JP2008051408A - パルス管冷凍機 - Google Patents

パルス管冷凍機 Download PDF

Info

Publication number
JP2008051408A
JP2008051408A JP2006228174A JP2006228174A JP2008051408A JP 2008051408 A JP2008051408 A JP 2008051408A JP 2006228174 A JP2006228174 A JP 2006228174A JP 2006228174 A JP2006228174 A JP 2006228174A JP 2008051408 A JP2008051408 A JP 2008051408A
Authority
JP
Japan
Prior art keywords
passage
pulse tube
pressure
tube refrigerator
displacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006228174A
Other languages
English (en)
Inventor
Shiyoui Shiyu
紹偉 朱
Masabumi Nogawa
正文 野川
Tatsuo Inoue
龍夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006228174A priority Critical patent/JP2008051408A/ja
Publication of JP2008051408A publication Critical patent/JP2008051408A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【課題】高効率かつ実用化可能なパルス管冷凍機、特に実用化可能な二段式パルス管冷凍機を提供する。
【解決手段】パルス管冷凍機は、振動発生装置に順次接続された第1蓄冷器と第1高温端及び第1低温端を持つ第1パルス管と第1流路調節手段と第1バッファータンクとからなる第1冷凍部と、振動発生装置の高圧通路及び低圧通路に順次接続された第1蓄冷器と第2蓄冷器と第2高温端及び第2低温端を持つ第2パルス管と第2流路調節手段と第2バッファータンクとからなる第2冷凍部と、第1蓄冷器と振動発生装置とを結ぶ第1通路と、第1流路調節手段と第1パルス管とを結ぶ第2通路と、第2流路調節手段と第2パルス管とを結ぶ第3通路とを備え、各通路を通路とを結ぶバイパス通路と、バイパス通路に設けられたシリンダと、シリンダの軸長方向に往復動可能に設けられたディスプレーサーと、を備える。
【選択図】図1

