JP5579268B2 - 極低温冷凍機及び冷却方法 - Google Patents

極低温冷凍機及び冷却方法 Download PDF

Info

Publication number
JP5579268B2
JP5579268B2 JP2012520152A JP2012520152A JP5579268B2 JP 5579268 B2 JP5579268 B2 JP 5579268B2 JP 2012520152 A JP2012520152 A JP 2012520152A JP 2012520152 A JP2012520152 A JP 2012520152A JP 5579268 B2 JP5579268 B2 JP 5579268B2
Authority
JP
Japan
Prior art keywords
pressure
valve
cylinder
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012520152A
Other languages
English (en)
Other versions
JPWO2011158281A1 (ja
Inventor
瑞 李
鵬達 顔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Publication of JPWO2011158281A1 publication Critical patent/JPWO2011158281A1/ja
Application granted granted Critical
Publication of JP5579268B2 publication Critical patent/JP5579268B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、極低温冷凍機及び冷却方法に関する。
例えば特許文献1には、ギフォード・マクマホン(GM)サイクル等を用いた極低温冷凍装置が記載されている。この極低温冷凍装置には、冷凍機から排出された低圧の冷媒ガスを吸い込んで高圧の冷媒ガスとして冷凍機に送り出す圧縮機が設けられている。また、冷凍機と圧縮機との冷媒ガスの流れを制御するためのロータリー弁装置が冷凍機に内蔵されている。ロータリー弁装置には冷凍機に冷媒ガスを吸気するための吸気弁及び冷媒ガスを排気するための排気弁が形成されている。吸気弁は高圧の冷媒ガスを圧縮機から冷凍機に供給するために設けられ、排気弁は低圧の冷媒ガスを冷凍機から圧縮機に排出するために設けられている。
特許第2617681号公報
よって、吸気弁及び排気弁には開弁時に圧縮機の出入口間の差圧に相当する比較的大きな差圧が作用する。差圧が大きいほど弁におけるエネルギのロスが大きくなる。弁を通るときに流れに乱れが生じ、摩擦熱などとしてエネルギが失われるからである。より正確には流れのエントロピーが大きくなる。このようなエネルギ損失を考慮して、冷凍機には比較的大型の圧縮機が設けられている。しかし、同じレベルの冷凍性能を実現できるのであれば、消費電力のより小さい圧縮機を用いることが省エネルギーの観点からは好ましい。
本発明の目的の一つは、省エネルギー性に優れる極低温冷凍機及び冷却方法を提供することにある。
本発明のある態様によれば、作動気体を吸排気するためにシリンダの内部で駆動されるディスプレーサを備える冷凍機と、前記シリンダから排気された低圧の作動気体を圧縮して高圧の作動気体として前記シリンダに送出するための圧縮機と、前記圧縮機の高圧側及び低圧側の少なくとも一方に接続されており前記圧縮機により調圧され、かつ前記シリンダに接続される中間圧バッファ容積と、を備える極低温冷凍機が提供される。
この態様によれば、中間圧バッファ容積を使用してシリンダと圧縮機との差圧を軽減することができる。圧縮機とシリンダとの間の作動気体流れにおけるエネルギ損失を小さくすることができるので、消費電力の小さい圧縮機を採用し省エネルギー性に優れる極低温冷凍機を実現することができる。また、バッファ容積が中間圧に調圧されることも、冷凍機の省エネルギー性に寄与する。
本発明の別の態様によれば、冷却方法が提供される。この方法は、作動気体を高圧源から膨張空間に吸気する吸気工程と、作動気体を膨張させ該膨張空間から低圧源に排気する排気工程とを含む熱サイクルによって寒冷を発生する。前記吸気工程は、前記高圧源及び低圧源の中間圧を有する中圧源から前記膨張空間に吸気する工程を含む。前記排気工程が開始される前に、前記中圧源を前記膨張空間から遮断し前記膨張空間との差圧を軽減するよう前記中圧源を昇圧する。
本発明の別の態様によれば、冷却方法が提供される。この方法は、作動気体を高圧源から膨張空間に吸気する吸気工程と、作動気体を膨張させ該膨張空間から低圧源に排気する排気工程とを含む熱サイクルによって寒冷を発生する。前記排気工程は、前記高圧源及び低圧源の中間圧を有する中圧源に前記膨張空間から排気する工程を含む。前記吸気工程が開始される前に、前記中圧源を前記膨張空間から遮断し前記膨張空間との差圧を軽減するよう前記中圧源を減圧する。
本発明によれば、省エネルギー性に優れる極低温冷凍機及び冷却方法を提供することができる。
本発明の一実施形態に係る極低温冷凍機の構成を模式的に示す図である。 本発明の一実施形態に係る極低温冷凍機の動作の一例を模式的に示す図である。 本発明の一実施形態に係る極低温冷凍機の構成を模式的に示す図である。 本発明の他の実施形態に係る極低温冷凍機の構成を模式的に示す図である。 本発明の他の一実施形態に係る極低温冷凍機の動作の一例を模式的に示す図である。
図1は、本発明の一実施形態に係る極低温冷凍機10の構成を模式的に示す図である。極低温冷凍機10は、シリンダ12の内部で機械的に駆動されるディスプレーサ14を備え、GMサイクルによって寒冷を発生させるギフォード・マクマホン型冷凍機(いわゆるGM冷凍機)である。極低温冷凍機10のコールドヘッドはシリンダ12及びディスプレーサ14を含んで構成される。ディスプレーサ14は、シリンダ12の高温端と低温端とをディスプレーサ駆動機構16によって往復動する。ディスプレーサ駆動機構16は例えば、モータ、及びこのモータの出力する回転運動を往復運動に変換してディスプレーサ14に伝達するためのクランク及びスコッチヨークを含む。シール18がシリンダ12とディスプレーサ14との間に配置され、シリンダ12の高温側の上部室20と低温側の膨張室22とを仕切っている。膨張室22の作動気体圧力をシリンダ圧PCと表記する。上部室20と蓄冷器24とは第1ガス流路26により接続され、膨張室22と蓄冷器24とは第2ガス流路28により接続されている。作動気体は例えばヘリウムガスである。
なお、図示の例では蓄冷器24はシリンダ12の外部に設けられているが、蓄冷器24はディスプレーサ14の内部に組み込まれていてもよい。極低温冷凍機10は図示のように単段の冷凍機には限られず、直列に接続された複数(例えば2つ)のシリンダのそれぞれの内部にディスプレーサが往復動可能に収容されている複数段(例えば2段)の冷凍機であってもよい。また、極低温冷凍機10は、作動気体の圧力によってディスプレーサ14を駆動するよう構成されていてもよい。極低温冷凍機10はGMサイクル以外の適切な熱サイクル例えばソルベイサイクルによって寒冷を発生させるよう構成されていてもよい。
