JP5622576B2 - 減少した水素消費量での再生可能な供給材料からのディーゼル燃料の製造 - Google Patents

減少した水素消費量での再生可能な供給材料からのディーゼル燃料の製造 Download PDF

Info

Publication number
JP5622576B2
JP5622576B2 JP2010525988A JP2010525988A JP5622576B2 JP 5622576 B2 JP5622576 B2 JP 5622576B2 JP 2010525988 A JP2010525988 A JP 2010525988A JP 2010525988 A JP2010525988 A JP 2010525988A JP 5622576 B2 JP5622576 B2 JP 5622576B2
Authority
JP
Japan
Prior art keywords
stream
hydrogen
reaction zone
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010525988A
Other languages
English (en)
Other versions
JP2010540700A (ja
Inventor
マーカー,テリー・エル
コカイェフ,ピーター
ファラチ,ジョヴァンニ
バルディラギー,フランコ
Original Assignee
ユーオーピーエルエルシー
ユーオーピー エルエルシー
エニ・ソシエタ・ペル・アチオニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーオーピーエルエルシー, ユーオーピー エルエルシー, エニ・ソシエタ・ペル・アチオニ filed Critical ユーオーピーエルエルシー
Publication of JP2010540700A publication Critical patent/JP2010540700A/ja
Application granted granted Critical
Publication of JP5622576B2 publication Critical patent/JP5622576B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • C10G3/52Hydrogen in a special composition or from a special source
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、植物性及び動物性油脂のような物質において見られるグリセリド及び遊離脂肪酸などの再生可能な供給材料からディーゼル油沸点範囲の燃料を製造する方法に関する。本方法は、1以上の反応器内において、水素化、脱カルボキシル化、脱カルボニル化、及び水素化脱酸素を行い、その後に異性化を行うことを含む。水素化及び水素化脱酸素反応において消費するための水素をその場で生成させるために、水を供給材料又は反応混合物に加える。
ディーゼル油沸点範囲の燃料に対する需要が世界的に増加しているので、ディーゼル油沸点範囲の燃料及び燃料配合成分を製造するための原油以外の源に関する関心が増加している。1つのかかる再生可能な源は、再生可能な源と呼ばれているものである。これらの再生可能な源としては、トウモロコシ、菜種、キャノーラ、大豆、及び藻油のような植物性油、非食用のタロー、魚油のような動物性脂肪、並びに黄色及び褐色グリース並びに下水汚泥のような種々の廃棄物流が挙げられるが、これらに限定されない。これらの源の共通の特徴は、これらがグリセリド及び遊離脂肪酸(FFA)から構成されていることである。これらの種類の化合物は両方とも、8〜24個の炭素原子を有する脂肪族炭素鎖を含む。グリセリド又はFFAにおける脂肪族鎖は、完全に飽和されていてもよく、或いはモノ、ジ、又はポリ置換されていてもよい。
油からの炭化水素の製造が開示されている報告書が当該技術において存在する。例えば、US−4,300,009においては、結晶質アルミノシリケートゼオライトを用いて、トウモロコシ油のような植物性油をガソリンのような炭化水素及びパラキシレンのような化学物質に転化させることが開示されている。US−4,992,605においては、キャノーラ又はヒマワリ油のような植物性油を水素処理することによってディーゼル油沸点範囲の炭化水素生成物を製造することが開示されている。最後に、US−2004/0230085−A1においては、水素化脱酸素を行い、その後に異性化を行うことによって生体起源の炭化水素成分を処理する方法が開示されている。
US−4,300,009 US−4,992,605 US−2004/0230085−A1
本出願人は、再生可能な供給材料を水素化、脱カルボキシル化、脱カルボニル化、(及び/又は水素化脱酸素)、及び場合によっては異性化する1以上の工程を含むプロセスを開発した。水素化及び水素化脱酸素反応区域における水素の消費は、再生可能な供給材料の処理のコスト高の一面になり得る。反応混合物中に水を与えることによって、水素がその場で生成される。生成した水素は、次に水素化及び水素化脱酸素反応において消費することができる。
反応区域において5質量%〜30質量%の水の存在下で再生可能な供給材料を処理し、反応条件下で再生可能な供給材料を水素化及び脱酸素化して、n−パラフィンを含む炭化水素フラクションを含む第1の反応生成物を与えることを含む、再生可能な供給材料からディーゼル油沸点範囲の生成物を製造する水素化転化方法。水は、蒸気として反応混合物中に存在させ、したがって触媒はこれに耐えることができる。触媒は水素化及び脱酸素化反応に加えて水性ガスシフト反応を触媒するので、脱カルボニル化反応によって一酸化炭素が生成したら直ぐに、一酸化炭素と水が水性ガスシフトによって反応して二酸化炭素及び水素が形成される。生成した水素は水素化及び水素化脱酸素反応において消費するために利用することができる。ディーゼル油沸点範囲の炭化水素を分離して回収する。イソパラフィンに富むディーゼル油が所望の場合には、第1の反応区域において副生成物として生成する水及び二酸化炭素を、ストリッピング剤として水素を用いる統合加熱高圧ストリッパー内で第1の反応生成物から除去する。水素ストリッピングされた第1の反応生成物を水素化異性化反応区域に導入し、異性化した生成物を回収する。
図1は、本発明の一態様の概略図である。図1はより簡単な概略図である。 図2は、本発明の一態様の概略図である。図2はより詳細な概略図である。
上述したように、本発明は、植物及び動物からの油脂に由来する再生可能な供給材料からディーゼル油沸点範囲の燃料として有用な炭化水素流を製造する方法に関する。再生可能な供給材料という用語は、原油から誘導されるもの以外の供給材料を包含するように意図する。この種類の供給材料を説明するのに用いられている他の用語は、生物再生可能な油脂である。本発明において用いることのできる再生可能な供給材料としては、グリセリド及び遊離脂肪酸(FFA)を含む任意のものが挙げられる。グリセリドの殆どはトリグリセリドであるが、モノグリセリド及びジグリセリドが存在してもよく、同様に処理することができる。これらの再生可能な供給材料の例としては、キャノーラ油、トウモロコシ油、大豆油、菜種油、大豆油、コルザ油、トール油、ヒマワリ油、麻実油、オリーブ油、亜麻仁油、ココナッツ油、ヒマシ油、ピーナッツ油、ヤシ油、カラシ油、ジャトロファ油、タロー、黄色及び褐色グリース、ラード、鯨油、牛乳中脂肪、魚油、藻油、下水汚泥などが挙げられるが、これらに限定されない。再生可能な供給材料の更なる例としては、Jatropha curcas(Ratanjoy、Wild Castor、Jangli Erandi)、Madhuca indica(Mohuwa)、Pongamia pinnata(Karanji Honge)、及びAzadiracta indicia(Neem)を含む群から選択される非食用の植物性油が挙げられる。通常の植物性及び動物性脂肪のグリセリド及びFFAは、それらの構造中に8〜24個の炭素原子を有する脂肪族炭化水素鎖を含む。また、再生可能な供給材料と原油から誘導される炭化水素との混合物も、供給材料として用いることができる。また、上記の供給材料の混合物を用いることもできる。特に上記に列記した供給材料と組み合わせて共供給成分として用いることのできる他の供給材料成分としては、使用済みのモーターオイル及び産業用潤滑油、使用済みのパラフィンワックス、石炭のガス化から誘導される液体、バイオマス、或いはフィッシャートロプシュ法のような下流の液化工程にかけた天然ガス、ポリプロピレン、高密度ポリエチレン、及び低密度ポリエチレンのような廃プラスチックの熱的又は化学的解重合から誘導される液体;並びに石油化学及び化学プロセスから副生成物として生成する他の合成油が挙げられる。また、上記の供給材料の混合物を共供給成分として用いることもできる。共供給成分を用いることの1つの有利性は、石油ベースのプロセス又は他のプロセスからの廃棄物としてみなされる可能性のあるものが現在のプロセスにとって価値のある共供給成分に変わることである。
本発明において用いることのできる再生可能な供給材料は、種々の不純物を含んでいる可能性がある。例えば、トール油は木材処理産業の副生成物であり、トール油はFFAに加えてエステル及びロジン酸を含む。ロジン酸は環式カルボン酸である。また、再生可能な供給材料は、アルカリ金属、例えばナトリウム及びカリウム、リン、並びに固形分、水、及び洗浄剤のような汚染物質も含んでいる可能性がある。場合によって用いる第1の工程は、これらの汚染物質を可能な限り多く除去することである。1つの可能な予備処理工程は、再生可能な供給材料を予備処理区域において予備処理条件でイオン交換樹脂と接触させることを含む。イオン交換樹脂は、Amberlyst-15のような酸性イオン交換樹脂であり、それを通して供給材料を上向きか又は下向きのいずれかで流す反応器内の床として用いることができる。反応器を運転する条件は当該技術において周知である。
汚染物質を除去するための他の可能な手段は、弱酸洗浄である。これは、供給材料を、反応器内において、硫酸、硝酸、又は塩酸のような酸と接触させることによって行う。酸と供給材料とは、バッチ又は連続法のいずれかで接触させることができる。接触は、通常は雰囲気温度及び大気圧において希釈酸溶液を用いて行う。接触を連続法で行う場合には、通常は対向流法で行う。供給材料から金属汚染物質を除去する更に他の可能な手段は、当該技術において周知の保護床を用いることによるものである。これらとしては、ニッケル又はコバルトのような脱金属触媒を用いるか又は用いないアルミナ保護床を挙げることができる。濾過及び溶媒抽出法が、用いることのできる他の選択肢である。USAN−11/770,826に記載されているような水素処理が、用いることのできる他の予備処理法である。