Description

本発明は、パルス管冷凍機に関する。特に、圧縮機とパルス管高温端との間にディスプレーサー系統を介してバイパス通路を設けたパルス管冷凍機に係るものである。
パルス管型蓄熱機関の一つとしてパルス管冷凍機が知られ、広く使用されている。基本的に、パルス管冷凍機は振動発生器と蓄冷器とパルス管とを順次直列に連結して構成される。パルス管冷凍機では、冷凍機内に注入された作動気体に対し振動発生器により振動が引き起こされ、作動気体の圧力変動と変位との間に適当な位相差が生じる。これによって、蓄冷器においてパルス管の低温端から振動発生器方向へ向かう熱の流れが発生し、パルス管の低温端において冷凍出力が得られる。
技術資料Performance study on a two−stage 4K pulse tube refrigerator(以下非特許文献1と称する)には二段式(Two−stage)パルス管冷凍機が開示されている。非特許文献1に示された二段式パルス管冷凍機では、第1パルス管の低温端において40K〜80Kの低温が生成され、第2のパルス管の低温端において4K〜20Kの低温が生成される。また、低温により冷凍力を生成するために、第1パルス管を含む第1冷凍部及び第2パルス管を含む第2冷凍部と振動発生器との間にはダブルインレットを備えるバイパス通路が設けられている。ダブルインレットはバイパス通路において圧力抵抗を持ち、作動気体の直流気体流れ(DC flow)を制御している。図17は非特許文献1に開示された二段式パルス管冷凍機の原理を示すものである。図17に示すように、第1冷凍部21は第1蓄冷器211、第1パルス管212、第1流路調節手段P1、第1バッファータンク214で構成され、第2冷凍部22は第1蓄冷器211、第2蓄冷器221、第2パルス管222、第2流路調節手段P2、第2バッファータンク224で構成される。また、第1冷凍部21及び第2冷凍部22は連結通路S1を介して振動発生手段10に接続されている。第1流路調節手段P1と第1パルス管212とを結ぶ連結通路S2と連結通路S1との間にバイパス通路B2が設けられている。また、第2流路調節手段P2と第2パルス管222とを結ぶ連結通路S3と連結通路S1との間にバイパス通路B3が設けられている。バイパスB1,B2にはダブルインレットを構成する流路調節手段P3,P4,P5,P6が設けられている。
また、特開2001−280726号公報(以下特許文献1と称する)には、ディスプレーサーが位相調節手段としてパルス管の高温端に設けられたパルス管冷凍機が開示されている。特許文献1の技術によれば、パルス管冷凍機の冷凍力はディスプレーサーの移動による空間容積の変動に左右される。パルス管冷凍機の製造が完了すれば、冷凍力に関わる調節が必要な係数がない。このため、パルス管冷凍機の製造から運転開始までに関わる工程は比較的に簡単である。
また、特開2001−099506号公報(以下特許文献2と称する)には、特許文献1と同様に、特許文献2に開示されたパルス管冷凍機はパルス管の高温端にバッファータンクを持つディスプレーサーが設けられている。特許文献2に開示されたパルス管冷凍機の効率は特許文献1より比較的に向上されている。
特開2001−280726号公報 特開2001−099506号公報 PERFORMANCE STUDY ON A TWO-STAGE 4K PULSE TUBE COOLER, Advances in Cryogenic Engineering, Vol. 43, Plenum Press, New York, 1998
非特許文献1にダブルインレットを用いた二段式パルス管冷凍機では、効率よく冷凍力を発生するために、少なくとも流路調節手段P1,P2,P3,P4,P5,P6、計6個の調節が必要な制御係数を実験により最適化する必要がある。しかしながら、この六個の制御係数はそれぞれ相互に影響し合い、実際に高精度的に六個の最適制御係数を決定することが難しい。このため、二段式パルス管冷凍機は研究段階に停滞し実用化することは困難である。また、振動発生器に駆動された作動気体はバイパス通路に設けられたダブルインレットを通過する際、エネルギー損失が無視できないため、パルス管冷凍機の効率に悪い影響を与える。
特許文献1に開示された技術では、製造工程が簡単になったが、GM式パルス管冷凍機において圧縮比率が高く設定されているため、作動気体の位相を調整する際ディスプレーサーが移動するのに大容積を有する空間が必要である。このため、ディスプレーサーの移動に必要とする空間容積は無駄容積となり、大量な作動気体が必要となる。従って、特許文献2に開示されるパルス管冷凍機では低い冷凍温度に達成できるが、冷凍効率は低いという問題がある。さらに、ディスプレーサーの動きが開閉弁により制御されているため、構造は複雑である。
また、特許文献2に開示された技術は特許文献1の技術と同様な問題を抱えているため、比較的に効率が改善されたが、構造上は依然に複雑である。
本発明は上記実状に鑑みてなされたものであり、高効率かつ実用化可能なパルス管冷凍機、特に実用化可能な二段式パルス管冷凍機を提供することを課題とする。
本発明のパルス管冷凍機によれば、従来の二段式パルス管冷凍機には作動気体の直流気体流れを制御し位相調節の役割を果たすダブルインレットをディスプレーサー系統に変えることができる。このため、ダブルインレットに設けられた流路調節手段は不要となり、これらの流路調節手段に係わる四個の制御係数を最適化する煩雑な実験工程が削減され、パルス管冷凍機、特に二段式パルス管冷凍機の実用化及び商品化を可能にすることができる。さらに、ディスプレーサー系統をバイパス通路に設けることにより、従来にダブルインレットで生じるエネルギー損失が存在しなくなり、パルス管冷凍機の効率を一層高めることができる。また、本発明のパルス管冷凍機は二段式パルス管冷凍機に限りなく、多段式パルス管冷凍機にも適用される。
また、本発明のパルス管冷凍機のディスプレーサー系統は、外部の駆動力を必要としなく、ディスプレーサーの両端に作用する圧力の圧力差に応じて往復運動を行うことができる。さらに、バイパス通路にはディスプレーサー系統が設けられているため、直流気体流れを抑制する必要がなくなり、流路調節手段の制御係数を決定する煩雑な工程が軽減される。例えば、冷凍部を構成する一個のパルス管に一個のバッファータンクを設ければ、パルス管冷凍機全体の流路調節手段制御係数は最少二個に絞られ、パルス管冷凍機の製造工程を簡易化することができる。従って、パルス管冷凍機、特に二段式、あるいは多段式パルス管冷凍機の実用化かつ商品化に有利である。
さらに、本発明のパルス管冷凍機は、ダブルインレットを用いたパルス管冷凍機に比べ、バイパス通路にはディスプレーサー系統が設けられているため、直流気体流れ(DC flow)の一部がストップされる。このため、本発明のパルス管冷凍機は高い効率を有することができる。
課題を解決するための手段、作用、効果
本発明のパルス管冷凍機は、作動気体を吐出する高圧端及び作動気体を吸入する低圧端を持つ圧縮機と、圧縮機の高圧端及び低圧端にそれぞれ接続された高圧通路及び低圧通路と、高圧通路の開閉と低圧通路の開閉とを切り替える流路切替手段と、を備える振動発生装置と、振動発生装置の高圧通路及び低圧通路に順次接続された第1蓄冷器と、第1高温端及び第1低温端を持つ第1パルス管と、第1流路調節手段と、第1バッファータンクとからなる第1冷凍部と、振動発生装置の高圧通路及び低圧通路に順次接続された第1蓄冷器と、第2蓄冷器と、第2高温端及び第2低温端を持つ第2パルス管と、第2流路調節手段と、第2バッファータンクとからなる第2冷凍部と、第1蓄冷器と振動発生装置とを結ぶ第1通路と、第1流路調節手段と第1パルス管とを結ぶ第2通路と、第2流路調節手段と第2パルス管とを結ぶ第3通路とを備え、第1通路と第2通路と第3通路とを結ぶバイパス通路と、バイパス通路に設けられ、第1径部と第2径部を備えるシリンダと、第2径部に収容され内部に第2膨張空間を形成する第2段部と第1径部に収容され第2段部と共に第1膨張空間及び背向側にバック空間を形成する第1段部とからなりシリンダの軸長方向に往復動可能に設けられたディスプレーサーとを備えるディスプレーサー系統とを有することを特徴とする。
本発明のパルス管冷凍機によれば、従来の二段式パルス管冷凍機には作動気体の直流気体流れを制御し位相調節の役割を果たすダブルインレットをディスプレーサー系統に変えることができる。このため、ダブルインレットを構成する流路調節手段(図17に示すP3,P4,P5,P6)は不要となり、これらの流路調節手段に係わる四個の制御係数を最適化する煩雑な実験工程が削減され、パルス管冷凍機、特に二段式パルス管冷凍機の実用化及び商品化を可能にすることができる。さらに、ディスプレーサー系統をバイパス通路に設けることにより、従来にダブルインレットで生じるエネルギー損失が存在しなくなり、パルス管冷凍機の効率を一層高めることができる。また、本発明のパルス管冷凍機は二段式パルス管冷凍機に限りなく、多段式パルス管冷凍機にも適用される。
また、本発明のパルス管冷凍機のバイパス通路は、ディスプレーサー系統のバック空間と第1通路とを接続する第1連通路と、ディスプレーサー系統の第1膨張空間と第2通路とを接続する第2連通路と、ディスプレーサー系統の第2膨張空間と第3通路とを接続する第3連通路と、を有することが好ましい。
また、本発明のパルス管冷凍機の第1連通路には、バイパス通路を流れる気体の流量を調節する第3流路調節手段が設けられていることが好ましい。これにより、第3流路調節手段はバイパスに設けられたディスプレーサー系統とともに、パルス管内の作動気体の位相差を調整することができ、作動気体の位相制御をより容易に行うことができる。
また、本発明のパルス管冷凍機の第1流路調節手段及び第2流路調節手段はオリフィス、または開閉弁のいずれか一方、もしくはオリフィス及び開閉弁の組み合わせたもので構成されることが好ましい。これにより、第1流路調節手段及び第2流路調節手段をオリフィスで構成することができる。このため、最適化するのに必要なオリフィスの制御係数の数は3個に絞られ、6個の制御係数を決めるといった煩雑な工程がより簡単化することができる。また、第1流路調節手段及び第2流路調節手段を開閉弁で構成することができる。このため、最適化するのに必要なオリフィスの制御係数の数を最も少なく絞られ、開閉弁の開閉タイミングを制御することにより作動気体の位相差が調整される。さらに、第1流路調節手段及び第2流路調節手段がオリフィス及び開閉弁を並列して組み合わせたもので構成されることもできる。このため、作動気体の位相制御をより一層精確に行うことができる。