極低温冷凍機10は、圧縮機30及び圧力制御部32をさらに備える。圧縮機30は作動気体を循環させるために設けられている。すなわち圧縮機30は、シリンダ12から排気された低圧PLの作動気体を圧縮し、高圧PHの作動気体をシリンダ12に再び送出する。圧縮機30の吐出口及び吸入口から高圧配管42及び低圧配管44がそれぞれ延びており、高圧配管42及び低圧配管44により圧縮機30と圧力制御部32とが接続される。圧縮機30は圧力制御部32とは別体に構成されており、このように配管で接続されている。圧縮機30は実質的に一定の低圧PLの作動気体を吸入し、実質的に一定の高圧PHの作動気体を吐出するよう構成されている。しかし、圧縮機30は入力圧及び出力圧の少なくとも一方を可変とするよう構成されていてもよい。例えば、圧縮機30の出入口間の差圧を目標圧に維持するように圧縮機30は制御されてもよい。
圧力制御部32は、シリンダ12と圧縮機30との間に設けられており、圧縮機30をシリンダ12の高温端に接続する。圧力制御部32は、寒冷を発生させるための熱サイクルを実現するようディスプレーサ14の往復動に同期させて圧縮機30とシリンダ12との接続状態を周期的に切り換える。つまり、圧力制御部32は、シリンダ12に作動気体を充填する吸気工程においては圧縮機30の高圧側をシリンダ12に接続し、シリンダ12から作動気体を排出する排気工程においては圧縮機30の低圧側をシリンダ12に接続する。また後述するように、圧力制御部32はシリンダ12を高圧源及び低圧源に切り換えて接続するだけではなく、バッファ容積34ともシリンダ12を接続する。
圧力制御部32は、少なくとも1つのバッファ容積34、高圧バルブV1、中圧バルブV2、及び低圧バルブV3を含んで構成される。高圧バルブV1は圧縮機30の高圧側をシリンダ12の上部室20に連通させるために高圧ガス流路36に設けられている。中圧バルブV2はバッファ容積34をシリンダ12の上部室20または膨張室22に連通させるために中圧ガス流路38に設けられている。低圧バルブV3は圧縮機30の低圧側をシリンダ12の膨張室22に連通させるために低圧ガス流路40に設けられている。
高圧バルブV1、中圧バルブV2、及び低圧バルブV3は、シリンダ12及び蓄冷器24に対して並列に設けられている。高圧バルブV1、中圧バルブV2、及び低圧バルブV3のうち少なくとも1つを開くことにより、開弁されたバルブに対応して高圧源、中圧源、及び低圧源のうち少なくとも1つがシリンダ12及び蓄冷器24に連通される。すなわち、極低温冷凍機10は、シリンダ12に選択的に連通可能である高圧源、中圧源、及び低圧源を含む作動気体源を備える。
高圧ガス流路36の一端は圧縮機30の吐出口から延びる高圧配管42に接続されており、高圧ガス流路36の他端は第1ガス流路26に接続されている。中圧ガス流路38の一端はバッファ容積34に接続されており、中圧ガス流路38の他端は第1ガス流路26に接続されている。低圧ガス流路40の一端は圧縮機30の吸入口から延びる低圧配管44に接続されており、低圧ガス流路40の他端は第1ガス流路26に接続されている。
バッファ容積34は、圧縮機30により高圧PH及び低圧PLの中間圧に調圧されるように圧縮機30の高圧側及び低圧側の少なくとも一方に接続されている。バッファ容積34の圧力をバッファ圧PBと表記する。図2を参照して後述するように、バッファ圧PBは熱サイクルにおいて圧力制御部32により中間圧力範囲に制御される。この中間圧力範囲の上限圧は圧縮機30の高圧PHよりも小さく、下限圧は圧縮機30の低圧PLよりも大きい。こうしてバッファ容積34は、作動気体を膨張空間に供給するための高圧源及び作動気体を膨張空間から排気するための低圧源の少なくとも一方によって調圧される中圧源として作用する。
バッファ圧PBは、例えば中圧バルブV2の閉弁期間の少なくとも一部において、設定圧に復帰するように調圧される。バッファ容積34をシリンダ12に連通させたことによるバッファ圧PBの増減を圧縮機30により回復させることができる。このため、バッファ容積34を比較的小さくしても、十分な作動気体源として機能させることができる。例えば、バッファ容積34をシリンダ12または膨張室22の容積よりも小さくして、極低温冷凍機10をコンパクトに実現することができる。
これに対して圧縮機30によるバッファ圧PBの回復をしない場合には、相応の大容積のバッファを設けることになると考えられる。バッファの小型化をそれほど重視しない場合にはバッファ圧PBの回復をしないようにしてもよい。この場合、バッファ容積34を圧縮機30に連絡するための連絡通路は設けなくてもよい。
バッファ容積34の設定圧は、高圧バルブV1、中圧バルブV2、及び低圧バルブV3の開弁時に各バルブに作用する差圧を考慮し、各バルブでの作動気体流れによるエネルギ損失を小さくするように設定される。図示のようにバッファ容積34が1つ設けられている場合には、圧縮機30の高圧PH及び低圧PLの平均値PMをバッファ容積34の設定圧としてもよい。あるいは、平均値PMよりも高圧または低圧に設定圧を設定してもよい。
バッファ容積34は圧縮機30の高圧側と低圧側とを連絡する連絡通路に設けられている。バッファ容積34は、高圧バルブV1及び低圧バルブV3の開閉状態にかかわらず圧縮機30の高圧側または低圧側に連通可能である。具体的には、バッファ容積34は、高圧バルブV1の閉弁時に圧縮機30の高圧側に連通可能に設けられている。また、バッファ容積34は、低圧バルブV3の閉弁時に圧縮機30の低圧側に連通可能に設けられている。よって、極低温冷凍機10の熱サイクルに同期させてバッファ容積34を調圧することも可能であるし、熱サイクルにおける各工程のタイミングに制約されずに独立してバッファ圧PBを調整することもできる。
バッファ容積34には、第1連絡通路46及び第2連絡通路48のそれぞれの一端が接続されている。第1連絡通路46及び第2連絡通路48の一方が省略され、バッファ容積34は圧縮機30の高圧側または低圧側のいずれか一方に接続されていてもよい。一実施例においてはバッファ容積34はバッファタンクである。バッファ容積34は図示されるように圧縮機30及びシリンダ12とは別体として設けられ互いに配管及び流路で接続されていてもよい。あるいは、バッファ容積34はシリンダ12またはディスプレーサ駆動機構16の内部に組み込まれていてもよい。バッファ容積34は圧縮機30に組み込まれていてもよい。
第1連絡通路46の他端は高圧ガス流路36に接続され、第2連絡通路48の他端は低圧ガス流路40に接続されている。すなわち、高圧ガス流路36は高圧バルブV1よりも上流で第1連絡通路46に分岐し、低圧ガス流路40は低圧バルブV3の下流で第2連絡通路48に分岐している。ここで「上流」は、圧縮機30の吐出口から送出されシリンダ12及び蓄冷器24を経由して圧縮機30の吸入口に戻る作動気体の循環経路において圧縮機30の吐出口に近い側を指し示し、「下流」は圧縮機30の吸入口に近い側を指し示す。なお、高圧ガス流路36は高圧バルブV1よりも下流で第1連絡通路46に分岐し、低圧ガス流路40は低圧バルブV3の上流で第2連絡通路48に分岐していてもよい。