再生可能な供給材料は、1以上の反応器内に1以上の触媒床を含む第1の反応区域に流入させる。「供給材料」という用語は、処理して汚染物質を除去していない供給材料、及び予備処理区域内で精製した供給材料を包含するように意図する。第1の反応区域において、供給材料を、水素化条件において水素の存在下で水素化又は水素処理触媒と接触させて、n−パラフィン鎖のオレフィン部分又は不飽和部分を水素化する。水素化及び水素処理触媒は、高表面積担体上に分散されているニッケル又はニッケル/モリブデン又はコバルト/モリブデンのような当該技術において周知の任意のものである。他の水素化触媒としては、高表面積担体上に分散されている1種類以上の貴金属触媒元素が挙げられる。貴金属の非限定的な例としては、γ−アルミナ上に分散されているPt及び/又はPdが挙げられる。水素化条件としては、40℃〜400℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力が挙げられる。他の態様においては、水素化条件としては、200℃〜300℃の温度、及び1379kPa絶対圧(200psia)〜4826kPa絶対圧(700psia)の圧力が挙げられる。水素化区域に関する他の運転条件は、当該技術において周知である。
上記に列挙した水素化触媒はまた、酸素を除去するための供給材料の脱カルボキシル化、脱カルボニル化、及び/又は水素化脱酸素を触媒することもできる。脱カルボキシル化、脱カルボニル化、水素化脱酸素、及び水素化は、ここでは集合的に脱酸素反応と呼ぶ。脱カルボキシル化条件としては、3447kPa(500psia)〜6895kPa(1000psia)の比較的低い圧力、200℃〜400℃の温度、及び0.5〜10hr−1の液体毎時空間速度が挙げられる。他の態様においては、脱カルボキシル化条件としては、3447kPa(500psia)〜6895kPa(1000psia)の同じ比較的低い圧力、288℃〜345℃の温度、及び1〜4hr−1の液体毎時空間速度(新しい供給流を基準)が挙げられる。水素化は発熱反応であるので、供給材料が触媒床を通って流れると、温度が上昇し、脱カルボキシル化及び水素化脱酸素が起こり始める。したがって、3つの反応は全て1つの反応器内か又は1つの床内で同時に起こると考えられ、これは本発明の範囲内である。或いは、条件は、水素化が主として1つの床内で起こり、脱カルボキシル化、脱カルボニル化、及び/又は水素化脱酸素が第2の床内で起こるように制御することができる。勿論、1つの床しか用いない場合には、水素化は主として床の前面において起こり、一方、脱カルボキシル化/水素化脱酸素は主として床の中央部及び底部において起こる。最後に、所望の水素化を1つの反応器内で行い、一方、脱カルボニル化、脱カルボキシル化、及び/又は水素化脱酸素を別の反応器内で行うことができる。
水素化及び水素化脱酸素反応は水素を消費して水の副生成物を生成し、一方、脱カルボニル化及び脱カルボキシル化反応は一酸化炭素及び二酸化炭素を生成する。水素は製造又は購入するのに高価な材料である可能性があり、したがって水素の消費量を減少及び管理することによって経済的な有利性が与えられる。水を蒸気として反応混合物中に特定の範囲内で添加又は保持することにより、触媒が水性ガスシフト反応を触媒する能力が生かされる。脱カルボニル化反応によって一酸化炭素が生成したら直ぐに、一酸化炭素は水性ガスシフト反応によって水と反応して二酸化炭素及び水素を生成する。新しく生成した水素は、水素化及び水素化脱酸素反応における反応物質として利用することができる。反応混合物に水素を与えるよりも反応混合物に水を与える方が遙かに経済的であり、水性ガスシフト反応を触媒する触媒の能力を利用することにより、反応物質の水素をその場で生成させることができる。したがって、所望の生成物の同等の製造を保持しながらプロセスの全体的なコストが減少する。
第1の反応区域の運転条件においては、水は蒸気状の水又は蒸気として存在する。ここで水を議論する際には、この用語は蒸気状の水、即ち蒸気を包含するように意図する。第1の反応区域において水素をその場で生成させるためには、反応混合物の0.1質量%〜30質量%を水として与えるか又は保持する。他の態様においては、反応混合物は0.5質量%〜25質量%の水である。更に他の態様においては、反応混合物は1質量%〜20質量%の水である。これらの範囲は、再循環を用いる場合には再循環流を含む反応器への全液体供給流の質量%として測定する。必要な水を供給材料に加えることができ、或いは反応混合物に加えることができる。これは、供給材料と混合して第1の反応床の入口に導入することができ、或いは脱酸素化反応区域内の1以上の中間位置において導入することができ、或いは両方において導入することができる。更に、水は脱酸素化反応区域の入口又は中間位置においてクエンチとして用いることができる。
ここで議論する再生可能な供給材料の殆どは認めうるレベルの水を含まず、再生可能な供給材料又は反応混合物に水を加える必要はこれまではなかった。再生可能な供給材料又は反応混合物に水を積極的に加えて水の規定の範囲に到達させることにより、予期しなかったことに脱酸素化プロセス全体の水素消費量が減少した。脱酸素化反応区域の条件及び既に存在する水素の量においては、触媒は適度な量の水素を生成させるのに十分な量の水性ガスシフト反応をうまく触媒するとは考えられていなかった。水性ガスシフト反応は可逆反応であり、反応混合物は既に水素を含む。したがって、プロセス全体の水素消費に影響を与えるのに十分な更なる水素が生成するとは考えられていなかった。しかしながら、試験の結果、驚くべきことに、既に存在する水素に関係なく、水を加えることによって水性ガスシフト反応のために直ぐに利用できる反応物質が与えられたことが見出された。水及び触媒の存在下で一酸化炭素を生成させることにより、水性ガスシフト反応が触媒され、二酸化炭素及び水素が生成した。下記の実施例を参照。
供給材料又は反応混合物に水を添加することに加えて、他の態様においては、生成物のより大きな部分が、水素を消費する水素化脱酸素経路によるものではなく水素を消費しない脱カルボニル化及び脱カルボキシル化経路によって形成されるようにすることが有利である可能性がある。全体的なコスト削減が達成される。この態様においては、1100〜2500ppmのイオウ含有化合物を、再生可能な供給材料又は脱酸素化区域の反応混合物に加える。更に他の態様においては、1500〜2500ppmのイオウ含有化合物を、再生可能な供給材料又は脱酸素化区域の反応混合物に加える。好適なイオウ含有成分としては、ジメチルジスルフィド、ジブチルジスルフィド、及び硫化水素が挙げられるが、これらに限定されない。イオウ含有成分は、水素化分解ユニット又は水素処理ユニットからの水素のような水素流の一部であってよく、或いは、灯油又はディーゼル油から取り出されるイオウ化合物、並びにMeroxユニットのようなスイートニングユニットから取り出されるジスルフィド油であってよい。更なる有利性として、イオウ含有成分は脱酸素化触媒を硫化状態で保持するように操作するが、通常は触媒を硫化状態に保持する量よりは遙かに少ない量のイオウを用いる。1000ppmを超える量のイオウ含有成分は、触媒を硫化状態に保持するのに通常必要なものよりも過剰であるが、予期しなかったことに、競合反応の割合を水素を消費しないこれらの反応にシフトするように機能する。
また、より低い運転圧力により、水素化脱酸素反応と比較して脱カルボキシル化及び脱カルボニル化反応が良好に進行し、したがって水素消費量が減少する。下記に記載する一態様によって達成しうるより低い運転圧力を、(1)再生可能な供給材料又は反応混合物に水を加えるか、又は(2)イオウ含有化合物を十分に加えるか、又は(3)両方を行うことのいずれかと組み合わせることにより、十分な転化生成物を製造しながら水素消費量が更に減少する。
脱酸素化反応からの反応生成物は、液体部分及び気体部分を含む。液体部分は、実質的に全てがパラフィンであり、9〜18個の範囲の炭素原子のパラフィンの大きな濃度を有する炭化水素フラクションを含む。異なる供給材料によると異なるパラフィンの分布が得られる。気体部分は、水素、二酸化炭素、一酸化炭素、水蒸気、プロパン、及び硫化水素のようなイオウ成分又はホスフィンのようなリン成分を含む。
一態様においては、脱酸素化反応器からの流出流は、場合によって用いる加熱高圧水素ストリッパーに導く。加熱高圧水素ストリッパーの1つの目的は、流出流の液体部分から流出流の気体部分を分離することである。水素は高価な資源であるので、コストを節約するために、分離された水素を脱酸素化反応器を含む第1の反応区域に再循環する。また、水、一酸化炭素、及び二酸化炭素を流出流から除去しないと、異性化区域における劣った触媒特性を引き起こす可能性がある。水、一酸化炭素、二酸化炭素、全てのアンモニア又は硫化水素は、加熱高圧水素ストリッパー内において水素を用いて選択的にストリッピングする。温度は所望の分離を達成するように限定された範囲内で制御することができ、圧力は設備コスト及び運転コストの両方を最小にするように2つの反応区域と同じ圧力に保持することができる。加熱高圧水素ストリッパーは、689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力、及び40℃〜350℃の温度の範囲の条件で運転することができる。他の態様においては、加熱高圧水素ストリッパーは、1379kPa絶対圧(200psia)〜4826kPa絶対圧(700psia)、又は2413kPa絶対圧(350psia)〜4882kPa絶対圧(650psia)の圧力、及び50℃〜350℃の温度の範囲の条件で運転することができる。
流出流は加熱高圧ストリッパーに導入され、気体成分は水素ストリッピングガスによって運ばれて塔頂流中に分離される。ストリッピングガスとして更なる水素を用いる。脱酸素化流出流の残りは、加熱高圧水素ストリッパーの塔底流として取り出され、これは8〜24個の炭素原子を有する直鎖炭化水素のような成分を有する液体炭化水素フラクションを含む。加熱高圧水素ストリッパー塔底流中のこの液体炭化水素フラクションの一部を、下記に記載する炭化水素再循環流として用いることができる。
水素は上記の反応の少なくとも一部における反応物質であり、有効にするためには、触媒反応に最も有効に関与させるために十分量の水素が溶液中でなければならない。これまでのプロセスは、所望量の水素を溶液中にし、反応に速やかに利用できるようにするために高圧で運転していた。しかしながら、高圧運転はそれらのより低圧の対応する方法と比較して構築及び運転するのによりコスト高である。本発明の1つの有利性は、運転圧力を他の従来の運転において見られるものよりも低い1379kPa絶対圧(200psia)〜4826kPa絶対圧(700psia)の範囲にすることができることである。他の態様においては、運転圧力は2413kPa絶対圧(350psia)〜4481kPa絶対圧(650psia)の範囲であり、更に他の態様においては、運転圧力は2758kPa絶対圧(400psia)〜4137kPa絶対圧(600psia)の範囲である。更に、反応速度が増加し、その結果、所定時間内に反応器を通る物質の処理量がより大きくなる。
一態様においては、炭化水素の大きな再循環を用いることによって、より低い圧力において所望量の水素を溶液中に保持する。他のプロセスにおいては、反応が発熱反応であるので、反応区域内の温度を制御するために炭化水素の再循環が用いられる。しかしながら、ここで用いる再循環流:供給流の比の範囲は、温度制御の必要性ではなく、水素の溶解度の必要性に基づいて決定する。水素は、供給材料中よりも炭化水素生成物中でより大きな溶解度を有する。大きな炭化水素の再循環を用いることにより、反応区域における液相中の水素の溶解度が大きく増加し、溶液中の水素の量を増加させるのにより高い圧力は必要ない。本発明の一態様においては、炭化水素再循環流:供給流の体積比は2:1〜8:1である。他の態様においてはこの比は3:1〜6:1の範囲であり、更に他の態様においてはこの比は4:1〜5:1の範囲である。