また、本発明のパルス管冷凍機のディスプレーサー系統は、バック空間を第1バック空間と第2バック空間とに区画し、シリンダの軸長方向に往復動可能に設けられた第3段部と、第2バック空間に連通する第3バッファータンクと、を有することが好ましい。これにより、シリンダの各空間内の作動気体の圧力が調整され、シリンダ内に収納されたディスプレーサーがより容易に往復運動を行うことができる。
また、本発明のパルス管冷凍機のディスプレーサー系統は、第2バック空間と第3バッファータンクとの間に第4流路調節手段が設けられ、第3段部と第1段部第2段部との間に、第3段部と第1段部第2段部とを係合する係合手段が設けられていることが好ましい。また、本発明のパルス管冷凍機の係合手段は、第3段部あるいは第1段部のいずれか一方に連結された連結部と、連結部の一端に連結部と一体に形成された係合部と、内部に係合部を収容する収容空間と係合部が収容空間内に軸方向に往復動、かつ係合可能な係合開口部とを形成する第1段部第2段部あるいは第3段部と、を備えることが好ましい。
また、本発明のパルス管冷凍機の第1通路は、第1連通路を介して第1バック空間に接続されていることが好ましい。
また、本発明のパルス管冷凍機のディスプレーサー系統は、第2バック空間と第3バッファータンクとの間に第4流路調節手段が設けられ、第4流路調節手段と第2バック空間とを結ぶ第6通路と第1バック空間との間に第5流路調節手段が設けられ、第1バック空間と第5流路調節手段とを結ぶ第5通路と第1通路との間に第1連通路が設けられていることが好ましい。
(第1実施形態例)
本発明の第1実施形態のパルス管冷凍機の概略構成を図1に示した。
図1に示すように、本実施形態のパルス管冷凍機は、主に振動発生装置10、第1冷凍部21、第2冷凍部22、バイパス通路31、ディスプレーサー系統4で構成されている。
振動発生装置10は、圧縮機11と、高圧通路12H及び低圧通路12Lと、流路切替手段13とで構成される。なお、圧縮機11は高圧端11Hと低圧端11Lとを備えている。このように、作動気体は圧縮機11の高圧端11Hから吐出し、低圧端11Lに吸入される。また、高圧端11Hに高圧通路12Hが接続され、低圧端11Lに低圧通路12Lが接続されている。さらに、高圧通路12H及び低圧通路12Lには、通路の開閉を切り替える流路切替手段13を構成する高圧弁口13Hと低圧弁口13Lが設置されている。高圧弁口13Hと低圧弁口13Lは周期的に開閉を切り替えることができるため、異なる圧力によってパルス管冷凍機内封入された作動気体の振動を引き起こすことができる。
第1冷凍部21は順次に第1蓄冷器211と、第1パルス管212と、第1流路調節手段213と、第1バッファータンク214とで構成される。第2冷凍部22は順次に第1蓄冷器211と、第2蓄冷器221と、第2パルス管222と、第2流路調節手段223と、第2バッファータンク224とで構成される。なお、第1パルス管212は第1高温端212Hと第1低温端212Lとを備え、第2パルス管222は第2高温端222Hと第2低温端222Lとを備える。また、第1流路調節手段213と第2流路調節手段223はそれぞれオリフィス213A,223Aで構成されている。
また、第1蓄冷器211と第2蓄冷器221との間に通路S4が設けられる。さらに、通路S4は通路S21を介して第1パルス管212の第1低温端212Lに連通されている。第2蓄冷器221は通路S31を介して第2パルス管222の第2低温端222Lに連通されている。第1蓄冷器211は第1通路S1を介して振動発生装置10の高圧通路12H及び低圧通路12Lに連通されている。また、第1冷凍部21の第1流路調節手段213と第1パルス管212との間に第2通路S2が設けられ、第2冷凍部22の第2流路調節手段223と第2パルス管222との間に第3通路S3が設けられる。第1通路S1と第2通路S2及び第3通路S3との間に後述するバイパス通路31が設けられている。さらに、第1バッファータンク214は通路S20を介して第1流路調節手段213に連通されている。第2バッファータンク224は通路S30を介して第2流路調節手段223に連通されている。
ディスプレーサー系統4は、シリンダ41と、シリンダ41内に収容されたディスプレーサー42とで構成される。シリンダ41は所定サイズの第1径部411と所定サイズの第2径部412とからなり、一体に形成されている。ディスプレーサー42は、第1径部411に収容される所定サイズの第1段部421と第2径部412に収容される所定サイズの第2段部422とからなる。なお、第1段部421と第2段部422は一体に形成されることができる。第1、第2段部421、422は第1、第2径部411、412に内壁面に摺接して往復運動を行う。シリンダ41には、第2径部412と第2段部422とで区画された第2膨張空間432と、第2段部422と第1段部421と第1径部411とで区画された第1膨張空間431と、第1膨張空間431の背向側に第1径部411と第1段部421とで区画されたバック空間433とが形成されている。このように、ディスプレーサー42はシリンダ41に内置され、シリンダ41の軸長方向に往復動可能に設けられている。なお、ディスプレーサー42を介在することによりシリンダ41内に区画された各空間内の作動気体が互いに漏れない。
バイパス通路31は、ディスプレーサー系統4のバック空間433と第1通路S1とを連通する第1連通路B1と、第1膨張空間431と第2通路S2とを連通する連通路B2と、第2膨張空間432と第3通路S3とを連通する連通路B3とを備える。
また、第1連通路B1には、バイパス通路31を流れる気体の流量を調節する第3流路調節手段31が設けられている。なお、第3流路調節手段31はオリフィスなどで構成することができる。
次に、本実施形態のパルス管冷凍機の運転過程について説明する。振動発生装置10の高圧通路12H及び低圧通路12Lの開閉を切り替える高圧弁口13H及び13Lの開閉状態(タイミング)を図2に示した。実線は弁口が開通状態を示し、線なし部分は閉じる状態を示している。
高圧通路12H内の作動気体の圧力が1.8〜2.4MPaの範囲内に維持され、低圧通路12L内の作動気体の圧力が0.6〜1.2MPaの範囲内に維持される。また、第1、第2バッファータンク214、224内の圧力は高圧通路12H内の圧力(高圧)及び低圧通路12L内の圧力(低圧)の平均値に近い水準(中圧)に維持される。
作動気体が第1蓄冷器211、また第2蓄冷器221を通過する際に発生する圧力損失は、各連通するパイプ、熱交換器、またはパルス管を流れる際の圧力損失よりも、遥かに大きいため、第1、第2蓄冷器211、221における圧力損失のみ配慮すればよい。
高圧弁口13Hが所定開通時間内で開通された後に閉じられる。この過程は高圧作動気体が流入する過程である。高圧弁口13Hが開通され、高圧状態になる作動気体が高圧通路12Hを介して第1蓄冷器211、第2蓄冷器221を通過し、第1パルス管212及び第2パルス管222の低温端212L,222Lに流される。このとき、第1蓄冷器211、第2蓄冷器221における圧力は第1パルス管212、第2パルス管222における圧力よりも高い。このため、第1連通路B1を介してディスプレーサー系統4のバック空間433に流れる作動気体の圧力は第2連通路B2、または第3連通路B3を介して第1圧縮空間431、第2圧縮空間432に流れる作動気体の圧力よりも高い。この結果、ディスプレーサー42はこの圧力差に応じてシリンダ41の軸長方向に沿い、バック空間433内の圧力が減少する方向(図1に示す右方向)に移動する。第1、第2圧縮空間431、432内の作動気体がそれぞれ第2連通路B2、第3連通路B3を介して第1パルス管212、第2パルス管222の高温端212H,222Hに流される。ディスプレーサー42がシリンダ41の右側最端部に到達して止められたとき、第1、第2パルス管212、222の低温端212L,222Lを流れる作動気体の流速はゼロに近づき、圧力は高圧に近づく状態は理想である。なお、高圧とは、振動発生装置10の高圧端11Hの圧力より若干低く高圧端11Hの圧力に近い圧力をいう。低圧とは、振動発生装置10の低圧端11Lの圧力より若干高く低圧端11Lの圧力に近い圧力をいう。中圧とは、高圧と低圧の平均値に近い圧力をいう。
図3は第1、第2パルス管212,222内の作動気体のPV図を示したものである。図3には、この過程が0−1に示される。
ディスプレーサー42が止まると、作動気体が振動発生装置10から第1、第2蓄冷器211,221を通り、第1、第2パルス管212、222の低温端212L,222Lに流れ始める。このとき、第1、第2パルス管212、222内の作動気体の一部はオリフィス213A,223Aを介して第1、第2バッファータンク214、224に流される。作動気体の流れは振動発生装置10から第1、第2蓄冷器211、221に向かう方向である。このため、バック空間433における作動気体の圧力が増大される。圧力差力によりディスプレーサー42が押し付けられシリンダ41の右側最端部に移動し、左側最端部に到達してから停止される。図3には、この過程が1−2に示される。
高圧弁口13Hが閉じられ、所定時間を経過する。この過程は膨張過程である。
膨張過程において、第1、第2パルス管212、222の高温端212H,222H内の作動気体はオリフィス213A,223Aを介して、第1、第2バッファータンク214、224に流される。第1、第2蓄冷器211、221内の作動気体が第1、第2パルス管212、222の低温端212L,222Lに流され、圧力が減少される。また、第1、第2蓄冷器211、221における圧力損失により、第1、第2圧縮空間431、432内の圧力はバック空間433内の圧力よりも低い。従って、ディスプレーサー42が動かない。この過程の最終段階に第1、第2パルス管212、222における作動気体の圧力は、第1、第2バッファータンク214、224内の圧力とほぼ同じ程度までに減少された状態は理想である。第1、第2パルス管212,222の低温端212L,222Lにおける作動気体の圧力は、振動発生装置10の高圧端11Hと低圧端11Lにおける圧力の平均値に近い程度(中圧)まで膨張される。図3には、この過程が2−3に示される。