バッファ容積34が設けられている連絡通路には、バッファ容積34を調圧するための流れ調整部が設けられている。図1に示す実施例においては、流れ調整部は連絡通路の流量を調節するためのバルブであり、開閉タイミングまたは弁の開度を制御することにより流量を調節する。流れ調整部としてバルブを用いることにより、バッファ圧PBの調圧の制御性を高めることができる。弁の開閉によりバッファ圧PBを自由に調整することができる。
圧力制御部32は、バッファ容積34を調圧するための第1調圧バルブVH及び第2調圧バルブVLを含む。第1調圧バルブVHは第1連絡通路46に設けられ、第2調圧バルブVLは第2連絡通路48に設けられている。第1調圧バルブVH及び第2調圧バルブVLのいずれか一方が省略されていてもよい。この場合、第1調圧バルブVH及び第2調圧バルブVLの少なくとも一方に代えてオリフィスを設けてもよい。
圧力制御部32の少なくとも一部がディスプレーサ14の往復動に同期して機械的に動作するようにシリンダ12またはディスプレーサ駆動機構16に組み込まれていてもよい。例えば、ディスプレーサ駆動機構16に連動して高圧バルブV1及び低圧バルブV3を交互に開閉するロータリーバルブ機構が設けられていてもよい。このロータリーバルブ機構には、高圧バルブV1及び低圧バルブV3のそれぞれを開弁する前に一時的に中圧バルブV2を開弁するように中圧バルブV2が形成されていてもよい。さらに第1調圧バルブVH及び第2調圧バルブVLがロータリーバルブ機構に形成されていてもよい。あるいは圧縮機30に圧力制御部32の少なくとも一部が組み込まれていてもよい。
また、圧力制御部32に含まれる少なくとも1つのバルブは、個別的に開閉される制御弁であってもよい。この制御弁の開閉を制御するためのコントローラ(図示せず)が極低温冷凍機10に設けられていてもよい。このコントローラは極低温冷凍機10を制御するための制御装置であってもよい。例えば、第1調圧バルブVH及び第2調圧バルブVLは、必要に応じて他の弁から独立して開閉可能な制御弁であってもよい。
冷凍サイクルは、作動気体を高圧源から膨張空間に吸気する吸気工程と、作動気体を膨張させ該膨張空間から低圧源に排気する排気工程と、を含む。本実施例においては、吸気工程は中圧源から膨張空間に吸気する工程を含み、排気工程は中圧源に膨張空間から排気する工程を含む。一実施例においては中圧源はバッファ容積34である。吸気工程と排気工程とは交互に行われる。吸気工程及び排気工程の一方の直後に連続して吸気工程及び排気工程の他方が行われてもよい。あるいは、吸排気をしていないインターバルを吸気工程と排気工程との間に挟んで吸気工程と排気工程とが交互に行われてもよい。
一実施例においては、吸気工程は、作動気体源として中圧源を使用して開始される。吸気工程の中途で作動気体源が中圧源から高圧源へと移行され、高圧源からの吸気により吸気工程は完了する。また、一実施例においては、排気工程は、作動気体源として中圧源を使用して開始される。排気工程の中途で作動気体源が中圧源から低圧源へと移行され、低圧源への排気により排気工程は完了する。作動気体源の移行は、中圧源からの吸気を終了して高圧源または低圧源からの吸排気を開始する切替式の移行であってもよいし、中圧源からの吸気を終了する前に高圧源または低圧源からの吸排気を開始する併用状態を含む移行であってもよい。この作動気体源の移行は、吸気工程及び排気工程の少なくとも一方で行うようにしてもよい。
一実施例においては、バッファ圧PBはシリンダ圧PCに概ね連動して調圧される。こうしてバッファ容積34は、シリンダ12が低圧作動気体を排気したときは相対的に低圧にかつシリンダ12が高圧作動気体を吸気したときには相対的に高圧となるよう中間圧力範囲に調圧される。中間圧力範囲は上述のように、圧縮機30の高圧PHよりも小さいバッファ最大圧と圧縮機30の低圧PLよりも大きいバッファ最小圧とにより定められたバッファ圧PBの調圧範囲である。
このようにすれば、シリンダ12からの排気によりシリンダ圧PCが低下したときにバッファ圧PBもある程度減圧されることになる。同様にシリンダ12への吸気によりシリンダ圧PCが増加したときにバッファ圧PBもある程度増圧される。バッファ圧PBとシリンダ圧PCとの差圧を比較的小さくすることができるので、中圧ガス流路38におけるエネルギの損失を抑えることができる。
好ましくは、バッファ圧PBは、吸気工程の開始直前には相対的に低圧の第1設定圧に調圧される。バッファ圧PBは吸気工程においては中間圧力範囲の低圧ゾーンに制御され、排気工程の開始直前には相対的に高圧の第2設定圧となるよう調圧される。バッファ圧PBは排気工程においては中間圧力範囲の高圧ゾーンに制御され、吸気工程の開始直前には再び相対的に低圧の第1設定圧に調圧される。第1設定圧は高圧ゾーンの下限値に等しく、第2設定圧は低圧ゾーンの上限値に等しくてもよい。低圧ゾーンの上限値を高圧ゾーンの下限値よりも大きくすることにより、低圧ゾーンと高圧ゾーンとが重複していてもよい。あるいは、低圧ゾーンの上限値と高圧ゾーンの下限値とを一致させることにより、すなわち第1設定圧と第2設定圧とを等しくすることにより、中間圧力範囲は低圧ゾーンと高圧ゾーンとに区分されていてもよい。
図2は、本発明の一実施形態に係る極低温冷凍機10の動作の一例を模式的に示す図である。図2の下部には1周期の熱サイクルにおける圧力制御部32の各バルブの開閉状態の一例を示す。図2の上部及び中部にはその開閉状態の変化によるバッファ圧PB及びシリンダ圧PCの時間変化を示す。図示されるように、この例では1回のサイクルにおいてステップ1からステップ6の6段階のバルブ開閉状態に順次切り換えられている。前半のステップ1からステップ3が吸気工程であり、後半のステップ4からステップ6が排気工程に相当する。
図2に示す動作例においては(図5に示す動作例においても同様に)、吸気工程において圧縮機30の高圧側をシリンダ12に連通させる前にバッファ容積34はシリンダ12に連通される。バッファ圧PBによりシリンダ圧PCが昇圧され、高圧バルブV1に作用する差圧が軽減される。遅くとも排気工程が開始される前に、好ましくは高圧バルブV1を開くまでに、バッファ容積34はシリンダ12から遮断される。バッファ圧PBの減少量の少なくとも一部を回復するように圧縮機30からバッファ容積34に作動気体が供給され、シリンダ圧PCとの差圧を小さくするようバッファ圧PBは昇圧される。
また、排気工程において圧縮機30の低圧側をシリンダ12に連通させる前にバッファ容積34はシリンダ12に連通される。バッファ圧PBによりシリンダ圧PCが減圧され、低圧バルブV3に作用する差圧が軽減される。遅くとも吸気工程が開始される前に、好ましくは低圧バルブV3を開くまでに、バッファ容積34はシリンダ12から遮断される。バッファ圧PBの増加量の少なくとも一部を消費するようにバッファ容積34から圧縮機30へと作動気体が排出され、シリンダ圧PCとの差圧を小さくするようバッファ圧PBが減圧される。このように図2に示す動作例においては、中圧源による高圧バルブV1及び低圧バルブV3の差圧低減と、中圧源の作動ガス圧の復元とを交互に繰り返している。