炭化水素フラクションは実質的にn−パラフィンを含むのでディーゼル油沸点範囲の燃料として有用であるが、これは劣った低温流動特性を有する。液体炭化水素フラクションの低温流動特性を向上させることを所望の場合には、炭化水素フラクションの少なくとも一部を異性化条件下で場合によって用いる異性化触媒と接触させて、n−パラフィンを分岐パラフィンに少なくとも部分的に異性化することができる。場合によって用いる第2の反応区域である異性化区域の流出流は、分岐パラフィンに富む流れである。「富む」という用語は、流出流が、異性化区域に導入される流れよりも分岐パラフィンのより大きな濃度を有し、好ましくは50質量%より多い分岐パラフィンを含むことを意味する。異性化区域の流出流は、70、80、又は90質量%の分岐パラフィンを含むことができると考えられる。異性化は上記に記載したものと同じ反応区域、即ち同じ反応器の別々の床内で行うことができ、或いは異性化は別々の反応器内で行うことができる。記載を簡略にするために、以下の記載は異性化反応のために第2の反応器を用いる態様を説明する。炭化水素流は、水素の存在下において異性化条件下で異性化触媒と接触させて、直鎖パラフィンを分岐パラフィンに異性化する。直鎖パラフィンの低温流動の問題点を克服するのに十分な最小量の分岐しか必要でない。大きな分岐を試みることは高い度合いの望ましくない分解の危険性があるので、優勢な異性化生成物は単分岐炭化水素である。
脱酸素化反応区域の水素ストリッピングされた生成物は、水素の存在下において異性化条件下で異性化触媒と接触させて、直鎖パラフィンを分岐パラフィンに異性化する。直鎖パラフィンの低温流動の問題点を克服するのに十分な最小量の分岐しか必要でない。大きな分岐を試みることは高い度合いの望ましくない分解の危険性があるので、優勢な異性化生成物は単分岐炭化水素である。
パラフィン生成物の異性化は、当該技術において公知の任意の方法か、或いは当該技術において公知の任意の好適な触媒を用いることによって行うことができる。1以上の触媒床を用いることができる。異性化は並流運転モードで運転することが好ましい。固定床のトリクルベッド下降流モード、又は固定床の液体充填上昇流モードの両方が好ましい。例えば、US−2004/0230085−A1を参照。好適な触媒は、周期律表の第VIII族(IUPAC8〜10族)の金属、及び担体材料を含む。好適な第VIII族金属としては白金及びパラジウムが挙げられ、これらはそれぞれ単独か又は組み合わせて用いることができる。担体材料はアモルファス又は結晶質であってよい。好適な担体材料としては、アモルファスアルミナ、アモルファスシリカ−アルミナ、フェリエライト、ALPO−31、SAPO−11、SAPO−31、SAPO−37、SAPO−41、SM−3、MgAPSO−31、FU−9、NU−10、NU−23、ZSM−12、ZSM−22、ZSM−23、ZSM−35、ZSM−48、ZSM−50、ZSM−57、MeAPO−11、MeAPO−31、MeAPO−41、MeAPSO−11、MeAPSO−31、MeAPSO−41、MeAPSO−46、ELAPO−11、ELAPO−31、ELAPO−41、ELAPSO−1、ELAPSO−31、ELAPSO−41、ラウモンタイト、カンクリナイト、オフレタイト、スチルバイトの水素型、モルデナイトのマグネシウム又はカルシウム型、及びパルテイトのマグネシウム又はカルシウム型が挙げられ、これらはそれぞれ単独か又は組み合わせて用いることができる。ALPO−31は、US−4,310,440に記載されている。SAPO−11、SAPO−31、SAPO−37、及びSAPO−41は、US−4,440,871に記載されている。SM−3は、US−4,943,424;US−5,087,347;US−5,158,665;及びUS−5,208,005に記載されている。MgAPSOは、金属アルミニウムケイリン酸塩モレキュラーシーブに関する頭字語であるMeAPSOであり、ここでは金属Meはマグネシウム(Mg)である。好適なMeAPSO−31触媒としては、MgAPSO−31が挙げられる。MeAPSOはUS−4,793,984に記載されており、MgAPSOはUS−4,758,419に記載されている。MgAPSO−31が好ましいMgAPSOである。ここで、31は構造タイプ31を有するMgAPSOを意味する。当初は減少した孔径を有するフェリエライトのような多くの天然ゼオライトは、US−4,795,623及びUS−4,924,027に教示されているように、アンモニウムイオン交換及びか焼により関係するアルカリ金属又はアルカリ土類金属を除去して実質的に水素型を製造することによって、オレフィンの骨格異性化に好適な形態に転化することができる。骨格異性化のための更なる触媒及び条件は、US−5,510,306、US−5,082,956、及びUS−5,741,759に開示されている。
また、異性化触媒には、US−5,716,897及びUS−5,851,949に記載されているような、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、テルビウム、及びこれらの混合物からなる群から選択される変性剤を含ませることもできる。他の好適な担体材料としては、US−5,246,566、及びS.J. Millerによって書かれた"New molecular sieve process for lube dewaxing by wax isomerization"と題された論文(Microporous Materials, 2 (1994), 439-449)において脱蝋での使用目的で記載されているZSM−22、ZSM−23、及びZSM−35が挙げられる。US−4,310,440;US−4,440,871;US−4,793,984;US−4,758,419;US−4,943,424;US−5,087,347;US−5,158,665;US−5,208,005;US−5,246,566;US−5,716,897;及びUS−5,851,949の教示を参照。
US−5,444,032及びUS−5,608,968においては、アモルファスシリカ−アルミナゲル及び第VIIIA族に属する1種類以上の金属によって構成され、15個より多い炭素原子を有する長鎖直鎖パラフィンの水素化異性化において有効な好適な二機能性触媒が教示されている。US−5,981,419及びUS−5,908,134においては、(a)SiO:Alのモル比が300:1より高いボロシリケート(BOR−B)及びボロアルミノシリケート(Al−BOR−B)から選択されるβ−ゼオライトと同型構造の多孔質結晶質材料;(b)0.05〜5重量%の範囲の量の、白金及びパラジウムから選択される第VIIIA族に属する1種類以上の金属;を含む好適な二機能性触媒が教示されている。V. Calemmaらの文献:App. Catal. A: Gen., 190 (2000), 207においては、更に他の好適な触媒が教示されている。
異性化触媒は、上記に記載され引用されているもののような当該技術において周知の任意のものであってよい。異性化条件としては、150℃〜360℃の温度、及び1724kPa絶対圧(250psia)〜4726kPa絶対圧(700psia)の圧力が挙げられる。他の態様においては、異性化条件としては、300℃〜360℃の温度、及び3102kPa絶対圧(450psia)〜3792kPa絶対圧(550psia)の圧力が挙げられる。異性化区域に関する他の運転条件は、当該技術において周知である。
最終流出流、即ち全ての反応を行った後に得られる流れは、1以上の分離工程を通して処理して、ディーゼル油沸点範囲の燃料として有用な精製炭化水素流を得る。再循環する流れの種々の部分である液体成分及び気体成分の両方を含む最終流出流と共に、複数の分離工程を用いることができる。例えば、場合によって用いる異性化流出流分離器内で水素をまず分離して、分離された水素を塔頂流内に取り出すことができる。異性化流出流分離器の好適な運転条件としては、例えば、230℃の温度及び4100kPa絶対圧(600psia)の圧力が挙げられる。低濃度の炭素酸化物が存在する場合、或いは炭素酸化物を除去する場合には、水素を、ストリッピングガスとして用いること及び塔底流としての残りと混合して用いることの両方のために加熱高圧水素ストリッパーに再循環して戻すことができる。塔底流は異性化反応区域に送り、したがって水素は反応器に必要な水素分圧を与えるための異性化反応区域供給流の成分となる。また、水素は脱酸素化反応区域内の反応物質でもあり、異なる再生可能な供給材料は異なる量の水素を消費する。異性化流出流分離器によって、より大きな量の水素が第1の反応区域内で消費される場合においてもプロセスを柔軟に運転することができる。更に、異性化流出流分離器の残り又は塔底流の少なくとも一部を異性化反応区域に再循環して、異性化の程度を増加させることができる。
場合によって水素を除去した後の最終流出流の残りは、未だ液体及び気体成分を含んでおり、空冷又は水冷のような技術によって冷却し、低温分離器に送って、ここで液体成分を気体成分から分離する。最終流出流は、(1)脱酸素化反応区域の生成物;(2)加熱高圧水素ストリッパーを通して処理した後の脱酸素化反応区域の生成物;(3)脱酸素化反応区域、及び続いて異性化区域で処理した生成物;(4)脱酸素化反応区域、及び続いて加熱高圧水素ストリッパー、及び続いて異性化区域で処理した生成物;であってよいことに留意されたい。低温分離器の好適な運転条件としては、例えば、45℃〜50℃の温度、及び3850kPa絶対圧(560psia)の圧力が挙げられる。また、水の副生成物流も分離される。水の副生成物流の少なくとも一部は、必要な量の水の少なくとも一部として、脱酸素化区域の再生可能な供給材料或いは脱酸素化区域それ自体に再循環することができる。液体成分の少なくとも一部は、所望の場合には、冷却して気体成分から分離した後に、異性化区域に再循環して戻して異性化の程度を増加させることができる。
液体成分は、ディーゼル油沸点範囲の燃料として有用な炭化水素、並びに少量のナフサ及びLPGを含む。分離された液体成分は、ディーゼル油沸点範囲の燃料として回収することができ、或いはC〜C24の直鎖及び単分岐アルカンを含むディーゼル油生成物から低沸点成分及び溶解ガスを分離する生成物ストリッパー内で更に精製することができる。生成物ストリッパーの好適な運転条件としては、塔頂において20〜200℃の温度、及び0〜1379kPa絶対圧(0〜200psia)の圧力が挙げられる。
LPG/ナフサ流は、LPGを塔頂流中に分離し、ナフサを塔底流中に残留させるために、脱ブタン化器又は脱プロパン化器内で更に分離することができる。このユニットの好適な運転条件としては、塔頂において20〜200℃の温度、及び0〜2758kPa絶対圧(0〜400psia)の圧力が挙げられる。LPGは、価値のある生成物として販売することができ、或いは水素製造設備への供給流として用いることができる。同様に、ナフサは水素製造設備への供給流として用いることができる。