低圧弁口13Lが開通され、所定時間を経過した後に閉じられる。
低圧弁口13Lが開通された後、作動気体が第1、第2蓄冷器211、221から低圧通路12Lに流される。第1、第2蓄冷器211、221内の作動気体の流れによりバック空間433内の圧力は第1、第2膨張空間431、432内の圧力より低くなる。このため、シリンダ41内のディスプレーサー42は左側最端部に移動する。従って、第1、第2パルス管212,222内の作動気体が第1、第2膨張空間431、432に流される。ディスプレーサー42がシリンダ41の左側最端部に到達して止められたとき、第1、第2パルス管212、222の低温端212L,222Lを流れる作動気体の流速はゼロに近づき、圧力は低圧に近づく状態は理想である。図3には、この過程が3−4に示される。
ディスプレーサー42はシリンダ41の左側最端部に到達して止められた後、第1、第2バッファータンク214、224内の作動気体が第1、第2パルス管212、222に流される、この結果、第1、第2パルス管212、222の低温端212L,222L内の作動気体が第1、第2蓄冷器211、221内の作動気体を押し付け、振動発生装置10の低圧通路12Lに流れる。図3には、この過程が4−5に示される。なお、この過程では、第1、第2膨張空間431、432内の圧力はバック空間433内の圧力よりも大きいため、この圧力差による力を受けたディスプレーサー42がシリンダ41の左側最端部に到達して止められた後暫らく動かない。
低圧弁口13Lが閉じられ、所定時間を経過する。
この過程では、第1、第2バッファータンク214、224内の作動気体が連続的に第1、第2パルス管212、222の高温端212H,222Hに流され、第1、第2バッファータンク214、224内の圧力と同程度になるまで続く。また、この過程では、作動気体の流動方向は第1、第2蓄冷器211、221を通りバック空間433に向かうため、第1、第2蓄冷器211、221における圧力損失が発生する。この結果、バック空間433内の圧力は第1、第2膨張空間431、432内の圧力よりも若干高く、ディスプレーサー42はこの圧力差によりシリンダ42の左側最端部に止められたままの状態を維持する。図3には、この過程が5−0に示される。
また、過程0−1−2−3−4−5−0におけるパルス管内の圧力状態の変動を図4に示すことができる。図4に示すように、実線Hは振動発生装置10の高圧通路12H内の圧力を示し、実線Lは低圧通路12L内の圧力を示し、実線Mは第1、第2バッファータンク214、224内の圧力を示す。また、図3に示した膨張サイクルの各過程の圧力状態変動は図4の実線Cで示している。
以上説明したように、各過程においてディスプレーサー42がシリンダ41内の移動速度は、オリフィス213A,223Aで構成された流路調節手段213、223を調整することにより制御される。また、オリフィス311Aで構成された第3流路調節手段311を連通路B1に設けることによりディスプレーサー42の移動速度を制御することができるが、オリフィス311Aが存在しなくてもディスプレーサー42の移動速度に大きな影響を与えない。
このように、本実施形態のパルス管冷凍機によれば、従来の二段式パルス管冷凍機には作動気体の直流気体流れ(DC flow)を制御し位相調節の役割を果たすダブルインレットをディスプレーサー系統4に変えることができる。一般のダブルインレットを使用したパルス管冷凍機に比べ、本実施形態のパルス管冷凍機は製造完了後に調節が必要な係数は二個に絞られる(オリフィス213A,223Aのみ)。図17に示す従来技術では必要な4個の係数(P3,P4,P5,P6)の最適化する工程は不要となる。従って、P3,P4,P5,P6に係わる四個の制御係数を最適化するための煩雑な実験工程が削減され、パルス管冷凍機、特に二段式パルス管冷凍機の実用化及び商品化を可能にすることができる。オリフィスを通過する作動気体の流速は、主に振動発生装置10における圧縮比率に左右される。一般的に、この圧縮比率は1.8〜3である。また、流速はオリフィスの開通孔の断面積にも左右される。なお、オリフィスの断面積を予め設定することができる。さらに、ディスプレーサー42がシリンダ41内の移動による変動容積を予め設計することができる。このため、製造完成後、調節が必要な係数が最小限に抑えられる。
また、ディスプレーサー系統4は外部からの動力を必要としない、ディスプレーサー41の両端の圧力差に応じて往復動を行うため、ディスプレーサー42を駆動する駆動手段を設ける必要がない。このため、本実施形態のパルス管冷凍機の構成はシンプルである。
さらに、ディスプレーサー系統4をバイパス通路31に設けることにより、従来にダブルインレットにおいて生じるエネルギー損失が存在しなくなり、パルス管冷凍機の効率を一層高めることができる。つまり、ディスプレーサー42がバイパス通路31を遮断し、作動気体はバイパス通路31を通過することがなく、さらに作動気体の使用量は少ないため、本実施形態のパルス管冷凍機の効率の向上に有利である。また、ディスプレーサー42がバイパス通路31を遮断しているので、蓄冷器の低温端とパルス管の高温端との間に発生する直流気体流れの問題も回避できる。
また、本実施形態のパルス管冷凍機は二段式パルス管冷凍機に限りなく、多段式パルス管冷凍機にも適用される。
なお、図1に示すような第1実施形態例に係るパルス管冷凍機は、次のような改変が可能である。
・第1パルス管212の第1低温端部212Lと第2パルス管222の図示しない良熱伝導体で熱的に連結しても良い。これにより、第2パルス管222の中央部の温度を相当低くでき、第2パルス管222の第2低温端部222Lにおける熱損失を防止できる。
・ディスプレーサー42のバック空間433と第1パルス管212の第1高温端部212H(第2パルス管222の第2高温端部222H)とを図示されないオリフィスで連結して、第1パルス管212(第2パルス管222)へのガス導入損失を少なくすることができる。
(第2実施形態例)
本実施形態のパルス管冷凍機は、第1実施形態例とは基本に同様な構成である、共通機能を奏する部位には共通の符号を付する。以下異なる部分を中心として図5を参照しながら説明する。
図5に示すように、第1流路調節手段213は開閉弁213Bで構成され、第2流路調節手段223は開閉弁223Bで構成されている。その他の構成は第1実施形態例と同様である。
本実施形態のパルス管冷凍機は、オリフィス213A,223Aの替わりに開閉弁213B,223Bを用いて第1、第2流路調節手段213、223を構成することにより、第1実施形態例より高い効率を実現することができる。開閉弁213B,223B及び振動発生装置10の高圧弁口13H,低圧弁口13Lの開閉タイミングは図6に示される。実線は弁口が開通される状態を示し、線なし部分は閉じる状態を示している。
図6には、過程0−1及び過程3−4において、開閉弁213B,223Bが閉じられる状態である。また、過程0−1及び過程3−4では、オリフィスを閉じることにより、オリフィスにおける気体流れが停止され、ディスプレーサー42の移動に必要とする容積が減少される。このため、パルス管冷凍機の効率が向上される。
また、各開閉弁口の開閉タイミングを図7のように制御することができる。なお、図7には、太い実線は開閉弁口が大きく開通される状態を示し、作動気体が速やかに流れることができる。実線は開閉弁口が普通に開通される状態を示す。線なし部分は閉じる状態を示す。
このように、第1流路調節手段213及び第2流路調節手段223がそれぞれ開閉弁213B,223Bで構成されるため、最適化するのに必要なオリフィスの制御係数の数が最も少なく絞られ、開閉弁の開閉タイミングで作動気体の位相制御を行うことができる。
(第3実施形態例)
本実施形態のパルス管冷凍機は、第1、または第2実施形態例とは基本に同様な構成である、共通機能を奏する部位には共通の符号を付する。以下異なる部分を中心として図8を参照しながら説明する。
図8に示すように、第1流路調節手段213はオリフィス213Aと開閉弁213Bとを並立して構成される。第2流路調節手段223はオリフィス223Aと開閉弁223Bとを並立して構成される。その他の構成は第1実施形態例と同様である。
図9は各開閉弁口の開閉タイミングを示す。なお、実線は開通状態を示し、線なし部分は閉じる状態を示す。本実施形態によれば、過程5−0あるいは過程2−3において作動気体が速やかに流れ、所定圧力に達成する時間を短縮することができる。このため、振動発生装置10の高圧弁口13Hと低圧弁口13L(Main valve)の開通時間を延長することができる。これにより、作動気体の流速ピック値が抑えられ、第1、第2蓄冷器211、221の効率の向上に有利である。また、弁口の開閉における圧力損失を軽減することができる。
また、流路調節手段を介して複数のバッファータンクをパルス管の高温端に接続することができる。これにより、パルス管冷凍機の性能を向上させることができる。さらに、第1パルス管212の第1高温端212Hに設置されるバッファータンクの数を第2パルス管222の第2高温端222Hに設置されるバッファータンクの数と同じに設定する必要がない。もしくは、第2パルス管222にオリフィスを持つ一個のバッファータンクを設置することができる。
このように、第1流路調節手段213及び第2流路調節手段223がオリフィス及び開閉弁を並列して組み合わせたもので構成されることができ、作動気体の位相制御をより一層精確に行うことができる。
(第4実施形態例)
本実施形態のパルス管冷凍機は、第1、または第2実施形態例とは基本に同様な構成である、共通機能を奏する部位には共通の符号を付する。以下異なる部分を中心として図10を参照しながら説明する。