より具体的には図2に示されるように、吸気工程の開始時点での作動気体圧の初期状態は、バッファ圧PBが第1設定圧P1であり、シリンダ圧PCは排気工程の完了により圧縮機30の低圧PLに実質的に等しい。第1設定圧P1は、圧縮機30の低圧PLと高圧PHの平均値PMよりも低圧に設定されている。
各バルブは吸気工程の開始時点でステップ1の開閉状態をとる。すなわち、圧力制御部32のバルブのうち中圧バルブV2のみが開弁される。高圧バルブV1、低圧バルブV3、第1調圧バルブVH、及び第2調圧バルブVLは閉弁されている。高圧バルブV1が閉じられた状態で中圧バルブV2がまず開弁されることによりバッファ容積34がシリンダ12に先行して連通される。ディスプレーサ14はシリンダ12の低温側に位置しており、シリンダ12の主として上部室20にバッファ容積34から作動気体が供給される。こうしてシリンダ圧PCの昇圧が開始される。一方バッファ圧PBは第1設定圧P1から低下していく。ステップ1の終了時点でのバッファ圧PBが、バッファ圧PBの最小値となる。
所定のステップ切替条件が成立したときにステップ1からステップ2へとバルブ開閉状態が切り換えられる。ステップ切替条件は作動気体圧及び/または経過時間に基づいて定められていてもよい。ステップ切替条件は例えば、シリンダ圧PCが所定圧まで昇圧されたことであってもよいし、バッファ圧PBが所定圧まで低下したことであってもよい。吸気工程の開始時点から所定時間経過したことをステップ切替条件としてもよい。コントローラによりバルブの開閉を個別的に制御する場合には、ステップ切替条件が成立したときにコントローラが開閉状態を切り換える。あるいは、設計上定められたステップ切替条件で各バルブが開閉されるように、(例えばロータリー弁機構に)バルブが機構的に作り込まれている。以下に述べる各ステップの切替においても同様に、例えば作動気体圧及び/または経過時間に基づくステップ切替条件を適用することができる。
ステップ2においては、高圧バルブV1及び第1調圧バルブVHが開弁される。中圧バルブV2、低圧バルブV3、及び第2調圧バルブVLは閉弁される。すなわち、高圧バルブV1及び第1調圧バルブVHは閉状態から開状態へと切り換えられ、中圧バルブV2は開状態から閉状態に切り換えられる。低圧バルブV3及び第2調圧バルブVLは閉状態が継続される。
こうしてシリンダ12の作動気体源はバッファ容積34から圧縮機30に切り換えられ、圧縮機30の高圧PHがシリンダ12に導入される。シリンダ圧PCは高圧PHに実質的に等しくなる。また、バッファ容積34は圧縮機30の高圧側に連通され、第2設定圧P2に向けてバッファ圧PBが昇圧されていく。ステップ1におけるバッファ圧PBの低下量を回復させ、さらに第1設定圧P1を超える高圧へとバッファ圧PBは調圧される。第2設定圧P2は、圧縮機30の低圧PLと高圧PHの平均値PMよりも高圧に設定されている。第2設定圧P2は、バッファ圧PBの吸気工程における最大値となる。吸気工程においてはステップ1完了時点の最小圧から第2設定圧P2までの比較的低圧の範囲にバッファ圧PBが調圧される。なお図示の例では第1設定圧P1と第2設定圧P2との平均値は圧縮機30の平均圧PMに設定されている。
ステップ3においては高圧バルブV1のみが開弁されている。すなわち、高圧バルブV1は開状態が継続されている。第1調圧バルブVHは開から閉に切り換えられる。中圧バルブV2、低圧バルブV3及び第2調圧バルブVLは閉状態が継続される。なお、シリンダ圧PCが高圧PHに達する前にステップ2からステップ3に切り換えられてもよい。また、第1調圧バルブVHはステップ3の中途で吸気工程が完了する前に開から閉に切り換えられてもよい。
第1調圧バルブVH、第2調圧バルブVL、及び中圧バルブV2が閉じられているので、バッファ圧PBは一定に保たれる。シリンダ圧PCは圧縮機30の高圧PHに実質的に等しく維持される。主としてステップ3においてディスプレーサ14がシリンダ12の低温端から高温端へと移動し、シリンダ12の膨張室22の容積が最大化される。このとき室温の作動気体は蓄冷器24を通過することにより冷却されながら膨張室22に充填される。こうして膨張室22が高圧の作動気体で充満され、吸気工程が完了する。
排気工程が開始される。図示の例では排気工程の開始時点は吸気工程の完了時点に一致しているが、これらを異ならせてもよい。吸気工程の完了から所定時間経過したときに排気工程が開始されてもよい。排気工程の開始時点での作動気体圧の初期状態は、バッファ圧PBが第2設定圧P2であり、シリンダ圧PCは吸気工程の完了により圧縮機30の高圧PHに実質的に等しい。
ステップ4においては圧力制御部32のバルブのうち中圧バルブV2のみが開弁される。高圧バルブV1、低圧バルブV3、第1調圧バルブVH、及び第2調圧バルブVLは閉弁されている。低圧バルブV3が閉じられた状態で中圧バルブV2がまず開弁されることによりバッファ容積34がシリンダ12に先行して連通される。ディスプレーサ14はシリンダ12の高温側に位置しており、シリンダ12の主として膨張室22からバッファ容積34へと作動気体が膨張して排出される。こうしてシリンダ圧PCの減圧が開始される。このときのサイモン膨張により作動気体温度が下がり、寒冷が発生する。一方バッファ圧PBはシリンダ12からの流入により第2設定圧P2からさらに上昇していく。ステップ4の終了時点でのバッファ圧PBが、バッファ圧PBの最大値となる。
ステップ5においては、低圧バルブV3及び第2調圧バルブVLが開弁される。中圧バルブV2、高圧バルブV1、及び第1調圧バルブVHは閉弁される。すなわち、低圧バルブV3及び第2調圧バルブVLは閉状態から開状態へと切り換えられ、中圧バルブV2は開状態から閉状態に切り換えられる。高圧バルブV1及び第1調圧バルブVHは閉状態が継続される。
こうしてシリンダ12の作動気体源はバッファ容積34から圧縮機30に切り換えられ、圧縮機30の低圧側にシリンダ12の膨張室22から作動気体が膨張し排出される。シリンダ圧PCは低圧PLに実質的に等しくなる。また、バッファ容積34は圧縮機30の低圧側に連通され、第1設定圧P1に向けてバッファ圧PBが減圧されていく。ステップ4におけるバッファ圧PBの増加量よりも大きくバッファ圧PBは減圧される。第1設定圧P1は、排気工程におけるバッファ圧PBの最小値となる。排気工程においてはステップ4完了時点の最大圧から第1設定圧P1までの比較的高圧の範囲にバッファ圧PBが調圧される。
ステップ6においては低圧バルブV3のみが開弁されている。すなわち、低圧バルブV3は開状態が継続されている。第2調圧バルブVLは開から閉に切り換えられる。中圧バルブV2、高圧バルブV1及び第1調圧バルブVHは閉状態が継続される。なお、シリンダ圧PCが低圧PLに達する前にステップ5からステップ6に切り換えられてもよい。また、第2調圧バルブVLはステップ6の中途で排気工程が完了する前に開から閉に切り換えられてもよい。