生成物分離器において分離される気体成分は、大部分が水素を含み、及び脱カルボキシル化反応からの二酸化炭素を含む。一酸化炭素、プロパン、及び硫化水素又は他のイオウ含有成分のような他の成分が更に存在する可能性がある。水素は異性化区域に再循環することが望ましいが、二酸化炭素を除去していない場合には、その濃度が速やかに増加して異性化区域の運転に影響を与える。二酸化炭素は、アミンによる吸収、加熱カーボネート溶液との反応、圧力スイング吸収等のような当該技術において周知の手段によって、水素から除去することができる。所望の場合には、使用済みの吸収媒体を再生することによって実質的に純粋な二酸化炭素を回収することができる。
同様に、脱酸素化触媒を硫化状態に保持し、全てが脱酸素化区域内で起こる水素化脱酸素反応に対する脱カルボキシル化及び脱カルボニル化反応の相対量を制御することの両方のために、硫化水素のようなイオウ含有成分を存在させる。イオウの量は、競合反応の割合に影響を与えるのに十分なように制御し、したがって水素を再循環する前に除去して、イオウ含有成分が正確な量で再循環されるようにしなければならない。イオウ含有成分は、アミンによる吸収、又は苛性洗浄などの技術を用いて除去することができる。勿論、用いる技術に応じて、二酸化炭素、及びイオウ含有成分、並びに他の成分を、水素選択膜のような単一の分離工程で除去することができる。
少なくとも二酸化炭素及びイオウ含有化合物を除去した後に残留する水素は、主として水素化を行う反応区域、及び/又は任意の後段の床/反応器に再循環することができる。再循環流は、反応区域の入口、及び/又は任意の後段の床/反応器に導入することができる。炭化水素を再循環することの1つの利点は、個々の床を横切る温度上昇が制御されることである。しかしながら、上記で議論したように、炭化水素再循環の量は、温度制御のために用いる量よりも過剰の反応区域中の所望の水素溶解度に基づいて定めることができる。反応混合物中の水素溶解度を増加させることにより、より低い圧力で満足できる運転が可能になり、したがってコストが低減される。
以下の態様は、本発明の説明において示すものであり、特許請求の範囲に示す本発明の一般的な広い範囲に対する過度の限定を意図するものではない。まず、図1を参照して本プロセスを一般的に記載する。次に、図2を参照して本プロセスをより詳細に記載する。図1に示す態様は、場合によって用いる異性化区域を用いる。図2に示す態様は、場合によって用いる加熱高圧水素ストリッパー、場合によって用いる異性化区域、場合によって用いる異性化流出流分離器、及び場合によって用いる炭化水素フラクションの分離を用いる。
図1を参照すると、再生可能な供給材料102及び水の流れ100を混合して、再循環水素126と共に脱酸素化反応区域104に導入する。脱酸素化された生成物106は、加熱水素ストリッパー108内で水素114aを用いてストリッピングする。炭素酸化物及び水蒸気を水素と共に塔頂流110中に取り出す。ストリッピングされた脱酸素化生成物115は、再循環水素126a及び補給水素114bと共に異性化区域116に送る。異性化された生成物118は、塔頂流110と混合して、生成物回収区域120に送る。生成物回収区域120から、炭素酸化物流128、軽質留分流130、水の副生成物流124、水素流126、及び分岐パラフィンに富む生成物122を取り出す。分岐パラフィンに富む生成物122は、ディーゼル油沸点範囲の燃料として用いるために回収することができ、水素流126は、脱酸素化反応区域104及び異性化区域116の両方に再循環する。
図2を参照すると、本プロセスは、再生可能な供給材料流2を用いて、これを場合によって用いる供給流サージドラムを通して送ることで開始する。供給材料流は、再循環流16と混合して混合供給流20を形成し、これを反応器流出流と熱交換し、次に水流1と混合して脱酸素化反応器4中に導入する。熱交換は、再循環流を供給流と混合する前又は後に行うことができる。脱酸素化反応器4には、図2において4a、4b、及び4cとして示される複数の床を含ませることができる。脱酸素化反応器4は、酸素を除去するための供給材料の脱カルボキシル化、脱カルボニル化、及び水素化脱酸素を触媒することができる少なくとも1種類の触媒を含む。脱酸素化反応の生成物を含む脱酸素化反応器流出流6を脱酸素化反応器4から取り出し、脱酸素化反応器への供給流を含む流れ20と熱交換する。流れ6は、大部分がディーゼル油沸点範囲の直鎖パラフィン炭化水素を含む液体成分、並びに大部分が水素で、蒸気状の水、一酸化炭素、二酸化炭素、及びプロパンを含む気体成分を含む。
脱酸素化反応器流出流6は、加熱高圧水素ストリッパー8に送る。ライン10内の補給水素は、2つの部分:流れ10a及び10bに分割する。流れ10a内の補給水素は、加熱高圧水素ストリッパー8に導入する。加熱高圧水素ストリッパー8内においては、補給水素10a及び再循環水素28を用いて、脱酸素化反応器流出流6の気体成分を脱酸素化反応器流出流6の液体成分からストリッピングする。水素、蒸気状の水、一酸化炭素、二酸化炭素、及び場合によっては若干のプロパンを含む気体成分は、加熱高圧水素ストリッパーの塔頂流14中に分離する。主として8〜24の炭素数を有する直鎖パラフィンを含む60〜100のセタン価を有する脱酸素化反応器流出流6の残りの液体成分は、加熱高圧水素ストリッパーの塔底流12として取り出す。
加熱高圧水素ストリッパーの塔底流の一部は再循環流16を形成し、再生可能な供給材料流2と混合して混合流20を形成する。場合によって用いる流れ16aである再循環流16の他の部分は、直接脱酸素化反応器4に送って、床4aと4bの間及び/又は床4bと4cの間のような中間位置に順番に導入するか、或いは例えば温度の制御を助けることができる。流れ12中の加熱高圧水素ストリッパー塔底流の残りは、水素流10bと混合して混合流18を形成し、これは異性化反応器22に送る。流れ18は、異性化反応器流出流24と熱交換することができる。
水素及びプロパンの気体部分及び分岐パラフィンに富む液体部分を含む異性化反応器の生成物をライン24内に取り出し、場合によって流れ18と熱交換した後に、水素分離器26中に導入する。水素分離器26からの塔頂流28は主として水素を含み、これは加熱高圧水素ストリッパー8に再循環して戻すことができる。水素分離器26からの塔底流30は、空冷器32を用いて空冷し、生成物分離器34中に導入する。生成物分離器34においては、水素、一酸化炭素、硫化水素、二酸化炭素、及びプロパンを含む流れの気体部分を流れ36中に取り出し、一方、流れの液体炭化水素部分を流れ38中に取り出す。また、水の副生成物流40も生成物分離器34から取り出すことができる。流れ38は生成物ストリッパー42に導入し、ここでより高い相対揮発度を有する成分を流れ44中に分離し、残りのディーゼル油沸点範囲の成分は生成物ストリッパー42からライン46中に排出する。流れ44は、LPGを塔頂流50中に分離し、ナフサ塔底流52を残留させるように運転する分別器48中に導入する。任意の場合によって用いるライン72、74、又は76を用いて、異性化区域流出流の少なくとも一部を異性化区域に再循環して戻して、分岐パラフィンに異性化されるn−パラフィンの量を増加させることができる。
生成物分離器34からの蒸気流36は、少なくとも水素、一酸化炭素、硫化水素、二酸化炭素、及びプロパンを含む異性化流出流の気体部分を含み、これはアミン吸収器のシステムに送って蒸気流から二酸化炭素及び硫化水素を分離する。水素のコストのために水素を脱酸素化反応器4に再循環することが望ましいが、二酸化炭素又は過剰のイオウ含有成分を循環することは望ましくない。イオウ含有成分及び二酸化炭素を水素から分離するために、蒸気流36を、第1のアミン吸収器区域56で始まるスクラバーとも呼ばれる少なくとも2つのアミン吸収器のシステムを通して送る。第1のアミンスクラバー56内で用いるように選択されるアミンは、少なくとも対象成分である二酸化炭素及び硫化水素のようなイオウ成分の両方を選択的に除去することができるものである。好適なアミンは、DOW及びBASFから入手することができ、一態様においては、アミンは促進又は活性化されているメチルジエタノールアミン(MDEA)である。US−6,337,059を参照。第1のアミン吸収器区域のために好適なDOWからのアミンとしては、AP802、AP804、AP806、AP810、及びAP814のようなUCARSOL APシリーズの溶媒が挙げられる。二酸化炭素及び硫化水素はアミンによって吸収され、一方、水素は第1のアミンスクラバー区域を通してライン68中に送り、第1の反応区域に再循環する。アミンを再生して二酸化炭素及び硫化水素を放出して、ライン62内に取り出す。第1のアミン吸収器区域内において、再生されたアミンを再び用いるために再循環することができる。ライン62内の放出された二酸化炭素及び硫化水素は、硫化水素に対して選択的であるが二酸化炭素に対しては選択的でないアミンを含む第2のアミンスクラバー区域58に通す。ここでも、好適なアミンはDOW及びBASFから入手することができ、一態様においては、アミンは促進又は活性化されているMDEAである。第2のアミン吸収器区域のために好適なDOWからのアミンとしては、HS101、HS102、HS103、HS104、HS115のようなUCARSOL HSシリーズの溶媒が挙げられる。したがって、二酸化炭素は、第2のアミンスクラバー区域58を通して、ライン66中に送る。アミンを再生して、硫化水素をライン60中に放出することができる。再生されたアミンはその後に再使用する。ライン60内の硫化水素は、脱酸素化反応区域に再循環することができる。
上記に記載の脱酸素化反応区域の再生可能な供給材料に水を加えることの効果を示すために、幾つかの実験を行った。全ての実験に関する再生可能な供給材料は、供給材料に加えるジブチルジスルフィドとして500重量ppmのイオウを含むn−C16とキャノーラ油の体積比3:1のブレンドであった。69gのアルミナ上のニッケル及びモリブデンの触媒を反応器に装填した。第1の実験(A)においては、再生可能な供給材料に水を加えなかった。他の3つの実験(B)、(C)、及び(D)においては、水を特定比の蒸気として再生可能な供給材料に加えた。
表中に集められたデータから分かるように、水を加えることによって、トリグリセリド転化率を保持しながら水素の消費量が減少した。水を加えたが二酸化炭素の量を増加させた場合(これは水性ガスシフト反応の増加に合致する)には、一酸化炭素の量が減少した。
Figure 0005622576
本発明は以下の態様を含む。
[1]
(a)0.1〜30質量%の水を供給材料又は第1の反応区域に加え、ここで水の質量%は全ての再循環流を含む第1の反応区域への全供給流の水の質量%として測定し;
(b)反応条件において水素の存在下で触媒を用いて供給材料を水素化及び脱酸素化し、一酸化炭素及び水を二酸化炭素及び水素に転化することによって第1の反応区域において供給材料を処理し且つ水を処理して、水素、二酸化炭素、及び8〜24個の炭素原子を有するn−パラフィンを含む炭化水素フラクションを含む第1の反応区域の生成物流を与え;
(c)第1の反応区域の生成物流の少なくとも一部を分離して、
(i)水素及び二酸化炭素を含む流れ;
(ii)炭化水素フラクションを含む流れ;及び
(iii)水の流れ;
を形成し;そして
(d)炭化水素フラクションを生成物として回収する;
ことを含む、再生可能な供給材料からパラフィンに富むディーゼル油生成物を製造する方法。
[2]
水の流れの一部を再循環して工程1(a)のための水を与えることを更に含む、[1]に記載の方法。