図10に示すように、本実施形態のパルス管冷凍機のディスプレーサー系統4は、シリンダ41とディスプレーサー42とからなる。シリンダ41は、第1径部411、第2径部421、第3径部431とを持つ。ディスプレーサー42は、第1段部421,第2段部422、第3段部423とを持つ。第1段部421は第1径部411に収容され、第2段部422は第1段部421に連結され、第2径部412に摺接されている。第3段部423は第1段部421を中心とし第2段部422の背向側に第1段部421に連結され、第3径部413に摺接されている。このため、第1、第2、第3段部421、422、423で構成されたディスプレーサー42は第1、第2、第3径部411、412、413で構成されたシリンダ41内にシリンダ41の軸長方向に往復動可能に設けられている。また、第3段部423は第3径部413に摺接して往復運動を行うため、第1径部411内において、第1段部421と第3段部423とで第1バック空間4331が区画されている。また第3径部413内において、第3段部423を中心とし第1バック空間4331の背向側に第2バック空間4332が区画されている。さらに、第2バック空間4332には第3バッファータンク4333が設けられている。
なお、バッファータンク4333は、第2バック空間4332を形成する第3段部413と一体に形成されることができる。また、第3段部423を第3径部413に摺接しながら収容することができるが、第3段部を第3径部に支持し、第3段部が摺接して往復動するように開口部を持つ支持部材(図示せず)を有することができる。即ち、支持部材を介して第1バック空間4331と第2バック空間4332を区画することもできる。
本実施形態のパルス管冷凍機のディスプレーサー42が図示左方向(図10)へ移動した後、図示右側方向に戻り、GM式冷凍機のように膨張による仕事を回収することができる。図11に示す開閉弁の開閉タイミングで制御を行うことができる。
以下、図3を参照しながら、本実施形態のパルス管冷凍機の運転過程について説明する。
高圧弁口13Hが開通し、第1バック空間4331内の圧力は速やかに増加するが、第1、第2膨張空間431、432内の圧力は第1、第2蓄冷器211、221における圧力損失のため増加が鈍い。この結果、第1バック空間4331内の圧力は第1、第2膨張空間431、432内の圧力よりも大きくなり、ディスプレーサー42を図示右方向(図10)に移動させることができる。また、ディスプレーサー42が右方向に移動し始めるとき、第3バッファータンク4333に連通された第2バック空間4332内の圧力は第2バッファータンク224に連通された第2膨張空間432内の圧力と同じ程度であるため、第3段部423を左方向に移動させる力がゼロに近い。このため、ディスプレーサー42は右方向に移動する。ディスプレーサー42がシリンダ41の右側端部(図10に示す)に到達して止められるか、或いはストッパーに止められたとき、第1、第2パルス管212、222の低温端212L、222Lを流れる作動気体の流速はゼロに近づき、圧力は高圧に近づく状態は理想である。第1、第2パルス管212,222内の作動気体は図3に示されたPV図と同様である。図3には、この過程が0−1に示される。
次に、ディスプレーサー42はシリンダ41の右側端部に移動し、右側端部に止められたとき、第2膨張空間432内の圧力(高圧状態)は第2バック空間4332内の圧力(中圧状態)より高いため、圧力差により第3段部423に受けた力がディスプレーサー42を左側方向に移動させる。図3には、この過程が1−2に示される。この過程では、作動気体が第1、第2膨張空間431、432の増大により引っ張られ、第1、第2パルス管の低温端212L、222Lに流される。なお、第1、第2蓄冷器211、221における圧力損失が大きいとき、ディスプレーサー42の移動速度は遅く、第1、第2蓄冷器211、221における圧力損失が小さいとき、ディスプレーサー42の移動速度は速い。
次に、高圧弁口13Hが閉じられ、開閉弁213B,223Bが開通される。この際、第1、第2膨張空間431、432内の圧力が速やかに減少するが、第1バック空間4331内の圧力は第1、第2蓄冷器211、221における圧力損失のため減少が鈍い。この結果、ディスプレーサー42がこの圧力差による力に応じて右側(図10)に移動する。ディスプレーサー42が移動し始まるとき、第2バック空間4332内の圧力は(第3バッファータンク4333に連通されているため中圧である)第2膨張空間432内の圧力よりも小さいため、第3段部423に作用する力が大きい。このため、ディスプレーサー42が移動しにくい。第2膨張空間432内の圧力が減少し、第3段部423に作用する力も減少し、ディスプレーサー42が速やかに移動できる。作動気体の圧力が中圧までに減少したとき、ディスプレーサー42が右側端部に近づく状態が理想である。図3には、この過程が2−3に示される。
次に、開閉弁213B,223Bが閉じられ、低圧弁口13Lが開通される。第1バック空間433内の圧力が速やかに減少するが、第1、第2膨張空間431、432内の圧力は第1、第2蓄冷器211、221における圧力損失のため減少が鈍い。この結果、ディスプレーサー42がこの圧力差による力に応じて左側に移動する。ディスプレーサー42が移動し始めるとき、第2バック空間4332内の圧力は(第3バッファータンク4333に連通されているため中圧である)第2膨張空間432内の圧力と同じ程度であるため、第3段部423を右方向に移動させる力がゼロに近い。このため、ディスプレーサー42が速やかに左方向に移動する。ディスプレーサー42がシリンダ41の左側端部に近づき、端部またはストッパーに止められたとき、作動気体が低圧状態になり、そしてこの過程において第1、第2パルス管の低温端212L、222Lを流れる作動気体の流速がゼロに近い状態が理想である。図3には、この過程が3−4に示される。
次に、ディスプレーサー42がシリンダ41の左側端部に止まったとき、第2膨張空間432内における圧力は低圧であり、第2バック空間4332内における圧力はバッファータンク4333に連通されているため中圧である。このため、圧力差による力でディスプレーサー42が右方向へ移動される。従って、第1、第2パルス管低温端212L、222L内の作動気体が第1、第2蓄冷器211、221、振動発生装置10の低圧弁口13Lを通して最後に振動発生装置10に戻される。図3には、この過程が4−5に示される。なお、第1、第2蓄冷器211、221における圧力損失が大きいとき、ディスプレーサー42の移動速度は遅く、第1、第2蓄冷器211、221における圧力損失が小さいとき、ディスプレーサー42の移動速度は速い。
次に、低圧弁口13Lが閉じられ、開閉弁213B,223Bが開通される。第1、2膨張空間431、432内の圧力が速やかに増加するが、第1バック空間4331内の圧力は第1、第2蓄冷器211、221における圧力損失のため増加が鈍い。なお、圧力損失による力の作用方向は左方向である。また、この左方向の力が最終的に右方向の力に克服され、結果的に、ディスプレーサー42が右側方向(図10)に移動する。ディスプレーサー42が移動し始めるとき、第2バック空間4332内の圧力は中圧であり、第2膨張空間432内の圧力は低圧であるため、第3段部423に作用する力が最大である。このため、ディスプレーサー42の移動速度が遅い。作動気体の圧力の増加に連れ、第3段部423に作用する力が減少し、右方向の力が顕著になる。このため、ディスプレーサー42の移動速度が大きくなる。作動気体の圧力が中圧になるとき、ディスプレーサー42がシリンダ41の右側端部(図10)に近づく状態が理想である。図3には、この過程が5−0に示される。
なお、図3に示した圧縮サイクルのように、ディスプレーサー42が過程1−2、または過程4−5において膨張による仕事を回収することができる。このため、冷凍機の効率の向上に有利である。
このように、シリンダ41の各空間内の作動気体の圧力が調整され、シリンダ41内に収納されたディスプレーサー42がより容易に往復運動を行うことができる。
開閉弁213B,223Bは圧力増加、または圧力減少する過程において開通されるため、第2実施形態例に比べ、回収不可能な損失が少ない。なお、第2実施形態例では、過程1−2、または4−5において、作動気体が開閉弁213B,223Bを流れる際、大きな圧力損失が発生するため、回収不可能な損失が存在する。
(第5実施形態例)
本実施形態のパルス管冷凍機は、第1、または第4実施形態例とは基本に同様な構成である、共通機能を奏する部位には共通の符号を付する。以下異なる部分を中心として図12を参照しながら説明する。
図12に示すように、本実施形態のパルス管冷凍機は、第2バック空間4332と第3バッファータンク4333との間に第4流路調節手段312が設けられる。また、第4流路調節手段312は第6通路S6を介して第2バック空間4332に連通されている。さらに、第1バック空間4331と第6通路S6との間に第5流路調節手段313が設けられる。なお、第5流路調節手段313は第5通路を介して第1バック空間4331に連通されている。第4流路調節手段312はオリフィス312Aで構成することができる。第5流路調節手段313は開閉弁313Bで構成することができる。
以下、図3を参照しながら、本実施形態のパルス管冷凍機の運転過程について説明する。また、各開閉弁の開通タイミングを図13に示す。
高圧弁口13H、313Bが開通される。圧力差により作用力が発生し、ディスプレーサー42が右方向(図12)に移動する。第2バック空間4332内の圧力は第1バック空間4331内の圧力とはほぼ同じであるため、ディスプレーサー42がこの過程では第1実施形態例と同様の動きである。ディスプレーサー42がシリンダ41の右側最端部(図12)に止まるとき、第1、第2パルス管低温端212L、222L内の作動気体の流速がゼロに近い状態が理想である。図3には、この過程が0−1に示される。なお、この過程では、第2バック空間内の作動気体の一部が第3バッファータンク4333に流され、一部の圧縮による仕事がアウトプットされる。