第1調圧バルブVH、第2調圧バルブVL、及び中圧バルブV2が閉じられているので、バッファ圧PBは一定に保たれる。シリンダ圧PCは圧縮機30の低圧PLに実質的に等しく維持される。主としてステップ6においてディスプレーサ14がシリンダ12の高温端から低温端へと移動し、シリンダ12の膨張室22の容積が最小化される。冷却された作動気体はディスプレーサ14により膨張室22から押し出され、蓄冷器24を冷却しながら通過する。こうして膨張室22から低圧の作動気体が排出され、排気工程が完了する。吸気工程が再び開始され、熱サイクルが繰り返される。
なお、図2においては各ステップに等しい所要時間が割り当てられているように図示されているが、これは説明の便宜のためにすぎない。各ステップの所要時間は所望の冷凍性能を実現するよう最適に調整される。また、1つのステップから次のステップに移行するときにすべてのバルブの開閉状態が同時に切り換えられなくてもよい。一部のバルブの開閉を他のバルブよりも若干先行させて(または遅らせて)開閉するようにしてもよい。例えば、高圧バルブV1及び低圧バルブV3の開閉タイミングと、第1調圧バルブVH及び第2調圧バルブVLの開閉タイミングとは必ずしも同時でなくてもよい。
付言すると、中圧バルブV2の開弁期間は必ずしも吸気工程及び排気工程の当初でなくてもよい可能性もある。吸気工程の開始後または排気工程の開始後に中圧バルブV2の開弁期間を設けてもよい。シリンダ12が十分に昇圧(または減圧)されるまでは、高圧バルブV1(または低圧バルブV3)には開弁期間中に相応の差圧が作用している。よって、吸気工程の中途(または排気工程の中途)で一時的に中圧バルブV2を開弁するようにしても、高圧バルブV1(または低圧バルブV3)に作用する差圧を軽減する相応の効果があると考えられる。この場合、想定する流れ方向と逆向きの流れがバッファ容積34とシリンダ12との間に生じるのを避けるためには、吸気工程(または排気工程)についてはバッファ圧PBがシリンダ圧PCよりも高圧(または低圧)であるときに中圧バルブV2の開弁期間を設定することが好ましい。
上述の実施形態によれば、シリンダ12への吸気開始に際してバッファ容積34が優先的に連通される。これにより、高圧バルブV1に作用する差圧を軽減してから開弁することができる。また、シリンダ12からの排気中に予めバッファ圧PBが低めに調圧されており、吸気に際して中圧バルブV2に作用する差圧も軽減されている。よって、バッファ容積34を優先的に連通することによる中圧バルブV2でのエネルギ損失も小さくすることができる。
同様にして、シリンダ12からの排気開始に際してバッファ容積34が優先的に連通される。これにより、低圧バルブV3に作用する差圧を軽減してから開弁することができる。また、シリンダ12への吸気中に予めバッファ圧PBが高めに調圧されており、排気に際して中圧バルブV2に作用する差圧も軽減されている。よって、バッファ容積34を優先的に連通することによる中圧バルブV2でのエネルギ損失も小さくすることができる。
このようにして作動気体流れにおけるエネルギ損失を小さくしているので、消費電力の小さい圧縮機30を採用して省エネルギー性に優れる極低温冷凍機10を実現することができる。また、バッファ容積34を中間圧力範囲に維持していることも、圧縮機の最大圧レベル及び最小圧レベルにバッファ圧を反復的に増減させる場合に比べて省エネルギー性に寄与する。更に、バッファ容積34を調圧することによりバッファ容積34を小さくすることができるので、圧縮機の小型化と相まって極低温冷凍機10を全体的に小さくすることも可能である。
図3は、本発明の一実施形態に係る極低温冷凍機10の構成を模式的に示す図である。図1に示す極低温冷凍機10はバッファ容積34を1つ有するのに対して、図3に示す極低温冷凍機10は複数のバッファ容積を有する点で異なっている。以下の説明においては既述の実施例との共通部分については冗長を避けるため同一の参照符号を付して説明を適宜省略する。また、図1に示す実施例に関連して説明した変形例は、図3に示す実施例にも適用可能である。
極低温冷凍機10の圧力制御部32は、第1バッファ容積34に加えて第2バッファ容積50を備える。第1バッファ容積34は図1に示す実施例と同様に、第1連絡通路46及び第2連絡通路48を介して圧縮機30の高圧側及び低圧側のそれぞれに連絡されている。第1連絡通路46には第1調圧バルブVH1が設けられ、第2連絡通路48には第2調圧バルブVL1が設けられている。第1バッファ容積34をシリンダ12に連通するために第1中圧バルブV21が第1中圧ガス流路38に設けられている。
第2バッファ容積50は第1バッファ容積34と並列に、第1バッファ容積34と同様の配置で設けられている。第2バッファ容積50は、第1連絡通路52を介して圧縮機30の高圧側に連絡され、第2連絡通路54を介して圧縮機30の低圧側に連絡されている。第1連絡通路52には第1調圧バルブVH2が設けられ、第2連絡通路54には第2調圧バルブVL2が設けられている。第2バッファ容積50をシリンダ12に連通するために第2中圧バルブV22が第2中圧ガス流路56に設けられている。第2中圧ガス流路56は第1ガス流路26に接続されている。
一実施例においては、第1バッファ容積34のバッファ圧PB1と第2バッファ容積50のバッファ圧PB2とは異なる値に調圧される。一方の圧を他方よりも高圧範囲に制御する。例えば、第1バッファ容積34のバッファ圧PB1の熱サイクル1周期の平均値がPM+ΔPに設定され、第2バッファ容積50のバッファ圧PB2の熱サイクル1周期の平均値がPM−ΔPに設定される。
吸気工程に際しては低圧のバッファ容積から順にシリンダ12に連通させる。排気工程に際しては逆に高圧のバッファ容積から順にシリンダ12に連通させる。このようにすれば、高圧バルブV1及び低圧バルブV3に作用する差圧を一層軽減することができる。また、中圧バルブV21、V22に作用する差圧も小さくすることができる。
図4は、本発明の他の実施形態に係る極低温冷凍機10の構成を模式的に示す図である。図1に示す極低温冷凍機10は流れ調整部として第1調圧バルブVH及び第2調圧バルブVLが設けられているのに対して、図4に示す極低温冷凍機10における流れ調整部はオリフィスであるという点で異なっている。以下の説明においては既述の実施例との共通部分については冗長を避けるため同一の参照符号を付して説明を適宜省略する。また、図1乃至図3に示す実施例に関連して説明した変形例は、本実施例にも適用可能である。
図4に示されるように、第1調圧バルブVH及び第2調圧バルブVLに代えて、第1調圧オリフィスOH及び第2調圧オリフィスOLが設けられている。流れ調整部としてバルブに代えてオリフィスを用いることにより、圧力制御部32の構成を簡素にすることができる。第1調圧オリフィスOHは第1連絡通路46に設けられ、第2調圧オリフィスOLは第2連絡通路48に設けられている。