[3]
少なくともn−パラフィンを含む炭化水素フラクションの一部を、2:1〜8:1の範囲の再循環流:供給材料の体積比で第1の反応区域に再循環することを更に含む、[1]に記載の方法。
[4]
第1の反応区域における反応条件が、40℃〜400℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力を含む、[1]に記載の方法。
[5]
水素及び二酸化炭素を含む流れから二酸化炭素を分離し、残りの水素を第1の反応区域に再循環し、炭化水素フラクションをディーゼル油生成物流並びにナフサ及びLPGの流れに分離し、ナフサ及びLPGの流れをナフサ流及びLPG流に分離することを更に含む、[1]に記載の方法。
[6]
第1の反応区域において石油由来の炭化水素を再生可能な供給材料と共に処理することを更に含む、[1]に記載の方法。
[7]
工程1(c)の前に、加熱高圧水素ストリッパー内で、第1の反応区域の生成物流から水素、水、及び二酸化炭素を含む気体流を分離及び除去し;残りの第1の反応区域の生成物流の一部を第1の反応区域に再循環する;ことを更に含む、[1]に記載の方法。
[8]
水素、水、及び二酸化炭素を含む気体流を少なくとも部分的に分離及び除去した後に、残りの第1の反応区域の生成物流の一部を第2の反応区域に送って、異性化条件において異性化触媒と接触させて、n−パラフィンの少なくとも一部を異性化し、分岐パラフィンに富む流れを生成させることを更に含む、[7]に記載の方法。
[9]
第2の反応区域における異性化条件が、40℃〜400℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力を含む、[8]に記載の方法。
[10]
加熱高圧水素ストリッパーを、40℃〜300℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力で運転する、[8]に記載の方法。

Claims (9)

  1. (a)0.1〜30質量%の水を供給材料又は第1の反応区域に加え、ここで水の質量%は全ての再循環流を含む第1の反応区域への全供給流の水の質量%として測定し;
    (b)反応条件において水素の存在下で触媒を用いて供給材料を水素化及び脱酸素化し、一酸化炭素及び水を二酸化炭素及び水素に転化することによって第1の反応区域において供給材料を処理し且つ水を処理して、水素、二酸化炭素、及び8〜24個の炭素原子を有するn−パラフィンを含む炭化水素フラクションを含む第1の反応区域の生成物流を与え;
    (c)第1の反応区域の生成物流の少なくとも一部を分離して、
    (i)水素及び二酸化炭素を含む流れ;
    (ii)炭化水素フラクションを含む流れ;及び
    (iii)水の流れ;
    を形成し;そして
    (d)炭化水素フラクションを生成物として回収する;
    ことを含む、供給材料からパラフィンに富むディーゼル油生成物を製造する方法であって、前記供給材料がグリセリド及び遊離脂肪酸を含む植物又は動物からの油脂であり、前記触媒は水素化及び脱酸素化反応に加えて水性ガスシフト反応を触媒し、第1の反応区域における反応条件が、40℃〜400℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力を含む、方法。
  2. 水の流れの一部を再循環して工程1(a)のための水を与えることを更に含む、請求項1に記載の方法。
  3. 少なくともn−パラフィンを含む炭化水素フラクションの一部を、2:1〜8:1の範囲の再循環流:供給材料の体積比で第1の反応区域に再循環することを更に含む、請求項1に記載の方法。
  4. 水素及び二酸化炭素を含む流れから二酸化炭素を分離し、残りの水素を第1の反応区域に再循環し、炭化水素フラクションをディーゼル油生成物流並びにナフサ及びLPGの流れに分離し、ナフサ及びLPGの流れをナフサ流及びLPG流に分離することを更に含む、請求項1に記載の方法。
  5. 第1の反応区域において石油由来の炭化水素を供給材料と共に処理することを更に含む、請求項1に記載の方法。
  6. 工程1(c)の前に、加熱高圧水素ストリッパー内で、第1の反応区域の生成物流から水素、水、及び二酸化炭素を含む気体流を分離及び除去し;残りの第1の反応区域の生成物流の一部を第1の反応区域に再循環する;ことを更に含む、請求項1に記載の方法。
  7. 水素、水、及び二酸化炭素を含む気体流を少なくとも部分的に分離及び除去した後に、残りの第1の反応区域の生成物流の一部を第2の反応区域に送って、異性化条件において異性化触媒と接触させて、n−パラフィンの少なくとも一部を異性化し、分岐パラフィンに富む流れを生成させることを更に含む、請求項に記載の方法。
  8. 第2の反応区域における異性化条件が、40℃〜400℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力を含む、請求項に記載の方法。
  9. 加熱高圧水素ストリッパーを、40℃〜300℃の温度、及び689kPa絶対圧(100psia)〜13,790kPa絶対圧(2000psia)の圧力で運転する、請求項に記載の方法。
JP2010525988A 2007-09-20 2008-09-19 減少した水素消費量での再生可能な供給材料からのディーゼル燃料の製造 Expired - Fee Related JP5622576B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US97381807P 2007-09-20 2007-09-20
US60/973,818 2007-09-20
US12/193,161 2008-08-18
US12/193,161 US7999143B2 (en) 2007-09-20 2008-08-18 Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
PCT/US2008/076947 WO2009039335A1 (en) 2007-09-20 2008-09-19 Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption

Publications (2)

Publication Number Publication Date
JP2010540700A JP2010540700A (ja) 2010-12-24
JP5622576B2 true JP5622576B2 (ja) 2014-11-12

Family

ID=40468359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010525988A Expired - Fee Related JP5622576B2 (ja) 2007-09-20 2008-09-19 減少した水素消費量での再生可能な供給材料からのディーゼル燃料の製造

Country Status (7)

Country Link
US (1) US7999143B2 (ja)
EP (1) EP2188354A4 (ja)
JP (1) JP5622576B2 (ja)
AR (1) AR068494A1 (ja)
BR (1) BRPI0816888A2 (ja)
CA (1) CA2699897C (ja)
WO (1) WO2009039335A1 (ja)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127208B2 (en) 2006-04-03 2015-09-08 Pharmatherm Chemicals, Inc. Thermal extraction method and product
AU2008219263B2 (en) * 2007-02-20 2011-01-20 Shell Internationale Research Maatschappij B.V. Process for producing paraffinic hydrocarbons
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US8003834B2 (en) * 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7982078B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982077B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7915460B2 (en) * 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US7905990B2 (en) * 2007-11-20 2011-03-15 Ensyn Renewables, Inc. Rapid thermal conversion of biomass
EP2225351A4 (en) 2007-12-03 2016-11-09 Gevo Inc RENEWABLE COMPOSITIONS
US20090162264A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
US8198492B2 (en) * 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8193400B2 (en) * 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8588050B2 (en) 2008-11-12 2013-11-19 Panduit Corp. Intelligent patching system
EP2421934A4 (en) * 2009-04-21 2014-06-18 Sapphire Energy Inc PROCESS FOR PRODUCING OIL COMPOSITIONS FOR FUEL REFINEMENT
EP2470625B1 (en) * 2009-08-24 2019-05-15 Phillips 66 Company Hydrotreating carbohydrates
WO2011031435A2 (en) * 2009-08-28 2011-03-17 Exxonmobil Research And Engineering Company Reducing hydrogen consumption in hydrotreating of biocomponent feeds
SG178893A1 (en) * 2009-09-08 2012-04-27 Exxonmobil Res & Eng Co Fuel production from feedstock containing lipidic material
US8471081B2 (en) * 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US8853474B2 (en) * 2009-12-29 2014-10-07 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feedstocks with low purity hydrogen-containing streams