次に、開閉弁313Bが閉じられる。作動気体がオリフィス312Aを介して第3バッファータンク4333へ流れるため、ディスプレーサー42が左方向(図12)に移動することができる。第1、第2パルス管高温端212H、222H内の作動気体が引っ張られ第1、第2膨張空間431,432に流される。作動気体が振動発生装置10の高圧弁口13Hを通り、第1、第2蓄冷器211、221を介して第1、第2パルス管低温端212L、222Lに流される。作動気体がパルス管に流れた後、高圧弁口13Hが閉じられる。図3には、この過程が1−2に示される。なお、この過程では、ディスプレーサー42が左側最端部に移動する必要がない。
次に、開閉弁213B,223Bが開通される。第1、第2膨張空間431、431内の圧力が速やかに減少するが、第1バック空間4331内の圧力が第1、第2蓄冷器211、221における圧力損失のため減少が鈍い。さらに、第2バック空間4332内の圧力が高圧状態である。このため、ディスプレーサー42が圧力差による力で右方向に移動される。図3には、この過程が2−3に示される。作動気体の圧力がバッファータンク内の圧力(中圧)に近づくとき、開閉弁213B,223Bが閉じられる。この過程の最後の段階では、ディスプレーサー42がシリンダ41の右側最端部(図12)に止まる状態が理想である。
次に、低圧弁口13L、開閉弁313Bが開通される。第1、第2バック空間4331、4332内の圧力が速やかに減少するが、第1、第2膨張空間431、432内の圧力が第1、第2蓄冷器211、221における圧力損失のため減少が鈍い。このため、ディスプレーサー42が圧力差による力で左方向に移動される。ディスプレーサー42がシリンダ41の左側最端部(図12)に止められたとき、作動気体の圧力が低圧(振動発生装置10の低圧端11Lにおける圧力)まで減少し、さらに、この過程では第1、第2パルス管低温端212L、222L内の作動気体の流速がゼロに近づく状態が理想である。そして、開閉弁313Bが閉じられる。図3には、この過程が3−4に示される。
次に、第3バッファータンク4333内の作動気体がオリフィス312Aを介して第2バック空間4332に流され、ディスプレーサー42が右方向に移動し、作動気体を第1、第2パルス管低温端212L、222L内から第1、第2蓄冷器211、221、振動発生装置10の低圧弁口13Lを介して振動発生装置10の低圧通路12Lに流される。図3には、この過程が4−5に示される。作動気体が振動発生装置10に流された後、低圧弁口13Lが閉じられる。なお、この過程では、ディスプレーサー42が右側最端部に移動する必要がない。
次に、開閉弁213B,223Bが開通される。第1、第2膨張空間431、432内の圧力が速やかに増加するが、第1バック空間433内の圧力が第1、第2蓄冷器211、221における圧力損失のため増加が鈍い。さらに、第2バック空間4332内の圧力が低圧状態である。このため、ディスプレーサー42が圧力差による力で左方向に移動される。この過程の最後の段階では、ディスプレーサー42がシリンダ41の左側最端部(図12)に止まる状態が理想である。図3には、この過程が5−0に示される。
また、図14に示すように、本実施形態の第5流路調節手段313はオリフィス313Aで構成されることができる。図15に示された各開閉弁の開通タイミングから分かるように、この場合の作動過程は図12に示されたパルス管冷凍機と同様であるが、開閉弁313Bが設けられていないため、開閉制御の必要がない。このように、図14に示されたパルス管冷凍機は、図12に示されたパルス管冷凍機よりシンプルである。
(第6実施形態例)
本実施形態のパルス管冷凍機は、第1、または第5実施形態例とは基本に同様な構成である、共通機能を奏する部位には共通の符号を付する。以下異なる部分を中心として図16を参照しながら説明する。
図16に示すように、本実施形態のパルス管冷凍機のディスプレーサー系統4は、第2バック空間4332と第3バッファータンク4333との間に第4流路調節手段312が設けられ、第3段部423と第1段部421第2段部422との間に、第3段部423と第1段部421第2段部422とを係合する係合手段424が設けられている。また、係合手段424は、第3段部423に連結された連結部4241と、連結部4241の一端に連結部4241と一体に形成された係合部4242と、内部に係合部4242を収容する収容空間4212と係合部4242が収容空間4212内に軸方向に往復動、かつ係合可能な係合開口部4211とを形成する第1段部421第2段部422とを備えている。また、第1通路S1は、第1連通路B1を介して第1バック空間4331に接続されている。
このように、係合手段424には、ディスプレーサー42には収容空間4212が設けられ、開口部4211を介して第1バック空間4331に連通されている。また、第3段部423には連結部4241が設けられ、連結部4241は開口部4211を介して収容空間4212に挿入されている。連結部4241の一端に係合部4242が設けられ、開口部4211より大きい径を有するため、ストッパーとして収容空間4212に自由に移動することができるが、開口部4211から出ることができない。
また、本実施形態のパルス管冷凍機の各開閉弁の開通タイミングは第3実施形態例のパルス管冷凍機の各開閉弁の開通状態(タイミング)と同様であるが、ディスプレーサー42の移動状態は図12に示された第5実施形態例と同様である。
以下、図3を参照しながら、本実施形態のパルス管冷凍機の運転過程について説明する。また、各開閉弁の開通タイミンはが図13に参照して示す。
図3に示された過程0−1では、ディスプレーサー42を構成する第1、第2段部421、422が右方向に移動し、第3段部423が連結部4241及び係合部4242を連れて左方向に移動する。このため、第2バック空間4332内の作動気体は高圧状態になる。この過程を経て、係合部4242は開口部4211に接触する。
次に、図3に示された過程1−2では、第2バック空間4332内の作動気体は高圧のためオリフィス312Aを介して第3バッファータンク4333に流される。従って、第3段部423は連結部4241及び係合部4242を介して、第1、第2段部421、422を引っ張って左方向に移動する。
次に、図3に示された過程2−3では、第2バック空間4332内の圧力が高圧状態になり、第1バック空間4331内の圧力が減少するため、第3段部423は連結部4241及び係合部4242を連れて右方向に移動する。第1、第2段部421、422は第1、第2蓄冷器211、221における圧力損失のため右方向に移動する。
次に、図3に示された過程3−4では、第2バック空間4332内の圧力が中圧になり、第1バック空間432内の圧力が低圧になるため、第3段部423は連結部4241及び係合部4242を連れて右方向に移動する。第1、第2段部421、422は自由に左方向に移動する。この過程の最後の段階では、係合部4242は収容空間4212の右側最端部に接触する。
次に、図3に示された過程4−5では、作動気体が第3バッファータンク4333から第2バック空間4332に流されるため、第3段部423は連結部4241及び係合部4242を連れて右方向に移動する。さらに、係合部4242に押し付けられ、第1、第2段部421、422は右方向に移動する。
次に、図3に示された過程5−0では、第1、第2段部421、422は左方向に移動する。第1バック空間4331内の圧力が増加し、さらに、第2バック空間4332内の圧力が低圧であるため、第3段部423は連結部4241及び係合部4242を連れて左方向に移動する。
また、係合手段424を用いて、ディスプレーサー42が往復運動を行う際、前進方向に対して後退方向に移動させる方法のほか、例えば、CAM、リニアモータ、クランクシャフト、または、ステップモータを持つSchochヨーク等を用いてディスプレーサー42の往復動を自由に制御することができる。
第1実施形態例のパルス管冷凍機の構成を示す図である。 第1実施形態例のパルス管冷凍機に係わる各開閉弁の開通タイミングを示す図である。 パルス管冷凍機のパルス管内の作動気体のPV図である。 パルス管冷凍機のパルス管内の作動気体の圧力状態の変動を示す図である。 第2実施形態例のパルス管冷凍機の構成を示す図である。 第2実施形態例のパルス管冷凍機に係わる各開閉弁の第1開通タイミングを示す図である。 第2実施形態例のパルス管冷凍機に係わる各開閉弁の第2開通タイミングを示す図である。 第3実施形態例のパルス管冷凍機の構成を示す図である。 第3実施形態例のパルス管冷凍機に係わる各開閉弁の開通タイミングを示す図である。 第4実施形態例のパルス管冷凍機の構成を示す図である。 第4実施形態例のパルス管冷凍機に係わる各開閉弁の開通タイミングを示す図である。 第5実施形態例のパルス管冷凍機の構成を示す図である。 第5実施形態例のパルス管冷凍機に係わる各開閉弁の開通タイミングを示す図である。 第5実施形態例のパルス管冷凍機の変態形態の構成を示す図である。 第5実施形態例のパルス管冷凍機の変態形態に係わる各開閉弁の開通タイミングを示す図である。 第6実施形態例のパルス管冷凍機の構成を示す図である。 従来型のパルス管冷凍機の構成を示す図である。
符号の説明
10:振動発生装置 11:圧縮機 11H:高圧端 11L:低圧端
12H:高圧通路 12L:低圧通路
13:流路切替手段 13H:高圧弁口(開閉弁) 13L:低圧弁口(開閉弁)
21:第1冷凍回路 22:第2冷凍回路
211:第1蓄冷器 221:第2蓄冷器
212:第1パルス管 212H:(第1)高温端 212L:(第1)低温端
222:第2パルス管 222H:(第2)高温端 222L:(第2)低温端
213:第1流路調節手段 223:第2流路調節手段
213A,223A:オリフィス
214:第1バッファータンク 224:第2バッファータンク
31:バイパス通路 311:第3流路調節手段 311A:オリフィス
4:ディスプレーサー系統 41:シリンダ 42:ディスプレーサー
411:第1径部 412:第2径部
421:第1段部 422:第2段部
431:第1膨張空間 432:第2膨張空間 433:バック空間
S1,S2,S3,S4,S20,S21,S30,S31:通路
B1,B2,B3:連通路