第1調圧オリフィスOH及び第2調圧オリフィスOLの開度はバッファ圧PBに連動するように予め調整されている。すなわち、設定圧PMよりもバッファ圧PBが低圧である場合には第2調圧オリフィスOLよりも第1調圧オリフィスOHの流量が大きくなるようオリフィスの開度が設定されている。バッファ圧PBが設定圧PMに等しい場合には第1調圧オリフィスOH及び第2調圧オリフィスOLの流量が等しくなるようオリフィスの開度が設定されている。設定圧PMよりもバッファ圧PBが高圧である場合には第1調圧オリフィスOHよりも第2調圧オリフィスOLの流量が大きくなるようオリフィスの開度が設定されている。
なお第1調圧オリフィスOH及び第2調圧オリフィスOLのいずれか一方が省略されていてもよい。この場合、オリフィスが設けられていないほうの連絡通路も省略されていてもよい。つまり、バッファ容積34はオリフィス付きの連絡通路を通じて圧縮機30の高圧側及び低圧側の少なくとも一方に連絡されていてもよい。第1調圧オリフィスOHのみを設ける場合には設定圧を平均圧PMよりも小さくして調圧範囲を低圧にすることが好ましい。第2調圧オリフィスOLのみを設ける場合には設定圧を平均圧PMよりも大きくして調圧範囲を高圧にすることが好ましい。
図5は、図4に示す極低温冷凍機10の動作の一例を模式的に示す図である。図5の下部には1周期の熱サイクルにおける圧力制御部32の各バルブの開閉状態の一例を示す。図5の上部及び中部にはその開閉状態の変化によるバッファ圧PB及びシリンダ圧PCの時間変化を示す。図示されるように、この例では1回のサイクルにおいてステップ1からステップ6の6段階のバルブ開閉状態に順次切り換えられている。前半のステップ1からステップ3が吸気工程であり、後半のステップ4からステップ6が排気工程に相当する。ステップ2及びステップ3のバルブ開閉状態は同一であり、ステップ5及びステップ6のバルブ開閉状態は同一である。
図5に示されるように、吸気工程の開始時点での作動気体圧の初期状態は、バッファ圧PBが平均圧PMであり、シリンダ圧PCは排気工程の完了により圧縮機30の低圧PLに実質的に等しい。ステップ1においては中圧バルブV2のみが開弁される。高圧バルブV1及び低圧バルブV3は閉弁されている。高圧バルブV1が閉じられた状態で中圧バルブV2がまず開弁されることによりバッファ容積34がシリンダ12に先行して連通され、シリンダ圧PCの昇圧が開始される。ディスプレーサ14はシリンダ12の低温側に位置しており、シリンダ12の主として上部室20にバッファ容積34から作動気体が供給される。
中圧バルブV2の開閉にかかわらずバッファ容積34は第1調圧オリフィスOH及び第2調圧オリフィスOLを通じて圧縮機30に連通されている。第1調圧オリフィスOHからの流入及び第2調圧オリフィスOLへの流出の合計流量よりも中圧バルブV2の流量のほうが大きく設定されているため、中圧バルブV2の開弁中はバッファ圧PBが設定圧PMから低下していく。ステップ1の終了時点でのバッファ圧PBが、バッファ圧PBの最小値となる。
ステップ2においては、高圧バルブV1は閉状態から開状態へと切り換えられ、中圧バルブV2は開状態から閉状態に切り換えられる。低圧バルブV3は閉状態が継続される。シリンダ12の作動気体源はバッファ容積34から圧縮機30に切り換えられ、圧縮機30の高圧PHがシリンダ12に導入される。シリンダ圧PCは高圧PHに実質的に等しくなる。設定圧PMよりもバッファ圧PBが低圧である場合には第1調圧オリフィスOHのほうが流量が大きい。このため、第1調圧オリフィスOH及び第2調圧オリフィスOLを通じて設定圧PMに向けてバッファ圧PBが昇圧されていく。こうしてステップ1におけるバッファ圧PBの低下量が回復される。
ステップ3においては高圧バルブV1のみが継続して開弁されている。中圧バルブV2及び低圧バルブV3は閉状態が継続される。バッファ圧PBが設定圧PMに等しい場合には第1調圧オリフィスOH及び第2調圧オリフィスOLの流量が等しい。このためバッファ圧PBは一定に保たれる。シリンダ圧PCは圧縮機30の高圧PHに実質的に等しく維持される。主としてステップ3においてディスプレーサ14がシリンダ12の低温端から高温端へと移動し、シリンダ12の膨張室22の容積が最大化される。このとき室温の作動気体は蓄冷器24を通過することにより冷却されながら膨張室22に充填される。こうして膨張室22が高圧の作動気体で充満され、吸気工程が完了する。吸気工程においては設定圧PMを境界とする低圧範囲にバッファ圧PBが調圧される。この低圧範囲の下限値はステップ1完了時点のバッファ最小圧である。
続いて排気工程が開始される。排気工程の開始時点での作動気体圧の初期状態においては、バッファ圧PBは設定圧PMに等しい。シリンダ圧PCは吸気工程の完了により圧縮機30の高圧PHに実質的に等しい。
ステップ4においては中圧バルブV2のみが開弁される。高圧バルブV1及び低圧バルブV3は閉弁されている。低圧バルブV3が閉じられた状態で中圧バルブV2がまず開弁されることによりバッファ容積34がシリンダ12に先行して連通される。ディスプレーサ14はシリンダ12の高温側に位置しており、シリンダ12の主として膨張室22からバッファ容積34へと作動気体が膨張して排出される。こうしてシリンダ圧PCの減圧が開始される。このときのサイモン膨張により作動気体温度が下がり、寒冷が発生する。一方バッファ圧PBはシリンダ12からの流入により設定圧PMから上昇していく。ステップ4の終了時点でのバッファ圧PBが、バッファ圧PBの最大値となる。
ステップ5においては、低圧バルブV3が閉状態から開状態へと切り換えられ、中圧バルブV2が開状態から閉状態に切り換えられる。高圧バルブV1は閉状態が継続される。シリンダ12の作動気体源はバッファ容積34から圧縮機30に切り換えられ、圧縮機30の低圧側にシリンダ12の膨張室22から作動気体が膨張し排出される。シリンダ圧PCは低圧PLに実質的に等しくなる。設定圧PMよりもバッファ圧PBが高圧である場合には第2調圧オリフィスOのほうが流量が大きい。このため、第1調圧オリフィスOH及び第2調圧オリフィスOLを通じて設定圧PMに向けてバッファ圧PBが減圧されていく。こうしてステップ4におけるバッファ圧PBの増加量が復元される。
ステップ6においては低圧バルブV3のみが継続して開弁されている。中圧バルブV2及び高圧バルブV1は閉状態が継続される。バッファ圧PBが設定圧PMに等しいので、バッファ圧PBは一定に保たれる。シリンダ圧PCは圧縮機30の低圧PLに実質的に等しく維持される。主としてステップ3においてディスプレーサ14がシリンダ12の高温端から低温端へと移動し、シリンダ12の膨張室22の容積が最小化される。冷却された作動気体はディスプレーサ14により膨張室22から押し出され、蓄冷器24を冷却しながら通過する。こうして膨張室22から低圧の作動気体が排出され、排気工程が完了する。排気工程においては設定圧PMを境界とする高圧範囲にバッファ圧PBが調圧される。この高圧範囲の上限値はステップ4完了時点のバッファ最大圧である。吸気工程が再び開始され、熱サイクルが繰り返される。
上述の各実施形態に係る極低温冷凍機は、磁気共鳴イメージング診断装置、超電導磁石装置、またはクライオポンプの冷却源として使用することができる。また、上述の各実施形態に係る冷却方法は、磁気共鳴イメージング診断装置、超電導磁石装置、またはクライオポンプに好適な冷却方法として用いることができる。
10 極低温冷凍機、 12 シリンダ、 14 ディスプレーサ、 16 ディスプレーサ駆動機構、 20 上部室、 22 膨張室、 24 蓄冷器、 30 圧縮機、 32 圧力制御部、 34 バッファ容積、 46 第1連絡通路、 48 第2連絡通路、 V1 高圧バルブ、 V2 中圧バルブ、 V3 低圧バルブ、 VH 第1調圧バルブ、 VL 第2調圧バルブ、 OH 第1調圧オリフィス、 OL 第2調圧オリフィス。
本発明は、極低温冷凍機及び冷却方法の分野における利用が可能である。

Claims (10)

  1. 作動気体を吸排気するためにシリンダの内部で駆動されるディスプレーサを備える冷凍機と、
    前記シリンダから排気された低圧の作動気体を圧縮して高圧の作動気体として前記シリンダに送出するための圧縮機と、
    前記圧縮機の高圧側及び低圧側の少なくとも一方に接続されており前記圧縮機により調圧され、かつ前記シリンダの低温側の膨張室の吸排気のために前記膨張室に接続される中間圧バッファ容積と、を備えることを特徴とする極低温冷凍機。
  2. 前記バッファ容積を前記圧縮機の高圧側及び低圧側の少なくとも一方に連絡する連絡通路と、
    前記バッファ容積を調圧するために前記連絡通路に設けられている流れ調整部と、をさらに備えることを特徴とする請求項1に記載の極低温冷凍機。
  3. 前記流れ調整部はバルブであることを特徴とする請求項2に記載の極低温冷凍機。
  4. 前記流れ調整部はオリフィスであることを特徴とする請求項2に記載の極低温冷凍機。
  5. 前記バッファ容積を前記シリンダに連通させるために設けられている中圧バルブと、
    前記圧縮機の高圧側を前記シリンダに連通させるために設けられている高圧バルブと、
    前記圧縮機の低圧側を前記シリンダに連通させるために設けられている低圧バルブと、をさらに備え、
    前記中圧バルブは、前記圧縮機の高圧側を前記高圧バルブにより前記シリンダに連通させる前に前記バッファ容積を前記シリンダに連通させ、前記圧縮機の低圧側を前記低圧バルブにより前記シリンダに連通させる前に前記バッファ容積を前記シリンダに連通させることを特徴とする請求項1から4のいずれかに記載の極低温冷凍機。
  6. 前記中圧バルブは、前記高圧バルブまたは低圧バルブにより前記圧縮機を前記シリンダに連通させたときに閉弁され、
    前記バッファ容積は、前記中圧バルブの閉弁中に圧力を復帰させるよう調圧されることを特徴とする請求項5に記載の極低温冷凍機。
  7. 作動気体を高圧源から膨張空間に吸気する吸気工程と、作動気体を膨張させ該膨張空間から低圧源に排気する排気工程とを含む熱サイクルによって寒冷を発生する冷却方法であって、
    前記吸気工程は、前記高圧源及び低圧源の中間圧を有する中圧源から前記膨張空間に吸気する工程を含み、
    前記排気工程が開始される前に、前記中圧源を前記膨張空間から遮断し前記膨張空間との差圧を軽減するよう前記高圧源により前記中圧源を昇圧することを特徴とする冷却方法。
  8. 作動気体を高圧源から膨張空間に吸気する吸気工程と、作動気体を膨張させ該膨張空間から低圧源に排気する排気工程とを含む熱サイクルによって寒冷を発生する冷却方法であって、
    前記排気工程は、前記高圧源及び低圧源の中間圧を有する中圧源に前記膨張空間から排気する工程を含み、
    前記吸気工程が開始される前に、前記中圧源を前記膨張空間から遮断し前記膨張空間との差圧を軽減するよう前記低圧源により前記中圧源を減圧することを特徴とする冷却方法。
  9. 請求項1から6のいずれかに記載の極低温冷凍機によって冷却される、磁気共鳴イメージング診断装置。
  10. 請求項1から6のいずれかに記載の極低温冷凍機によって冷却される、クライオポンプ。
JP2012520152A 2010-06-14 2010-06-14 極低温冷凍機及び冷却方法 Active JP5579268B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003941 WO2011158281A1 (ja) 2010-06-14 2010-06-14 極低温冷凍機及び冷却方法

Publications (2)

Publication Number Publication Date
JPWO2011158281A1 JPWO2011158281A1 (ja) 2013-08-15
JP5579268B2 true JP5579268B2 (ja) 2014-08-27

Family

ID=45347715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012520152A Active JP5579268B2 (ja) 2010-06-14 2010-06-14 極低温冷凍機及び冷却方法

Country Status (4)

Country Link
US (1) US10006669B2 (ja)
JP (1) JP5579268B2 (ja)
CN (1) CN102939506B (ja)
WO (1) WO2011158281A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599766B2 (ja) * 2011-09-30 2014-10-01 住友重機械工業株式会社 極低温冷凍機
DE112012006734T5 (de) 2012-07-26 2015-04-23 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton-Kreismotor
JP6087168B2 (ja) * 2013-02-26 2017-03-01 住友重機械工業株式会社 極低温冷凍機
CN103713220B (zh) * 2013-12-31 2017-05-31 深圳供电局有限公司 一种可变温度变压力的低温容器
CN107850351B (zh) * 2015-06-03 2020-08-07 住友(Shi)美国低温研究有限公司 具有缓冲器的气体平衡发动机
CN106766322B (zh) * 2016-12-16 2019-05-07 浙江大学 一种冷端换热器运动的g-m制冷机和方法
JP6767289B2 (ja) * 2017-03-10 2020-10-14 住友重機械工業株式会社 Gm冷凍機
JP6998776B2 (ja) * 2018-01-23 2022-01-18 住友重機械工業株式会社 Gm冷凍機
FR3100319B1 (fr) * 2019-09-04 2021-08-20 Absolut System Machine cryogénique régénérative
JP7544568B2 (ja) * 2020-11-09 2024-09-03 住友重機械工業株式会社 極低温冷凍機および極低温冷凍機の起動方法
CN114427982A (zh) * 2021-12-08 2022-05-03 兰州空间技术物理研究所 一种单级g-m制冷机回热器性能测试装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138369A (ja) * 1983-12-26 1985-07-23 セイコー精機株式会社 ガス冷凍機
JPH0370942A (ja) * 1989-08-10 1991-03-26 Daikin Ind Ltd 極低温冷凍機
JP2617681B2 (ja) * 1991-11-18 1997-06-04 住友重機械工業株式会社 極低温冷凍装置
JPH09324958A (ja) * 1996-04-05 1997-12-16 Iwatani Internatl Corp 極低温冷凍機
JP2001317827A (ja) * 2000-05-08 2001-11-16 Daikin Ind Ltd 極低温冷凍機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010407A1 (en) 1991-11-18 1993-05-27 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerating device
JP3625511B2 (ja) * 1995-02-23 2005-03-02 株式会社鈴木商館 ガスサイクル冷凍機
JP2880142B2 (ja) * 1997-02-18 1999-04-05 住友重機械工業株式会社 パルス管冷凍機、及びその運転方法
JP3832038B2 (ja) * 1997-08-18 2006-10-11 アイシン精機株式会社 パルス管冷凍機
JP2001280726A (ja) * 2000-03-31 2001-10-10 Aisin Seiki Co Ltd パルス管冷凍機
US6256998B1 (en) * 2000-04-24 2001-07-10 Igcapd Cryogenics, Inc. Hybrid-two-stage pulse tube refrigerator
US6715300B2 (en) * 2001-04-20 2004-04-06 Igc-Apd Cryogenics Pulse tube integral flow smoother
AU2003217905A1 (en) * 2002-03-05 2003-09-22 Shi-Apd Cryogenics, Inc. Fast warm up pulse tube
US8783045B2 (en) * 2005-01-13 2014-07-22 Sumitomo Heavy Industries, Ltd. Reduced input power cryogenic refrigerator
GB2455737B (en) * 2007-12-19 2010-08-11 Siemens Magnet Technology Ltd Variable charge compressor
JP5165645B2 (ja) * 2009-07-03 2013-03-21 住友重機械工業株式会社 ダブルインレット型パルスチューブ冷凍機
CN101900447B (zh) * 2010-08-31 2012-08-15 南京柯德超低温技术有限公司 带调相机构的g-m制冷机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138369A (ja) * 1983-12-26 1985-07-23 セイコー精機株式会社 ガス冷凍機
JPH0370942A (ja) * 1989-08-10 1991-03-26 Daikin Ind Ltd 極低温冷凍機
JP2617681B2 (ja) * 1991-11-18 1997-06-04 住友重機械工業株式会社 極低温冷凍装置
JPH09324958A (ja) * 1996-04-05 1997-12-16 Iwatani Internatl Corp 極低温冷凍機
JP2001317827A (ja) * 2000-05-08 2001-11-16 Daikin Ind Ltd 極低温冷凍機

Also Published As

Publication number Publication date
US10006669B2 (en) 2018-06-26
WO2011158281A1 (ja) 2011-12-22
JPWO2011158281A1 (ja) 2013-08-15
CN102939506A (zh) 2013-02-20
US20130285663A1 (en) 2013-10-31
CN102939506B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5579268B2 (ja) 極低温冷凍機及び冷却方法
US8783045B2 (en) Reduced input power cryogenic refrigerator
US9915177B2 (en) Control of system with gas based cycle
KR101990519B1 (ko) 극저온 냉동장치, 및 극저온 냉동장치의 제어방법
CN103814191B (zh) 气体平衡低温膨胀式发动机
JP5599766B2 (ja) 極低温冷凍機
JP2008051408A (ja) パルス管冷凍機
US10018381B2 (en) Cryogenic refrigerator
JP4261023B2 (ja) 極低温冷凍機
JP2004301445A (ja) パルス管冷凍機
CN107850351B (zh) 具有缓冲器的气体平衡发动机
US11333407B2 (en) GM cryocooler with buffer volume communicating with drive chamber
JP5893510B2 (ja) パルス管冷凍機
JP2012057871A (ja) パルスチューブ冷凍機およびそれを用いた超電導磁石装置
JP6909167B2 (ja) アクティブバッファパルス管冷凍機
JP2019128064A (ja) Gm冷凍機
JP2000146334A (ja) Gm型ダブルインレットパルス管冷凍機
JPH0914776A (ja) パルス管冷凍機
JPH08128743A (ja) パルス管冷凍機
US20160273809A1 (en) Cold header for cryogenic refrigerating machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5579268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250