MY159813A (en) 2010-01-08 2017-02-15 Gevo Inc Integrated methods of preparing renewable chemicals
US8575408B2 (en) * 2010-03-30 2013-11-05 Uop Llc Use of a guard bed reactor to improve conversion of biofeedstocks to fuel
EP2566830B1 (en) 2010-05-07 2017-03-22 GEVO, Inc. Renewable jet fuel blendstock from isobutanol
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US20120016167A1 (en) * 2010-07-15 2012-01-19 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feeds with low pressure hydrogen-containing streams
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
US8366907B2 (en) 2010-08-02 2013-02-05 Battelle Memorial Institute Deoxygenation of fatty acids for preparation of hydrocarbons
US8318996B2 (en) * 2010-08-31 2012-11-27 Uop Llc Systems and methods for treating hydrogen recycle gas in a process for converting biorenewable feedstock into renewable fuels and chemicals
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
US8841495B2 (en) 2011-04-18 2014-09-23 Gas Technology Institute Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor
TW201247596A (en) 2011-04-19 2012-12-01 Gevo Inc Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol
EP2719746B1 (en) * 2011-06-13 2019-01-02 Eco Environmental Energy Research Institute Limited Method for preparing fuel from biological oil and fat
KR20140049025A (ko) * 2011-07-27 2014-04-24 더루우브리졸코오포레이션 바이오재생가능 공급원료의 개량된 수소화공정
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10041667B2 (en) 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9044727B2 (en) 2011-09-22 2015-06-02 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US20130144091A1 (en) * 2011-12-06 2013-06-06 Phillips 66 Company Renewable diesel fuel derived from biomass
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
ITMI20121465A1 (it) 2012-09-03 2014-03-04 Eni Spa Metodo per convertire una raffineria convenzionale di oli minerali in una bioraffineria
WO2014049621A1 (en) 2012-09-28 2014-04-03 Council Of Scientific & Industrial Research A catalytic process to convert renewable feedstock into aromatics rich aviation fuel
US10633606B2 (en) 2012-12-10 2020-04-28 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US9162938B2 (en) 2012-12-11 2015-10-20 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
US9024096B2 (en) 2012-12-11 2015-05-05 Lummus Technology Inc. Conversion of triacylglycerides-containing oils
US10988421B2 (en) 2013-12-06 2021-04-27 Exxonmobil Chemical Patents Inc. Removal of bromine index-reactive compounds
ITMI20132221A1 (it) 2013-12-30 2015-07-01 Versalis Spa Processo per la produzione di composti olefinici e di un carburante idrocarburico o sua frazione
WO2015107487A1 (en) 2014-01-20 2015-07-23 Eni S.P.A. Process for the production of hydrocarbon fractions from mixtures of a biological origin
ES2958518T3 (es) 2014-05-29 2024-02-09 Eni Spa Proceso de producción de una fracción de hidrocarburo diésel a partir de una materia prima renovable
WO2015181744A1 (en) 2014-05-29 2015-12-03 Eni S.P.A. Process for producing a diesel hydrocarbon fraction starting from a renewable feedstock
ES2860924T3 (es) 2014-05-29 2021-10-05 Eni Spa Proceso para producir una fracción de hidrocarburo diésel a partir de una materia prima renovable
TW201602336A (zh) 2014-06-09 2016-01-16 W R 康格雷氏公司 天然油及脂之催化脫氧方法
US20160053183A1 (en) * 2014-08-25 2016-02-25 Uop Llc Methods for hydrogen sulfide recycling using selective solvents in the hydroprocessing of renewable feedstocks
WO2016038633A1 (en) 2014-09-12 2016-03-17 Council Of Scientific And Industrial Research An improved process to produce aromatics rich aviation fuel along with other c1-c24 hydrocarbons
CA2995845A1 (en) 2015-08-21 2017-03-02 Ensyn Renewables, Inc. Liquid biomass heating system
US10351781B2 (en) 2015-12-14 2019-07-16 Council Of Scientific & Industrial Research Pt/Pd sodalite caged catalyst combination with sulfided base metal catalyst for the improved catalytic hydroprocessing of feedstock
US10457875B2 (en) 2016-07-11 2019-10-29 Council Of Scientific & Industrial Research H2 and bio-fuels production from renewable feedstocks
BR112019013387B1 (pt) 2016-12-29 2023-03-28 Ensyn Renewables, Inc Desmetalização de biomassa
FI127307B (en) * 2017-01-27 2018-03-15 Neste Oyj Fuel compositions with improved boiling properties and processes for their preparation
FI130603B (en) 2018-08-03 2023-12-08 Neste Oyj THE METHOD PRODUCES BIORENEWABLE PROPENE FROM OILS AND FATS
JPWO2022004267A1 (ja) * 2020-06-29 2022-01-06
CN116887906A (zh) 2020-12-17 2023-10-13 国际壳牌研究有限公司 用于处理来自可再生原料的加氢处理的废气的方法
CN115491224B (zh) * 2021-06-17 2024-03-26 中国石油化工股份有限公司 回收轻质润滑油基础油滤液中脱蜡溶剂的方法
WO2023091805A1 (en) * 2021-11-22 2023-05-25 ExxonMobil Technology and Engineering Company Integrated process for the manufacture of renewable diesel

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300009A (en) 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
