably adjusted. That is, the microcomputer 26 variably controls the constant current Ics by PWM control or the like. In this case, in the constant current circuit 27, the constant current Ics is adjusted according to the duty signal output from the microcomputer 26, and the constant current Ics whose current amount is adjusted is between the sensor electrodes 33 and 34 (exhaust side electrode layer 33). And between the atmosphere side electrode layer 34).
  • the constant current Ics flowing in the direction of the exhaust side electrode layer 33 ⁇ the atmosphere side electrode layer 34 is a negative constant current ( ⁇ Ics), and flows in the direction of the atmosphere side electrode layer 34 ⁇ the exhaust side electrode layer 33.
  • the constant current Ics is a positive constant current (+ Ics).
  • FIG. 7 is a diagram showing output characteristics (electromotive force characteristics) of the oxygen sensor 21 when increasing the detection response (lean sensitivity) at the time of lean change and when increasing the detection response (rich sensitivity) at the time of rich change. is there.
  • the negative constant current Ics is set so that oxygen is supplied from the atmosphere-side electrode layer 34 to the exhaust-side electrode layer 33 through the solid electrolyte layer 32 as described above.
  • the output characteristic line shifts to the rich side (more specifically, shifts to the rich side and to the electromotive force decreasing side) as shown by line X in FIG.
  • the sensor output becomes a lean output even if the actual air-fuel ratio is in a rich region near the stoichiometric air-fuel ratio.
  • the detection responsiveness (lean sensitivity) at the time of lean change is enhanced.
  • the oxygen storage state of the catalyst 18 is a neutral state (a state intermediate between a lean state where the oxygen storage amount is large and a rich state where the oxygen storage amount is small), the air-fuel ratio in the catalyst 18 is maintained in the purification window.
  • the state ie, the state in which the robustness against the fluctuation of the air-fuel ratio on the upstream side of the catalyst 18 is high.
  • the ECU 25 executes an oxygen storage state estimation routine shown in FIG. 10 described later to estimate the oxygen storage state of the catalyst 18 based on the output of the air-fuel ratio sensor 20 (upstream exhaust gas sensor).
  • the neutral control routine By executing the neutral control routine, the oxygen storage state of the catalyst 18 is controlled to the neutral state based on the estimated value of the oxygen storage state.
  • the ECU 25 executes an estimated value correction routine of FIG. 12 to be described later, thereby determining the estimated accuracy of the oxygen storage state based on the estimated value of the oxygen storage state and the output of the oxygen sensor 21 (downstream exhaust gas sensor).
  • the estimated value of the oxygen storage state is corrected so as to suppress the deterioration of the estimation accuracy.
  • the estimated value of the oxygen storage state is greater than the predetermined determination value.
  • the estimated value of the oxygen storage state is shifted in the rich direction with respect to the actual oxygen storage state (the estimation accuracy of the oxygen storage state is deteriorated), and the oxygen storage state Is corrected in the lean direction.
  • the estimated value of the oxygen storage state is leaner than the predetermined determination value. In this case, it is determined that the estimated value of the oxygen storage state is shifted in the lean direction with respect to the actual oxygen storage state (the estimation accuracy of the oxygen storage state is deteriorated), and the estimated value of the oxygen storage state Is corrected in the rich direction.
  • the ECU 25 executes the sensor output characteristic control routine of FIG. Change to
  • the oxygen sensor 21 when the output of the oxygen sensor 21 transitions from the rich side to the lean side with respect to the stoichiometric air / fuel ratio equivalent output (the stoichiometric air / fuel ratio equivalent output), the direction in which the rich detection of the oxygen sensor 21 is accelerated (rich).
  • the constant current circuit 27 is controlled so that the constant current Ics flows in a direction in which the responsiveness is increased. Thereby, the oxygen sensor 21 can detect the change from lean to rich in the air-fuel ratio in the catalyst 18 at an early stage.
  • the oxygen sensor 21 when the output of the oxygen sensor 21 transitions from the lean side to the rich side with respect to the stoichiometric air-fuel ratio equivalent output, the direction in which the lean detection of the oxygen sensor 21 is accelerated (the direction in which lean responsiveness is increased) ) To control the constant current circuit 27 so that the constant current Ics flows.
  • the oxygen sensor 21 can detect the change of the air-fuel ratio in the catalyst 18 from rich to lean at an early stage.
  • the oxygen storage state estimation routine shown in FIG. 10 is repeatedly executed at a predetermined period during the power-on period of the ECU 25, and serves as an estimation unit.
  • this routine is started, first, at step 101, it is determined whether or not the air-fuel ratio sensor 20 is normal (no abnormality) and active.
  • step 101 If it is determined in step 101 that the air-fuel ratio sensor 20 is normal and active, the process proceeds to step 102 and the air-fuel ratio detected by the air-fuel ratio sensor 20 is read as a detected air-fuel ratio.
  • step 101 if it is determined in step 101 that the air-fuel ratio sensor 20 is normal and not active (the air-fuel ratio sensor 20 is abnormal or the air-fuel ratio sensor 20 is not active), the process proceeds to step 103. Then, the detected air-fuel ratio is set to a predetermined value.
  • the predetermined value is, for example, an air-fuel ratio calculated based on the engine operating state (for example, intake air amount and fuel injection amount).
  • step 104 the deviation between the neutral air-fuel ratio (the air-fuel ratio at which the oxygen storage state of the catalyst 18 is neutral) and the detected air-fuel ratio is calculated, and the catalyst inflow oxygen is based on this deviation and the exhaust gas flow rate.
  • the excess / deficiency amount oxygen excess / deficiency amount with respect to the oxygen amount flowing into the catalyst 18 in the case of the neutral air-fuel ratio is calculated.
  • step 105 the catalyst 20 is based on the catalyst inflow oxygen excess / deficiency, the previous oxygen storage amount of the catalyst 20 (previously calculated value of the oxygen storage amount), the maximum oxygen storage amount of the catalyst 20 and the reaction coefficient. Calculate the current oxygen storage amount.
  • step 106 the estimated oxygen storage state value of the catalyst 20 (for example, the ratio of the current oxygen storage amount to the maximum oxygen storage amount) is calculated based on the maximum oxygen storage amount of the catalyst 20 and the current oxygen storage amount. To do.
  • the estimated oxygen storage state value of the catalyst 20 for example, the ratio of the current oxygen storage amount to the maximum oxygen storage amount
  • the neutral control routine shown in FIG. 11 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 25, and serves as a neutral control unit.
  • step 201 it is determined whether or not the neutral control execution condition is satisfied, for example, based on whether or not an air-fuel ratio F / B control execution condition (for example, main F / B control execution condition) is satisfied.
  • F / B control execution condition for example, main F / B control execution condition
  • step 201 If it is determined in this step 201 that the neutral control execution condition is not satisfied, this routine is terminated without executing the process of step 202.
  • step 201 determines whether the neutral control execution condition is satisfied. If it is determined in step 201 that the neutral control execution condition is satisfied, the process proceeds to step 202 to execute neutral control.
  • the fuel injection amount or the upstream target air-fuel ratio (target F / B control target air-fuel ratio) is set so that the estimated value of the oxygen storage state approaches the target value of the oxygen storage state (value corresponding to the neutral state). By correcting, the oxygen storage state of the catalyst 18 is controlled to the neutral state.
  • the estimated value correction routine shown in FIG. 12 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 25, and serves as an estimated value correcting unit.
  • step 301 it is determined whether or not the first permission condition is satisfied. In this case, for example, once the oxygen storage state of the catalyst 18 is in an excessively lean state (for example, 100% or the vicinity thereof) and the output of the oxygen sensor 21 is leaner than the stoichiometric air / fuel ratio equivalent output, It is determined whether or not the first permission condition is satisfied depending on whether or not the output of is not greater than a predetermined threshold (rich determination threshold).
  • step 301 If it is determined in step 301 that the first permission condition is satisfied, the process proceeds to step 302, where has the output of the oxygen sensor 21 become larger than the rich determination threshold (becomes rich)? Determine whether or not.
  • the rich determination threshold value is set to the theoretical air-fuel ratio equivalent output or slightly richer than that.
  • step 302 If it is determined in step 302 that the output of the oxygen sensor 21 is equal to or less than the rich determination threshold value, this routine is terminated without executing the processing in step 303 and subsequent steps.
  • step 302 when it is determined in step 302 that the output of the oxygen sensor 21 has become larger than the rich determination threshold value (on the rich side), the process proceeds to step 303, where the oxygen storage state estimated value is determined from the determination value K1. Is also larger (lean side).
  • This determination value K1 is set to, for example, a neutral state equivalent value or a value in the vicinity thereof.
  • the oxygen storage state estimated value is corrected in the decreasing direction (rich direction) to reduce the oxygen storage state estimated value.
  • the oxygen storage state estimation value is corrected in the decreasing direction by increasing the maximum oxygen storage amount used when calculating the oxygen storage state estimation value.
  • the oxygen storage state estimated value may be corrected in a decreasing direction by correcting the neutral air-fuel ratio used when calculating the oxygen storage state estimated value to the lean side (or correcting the reaction coefficient).
  • the oxygen storage state estimated value may be corrected in a decreasing direction by multiplying the oxygen storage state estimated value by a predetermined coefficient ⁇ 1 ( ⁇ 1 ⁇ 1).
  • step 303 when it is determined in step 303 that the oxygen storage state estimated value is equal to or smaller than the determination value K1, the process proceeds to step 304, and whether or not the oxygen storage state estimated value is smaller than the determination value K2 (rich side). Determine whether.
  • This determination value K2 is set on the richer side than the determination value K1.
  • the oxygen storage state estimated value is shifted in the rich direction (the oxygen storage state estimation accuracy deteriorates).
  • the oxygen storage state estimated value is corrected in the increasing direction (lean direction) to increase the oxygen storage state estimated value.
  • the oxygen storage state estimated value is corrected in the increasing direction by reducing the maximum oxygen storage amount used when calculating the oxygen storage state estimated value.
  • the oxygen storage state estimated value may be corrected in the increasing direction by correcting the neutral air-fuel ratio used when calculating the oxygen storage state estimated value to the rich side (or correcting the reaction coefficient). .
  • the oxygen storage state estimated value may be corrected in the increasing direction by multiplying the oxygen storage state estimated value by a predetermined coefficient ⁇ 2 ( ⁇ 2> 1).
  • step 303 when it is determined in step 303 that the oxygen storage state estimated value is not more than the determination value K1, and in step 304, it is determined that the oxygen storage state estimated value is not less than the determination value K2. Then, it is determined that the estimation accuracy of the oxygen storage state has not deteriorated, and the routine is terminated without correcting the oxygen storage state estimation value.
  • step 301 if it is determined in step 301 that the first permission condition is not satisfied, the process proceeds to step 307 to determine whether or not the second permission condition is satisfied.
  • the oxygen sensor 21 is once rich after the oxygen storage state of the catalyst 18 is in an excessively rich state (for example, 0% or the vicinity thereof) and the output of the oxygen sensor 21 becomes richer than the stoichiometric air-fuel ratio equivalent output. It is determined whether or not the second permission condition is satisfied depending on whether or not the output of is not smaller than a predetermined threshold (lean determination threshold).
  • step 307 If it is determined in step 307 that the second permission condition is satisfied, the process proceeds to step 308, where the output of the oxygen sensor 21 has become smaller than the lean determination threshold (becomes leaner). Determine whether or not.
  • the lean determination threshold value is set, for example, to a stoichiometric air-fuel ratio equivalent output or slightly leaner than that.
  • step 308 If it is determined in step 308 that the output of the oxygen sensor 21 is greater than or equal to the lean determination threshold value, this routine is terminated without executing the processing from step 309 onward.
  • step 308 when it is determined in step 308 that the output of the oxygen sensor 21 has become smaller than the lean determination threshold value (becomes leaner), the process proceeds to step 309, where the estimated oxygen storage state value is greater than the determination value K3. Is also smaller (rich side).
  • This determination value K3 is set to, for example, a neutral state equivalent value or a value in the vicinity thereof.
  • the oxygen storage state estimated value is corrected in the increasing direction (lean direction) to increase the oxygen storage state estimated value.
  • the oxygen storage state estimated value is corrected in the increasing direction by reducing the maximum oxygen storage amount used when calculating the oxygen storage state estimated value.
  • the oxygen storage state estimated value may be corrected in the increasing direction by correcting the neutral air-fuel ratio used when calculating the oxygen storage state estimated value to the rich side (or correcting the reaction coefficient).
  • the oxygen storage state estimated value may be corrected in the increasing direction by multiplying the oxygen storage state estimated value by a predetermined coefficient ⁇ 3 ( ⁇ 3> 1).
  • step 309 If it is determined in step 309 that the oxygen storage state estimated value is greater than or equal to the determination value K3, the process proceeds to step 310 to determine whether or not the oxygen storage state estimated value is greater than the determination value K4 (lean side). judge. This determination value K4 is set to be leaner than the determination value K3.
  • the oxygen storage state estimated value is shifted in the lean direction (the oxygen storage state estimation accuracy deteriorates).
  • the oxygen storage state estimated value is corrected in the decreasing direction (rich direction) to reduce the oxygen storage state estimated value.
  • the oxygen storage state estimation value is corrected in the decreasing direction by increasing the maximum oxygen storage amount used when calculating the oxygen storage state estimation value.
  • the oxygen storage state estimated value may be corrected in a decreasing direction by correcting the neutral air-fuel ratio used when calculating the oxygen storage state estimated value to the lean side (or correcting the reaction coefficient). .
  • the oxygen storage state estimated value may be corrected in a decreasing direction by multiplying the oxygen storage state estimated value by a predetermined coefficient ⁇ 4 ( ⁇ 4 ⁇ 1).
  • step 309 when it is determined in step 309 that the oxygen storage state estimated value is greater than or equal to the determination value K3, and in step 310, it is determined that the oxygen storage state estimated value is less than or equal to the determination value K4. Then, it is determined that the estimation accuracy of the oxygen storage state has not deteriorated, and the routine is terminated without correcting the oxygen storage state estimation value.
  • the deterioration diagnosis of the catalyst 18 may be performed based on the corrected maximum oxygen storage amount. good. In this case, for example, it is determined that the catalyst 18 has deteriorated when the corrected maximum oxygen storage amount becomes a predetermined deterioration determination value or less.
  • the sensor output characteristic control routine shown in FIG. 13 is repeatedly executed at a predetermined period during the power-on period of the ECU 25, and serves as a sensor output characteristic control unit.
  • step 401 whether or not a predetermined current application condition is satisfied is determined based on, for example, whether the oxygen sensor 21 is normal (no abnormality), whether the oxygen sensor 21 is in an active state, or the like. . If it is determined that the current application condition is not satisfied, the routine is terminated without executing the processing from step 402 onward.
  • step 401 if it is determined in step 401 that the current application condition is satisfied, the process proceeds to step 402, where the oxygen storage state estimated value is within a predetermined range (for example, a range corresponding to the neutral state and its vicinity). It is determined whether or not there is.
  • a predetermined range for example, a range corresponding to the neutral state and its vicinity
  • step 402 If it is determined in step 402 that the estimated value of the oxygen storage state is outside the predetermined range, this routine is terminated without executing the processing after step 403.
  • step 403 the output of the oxygen sensor 21 becomes smaller than the lean determination threshold (becomes lean). Whether or not).
  • the lean determination threshold value is set, for example, to a stoichiometric air-fuel ratio equivalent output or slightly leaner than that. Note that the lean determination threshold value used in step 403 may be set to the same value as the lean determination threshold value used in step 308 of FIG. 12, or may be set to a different value.
  • step 403 When it is determined in step 403 that the output of the oxygen sensor 21 has become smaller than the lean determination threshold value (becomes lean), the output of the oxygen sensor 21 is leaner from the rich side than the stoichiometric air-fuel ratio equivalent output.
  • the constant current circuit 27 is controlled so as to flow the constant current Ics in a direction that accelerates the rich detection of the oxygen sensor 21.
  • step 403 determines whether the output of the oxygen sensor 21 is greater than or equal to the lean determination threshold value. If it is determined in step 403 that the output of the oxygen sensor 21 is greater than or equal to the lean determination threshold value, the process proceeds to step 404, where the output of the oxygen sensor 21 is greater than the rich determination threshold value (to the rich side). Whether or not).
  • the rich determination threshold value is set to the theoretical air-fuel ratio equivalent output or slightly richer than that. Note that the rich determination threshold used in step 404 may be set to the same value as the rich determination threshold used in step 302 of FIG. 12, or may be set to a different value.
  • step 404 When it is determined in step 404 that the output of the oxygen sensor 21 has become larger than the rich determination threshold value (becomes rich), the output of the oxygen sensor 21 is richer from the lean side than the stoichiometric air-fuel ratio equivalent output.
  • the constant current circuit 27 is controlled so as to flow the constant current Ics in a direction to advance the lean detection of the oxygen sensor 21.
  • the constant current Ics is set to flow in a direction that accelerates the rich detection of the oxygen sensor 21.
  • the current circuit 27 is controlled. Thereby, a change from lean to rich in the air-fuel ratio in the catalyst 18 can be detected early by the oxygen sensor 21.
  • the constant current circuit 27 is controlled so that the constant current Ics flows in a direction that accelerates the lean detection of the oxygen sensor 21. I am doing so.
  • the oxygen sensor 21 can detect the change of the air-fuel ratio in the catalyst 18 from rich to lean at an early stage.
  • the estimated value of the oxygen storage state of the catalyst 18 is corrected at an early stage so as to suppress the deterioration of the estimation accuracy of the oxygen storage state of the catalyst 18 to quickly suppress the deterioration of the estimation accuracy of the oxygen storage state of the catalyst 18. it can.
  • the estimated value of the oxygen storage state is leaner than the predetermined determination value.
  • the estimated value of the oxygen storage state is deviated in the lean direction from the actual oxygen storage state (the estimation accuracy of the oxygen storage state has deteriorated), and the estimated value of the oxygen storage state is corrected in the rich direction.
  • difference of the lean direction of the estimated value of an oxygen storage state can be corrected rapidly.
  • the oxygen storage state is estimated. It is determined that the value is shifted in the rich direction with respect to the actual oxygen storage state (the estimation accuracy of the oxygen storage state is deteriorated), and the estimated value of the oxygen storage state is corrected in the lean direction. . Thereby, the shift
  • the oxygen storage state is controlled to be neutral based on the estimated value of the oxygen storage state, so that the air-fuel ratio in the catalyst 18 can be maintained in a highly robust manner in the purification window. Exhaust emissions can be reduced.
  • the constant current circuit 27 is connected to the atmosphere side electrode layer 34 of the oxygen sensor 21 (sensor element 31).
  • the present invention is not limited to this.
  • the constant current circuit 27 may be connected to the exhaust side electrode layer 33, or the constant current circuit 27 may be connected to both the exhaust side electrode layer 33 and the atmosphere side electrode layer 34.
  • the present disclosure is applied to a system using the oxygen sensor 21 having the sensor element 31 having a cup-type structure.
  • the present disclosure is not limited to this.
  • an oxygen sensor having a sensor element having a stacked structure type is used.
  • the present disclosure may be applied to the system used.
  • the present disclosure is applied to a system in which an air-fuel ratio sensor is installed on the upstream side of the upstream catalyst and an oxygen sensor is installed on the downstream side of the upstream catalyst.

Abstract

 空燃比センサ(20)の出力に基づいて触媒(18)の酸素吸蔵状態を推定し、この酸素吸蔵状態の推定値に基づいて触媒(18)の酸素吸蔵状態を中立状態に制御する。また、酸素吸蔵状態の推定値と酸素センサ(21)の出力とに基づいて酸素吸蔵状態の推定精度の悪化を抑制するように酸素吸蔵状態の推定値を補正する。更に、酸素センサ(21)の出力がリーン側に遷移した場合には、酸素センサ(21)のリッチ検出を早める方向に定電流を流す。一方、酸素センサ(21)の出力がリッチ側に遷移した場合には、酸素センサ(21)のリーン検出を早める方向に定電流を流す。これにより、酸素センサ(21)の出力に基づいて触媒(18)内の空燃比の変化、触媒(18)の実際の酸素吸蔵状態の変化を早期に検出して、酸素吸蔵状態の推定精度の悪化を早期に検出できるようにする。

Description

内燃機関の排出ガス浄化装置 関連出願の相互参照
 本出願は、2014年5月6日に出願された日本出願番号2014-95617号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の排出ガス浄化用の触媒の上流側と下流側に排出ガスの空燃比を検出する排出ガスセンサを設置した内燃機関の排出ガス浄化装置に関する発明である。
 内燃機関の排出ガス浄化システムでは、排出ガス浄化用の触媒の排出ガス浄化率を高めることを目的として、排出ガス浄化用の触媒の上流側と下流側に、それぞれ排出ガスの空燃比を検出する排出ガスセンサ(空燃比センサ又は酸素センサ)を設置している。上流側の排出ガスセンサの出力に基づいて触媒の上流側の排出ガスの空燃比が上流側目標空燃比となるように燃料噴射量をフィードバック補正する“メインフィードバック制御”を行う。更に、下流側の排出ガスセンサの出力に基づいて触媒の下流側の排出ガスの空燃比が下流側目標空燃比となるように、メインフィードバック制御の目標空燃比を補正したり、或は、メインフィードバック制御のフィードバック補正量又は燃料噴射量を修正する“サブフィードバック制御”を行う。
 酸素センサ等の排出ガスセンサは、排出ガスの空燃比が変化する際に、実際の空燃比の変化に対してセンサ出力の変化に遅れが生じる。
 特許文献1(特開2013-170453号公報)に記載されているように、下流側排出ガスセンサの出力に基づいてサブフィードバック制御を行うシステムにおいて、下流側排出ガスセンサの外部に設けた定電流回路でセンサ電極間に定電流を流すことで、下流側排出ガスセンサの出力特性を変更できるようにしたものがある。このものは、サブフィードバック制御による補正がリーン方向の場合には、下流側排出ガスセンサのリーン検出を早める方向に定電流を流すことで、触媒内の空燃比が浄化ウインドに対してリーンになることを下流側排出ガスセンサで早期に検出できるようにする。一方、サブフィードバック制御による補正がリッチ方向の場合には、下流側排出ガスセンサのリッチ検出を早める方向に定電流を流すことで、触媒内の空燃比が浄化ウインドに対してリッチになることを下流側排出ガスセンサで早期に検出できるようにする。これにより、触媒の浄化性能が低下する前又は低下し始めたときにサブフィードバック制御による補正方向を切り換えることができるため、触媒の浄化性能を高い状態に維持できる期間(触媒内の空燃比を浄化ウインド内に維持できる期間)を長くすることができ、排気エミッションを低減することができる。
 しかし、触媒の上流側の空燃比が変化してから触媒内の空燃比が変化するまでの触媒反応による遅れが存在するため、最速で制御できているとはいえない。そこで、触媒の酸素吸蔵状態が中立状態である場合が、触媒内の空燃比を浄化ウインド内に維持する能力が最も高い状態(すなわち触媒の上流側の空燃比の変動に対してロバスト性が高い状態)であることから、触媒の上流側の空燃比に基づいて触媒の酸素吸蔵状態を推定し、その推定値に基づいて触媒の酸素吸蔵状態を中立状態に維持するように制御することにより、最速且つ高ロバストを両立できると考えられる。
 ところが、触媒の上流側の空燃比に基づいて触媒の酸素吸蔵状態を推定する際に、触媒特性のばらつきや変動により酸素吸蔵状態の推定誤差が発生して推定精度が悪化する可能性がある。酸素吸蔵状態の推定精度が悪化した状態が継続すると、触媒の実際の酸素吸蔵状態を中立状態に維持できなくなり、排気エミッションを十分に低減することができなくなる可能性がある。
特開2013-170453号公報
 本開示が解決しようとする課題は、触媒の酸素吸蔵状態の推定精度の悪化を速やかに抑制することができる内燃機関の排出ガス浄化装置を提供することにある。
 本開示の一態様によれば、排出ガス浄化装置は、内燃機関の排出ガス浄化用の触媒と、この触媒の上流側と下流側でそれぞれ排出ガスの空燃比を検出する上流側排出ガスセンサ及び下流側排出ガスセンサと、この下流側排出ガスセンサのセンサ電極間に定電流を流して下流側排出ガスセンサの出力特性を変更する定電流供給部とを備える。さらに、排出ガス浄化装置は、上流側排出ガスセンサの出力に基づいて触媒の酸素吸蔵状態を推定する推定部と、酸素吸蔵状態の推定値と下流側排出ガスセンサの出力とに基づいて酸素吸蔵状態の推定精度を判定して該推定精度の悪化を抑制するように酸素吸蔵状態の推定値を補正する推定値補正部と、センサ出力特性制御部とを有する。センサ出力特性制御部は、下流側排出ガスセンサの出力が理論空燃比相当出力よりもリッチ側からリーン側に遷移した場合には、下流側排出ガスセンサのリッチ検出を早める方向に定電流を流すように定電流供給部を制御する。さらに、センサ出力特性制御部は、下流側排出ガスセンサの出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移した場合には、下流側排出ガスセンサのリーン検出を早める方向に定電流を流すように定電流供給部を制御する。
 この構成では、下流側排出ガスセンサの出力が理論空燃比相当出力よりもリッチ側からリーン側に遷移した場合に、下流側排出ガスセンサのリッチ検出を早める方向に定電流を流すことで、触媒内の空燃比のリーンからリッチへの変化を下流側排出ガスセンサで早期に検出することができる。一方、下流側排出ガスセンサの出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移した場合に、下流側排出ガスセンサのリーン検出を早める方向に定電流を流すことで、触媒内の空燃比のリッチからリーンへの変化を下流側排出ガスセンサで早期に検出することができる。
 このように下流側排出ガスセンサの出力特性を変更することで、下流側排出ガスセンサの出力に基づいて触媒内の空燃比の変化(つまり触媒の実際の酸素吸蔵状態の変化)を早期に検出することができるため、酸素吸蔵状態の推定精度の悪化を早期に検出することができる。その結果、触媒の酸素吸蔵状態の推定精度の悪化を抑制するように酸素吸蔵状態の推定値を早期に補正して、触媒の酸素吸蔵状態の推定精度の悪化を速やかに抑制することができる。
図1は本開示の一実施例におけるエンジン制御システムの概略構成を示す図である。 図2はセンサ素子の構成を示す断面図である。 図3は排出ガスの空燃比(空気過剰率λ)とセンサ素子の起電力との関係を示す起電力特性図である。 図4Aはセンサ素子周辺のガス成分の状態を示す概略図である。 図4Bはセンサ素子周辺のガス成分の状態を示す概略図である。 図5はセンサ出力の挙動を説明するタイムチャートである。 図6Aはセンサ素子周辺のガス成分の状態を示す概略図である。 図6Bはセンサ素子周辺のガス成分の状態を示す概略図である。 図7はリーン応答性/リッチ応答性を高める場合における酸素センサの出力特性図である。 図8はセンサ出力特性制御の実行例を示すタイムチャートである。 図9はセンサ出力特性制御の他の実行例を示すタイムチャートである。 図10は酸素吸蔵状態推定ルーチンの処理の流れを示すフローチャートである。 図11は中立制御ルーチンの処理の流れを示すフローチャートである。 図12は推定値補正ルーチンの処理の流れを示すフローチャートである。 図13はセンサ出力特性制御ルーチンの処理の流れを示すフローチャートである。
 以下、本開示を実施するための形態を具体化した一実施例を説明する。
 図1に基づいてエンジン制御システム全体の概略構成を説明する。
 エンジン11の吸気管12には、モータ等によって開度調節されるスロットルバルブ13と、このスロットルバルブ13の開度(スロットル位置)を検出するスロットル位置センサ14とが設けられている。また、エンジン11の各気筒毎に、それぞれ筒内噴射又は吸気ポート噴射を行う燃料噴射弁15が取り付けられ、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ16が取り付けられている。各点火プラグ16の火花放電によって筒内の混合気に着火される。
 エンジン11の排気管17には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒18が設けられている。また、触媒18の上流側には、排出ガスの空燃比に応じたリニアな空燃比信号を出力する空燃比センサ20(リニアA/Fセンサ)が上流側排出ガスセンサとして設けられている。更に、触媒18の下流側には、排出ガスの空燃比が理論空燃比に対してリッチかリーンかによって出力電圧が反転する酸素センサ21(O2センサ)が下流側排出ガスセンサとして設けられている。
 また、本システムには、エンジン11のクランク軸(図示せず)が所定クランク角回転する毎にパルス信号を出力するクランク角センサ22や、エンジン11の吸入空気量を検出する空気量センサ23や、エンジン11の冷却水温を検出する冷却水温センサ24等の各種のセンサが設けられている。クランク角センサ22の出力信号に基づいてクランク角やエンジン回転速度が検出される。
 これら各種センサの出力は、電子制御ユニット(ECU)25に入力される。このECU25は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。
 その際、ECU25は、所定の空燃比F/B制御実行条件が成立したときに、空燃比センサ20(上流側排出ガスセンサ)の出力に基づいて触媒18の上流側の排出ガスの空燃比が上流側目標空燃比となるように空燃比(燃料噴射量)をフィードバック(F/B)補正するメインF/B制御を行う。
 次に、図2に基づいて酸素センサ21の構成を説明する。
 酸素センサ21は、コップ型構造のセンサ素子31を有している。このセンサ素子31は素子全体が図示しないハウジングや素子カバー内に収容される構成となっており、エンジン11の排気管17内に配設されている。
 センサ素子31において、固体電解質層32(固体電解質体)は、断面コップ状に形成されており、その外表面には排気側電極層33が設けられ、内表面には大気側電極層34が設けられている。固体電解質層32は、ZrO2 、HfO2 、ThO2 、Bi2 O3 等にCaO、MgO、Y2 O3 、Yb2 O3 等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなる。また、各電極層33,34は共に白金等の触媒活性の高い貴金属からなり、その表面には多孔質の化学メッキ等が施されている。これらの電極層33,34が一対の対向電極(センサ電極)となっている。固体電解質層32にて囲まれる内部空間は大気室35となっており、その大気室35内にはヒータ36が収容されている。このヒータ36は、センサ素子31を活性化するのに十分な発熱容量を有しており、その発熱エネルギによりセンサ素子31全体が加熱される。酸素センサ21の活性温度は、例えば350~400℃程度である。尚、大気室35は、大気が導入されることでその内部が所定酸素濃度に保持されている。
 センサ素子31では、固体電解質層32の外側(電極層33側)が排気雰囲気、固体電解質層32の内側(電極層34側)が大気雰囲気となっており、これら双方の酸素濃度の差(酸素分圧の差)に応じて電極層33,34間で起電力が発生する。つまり、センサ素子31では、空燃比がリッチかリーンかで異なる起電力が発生する。これにより、酸素センサ21は、排出ガスの酸素濃度(すなわち空燃比)に応じた起電力信号を出力する。
 図3に示すように、センサ素子31は、空燃比が理論空燃比(空気過剰率λ=1)に対してリッチかリーンかで異なる起電力を発生し、理論空燃比(空気過剰率λ=1)付近で起電力が急変する特性を有する。具体的には、燃料リッチ時のセンサ起電力は約0.9Vであり、燃料リーン時のセンサ起電力は約0Vである。
 図2に示すように、センサ素子31の排気側電極層33は接地され、大気側電極層34にはマイクロコンピュータ26が接続されている。排出ガスの空燃比(酸素濃度)に応じてセンサ素子31にて起電力が発生すると、その起電力に相当するセンサ検出信号がマイクロコンピュータ26に対して出力される。
 マイクロコンピュータ26は、例えばECU25内に設けられており、センサ検出信号に基づいて空燃比を算出する。尚、マイクロコンピュータ26は、上述した各種センサの検出結果に基づいてエンジン回転速度や吸入空気量を算出するようにしても良い。
 エンジン11の運転時には、排出ガスの実空燃比が逐次変化し、リッチとリーンとで繰り返し変化することがある。こうした実空燃比の変化に際し、酸素センサ21の検出応答性が低いと、それに起因してエンジン性能に影響が及ぶことが懸念される。例えば、エンジン11の高負荷運転時において排出ガス中のNOX 量が意図よりも増えてしまう等が生じる。
 実空燃比がリッチとリーンとで変化する際の酸素センサ21の検出応答性について説明する。エンジン11から排出される排出ガスにおいて実空燃比(触媒18の下流側の実空燃比)が変化する際には排出ガスの成分組成が変わる。このとき、その変化の直前における排出ガス成分の残留により、変化後の空燃比に対する酸素センサ21の出力変化(すなわちセンサ出力の応答性)が遅くなる。具体的には、リッチからリーンへの変化時には、図4Aに示すように、リーン変化直後にリッチ成分であるHC等が排気側電極層33付近に残留し、このリッチ成分により、センサ電極でのリーン成分(NOX等)の反応が妨げられる。その結果、酸素センサ21としてリーン出力の応答性が低下する。また、リーンからリッチへの変化時には、図4Bに示すように、リッチ変化直後にリーン成分であるNOx等が排気側電極層33付近に残留し、このリーン成分により、センサ電極でのリッチ成分(HC等)の反応が妨げられる。その結果、酸素センサ21としてリッチ出力の応答性が低下する。
 酸素センサ21の出力変化を図5のタイムチャートで説明する。図5において、実空燃比がリッチ及びリーンで変化すると、その実空燃比の変化に応じてセンサ出力(酸素センサ21の出力)がリッチガス検出値(0.9V)とリーンガス検出値(0V)とで変化する。但し、この場合、実空燃比の変化に対してセンサ出力は遅れを伴い変化する。図5では、リッチ→リーンの変化時には、実空燃比の変化に対してセンサ出力がTD1の遅れで変化し、リーン→リッチの変化時には、実空燃比の変化に対してセンサ出力がTD2の遅れで変化するようになっている。
 そこで、本実施例では、図2に示すように、大気側電極層34に定電流供給部としての定電流回路27を接続し、その定電流回路27による定電流Icsの供給をECU25(マイクロコンピュータ26)により制御して、一対のセンサ電極33,34間(排気側電極層33と大気側電極層34との間)に所定方向で電流を流すことで、酸素センサ21の出力特性を変更して検出応答性を変化させるようにしている。この場合、マイクロコンピュータ26は、一対のセンサ電極33,34間に流れる定電流Icsの向きと量とを設定し、その設定した定電流Icsが流れるように定電流回路27を制御する。
 詳しくは、定電流回路27は、大気側電極層34に対して、正逆両方向いずれかの向きで定電流Icsを供給するものであり、更にその定電流量を可変に調整できるものである。つまり、マイクロコンピュータ26は、PWM制御等により定電流Icsを可変に制御する。この場合、定電流回路27では、マイクロコンピュータ26から出力されるデューティ信号に応じて定電流Icsが調整され、その電流量調整された定電流Icsがセンサ電極33,34間(排気側電極層33と大気側電極層34との間)に流れることとなる。
 尚、本実施例では、排気側電極層33→大気側電極層34の向きに流れる定電流Icsを負の定電流(-Ics)、大気側電極層34→排気側電極層33の向きに流れる定電流Icsを正の定電流(+Ics)としている。
 例えば、リッチからリーンへの変化時の検出応答性(リーン感度)を高める場合には、図6Aに示すように、固体電解質層32内を通じて大気側電極層34から排気側電極層33に酸素が供給されるように定電流Ics(負の定電流Ics)が流される。この場合、大気側から排気側に酸素が供給されることにより、排気側電極層33の周囲に存在(残留)しているリッチ成分(HC)について酸化反応が促進され、それに伴いリッチ成分をいち早く除去できる。これにより、排気側電極層33においてリーン成分(NOX)が反応しやすくなり、結果として酸素センサ21のリーン出力の応答性が向上する。
 リーンからリッチへの変化時の検出応答性(リッチ感度)を高める場合には、図6Bに示すように、固体電解質層32内を通じて排気側電極層33から大気側電極層34に酸素が供給されるように定電流Ics(正の定電流Ics)が流される。この場合、排気側から大気側に酸素が供給されることにより、排気側電極層33の周囲に存在(残留)しているリーン成分(NOx)について還元反応が促進され、それに伴いリーン成分をいち早く除去できる。これにより、排気側電極層33においてリッチ成分(HC)が反応しやすくなり、結果として酸素センサ21のリッチ出力の応答性が向上する。
 図7は、リーン変化時の検出応答性(リーン感度)を高める場合、及びリッチ変化時の検出応答性(リッチ感度)を高める場合における酸素センサ21の出力特性(起電力特性)を示す図である。
 リーン変化時の検出応答性(リーン感度)を高める場合において、上記のとおり固体電解質層32内を通じて大気側電極層34から排気側電極層33に酸素が供給されるように負の定電流Icsが流されると(図6A参照)、図7の線Xに示すように、出力特性線がリッチ側にシフトする(より詳細には、リッチ側かつ起電力減少側にシフトする)。この場合、実際の空燃比が理論空燃比近傍のリッチ域にあってもセンサ出力がリーン出力となる。これは、酸素センサ21の出力特性として、リーン変化時の検出応答性(リーン感度)が高められている。
 また、リッチ変化時の検出応答性(リッチ感度)を高める場合において、上記のとおり固体電解質層32内を通じて排気側電極層33から大気側電極層34に酸素が供給されるように正の定電流Icsが流されると(図6B参照)、図7の線Yに示すように、出力特性線がリーン側にシフトする(より詳細には、リーン側かつ起電力増加側にシフトする)。この場合、実際の空燃比が理論空燃比近傍のリーン域にあってもセンサ出力がリッチ出力となる。これは、酸素センサ21の出力特性として、リッチ変化時の検出応答性(リッチ感度)が高められている。
 ところで、触媒18の酸素吸蔵状態が中立状態(酸素吸蔵量が多いリーン状態と酸素吸蔵量が少ないリッチ状態との中間の状態)である場合が、触媒18内の空燃比を浄化ウインド内に維持する能力が最も高い状態(すなわち触媒18の上流側の空燃比の変動に対してロバスト性が高い状態)となる。
 そこで、ECU25は、後述する図10の酸素吸蔵状態推定ルーチンを実行することで、空燃比センサ20(上流側排出ガスセンサ)の出力に基づいて触媒18の酸素吸蔵状態を推定し、後述する図11の中立制御ルーチンを実行することで、酸素吸蔵状態の推定値に基づいて触媒18の酸素吸蔵状態を中立状態に制御する。
 しかし、空燃比センサ20の出力(触媒18の上流側の空燃比)に基づいて触媒18の酸素吸蔵状態を推定する際に、触媒特性のばらつきや変動により酸素吸蔵状態の推定誤差が発生して推定精度が悪化するおそれがある。酸素吸蔵状態の推定精度が悪化した状態が継続すると、触媒18の実際の酸素吸蔵状態を中立状態に維持できなくなり、排気エミッションを十分に低減することができなくなる可能性がある。
 そこで、ECU25は、後述する図12の推定値補正ルーチンを実行することで、酸素吸蔵状態の推定値と酸素センサ21(下流側排出ガスセンサ)の出力とに基づいて酸素吸蔵状態の推定精度を判定して該推定精度の悪化を抑制するように酸素吸蔵状態の推定値を補正する。
 具体的には、図8に示すように、酸素センサ21の出力が所定の閾値(リーン判定閾値)よりもリッチ側からリーン側になったときに酸素吸蔵状態の推定値が所定の判定値よりもリッチ側の場合には、酸素吸蔵状態の推定値が実際の酸素吸蔵状態に対してリッチ方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、酸素吸蔵状態の推定値をリーン方向に補正する。
 一方、図9に示すように、酸素センサ21の出力が所定の閾値(リッチ判定閾値)よりもリーン側からリッチ側になったときに酸素吸蔵状態の推定値が所定の判定値よりもリーン側の場合には、酸素吸蔵状態の推定値が実際の酸素吸蔵状態に対してリーン方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、酸素吸蔵状態の推定値をリッチ方向に補正する。
 更に、触媒18の酸素吸蔵状態の推定精度の悪化を早期に検出するために、ECU25は、後述する図13のセンサ出力特性制御ルーチンを実行することで、酸素センサ21の出力特性を次のように変更する。
 図8に示すように、酸素センサ21の出力が理論空燃比相当出力(理論空燃比相当出力)よりもリッチ側からリーン側に遷移した場合には、酸素センサ21のリッチ検出を早める方向(リッチ応答性を高める方向)に定電流Icsを流すように定電流回路27を制御する。これにより、触媒18内の空燃比のリーンからリッチへの変化を酸素センサ21で早期に検出できるようにする。
 一方、図9に示すように、酸素センサ21の出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移した場合には、酸素センサ21のリーン検出を早める方向(リーン応答性を高める方向)に定電流Icsを流すように定電流回路27を制御する。これにより、触媒18内の空燃比のリッチからリーンへの変化を酸素センサ21で早期に検出できるようにする。
 このように酸素センサ21の出力特性を変更することで、酸素センサ21の出力に基づいて触媒18内の空燃比の変化(つまり触媒18の実際の酸素吸蔵状態の変化)を早期に検出することができるため、酸素吸蔵状態の推定精度の悪化を早期に検出することができる。
 以下、本実施例でECU25が実行する図10乃至図13の各ルーチンの処理内容を説明する。
 [酸素吸蔵状態推定ルーチン]
 図10に示す酸素吸蔵状態推定ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行され、推定部としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、空燃比センサ20が正常(異常なし)且つ活性状態であるか否かを判定する。
 このステップ101で、空燃比センサ20が正常且つ活性状態であると判定された場合には、ステップ102に進み、空燃比センサ20で検出した空燃比を検出空燃比として読み込む。
 一方、上記ステップ101で、空燃比センサ20が正常且つ活性状態ではない(空燃比センサ20が異常である又は空燃比センサ20が活性前である)と判定された場合には、ステップ103に進み、検出空燃比を所定値に設定する。この所定値は、例えば、エンジン運転状態(例えば吸入空気量と燃料噴射量等)に基づいて算出した空燃比とする。
 この後、ステップ104に進み、中立空燃比(触媒18の酸素吸蔵状態を中立状態にする空燃比)と検出空燃比との偏差を算出し、この偏差と排出ガス流量とに基づいて触媒流入酸素過不足量(中立空燃比の場合に触媒18に流入する酸素量に対する酸素の過不足量)を算出する。
 この後、ステップ105に進み、触媒流入酸素過不足量と触媒20の前回の酸素吸蔵量(酸素吸蔵量の前回の算出値)と触媒20の最大酸素吸蔵量と反応係数とに基づいて触媒20の現在の酸素吸蔵量を算出する。
 この後、ステップ106に進み、触媒20の最大酸素吸蔵量と現在の酸素吸蔵量とに基づいて触媒20の酸素吸蔵状態推定値(例えば最大酸素吸蔵量に対する現在の酸素吸蔵量の割合)を算出する。
 [中立制御ルーチン]
 図11に示す中立制御ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行され、中立制御部としての役割を果たす。ステップ201で、中立制御実行条件が成立しているか否かを、例えば、空燃比F/B制御実行条件(例えばメインF/B制御実行条件)が成立しているか否か等によって判定する。
 このステップ201で、中立制御実行条件が不成立であると判定された場合には、ステップ202の処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ201で、中立制御実行条件が成立していると判定された場合には、ステップ202に進み、中立制御を実行する。この中立制御では、酸素吸蔵状態推定値を酸素吸蔵状態の目標値(中立状態に相当する値)に近付けるように燃料噴射量又は上流側目標空燃比(メインF/B制御の目標空燃比)を補正することで、触媒18の酸素吸蔵状態を中立状態に制御する。
 [推定値補正ルーチン]
 図12に示す推定値補正ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行され、推定値補正部としての役割を果たす。ステップ301で、第1の許可条件が成立しているか否かを判定する。この場合、例えば、触媒18の酸素吸蔵状態が過リーン状態(例えば100%又はその近傍)で且つ酸素センサ21の出力が理論空燃比相当出力よりもリーン側になってから、一度も酸素センサ21の出力が所定の閾値(リッチ判定閾値)よりも大きくなっていないか否かによって、第1の許可条件が成立しているか否か判定する。
 このステップ301で、第1の許可条件が成立していると判定された場合には、ステップ302に進み、酸素センサ21の出力がリッチ判定閾値よりも大きくなった(リッチ側になった)か否かを判定する。このリッチ判定閾値は、例えば、理論空燃比相当出力又はそれよりも少しリッチ側に設定されている。
 このステップ302で、酸素センサ21の出力がリッチ判定閾値以下であると判定された場合には、ステップ303以降の処理を実行することなく、本ルーチンを終了する。
 その後、上記ステップ302で、酸素センサ21の出力がリッチ判定閾値よりも大きくなった(リッチ側になった)と判定されたときに、ステップ303に進み、酸素吸蔵状態推定値が判定値K1よりも大きい(リーン側)か否かを判定する。この判定値K1は、例えば、中立状態相当値又はその付近の値に設定されている。
 このステップ303で、酸素吸蔵状態推定値が判定値K1よりも大きい(リーン側)と判定された場合には、酸素吸蔵状態推定値がリーン方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、ステップ305に進み、酸素吸蔵状態推定値を減少方向(リッチ方向)に補正して酸素吸蔵状態推定値を小さくする。この場合、例えば、酸素吸蔵状態推定値を算出する際に用いる最大酸素吸蔵量を大きくすることで、酸素吸蔵状態推定値を減少方向に補正する。或は、酸素吸蔵状態推定値を算出する際に用いる中立空燃比をリーン側に補正する(又は反応係数を補正する)ことで、酸素吸蔵状態推定値を減少方向に補正するようにしても良い。また、酸素吸蔵状態推定値に所定係数α1(α1<1)を乗算することで、酸素吸蔵状態推定値を減少方向に補正するようにしても良い。
 一方、上記ステップ303で、酸素吸蔵状態推定値が判定値K1 以下であると判定された場合には、ステップ304に進み、酸素吸蔵状態推定値が判定値K2よりも小さい(リッチ側)か否かを判定する。この判定値K2は、判定値K1 よりもリッチ側に設定されている。
 このステップ304で、酸素吸蔵状態推定値が判定値K2よりも小さい(リッチ側)と判定された場合には、酸素吸蔵状態推定値がリッチ方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、ステップ306に進み、酸素吸蔵状態推定値を増加方向(リーン方向)に補正して酸素吸蔵状態推定値を大きくする。この場合、例えば、酸素吸蔵状態推定値を算出する際に用いる最大酸素吸蔵量を小さくすることで、酸素吸蔵状態推定値を増加方向に補正する。或は、酸素吸蔵状態推定値を算出する際に用いる中立空燃比をリッチ側に補正する(又は反応係数を補正する)ことで、酸素吸蔵状態推定値を増加方向に補正するようにしても良い。また、酸素吸蔵状態推定値に所定係数α2(α2>1)を乗算することで、酸素吸蔵状態推定値を増加方向に補正するようにしても良い。
 これに対して、上記ステップ303で酸素吸蔵状態推定値が判定値K1以下であると判定され、且つ、上記ステップ304で酸素吸蔵状態推定値が判定値K2以上であると判定された場合には、酸素吸蔵状態の推定精度が悪化していないと判断して、酸素吸蔵状態推定値を補正することなく、本ルーチンを終了する。
 一方、上記ステップ301で、第1の許可条件が不成立であると判定された場合には、ステップ307に進み、第2の許可条件が成立しているか否かを判定する。この場合、例えば、触媒18の酸素吸蔵状態が過リッチ状態(例えば0%又はその近傍)で且つ酸素センサ21の出力が理論空燃比相当出力よりもリッチ側になってから、一度も酸素センサ21の出力が所定の閾値(リーン判定閾値)よりも小さくなっていないか否かによって、第2の許可条件が成立しているか否か判定する。
 このステップ307で、第2の許可条件が成立していると判定された場合には、ステップ308に進み、酸素センサ21の出力がリーン判定閾値よりも小さくなった(リーン側になった)か否かを判定する。このリーン判定閾値は、例えば、理論空燃比相当出力又はそれよりも少しリーン側に設定されている。
 このステップ308で、酸素センサ21の出力がリーン判定閾値以上であると判定された場合には、ステップ309以降の処理を実行することなく、本ルーチンを終了する。
 その後、上記ステップ308で、酸素センサ21の出力がリーン判定閾値よりも小さくなった(リーン側になった)と判定されたときに、ステップ309に進み、酸素吸蔵状態推定値が判定値K3よりも小さい(リッチ側)か否かを判定する。この判定値K3は、例えば、中立状態相当値又はその付近の値に設定されている。
 このステップ309で、酸素吸蔵状態推定値が判定値K3よりも小さい(リッチ側)と判定された場合には、酸素吸蔵状態推定値がリッチ方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、ステップ311に進み、酸素吸蔵状態推定値を増加方向(リーン方向)に補正して酸素吸蔵状態推定値を大きくする。この場合、例えば、酸素吸蔵状態推定値を算出する際に用いる最大酸素吸蔵量を小さくすることで、酸素吸蔵状態推定値を増加方向に補正する。或は、酸素吸蔵状態推定値を算出する際に用いる中立空燃比をリッチ側に補正する(又は反応係数を補正する)ことで、酸素吸蔵状態推定値を増加方向に補正するようにしても良い。また、酸素吸蔵状態推定値に所定係数α3(α3>1)を乗算することで、酸素吸蔵状態推定値を増加方向に補正するようにしても良い。
 上記ステップ309で、酸素吸蔵状態推定値が判定値K3以上であると判定された場合には、ステップ310に進み、酸素吸蔵状態推定値が判定値K4よりも大きい(リーン側)か否かを判定する。この判定値K4は、判定値K3よりもリーン側に設定されている。
 このステップ310で、酸素吸蔵状態推定値が判定値K4よりも大きい(リーン側)と判定された場合には、酸素吸蔵状態推定値がリーン方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、ステップ312に進み、酸素吸蔵状態推定値を減少方向(リッチ方向)に補正して酸素吸蔵状態推定値を小さくする。この場合、例えば、酸素吸蔵状態推定値を算出する際に用いる最大酸素吸蔵量を大きくすることで、酸素吸蔵状態推定値を減少方向に補正する。或は、酸素吸蔵状態推定値を算出する際に用いる中立空燃比をリーン側に補正する(又は反応係数を補正する)ことで、酸素吸蔵状態推定値を減少方向に補正するようにしても良い。また、酸素吸蔵状態推定値に所定係数α4(α4<1)を乗算することで、酸素吸蔵状態推定値を減少方向に補正するようにしても良い。
 これに対して、上記ステップ309で酸素吸蔵状態推定値が判定値K3以上であると判定され、且つ、上記ステップ310で酸素吸蔵状態推定値が判定値K4以下であると判定された場合には、酸素吸蔵状態の推定精度が悪化していないと判断して、酸素吸蔵状態推定値を補正することなく、本ルーチンを終了する。
 尚、図12のルーチンで、最大酸素吸蔵量を補正することで酸素吸蔵状態推定値を補正する場合には、補正後の最大酸素吸蔵量に基づいて触媒18の劣化診断を行うようにしても良い。この場合、例えば、補正後の最大酸素吸蔵量が所定の劣化判定値以下になったときに触媒18の劣化有りと判定する。
 [センサ出力特性制御ルーチン]
 図13に示すセンサ出力特性制御ルーチンは、ECU25の電源オン期間中に所定周期で繰り返し実行され、センサ出力特性制御部としての役割を果たす。ステップ401で、所定の電流印加条件が成立しているか否かを、例えば、酸素センサ21が正常(異常無し)であるか否か、酸素センサ21が活性状態であるか否か等によって判定する。電流印加条件が不成立であると判定された場合には、ステップ402以降の処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ401で、電流印加条件が成立していると判定された場合には、ステップ402に進み、酸素吸蔵状態推定値が所定範囲(例えば中立状態及びその付近に相当する範囲)内であるか否かを判定する。
 このステップ402で、酸素吸蔵状態推定値が所定範囲外であると判定された場合には、ステップ403以降の処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ402で、酸素吸蔵状態推定値が所定範囲内であると判定された場合には、ステップ403に進み、酸素センサ21の出力がリーン判定閾値よりも小さくなった(リーン側になった)か否かを判定する。このリーン判定閾値は、例えば、理論空燃比相当出力又はそれよりも少しリーン側に設定されている。尚、このステップ403で用いるリーン判定閾値は、図12のステップ308で用いるリーン判定閾値と同じ値に設定しても良いし、異なる値に設定しても良い。
 このステップ403で、酸素センサ21の出力がリーン判定閾値よりも小さくなった(リーン側になった)と判定されたときに、酸素センサ21の出力が理論空燃比相当出力よりもリッチ側からリーン側に遷移したと判断して、ステップ405に進み、酸素センサ21のリッチ検出を早める方向に定電流Icsを流すように定電流回路27を制御する。
 一方、上記ステップ403で、酸素センサ21の出力がリーン判定閾値以上であると判定された場合には、ステップ404に進み、酸素センサ21の出力がリッチ判定閾値よりも大きくなった(リッチ側になった)か否かを判定する。このリッチ判定閾値は、例えば、理論空燃比相当出力又はそれよりも少しリッチ側に設定されている。尚、このステップ404で用いるリッチ判定閾値は、図12のステップ302で用いるリッチ判定閾値と同じ値に設定しても良いし、異なる値に設定しても良い。
 このステップ404で、酸素センサ21の出力がリッチ判定閾値よりも大きくなった(リッチ側になった)と判定されたときに、酸素センサ21の出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移したと判断して、ステップ406に進み、酸素センサ21のリーン検出を早める方向に定電流Icsを流すように定電流回路27を制御する。
 以上説明した本実施例では、酸素センサ21の出力が理論空燃比相当出力よりもリッチ側からリーン側に遷移した場合に、酸素センサ21のリッチ検出を早める方向に定電流Icsを流すように定電流回路27を制御するようにしている。これにより、触媒18内の空燃比のリーンからリッチへの変化を酸素センサ21で早期に検出することができる。
 一方、酸素センサ21の出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移した場合に、酸素センサ21のリーン検出を早める方向に定電流Icsを流すように定電流回路27を制御するようにしている。これにより、触媒18内の空燃比のリッチからリーンへの変化を酸素センサ21で早期に検出することができる。
 このように酸素センサ21の出力特性を変更することで、酸素センサ21の出力に基づいて触媒18内の空燃比の変化(つまり触媒18の実際の酸素吸蔵状態の変化)を早期に検出することができるため、酸素吸蔵状態の推定精度の悪化を早期に検出することができる。その結果、触媒18の酸素吸蔵状態の推定精度の悪化を抑制するように酸素吸蔵状態の推定値を早期に補正して、触媒18の酸素吸蔵状態の推定精度の悪化を速やかに抑制することができる。
 また、本実施例では、酸素センサ21の出力が所定の閾値(リッチ判定閾値)よりもリッチ側になったときに酸素吸蔵状態の推定値が所定の判定値よりもリーン側の場合には、酸素吸蔵状態の推定値が実際の酸素吸蔵状態に対してリーン方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、酸素吸蔵状態の推定値をリッチ方向に補正するようにしている。これにより、酸素吸蔵状態の推定値のリーン方向のずれを速やかに修正することができる。
 一方、酸素センサ21の出力が所定の閾値(リーン判定閾値)よりもリーン側になったときに酸素吸蔵状態の推定値が所定の判定値よりもリッチ側の場合には、酸素吸蔵状態の推定値が実際の酸素吸蔵状態に対してリッチ方向にずれている(酸素吸蔵状態の推定精度が悪化している)と判断して、酸素吸蔵状態の推定値をリーン方向に補正するようにしている。これにより、酸素吸蔵状態の推定値のリッチ方向のずれを速やかに修正することができる。
 更に、本実施例では、酸素吸蔵状態の推定値に基づいて酸素吸蔵状態を中立状態に制御するようにしているので、触媒18内の空燃比を浄化ウインドウ内に高ロバストに維持することができ、排気エミッションを低減することができる。
 尚、上記実施例では、酸素センサ21(センサ素子31)の大気側電極層34に定電流回路27を接続する構成としたが、これに限定されず、例えば、酸素センサ21(センサ素子31)の排気側電極層33に定電流回路27を接続する構成としたり、或は、排気側電極層33と大気側電極層34の両方に定電流回路27を接続する構成としても良い。
 また、上記実施例では、コップ型構造のセンサ素子31を有する酸素センサ21を用いたシステムに本開示を適用したが、これに限定されず、例えば、積層構造型のセンサ素子を有する酸素センサを用いたシステムに本開示を適用しても良い。
 また、上記実施例では、上流側触媒の上流側に空燃比センサを設置すると共に上流側触媒の下流側に酸素センサを設置したシステムに本開示を適用したが、これに限定されず、本開示は、排出ガス浄化用の触媒の上流側と下流側にそれぞれ排出ガスセンサ(酸素センサ又は空燃比センサ)を設置したシステムに適用することができる。

 

Claims (4)

  1.  内燃機関(11)の排出ガス浄化用の触媒(18)と、前記触媒(18)の上流側と下流側でそれぞれ排出ガスの空燃比又はリッチ/リーンを検出する上流側排出ガスセンサ(20)及び下流側排出ガスセンサ(21)と、前記下流側排出ガスセンサ(21)のセンサ電極(33,34)間に定電流を流して前記下流側排出ガスセンサ(21)の出力特性を変更する定電流供給部(27)とを備えた内燃機関の排出ガス浄化装置において、
     前記上流側排出ガスセンサ(20)の出力に基づいて前記触媒(18)の酸素吸蔵状態を推定する推定部(25)と、
     前記酸素吸蔵状態の推定値と前記下流側排出ガスセンサ(21)の出力とに基づいて前記酸素吸蔵状態の推定精度を判定して該推定精度の悪化を抑制するように前記酸素吸蔵状態の推定値を補正する推定値補正部(25)と、
     前記下流側排出ガスセンサ(21)の出力が理論空燃比相当出力よりもリッチ側からリーン側に遷移した場合には、前記下流側排出ガスセンサ(21)のリッチ検出を早める方向に前記定電流を流すように前記定電流供給部(27)を制御し、前記下流側排出ガスセンサ(21)の出力が理論空燃比相当出力よりもリーン側からリッチ側に遷移した場合には、前記下流側排出ガスセンサ(21)のリーン検出を早める方向に前記定電流を流すように前記定電流供給部(27)を制御するセンサ出力特性制御部(25)と
     を備えていることを特徴とする内燃機関の排出ガス浄化装置。
  2.  前記推定値補正部(25)は、前記下流側排出ガスセンサ(21)の出力が所定の閾値よりもリッチ側になったときに前記酸素吸蔵状態の推定値が所定の判定値よりもリーン側の場合には、前記酸素吸蔵状態の推定値をリッチ方向に補正することを特徴とする請求項1に記載の内燃機関の排出ガス浄化装置。
  3.  前記推定値補正部(25)は、前記下流側排出ガスセンサ(21)の出力が所定の閾値よりもリーン側になったときに前記酸素吸蔵状態の推定値が所定の判定値よりもリッチ側の場合には、前記酸素吸蔵状態の推定値をリーン方向に補正することを特徴とする請求項1又は2に記載の内燃機関の排出ガス浄化装置。
  4.  前記酸素吸蔵状態の推定値に基づいて前記酸素吸蔵状態を中立状態に制御する中立制御部(25)を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の排出ガス浄化装置。

     
PCT/JP2015/002122 2014-05-06 2015-04-17 内燃機関の排出ガス浄化装置 WO2015170449A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015002150.7T DE112015002150T5 (de) 2014-05-06 2015-04-17 Abgasreinigungsvorrichtung für einen Internverbrennungsmotor
US15/308,972 US20170067386A1 (en) 2014-05-06 2015-04-17 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014095617A JP2015212527A (ja) 2014-05-06 2014-05-06 内燃機関の排出ガス浄化装置
JP2014-095617 2014-05-06

Publications (1)

Publication Number Publication Date
WO2015170449A1 true WO2015170449A1 (ja) 2015-11-12

Family

ID=54392309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002122 WO2015170449A1 (ja) 2014-05-06 2015-04-17 内燃機関の排出ガス浄化装置

Country Status (4)

Country Link
US (1) US20170067386A1 (ja)
JP (1) JP2015212527A (ja)
DE (1) DE112015002150T5 (ja)
WO (1) WO2015170449A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004207A1 (de) * 2008-01-14 2009-07-16 Robert Bosch Gmbh Verfahren und Steuergerät zur Überprüfung eines Abgasnachbehandlungssystems eines Verbrennungsmotors
US10001045B2 (en) * 2016-11-18 2018-06-19 Ford Global Technologies, Llc Non-intrusive air/fuel sensor diagnostics
FR3076572B1 (fr) * 2018-01-11 2019-12-13 Psa Automobiles Sa Procede d’estimation du vieillissement d’un catalyseur pour moteur thermique
FR3085715B1 (fr) * 2018-09-07 2021-05-14 Renault Sas Dispositif et procede de controle de l'etat de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'echappement d'un moteur a combustion interne
JP7047742B2 (ja) 2018-12-12 2022-04-05 株式会社デンソー 状態推定装置
CN114704362A (zh) * 2021-04-26 2022-07-05 长城汽车股份有限公司 稀燃nox捕集器故障检测方法、装置、车辆、介质及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009401A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006250043A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp 触媒劣化検出装置
JP2013170453A (ja) * 2012-02-17 2013-09-02 Denso Corp 内燃機関の排出ガス浄化装置
JP2013178227A (ja) * 2012-02-03 2013-09-09 Denso Corp ガスセンサ制御装置及び内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009401A (ja) * 2003-06-19 2005-01-13 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006250043A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp 触媒劣化検出装置
JP2013178227A (ja) * 2012-02-03 2013-09-09 Denso Corp ガスセンサ制御装置及び内燃機関の制御装置
JP2013170453A (ja) * 2012-02-17 2013-09-02 Denso Corp 内燃機関の排出ガス浄化装置

Also Published As

Publication number Publication date
US20170067386A1 (en) 2017-03-09
DE112015002150T5 (de) 2017-02-16
JP2015212527A (ja) 2015-11-26

Similar Documents

Publication Publication Date Title
JP5748180B2 (ja) 触媒の劣化診断装置
WO2015170449A1 (ja) 内燃機関の排出ガス浄化装置
JP5907345B2 (ja) ガスセンサ制御装置及び内燃機関の制御装置
JP5817581B2 (ja) 内燃機関の排出ガス浄化装置
JP5884702B2 (ja) 内燃機関の排出ガス浄化装置
JP5884701B2 (ja) 内燃機関の排出ガス浄化装置
JP6237057B2 (ja) ガスセンサ制御装置
JP5867357B2 (ja) 内燃機関の排出ガス浄化装置
JP2009281328A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP6119434B2 (ja) ガスセンサ制御装置
JP2008292444A (ja) 酸素センサの故障診断装置
JP2008038720A (ja) 排出ガス浄化システムの下流側酸素センサの異常診断装置
US10072593B2 (en) Control device of internal combustion engine
WO2014181512A1 (ja) 内燃機関の空燃比制御装置
JP2005207249A (ja) 酸素センサの異常診断装置
JP4072412B2 (ja) 内燃機関の空燃比制御装置
JP4064092B2 (ja) エンジンの空燃比制御装置
JP2008261757A (ja) 酸素センサの故障診断装置
JP2008063951A (ja) 内燃機関の空燃比制御装置
JP2012112301A (ja) 内燃機関の制御装置
JP2014092135A (ja) 燃料噴射制御装置
WO2016103596A1 (ja) センサ制御装置
JP2008261254A (ja) 内燃機関の制御装置
JP2004124864A (ja) 内燃機関の空燃比制御装置
JP2004204733A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15308972

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002150

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789980

Country of ref document: EP

Kind code of ref document: A1