Claims (9)

  1. 作動気体を吐出する高圧端及び作動気体を吸入する低圧端を持つ圧縮機と、前記圧縮機の前記高圧端及び前記低圧端にそれぞれ接続された高圧通路及び低圧通路と、前記高圧通路の開閉と前記低圧通路の開閉とを切り替える流路切替手段と、を備える振動発生装置と、
    前記振動発生装置の前記高圧通路及び前記低圧通路に順次接続された第1蓄冷器と、第1高温端及び第1低温端を持つ第1パルス管と、第1流路調節手段と、第1バッファータンクとからなる第1冷凍部と、
    前記振動発生装置の前記高圧通路及び前記低圧通路に順次接続された前記第1蓄冷器と、第2蓄冷器と、第2高温端及び第2低温端を持つ第2パルス管と、第2流路調節手段と、第2バッファータンクとからなる第2冷凍部と、
    前記第1蓄冷器と前記振動発生装置とを結ぶ第1通路と、前記第1流路調節手段と前記第1パルス管とを結ぶ第2通路と、前記第2流路調節手段と前記第2パルス管とを結ぶ第3通路とを備え、前記第1通路と前記第2通路と前記第3通路とを結ぶバイパス通路と、
    前記バイパス通路に設けられ、第1径部と第2径部を備えるシリンダと、前記第2径部に収容され内部に第2膨張空間を形成する第2段部と前記第1径部に収容され前記第2段部と共に第1膨張空間及び背向側にバック空間を形成する第1段部とからなり前記シリンダの軸長方向に往復動可能に設けられたディスプレーサーとを備えるディスプレーサー系統と、を有するパルス管冷凍機。
  2. 前記バイパス通路は、前記ディスプレーサー系統の前記バック空間と前記第1通路とを接続する第1連通路と、前記ディスプレーサー系統の前記第1膨張空間と前記第2通路とを接続する第2連通路と、前記ディスプレーサー系統の前記第2膨張空間と前記第3通路とを接続する第3連通路と、を有する請求項1に記載のパルス管冷凍機。
  3. 前記第1連通路には、バイパス通路を流れる気体の流量を調節する第3流路調節手段が設けられている請求項1または2のいずれか1項に記載のパルス管冷凍機。
  4. 前記第1流路調節手段及び前記第2流路調節手段はオリフィス、または開閉弁のいずれか一方、もしくは前記オリフィス及び前記開閉弁の組み合わせたもので構成される請求項1または2のいずれか1項に記載のパルス管冷凍機。
  5. 前記ディスプレーサー系統は、前記バック空間を第1バック空間と第2バック空間とに区画し、前記シリンダの軸長方向に往復動可能に設けられた第3段部と、前記第2バック空間に連通する第3バッファータンクと、を有する請求項1または2のいずれか1項に記載のパルス管冷凍機。
  6. 前記ディスプレーサー系統は、前記第2バック空間と前記第3バッファータンクとの間に第4流路調節手段が設けられ、前記第3段部と前記第1段部前記第2段部との間に、前記第3段部と前記第1段部前記第2段部とを係合する係合手段が設けられている請求項5に記載のパルス管冷凍機。
  7. 前記係合手段は、前記第3段部あるいは前記第1段部のいずれか一方に連結された連結部と、前記連結部の一端に該連結部と一体に形成された係合部と、内部に前記係合部を収容する収容空間と前記係合部が前記収容空間内に軸方向に往復動、かつ係合可能な係合開口部とを形成する前記第1段部前記第2段部あるいは前記第3段部と、を備える請求項6に記載のパルス管冷凍機。
  8. 前記第1通路は、前記第1連通路を介して前記第1バック空間に接続されている請求項5または6のいずれか1項に記載のパルス管冷凍機。
  9. 前記ディスプレーサー系統は、前記第2バック空間と前記第3バッファータンクとの間に第4流路調節手段が設けられ、前記第4流路調節手段と前記第2バック空間とを結ぶ第6通路と前記第1バック空間との間に第5流路調節手段が設けられ、前記第1バック空間と前記第5流路調節手段とを結ぶ第5通路と前記第1通路との間に第1連通路が設けられている請求項5に記載のパルス管冷凍機。
JP2006228174A 2006-08-24 2006-08-24 パルス管冷凍機 Pending JP2008051408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228174A JP2008051408A (ja) 2006-08-24 2006-08-24 パルス管冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228174A JP2008051408A (ja) 2006-08-24 2006-08-24 パルス管冷凍機

Publications (1)

Publication Number Publication Date
JP2008051408A true JP2008051408A (ja) 2008-03-06

Family

ID=39235639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228174A Pending JP2008051408A (ja) 2006-08-24 2006-08-24 パルス管冷凍機

Country Status (1)

Country Link
JP (1) JP2008051408A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012924A (ja) * 2009-07-03 2011-01-20 Sumitomo Heavy Ind Ltd ダブルインレット型パルスチューブ冷凍機
CN104654648A (zh) * 2013-11-22 2015-05-27 同济大学 一种多级斯特林型脉管制冷机
WO2016091900A1 (en) 2014-12-08 2016-06-16 Stichting Energieonderzoek Centrum Nederland Thermo-acoustic heat pump
CN107024020A (zh) * 2016-02-01 2017-08-08 同济大学 一种并联式脉管机器
WO2021192721A1 (ja) * 2020-03-23 2021-09-30 住友重機械工業株式会社 パルス管冷凍機

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012924A (ja) * 2009-07-03 2011-01-20 Sumitomo Heavy Ind Ltd ダブルインレット型パルスチューブ冷凍機
CN104654648A (zh) * 2013-11-22 2015-05-27 同济大学 一种多级斯特林型脉管制冷机
WO2016091900A1 (en) 2014-12-08 2016-06-16 Stichting Energieonderzoek Centrum Nederland Thermo-acoustic heat pump
NL2013939B1 (en) * 2014-12-08 2016-10-11 Stichting Energieonderzoek Centrum Nederland Thermo-acoustic heat pump.
CN107223196A (zh) * 2014-12-08 2017-09-29 荷兰能源研究中心基金会 热声热泵
US10371418B2 (en) 2014-12-08 2019-08-06 Stichting Energieonderzoek Centrum Nederland Thermo-acoustic heat pump
CN107223196B (zh) * 2014-12-08 2020-01-24 荷兰应用自然科学研究组织Tno 热声热泵
CN107024020A (zh) * 2016-02-01 2017-08-08 同济大学 一种并联式脉管机器
CN107024020B (zh) * 2016-02-01 2020-01-31 同济大学 一种并联式脉管机器
WO2021192721A1 (ja) * 2020-03-23 2021-09-30 住友重機械工業株式会社 パルス管冷凍機
CN115280081A (zh) * 2020-03-23 2022-11-01 住友重机械工业株式会社 脉冲管制冷机
JP7408451B2 (ja) 2020-03-23 2024-01-05 住友重機械工業株式会社 二段パルス管冷凍機

Similar Documents

Publication Publication Date Title
JP4942897B2 (ja) 混成2段パルスチューブ冷凍機
US8783045B2 (en) Reduced input power cryogenic refrigerator
JP3832038B2 (ja) パルス管冷凍機
JP2014169813A (ja) 極低温冷凍装置、及び極低温冷凍装置の制御方法
WO2011158281A1 (ja) 極低温冷凍機及び冷却方法
JP2008051408A (ja) パルス管冷凍機
CN109556318B (zh) 一种热声制冷机
US6351954B1 (en) Pulse tube refrigerator
JP2001099506A (ja) パルス管冷凍機
US6393845B1 (en) Pulse tube refrigerator
JP2000035253A (ja) 冷却装置
JP2001248927A (ja) パルス管冷凍機を用いた低温装置
US10018381B2 (en) Cryogenic refrigerator
JP2000283580A (ja) パルス管冷凍機
JP2001317827A (ja) 極低温冷凍機
CN110986415A (zh) 一种双效斯特林装置及其运行控制方法
JP2006234338A (ja) 二段式パルス管冷凍機
JP2000018741A (ja) パルスチューブ冷凍機
JPH0861798A (ja) 冷却装置
JP7164340B2 (ja) 極低温冷凍機および極低温冷凍機の流路切替機構
CN107850351A (zh) 具有缓冲器的气体平衡发动机
JP4374458B2 (ja) パルス管冷凍機
JP2002286312A (ja) パルス管冷凍機
JPH09318175A (ja) 多頭式膨張冷凍機およびこの多頭式膨張冷凍機を用いたクライオポンプ
JP2013245889A (ja) パルス管冷凍機