US4992605A (en) 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US5186722A (en) * 1991-06-25 1993-02-16 Cantrell Research, Incorporated Hydrocarbon-based fuels from biomass
CA2149685C (en) * 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
US7279018B2 (en) * 2002-09-06 2007-10-09 Fortum Oyj Fuel composition for a diesel engine
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
CA2439577C (en) * 2002-09-06 2011-05-31 Fortum Oyj Process for producing a hydrocarbon component of biological origin
US7235172B2 (en) * 2004-02-25 2007-06-26 Conocophillips Company Olefin production from steam cracking using process water as steam
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
CN1973024B (zh) * 2004-06-22 2012-02-08 阿克佐诺贝尔股份有限公司 支化生物柴油
US7491858B2 (en) * 2005-01-14 2009-02-17 Fortum Oyj Method for the manufacture of hydrocarbons
BRPI0500591A (pt) * 2005-02-18 2006-10-03 Petroleo Brasileiro Sa processo para a hidroconversão de óleos vegetais
EP1866266B1 (en) * 2005-03-21 2017-04-12 Ben Gurion University of the Negev Research and Development Authority Production of diesel fuel from vegetable and animal oils
US7964761B2 (en) * 2005-05-02 2011-06-21 University Of Utah Research Foundation Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
EP1719811A1 (en) 2005-05-04 2006-11-08 Albemarle Netherlands B.V. Process for producing liquid hydrocarbons from biomass
EP1741767B2 (en) 2005-07-04 2023-04-05 Neste Oyj Process for the manufacture of diesel range hydrocarbons
US8278492B2 (en) * 2005-07-05 2012-10-02 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
US8022258B2 (en) * 2005-07-05 2011-09-20 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
BRPI0502577B1 (pt) * 2005-07-07 2015-11-03 Petroleo Brasileiro Sa processo de craqueamento catalítico para produção de diesel a partir de óleos vegetais
US7928273B2 (en) * 2005-08-29 2011-04-19 David Bradin Process for producing a renewable fuel in the gasoline or jet fuel range
US7754931B2 (en) * 2005-09-26 2010-07-13 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Production of high-cetane diesel fuel from low-quality biomass-derived feedstocks
EP1956070A4 (en) 2005-11-30 2013-06-19 Nippon Oil Corp GASOIL COMPOSITION
JP4878824B2 (ja) 2005-11-30 2012-02-15 Jx日鉱日石エネルギー株式会社 環境低負荷型燃料の製造方法および環境低負荷型燃料
JP4925653B2 (ja) 2005-11-30 2012-05-09 Jx日鉱日石エネルギー株式会社 液化燃料ガス組成物の製造方法
KR101008266B1 (ko) * 2005-12-12 2011-01-13 네스테 오일 오와이제이 포화 탄화수소 성분의 제조방법
US8053614B2 (en) * 2005-12-12 2011-11-08 Neste Oil Oyj Base oil
US7501546B2 (en) * 2005-12-12 2009-03-10 Neste Oil Oj Process for producing a branched hydrocarbon component
US7888542B2 (en) * 2005-12-12 2011-02-15 Neste Oil Oyj Process for producing a saturated hydrocarbon component
EP1795576B1 (en) * 2005-12-12 2014-05-21 Neste Oil Oyj Process for the manufacture of hydrocarbons
US7850841B2 (en) * 2005-12-12 2010-12-14 Neste Oil Oyj Process for producing a branched hydrocarbon base oil from a feedstock containing aldehyde and/or ketone
US7998339B2 (en) * 2005-12-12 2011-08-16 Neste Oil Oyj Process for producing a hydrocarbon component
AU2006325183B2 (en) * 2005-12-12 2010-12-16 Neste Oil Oyj Process for producing a hydrocarbon component
CN101360810B (zh) * 2005-12-12 2012-09-05 耐思特石油公司 生产支链烃组分的方法
US7459597B2 (en) * 2005-12-13 2008-12-02 Neste Oil Oyj Process for the manufacture of hydrocarbons
US7550634B2 (en) * 2006-01-30 2009-06-23 Conocophillips Company Process for converting triglycerides to hydrocarbons
BRPI0601403B1 (pt) * 2006-04-17 2015-11-03 Petroleo Brasileiro Sa processo de obtenção de n-parafinas a partir de óleo vegetal
BRPI0601460B1 (pt) 2006-04-26 2015-11-10 Petroleo Brasileiro Sa processo para hidroconversão de mistura de óleos orgânicos de diferentes origens
US7511181B2 (en) * 2006-05-02 2009-03-31 Uop Llc Production of diesel fuel from biorenewable feedstocks
CN103360205A (zh) * 2006-05-08 2013-10-23 维仁特公司 用于生成多元醇的方法和系统
WO2007136873A2 (en) * 2006-05-19 2007-11-29 The Procter & Gamble Company Process for decarboxylation of fatty acids and oils to produce paraffins or olefins
BRPI0712612A2 (pt) * 2006-05-25 2012-10-23 Bp Oil Int processo de hidrogenação
FR2901804B1 (fr) * 2006-05-30 2012-08-31 Inst Francais Du Petrole Procede de transformation de l'ethanol en base pour carburant diesel
US7880049B2 (en) * 2006-06-06 2011-02-01 Wisconsin Alumni Research Foundation Production of liquid alkanes in the jet fuel range (C8-C15) from biomass-derived carbohydrates
CA2653706C (en) * 2006-06-06 2015-05-12 Wisconsin Alumni Research Foundation Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor
HUE056210T2 (hu) 2006-06-09 2022-02-28 Albemarle Netherlands Bv Oxigenát nyersanyag katalitikus hidrodeoxigénezése
FI121425B (fi) * 2006-06-14 2010-11-15 Neste Oil Oyj Prosessi perusöljyn valmistamiseksi
WO2008105798A2 (en) * 2006-06-30 2008-09-04 University Of North Dakota Method for cold stable biojet fuel
FR2904324B1 (fr) 2006-07-27 2012-09-07 Total France Procede d'hydrotraitement d'une charge gazole, reacteur d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante.
KR20090040476A (ko) 2006-08-16 2009-04-24 바이오이콘 인터내셔널 홀딩 엔.브이. 감압 경유와 트리글리세라이드의 혼합물을 수소화처리함으로써 직쇄형 알칸의 제조 방법
US7897824B2 (en) * 2006-08-16 2011-03-01 Energy & Environmental Research Center Foundation Optimal energy pathway to renewable domestic and other fuels
WO2008035155A2 (en) * 2006-09-19 2008-03-27 Ben-Gurion University Of The Negev Research & Development Authority Reaction system for production of diesel fuel from vegetable and animal oils
BRPI0605006B1 (pt) * 2006-11-30 2016-11-22 Petroleo Brasileiro Sa processo de obtenção de biolubrificantes e bioparafinas a partir do hidroprocessamento de misturas de ceras obtidas a partir de fontes renováveis e ceras de origem mineral
JP5410983B2 (ja) * 2006-12-01 2014-02-05 ノース・キャロライナ・ステイト・ユニヴァーシティ バイオマスの燃料への変換のためのプロセス
FR2910483B1 (fr) * 2006-12-21 2010-07-30 Inst Francais Du Petrole Procede de conversion de charges issues de sources renouvelables en bases carburants gazoles de bonne qualite.
FR2910486B1 (fr) * 2006-12-21 2009-02-13 Inst Francais Du Petrole Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore
FR2910485B1 (fr) * 2006-12-22 2009-03-06 Inst Francais Du Petrole Procedes d'hydrotraitement d'un melange constitue d'huiles d'origine animale ou vegetale et de coupes petrolieres avec stripage intermediaire
FR2910484B1 (fr) * 2006-12-22 2009-03-06 Inst Francais Du Petrole Procedes d'hydrotraitement d'un melange constitue d'huiles d'origine vegetale ou animale et de coupes petrolieres avec injection des huiles en trempe sur le dernier lit catalytique
US20080163543A1 (en) * 2007-01-05 2008-07-10 Ramin Abhari Process for producing bio-derived fuel with alkyl ester and iso-paraffin components
AU2008219263B2 (en) 2007-02-20 2011-01-20 Shell Internationale Research Maatschappij B.V. Process for producing paraffinic hydrocarbons
FR2913024B1 (fr) 2007-02-27 2012-07-27 Total France Procede d'hydrotraitement d'une charge gazole, unite d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante
JP5110607B2 (ja) 2007-02-28 2012-12-26 独立行政法人産業技術総合研究所 バイオディーゼル燃料の製造方法及びバイオディーゼル燃料組成物
US7977517B2 (en) * 2007-03-08 2011-07-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
PT103684A (pt) 2007-03-09 2008-09-09 Pedro Manuel Brito Da Silva Correia Biocombustiveis líquidos constituidos por dihidroximetilfurano, propanol e seu processo de produção a partir de polióis de origem agrícola
WO2008124607A1 (en) * 2007-04-06 2008-10-16 Syntroleum Corporation Process for co-producing jet fuel and lpg from renewable sources
US7626063B2 (en) * 2007-05-11 2009-12-01 Conocophillips Company Propane utilization in direct hydrotreating of oils and/or fats
ITMI20071045A1 (it) 2007-05-23 2008-11-24 Eni Spa Procedimento per l'idroconversione di oli pesanti
ITMI20071044A1 (it) 2007-05-23 2008-11-24 Eni Spa Sistema e procedimento per l'idroconversione di oli pesanti
US7425657B1 (en) * 2007-06-06 2008-09-16 Battelle Memorial Institute Palladium catalyzed hydrogenation of bio-oils and organic compounds
US8048290B2 (en) * 2007-06-11 2011-11-01 Neste Oil Oyj Process for producing branched hydrocarbons
US8143469B2 (en) * 2007-06-11 2012-03-27 Neste Oil Oyj Process for producing branched hydrocarbons
FI121308B (fi) 2007-06-11 2010-09-30 Neste Oil Oyj Prosessi haaroittuneiden hiilivetyjen valmistamiseksi
FR2917424B1 (fr) 2007-06-12 2012-10-19 Inst Francais Du Petrole Production de charges de vapocraquage a haut rendement en ethylene, propylene et polymeres resultants par hydrotraitement d'huile vegetales
ITMI20071198A1 (it) 2007-06-14 2008-12-15 Eni Spa Procedimento migliorato per l'idroconversione di oli pesanti con sistemi a letto ebullato
US8119847B2 (en) * 2007-06-15 2012-02-21 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
BRPI0702541A2 (pt) * 2007-06-21 2009-02-10 Petroleo Brasileiro Sa processo de craqueamento catalÍtico para produÇço de diesel a partir de sementes de oleaginosas
US7955401B2 (en) * 2007-07-16 2011-06-07 Conocophillips Company Hydrotreating and catalytic dewaxing process for making diesel from oils and/or fats
WO2009011639A2 (en) 2007-07-19 2009-01-22 Sunpine Ab Diesel range fuels from carboxylic acids with plant origin
EP3135747B1 (en) 2007-07-20 2021-04-28 UPM-Kymmene Oyj Method and apparatus for producing liquid hydrocarbonaceous product from solid biomass
FI20085400A0 (fi) 2007-11-09 2008-04-30 Upm Kymmene Oyj Menetelmä jäteveden integroidulle käsittelylle
US7838272B2 (en) * 2007-07-25 2010-11-23 Chevron U.S.A. Inc. Increased yield in gas-to-liquids processing via conversion of carbon dioxide to diesel via microalgae
US8523959B2 (en) * 2007-07-26 2013-09-03 Chevron U.S.A. Inc. Paraffinic biologically-derived distillate fuels with bio-oxygenates for improved lubricity and methods of making same
JP5288740B2 (ja) 2007-08-07 2013-09-11 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
US7718051B2 (en) * 2007-09-17 2010-05-18 Battelle Energy Alliance, Llc Conversion of crop seed oils to jet fuel and associated methods
WO2009039015A2 (en) * 2007-09-18 2009-03-26 Sapphire Energy, Inc. Methods for refining hydrocarbon feedstocks
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7999142B2 (en) * 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US7915460B2 (en) * 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US7982077B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982078B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982076B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US8124572B2 (en) * 2007-09-27 2012-02-28 Chevron U.S.A. Inc. Production of biofuels and biolubricants from a common feedstock
US7815694B2 (en) * 2007-09-27 2010-10-19 Chevron U.S.A. Inc. Production of biofuels and biolubricants from a common feedstock
WO2009025542A1 (en) 2008-02-26 2009-02-26 Ruslee Hussain Improved process of refining crude vegetable oil and animal fats for biodiesel feedstock

Also Published As

Publication number Publication date
EP2188354A1 (en) 2010-05-26
WO2009039335A1 (en) 2009-03-26
US7999143B2 (en) 2011-08-16
CA2699897A1 (en) 2009-03-26
CA2699897C (en) 2014-09-09
JP2010540700A (ja) 2010-12-24
AR068494A1 (es) 2009-11-18
EP2188354A4 (en) 2012-12-05
BRPI0816888A2 (pt) 2017-05-23
US20090077867A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5622576B2 (ja) 減少した水素消費量での再生可能な供給材料からのディーゼル燃料の製造
US8283506B2 (en) Production of fuel from renewable feedstocks using a finishing reactor
US8304592B2 (en) Production of paraffinic fuel from renewable feedstocks
US7999142B2 (en) Production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US8193400B2 (en) Production of diesel fuel from renewable feedstocks
US7915460B2 (en) Production of diesel fuel from biorenewable feedstocks with heat integration
US20090321311A1 (en) Production of diesel fuel from renewable feedstocks containing phosphorus
US9416321B2 (en) Separation process with modified enhanced hot separator system
US7982079B2 (en) Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US20090077868A1 (en) Production of Diesel Fuel from Biorenewable Feedstocks with Selective Separation of Converted Oxygen
US20090078611A1 (en) Integrated Process for Oil Extraction and Production of Diesel Fuel from Biorenewable Feedstocks
US8921627B2 (en) Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
JP2011515539A (ja) 再生可能供給原料からの輸送燃料の製造
US8766025B2 (en) Production of paraffinic fuel from renewable feedstocks
US8440875B1 (en) Method and apparatus for high acid content feed for making diesel and aviation fuel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees