JP5578868B2 - 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム - Google Patents
光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム Download PDFInfo
- Publication number
- JP5578868B2 JP5578868B2 JP2010014618A JP2010014618A JP5578868B2 JP 5578868 B2 JP5578868 B2 JP 5578868B2 JP 2010014618 A JP2010014618 A JP 2010014618A JP 2010014618 A JP2010014618 A JP 2010014618A JP 5578868 B2 JP5578868 B2 JP 5578868B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- period
- light source
- opening
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims description 34
- 238000002591 computed tomography Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims description 121
- 230000000737 periodic effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005305 interferometry Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- ZNKMCMOJCDFGFT-UHFFFAOYSA-N gold titanium Chemical compound [Ti].[Au] ZNKMCMOJCDFGFT-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001258 titanium gold Inorganic materials 0.000 description 1
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Description
電磁波の一種のX線は高い物質透過性を持ち、被検体の内部構造の観察が可能であることから、産業分野や医療分野で透過撮像装置に用いられている。
近年、X線の屈折や干渉を利用した撮像方法についても開発が行なわれている。これらのX線撮像方法においては、一つのX線を空間的に複数のビームに分割する技術が用いられている。
例えば、特許文献1に開示されている干渉縞から位相変化を撮像する方法であるタルボ・ロー干渉法では、X線光源と撮像系との間に配置されているX線用光源格子によりX線を複数の細ビームにすることで、空間的な可干渉性を確保している。
また、被検体によるX線の屈折を利用して撮像画像の高コントラスト化を行う屈折法では、X線を複数のビームにすることで、屈折現象を検出器上でのビームの移動として検出できるようにしている。
その際、ビームの間隔、いわゆる周期は撮像条件に応じて決定される。
光源格子は剛体であることが多く、とりわけ透過力の高いX線の領域においては、遮蔽能の高い重い金属で光源格子を作製する必要がある。
しかしながら、光源格子の周期は、上記したように撮像条件に応じたものが必要とされる。
したがって、このような撮像条件に合わせるため、いくつもの複数の光源格子を予め用意しておくことが必要となり、金属などの剛体で光源格子を作製した場合等において、準備に手間を要し、コスト高となる。
本発明の光源格子は、電磁波を空間的に複数のビームに分割する光源格子であって、
複数の開口が設けられた第1の基板と、複数の開口が設けられた第2の基板とを備え、
前記第1の基板と前記第2の基板とは積層しており、
前記第1の基板と前記第2の基板との重なりにおいて、前記第1の基板に設けられた開口と前記第2の基板に設けられた開口とによって形成された開口の配列を有し、
前記第1の基板と前記第2の基板との面方向における相対位置を変えることによって、前記配列の周期を第1の周期から該第1の周期とは異なる第2の周期に変更することが可能に構成されていることを特徴とする。
また、本発明のX線位相コントラスト像の撮像装置は、上記した光源格子と、前記光源格子からの電磁波が入射する位相格子と、前記位相格子からの電磁波が入射する振幅格子と、前記振幅格子からの電磁波の強度分布を撮像する撮像素子と、を備えることを特徴とする。
また、本発明のX線コンピューター断層撮影システムは、上記した撮像装置を有することを特徴とする。
[実施形態1]
実施形態1では、積層した多数の開口を有する2つの基板を相対的に面方向に回転させ、これら基板の相対位置を変えることで、開口配列周期を変更する光源格子の構成例について説明する。
相対的な回転の中心となる基準は、開口を兼ねていてもよいし、開口とは別の基準点を有してもよい。
まず、図1(a)と図1(b)とを用いて、回転の基準を兼ねる1つの開口を含む複数の開口を有し、積層することで光源格子を構成する2つの基板の構成例について説明する。
本実施形態の光源格子は、複数の開口を備えている第1の基板と、複数の開口を備えている第2の基板とが積層して構成され、これらの第1の基板と第2の基板との重なりにおいて上記複数の開口によって形成された2次元配列による開口配列を有している。
これらを具体的に説明すると、図1(a)は、本実施形態における第1の基板の構成を説明する正視図である。第1の基板は、所望の電磁波に適する遮蔽部材2で構成された基板上に、所望の電磁波が透過する開口部4を有する。
例えば、光源格子20(図7(a)参照)によって実現する第1の周期12(図2(a)参照)の正方配列開口と、
第2の周期14の正方配列開口とを、各々の正方配列において基準となる1つの開口が重なり、かつ正方配列の軸が平行となるように重ね合わせたパターンにおいて、対応する開口同士を連続した開口でつなげて1つの開口にする。
基準となる1つの開口は、正方配列のどの位置でもよい。
例えば、第1の周期12をaマイクロメートル、第2の周期14(図2(b)参照)をbマイクロメートルとすると、
基準1となる1つの開口を原点に第1の周期12の正方配列の座標(x1、y1)は(a×n、a×m)、第2の周期14の正方配列の座標(x2、y2)は(b×n、b×m)と表せる。
ここで、n、m、は整数であり、同じnとmの組み合わせの座標が対応する座標である。
対応する(x1、y1)と(x2、y2)とをつなげ、(n、m)番目の開口である第1の基板6の開口部4とする。
図1(b)は、本実施形態における第2の基板の構成を説明する正視図である。第2の基板は、第1の基板と同様に、所望の電磁波に適する遮蔽部材2で構成された基板上に、電磁波が透過する開口部4を有する。
例えば、光源格子20(図7(a)参照)によって実現する第1の周期12の正方配列開口と、
第2の周期14の正方配列開口とを、各々の正方配列において基準となる1つの開口を基準1として、各々の正方配列の対応する軸がある回転角度θ16となるように重ね合わせたパターンにおいて、対応する開口同士をつなげて1つの連続した開口にする。
例えば、第1の周期12をaマイクロメートル、第2の周期14をbマイクロメートルとする。
これにより、基準1となる1つの開口を原点に第1の周期12の正方配列の座標(x1、y1)は(a×n、a×m)と表せ、第2の周期14の正方配列の座標(x3、y3)は(Rnm×cos(θ+θnm)、Rnm×sin(θ+θnm))と表せる。
ここで、θは前記回転角度、n及びmは整数、Rnm=b×(n×n+m×m)^(1/2)、θnm=arctan(m/n)である。
対応する(x1、y1)と(x3、y3)とをつなげ、第2の基板6の開口部4とする。
(x1、y1)と(x2、y2)とをつなげる場合、または、(x1、y1)と(x3、y3)とをつなげる場合、直線であってもよいし、曲線であってもよい。
開口部4の幅は、光源格子20で得たい開口幅に対応しており、所望の開口幅を実現する開口部4の幅でよい。開口部4全体に渡り同じ開口幅でもよいし、異なる開口幅でもよい。開口幅を変えることで、周期と同時に、光源格子20の開口幅も変えることができる。
図2(a)は、第1の周期12の正方配列が重なるように第1の基板6と第2の基板8とを積層した構成を説明する図である。
図2(a)に示すように、第1の基板6の開口部と第2の基板8の開口部で構成される開口配列10は、第1の周期12の正方配列に相当する位置に形成される。
次に、第2の基板を時計回り回転角度θ16だけ基準1を中心に回転する。
図2(b)は、第2の基板を回転角度θ回転させて第1の基板と積層した光源格子の構成を説明する図である。
図2(b)に示すように、第1の基板6の開口部と第2の基板8の開口部で構成される開口配列10は、第2の周期14の正方配列に相当する位置に形成される。
すなわち、第1の基板6に対する第2の基板8の角度を変えることで周期が変化する開口配列10を有する光源格子となる。
開口配列10の形状は、第1の基板と第2の基板との角度で変化する。
第1の周期12の開口部3と第2の周期14の開口部5は連続した開口部でつなげてもよいし、非連続の開口部でつなげてもよい。
また、非連続の場合、第1の周期12と第2の周期14との間の周期に相当する第3の周期の開口部7を、第1の周期12の開口部3と第2の周期14の開口部5との間に有する構成とする。
これにより、離散的な周期ではあるが、形状の一定な開口配列10を有する光源格子を構成することができる。
本実施例において、例えば3×3の正方配列の光源格子20の例を説明しているが、配列の数は個々の開口部4が重ならなければ、いくつでもよい。
また、縦方向と横方向の配列数が異なり、例えば3×4の配列でもよい。
実施形態2では、積層した多数の開口を有する2つの基板を相対的に並進させることで、開口配列周期を変更することができる光源格子の構成例について説明する。
まず、図3(a)と図3(b)とを用いて、積層する多数の開口を有する2つの基板の構成例について説明する。
図3(a)は、本実施形態における第1の基板の構成を説明する正視図である。第1の基板は、実施形態1と同様に、所望の電磁波に適する遮蔽部材2で構成された基板上に、所望の電磁波が透過する開口部4を有する。
例えば、光源格子20によって実現する第1の周期12の正方配列開口と第2の周期14の正方配列開口とを、各々の正方配列の軸が平行かつ基準となる1つの開口が重なる位置から、
一つの軸、例えば横軸方向に距離dだけずらして重ね合わせたパターンにおいて、対応する開口同士を連続した開口でつなげて1つの開口にする。
例えば、第1の周期12をaマイクロメートル、第2の周期14をbマイクロメートルとする。
これにより、基準となる1つの開口を原点に第1の周期12の正方配列の座標(x1、y1)は(a×n、a×m)、第2の周期14の正方配列の座標(x2、y2)は(b×n+d、b×m)で表される。
ここで、n、m、は整数であり、同じnとmの組み合わせの座標が対応する座標である。
対応する(x1、y1)と(x2、y2)とをつなげ、第1の基板6の開口部4とする。
第2の基板は、第1の基板と同様に、所望の電磁波に適する遮蔽部材2で構成された基板上に、所望の電磁波が透過する開口部4を有する。
例えば、光源格子20によって実現する第1の周期12の正方配列開口と第2の周期14の正方配列開口とを、各々の正方配列の軸が平行かつ基準となる1つの開口が重なる位置から、
一つの軸、例えば縦軸方向(並進方向)に移動距離dだけずらして重ね合わせたパターンにおいて、対応する開口同士を連続した開口でつなげて1つの開口にする。
例えば、第1の周期12をaマイクロメートル、第2の周期14をbマイクロメートルとする。
これにより、基準となる1つの開口を原点に第1の周期12の正方配列の座標(x1、y1)は(a×n、a×m)、第2の周期14の正方配列の座標(x3、y3)は(b×n、b×m+d)で表される。
対応する(x1、y1)と(x3、y3)とをつなげ、第1の基板6の開口部4とする。
(x1、y1)と(x2、y2)とをつなげる場合、または、(x1、y1)と(x3、y3)とをつなげる場合、直線であってもよいし、曲線であってもよい。
開口部4の幅は、光源格子20で得たい開口幅に対応しており、所望の開口幅を実現する開口部4の幅でよい。開口部4全体に渡り同じ開口幅でもよいし、異なる開口幅でもよい。
開口幅を変えることで、周期と同時に、光源格子20の開口幅も変えることができる。
図4(a)は、第1の周期12の正方配列が重なるように第1の基板6と第2の基板8とを積層した光源格子の構成を説明する図である。
図4(a)に示すように、第1の基板6の開口部4と第2の基板8の開口部で構成される開口配列10は、第1の周期12の正方配列に相当する位置に形成される。
次に、第2の基板を縦軸と横軸の両方向に距離dだけ並進移動する。
図4(b)は、第2の基板を縦軸と横軸方向に距離dだけ並進させた光源格子20の構成を説明する図である。
図4(b)に示すように、第1の基板6の開口部4と第2の基板8の開口部で構成される開口配列10は、第2の周期14の正方配列に相当する位置に形成される。
すなわち、第1の基板6に対する第2の基板8の位置を並進移動することで周期が変化する開口配列10を有する光源格子20となる。第1の基板と第2の基板の積層する向きは、正方配列の直交する軸が重なり合う角度であればよい。
例えば、図5(a)と図5(b)に示すように、第1の基板に対して、第2の基板8の場合と比べて、180度回転させた位置で積層してもよい。
図5(a)に示すように、第1の周期12を有する開口配列10の形状が図4(a)に示す開口配列10よりも円形に近く、また、図5(b)に示すように第2の周期14を有する開口配列10の形状が図4(b)の開口配列10よりも円形に近く、形状が均一になる。
図6(a)と図6(b)に示すように、第1の基板及び第2の基板の開口部4は、実施形態1の場合と同様、開口配列の周期毎に独立であってもよい。
独立とすることで、第1の周期12と第2の周期14との間の周期となる位置における開口配列10の形状の均一性が向上する。
また、第1の周期12と第2の周期14との間の他方の周期の正方配列に相当する開口部4を有してもよい。
本実施形態において、例えば3×3の正方配列の光源格子20の例を説明しているが、配列の数は個々の開口部4が重ならなければ、いくつでもよい。
また、縦方向と横方向の配列数が異なり、例えば3×4の配列でもよい。
[実施例1]
実施例1においては、X線位相イメージングに用いられるX線用光源格子について、図7を用いて説明する。
4インチ径の両面研磨200μm厚によるシリコンウェハー表面にレジストコート後、フォトリソグラフィ法により2つの10mm角のエリアに次のような異なるレジストパターンを作製する。
図7(b)は、本実施例におけるレジストパターンの元になる点の座標を、第1の周期a=24μm、第2の周期b=20μm、回転角度θ=5度の条件で、μm単位で算出した値である。
レジストパターンのうち、一方は図7(b)に示す座標(x1、y1)と(x2、y2)の(n、m)=(0,0)を除いた対応する点同士を結ぶ幅5μmの線である。
また、他方は図7(b)に示す座標(x1、y1)と(x3、y3)の(n、m)=(0,0)を除いた対応する点同士を結ぶ幅5μmの線であって、これらは共にレジストを残すパターンである。
次に、ウェハー上にチタン−金のスパッタ膜を形成させ、電解めっきのシード層とする。電解めっき装置に、めっき液として日本エレクトロプレイティングエンジニヤーズ株式会社製・テンペレックス209Aを入れ、めっき液を温度60℃、電流密度0.2A/dm2の条件で400分間めっきする。
基板表面に付着した金は、ダイヤモンドスラリーを用いたバフ研磨を行い除去する。
その後、10mm角の領域をダイシングにより切り出す。これにより、5μmの開口幅を持つX線透過領域を有する、二つの基板を得る。
次に、二つの基板を、(n,m)=(0,0)の点が重なり、かつ(x1、y1)に対応する位置が重なるように位置調整機構42、例えば高精度ステッピングモーターを搭載したステージに1枚ずつ取り付ける。位置調整機構42は、高精度ステッピングモーターでもよいし、例えば、圧電アクチュエーターでもよいし、手動の精密調整スクリューでもよい。
搭載のステージは、少なくとも面内回転動作するステッピングモーターを使用する。2枚の基板は、互いに物理的に干渉しないよう、かつ可能な限り近づけて配置する。
どちらか一方の基板を、ステッピングモーターにより(n,m)=(0,0)を中心に基板のX線透過領域が重なるように回転移動する。
図7(a)に示すように、X線光源18の下流に光源格子20を配置し、該光源格子20の下流には、被検体24、X線用位相格子26、X線用振幅格子28、X線撮像素子30を順に配置する。
X線エネルギー17.5keV(0.71オングストローム)のX線光源18の前面に(x1、y1)の開口部が重なるように調整し周期を24μmとした光源格子20を配置する。
位相格子26として縦横周期8μmのπ変調の二次元位相格子を用いた場合、光源格子20と位相格子26の距離32を677mmとすると、タルボ・ロー干渉により、位相格子26から135mm離れたタルボ距離34にタルボ像が現れる。
得られたモアレ像からフーリエ変換法を用いて位相情報を抽出し、積分することで位相像を得る。
被検体24の厚みや撮像したい拡大率よって、光源格子20と位相格子26との距離32は調整される。
例えば、光源格子と位相格子との距離32を677mmから564mmへと短縮し拡大率を大きくする場合、タルボ・ロー干渉の条件を満たすために光源格子の周期も24μmから20μmへ変更する。
ステッピングモーターにより基準点(n,m)=(0,0)を中心に5度回転させると、対応する第1の基板の点(x2、y2)と第2の基板の点(x3、y3)とが重なり、光源格子20の周期が24μmから20μmへと小さくなる。
これにより、タルボ距離34が141mmの位置に拡大された被検体のタルボ像がタルボ・ロー干渉により結像し、モアレ縞から位相像を得る。
実施例2においては、X線屈折法イメージングに用いられるX線用光源格子について、図8を用いて説明する。
まず、実施例1と同様の方法により、二つの基板を作製する。
図8(b)は、本実施例におけるレジストパターンの元になる点の座標を、第1の周期a=20μm、第2の周期b=25μm、移動距離d=5μmの条件で、μm単位で算出した値である。
レジストパターンのうち、一方は図8(b)に示す座標(x1、y1)と(x2、y2)との対応する点同士を結ぶ幅10μmの線である。
また、他方は図8(b)に示す座標(x1、y1)と(x3、y3)の対応する点同士を結ぶ幅5μmの線であって、これらは共にレジストを残すパターンである。実施例1と同様に、4インチ径の両面研磨200μm厚によるシリコンウェハーにエッチングと電解めっきを行い、バフ研磨後ダイシングにより10mm角の5μmの開口幅を持つX線透過領域を有する二つの基板を得る。
位置調整機構42は、高精度ステッピングモーターでもよいし、例えば、圧電アクチュエーターでもよいし、手動の精密調整スクリューでもよい。
高精度ステッピングモーター搭載のステージは、縦横両軸に少なくとも5μm動作するものを使用する。2枚の基板は、互いに物理的に干渉しないよう、かつ可能な限り近づけて配置する。
どちらか一方の基板を、ステッピングモーターにより基板のX線透過領域が重なるように並進移動する。
このようにして作製されたX線用光源格子20を二つの基板上の対応する(x1、y1)の座標重なり、開口部の周期が20μmとなるように調整し、焦点サイズが10μmのX線光源18の下流30cmに配置する。
図8(a)に示すように、光源格子20の下流には、被検体24、X線撮像素子30を順に配置する。
被検体24は光源格子20近傍に配置する。X線撮像素子30は、1ピクセルの大きさ38が100μmとする。
光源格子20とX線撮像格子30との距離40が120cmの場合、光源格子20を透過したX線は、X線撮像素子30上で直径65μmのスポットが周期100μmで並ぶ。被検体24での屈折がない場合、X線は直線の軌跡36で進む。一方、被検体24での屈折がある場合、被検体を透過後X線の軌跡は曲がり、X線撮像素子30上でのスポットの位置はずれる。
このずれが被検体の屈折率に相当し、スポットのずれを解析することで、被検体24の屈折率分布を像として得る。
被検体24での屈折が大きい場合、屈折後のX線の軌道22が大きく曲がり、隣あうスポットの位置が入れ替わり、屈折情報にエラーが発生する。
その場合、光源格子20の周期を大きくし、光源格子20とX線撮像素子30の距離40を短くすることで、大きな屈折角度のX線でもX線撮像素子30上でのスポットのずれを抑制し、スポット径を小さくする。
光源格子20の二つの基板を立て横両方向に5μm移動させると、周期は20μmから25μmになる。
この光源格子20を用い、X線撮像素子30の距離40を120cmから90cmに短縮することで、スポットの直径が65μmから50μmと小さくなり、かつ、スポットの変位を抑えることができる。
また、本発明は、上記した実施例1及び実施例2で説明したX線位相コントラスト像の撮像装置を組み込んで、X線コンピューター断層撮影システムを構成することができる。
2:遮蔽部材
3:第1の周期の開口部
4:基板の開口部
5:第2の周期の開口部
6:第1の基板
8:第2の基板
10:開口配列
12:第1の周期
14:第2の周期
Claims (8)
- 電磁波を空間的に複数のビームに分割する光源格子であって、
複数の開口が設けられた第1の基板と、複数の開口が設けられた第2の基板とを備え、
前記第1の基板と前記第2の基板とは積層しており、
前記第1の基板と前記第2の基板との重なりにおいて、前記第1の基板に設けられた開口と前記第2の基板に設けられた開口とによって形成された開口の配列を有し、
前記第2の基板と平行な面内において、前記第1の基板と前記第2の基板との相対位置を変えることによって、
前記配列の周期を第1の周期から該第1の周期とは異なる第2の周期に変更することが可能に構成されていることを特徴とする光源格子。 - 前記第1の基板と前記第2の基板とを基準を中心として前記面内において相対的に回転させることで、前記配列の周期を前記第1の周期から前記第2の周期へ変更することが可能に構成されていることを特徴とする請求項1に記載の光源格子。
- 前記第1の基板における前記基準となる1つの開口を原点に、前記第1の周期の正方配列の座標を(x1、y1)とし、前記第1の基板における前記第2の周期の正方配列の座標を(x2、y2)とし、前記第2の基板における前記第2の周期の正方配列の座標を(x3、y3)とするとき、
前記第1の基板は、(x1、y1)=(a×n、a×m)で表される点(x1、y1)と、(x2、y2)=(b×n、b×m)で表される点(x2、y2)とを結ぶ、(n、m)番目の開口を有し、
前記第2の基板は、(x1、y1)=(a×n、a×m)で表される点(x1、y1)と、(x3、y3)=(Rnm×cos(θ+θnm)、Rnm×sin(θ+θnm))で表される点(x3、y3)とを結ぶ、
前記第1の基板における(n、m)番目の開口に対応する開口を有することを特徴とする請求項2に記載の光源格子。
但し、
a:前記第1の周期
b:前記第2の周期
θ:前記回転角度
n、m:整数
Rnm:=b×(n×n+m×m)^(1/2)
θnm:=arctan(m/n) - 前記第1の基板と前記第2の基板とを、前記面内において相対的に並進移動させることで、前記配列の周期を前記第1の周期から前記第2の周期へ変更することが可能に構成されていることを特徴とする請求項1に記載の光源格子。
- 前記第1の基板における基準となる1つの開口を原点に前記第1の周期の正方配列の座標を(x1、y1)とし、前記第1の基板における前記第2の周期の正方配列の座標(x2、y2)とし、前記第2の基板における前記第2の周期の正方配列の座標を(x3、y3)とするとき、
前記第1の基板は、(x1、y1)=(a×n、a×m)で表される点(x1、y1)と、(x2、y2)=(b×n+d、b×m)で表される点(x2、y2)とを結ぶ、(n、m)番目の開口を有し、
前記第2の基板は、前記(x1、y1)=(a×n、a×m)で表される点(x1、y1)と、(x3、y3)=(b×n、b×m+d)で表される点(x3、y3)とを結ぶ、前記第1の基板における(n、m)番目の開口に対応する開口を有することを特徴とする請求項4に記載の光源格子。
但し、
a:前記第1の周期
b:前記第2の周期
n、m:整数、
d:前記並進方向の移動距離 - 請求項1から5のいずれか1項に記載の光源格子と、前記光源格子からの電磁波が入射する位相格子と、前記位相格子からの電磁波が入射する振幅格子と、前記振幅格子からの電磁波の強度分布を撮像する撮像素子と、を備えることを特徴とする撮像装置。
- 前記電磁波はX線であることを特徴とする請求項6に記載の撮像装置。
- 請求項7に記載の撮像装置を有することを特徴とするX線コンピューター断層撮影システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010014618A JP5578868B2 (ja) | 2010-01-26 | 2010-01-26 | 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010014618A JP5578868B2 (ja) | 2010-01-26 | 2010-01-26 | 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011153869A JP2011153869A (ja) | 2011-08-11 |
JP2011153869A5 JP2011153869A5 (ja) | 2013-03-14 |
JP5578868B2 true JP5578868B2 (ja) | 2014-08-27 |
Family
ID=44539956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010014618A Expired - Fee Related JP5578868B2 (ja) | 2010-01-26 | 2010-01-26 | 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5578868B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224878A (ja) * | 2012-04-23 | 2013-10-31 | Canon Inc | X線撮像装置およびx線撮像方法 |
JP6172433B2 (ja) * | 2013-01-29 | 2017-08-02 | 国立研究開発法人産業技術総合研究所 | X線反射装置及びその製造方法 |
WO2015122542A1 (en) | 2014-02-14 | 2015-08-20 | Canon Kabushiki Kaisha | X-ray talbot interferometer and x-ray talbot interferometer system |
JP6372614B2 (ja) * | 2015-05-12 | 2018-08-15 | 株式会社島津製作所 | 放射線源およびそれを備えた放射線位相差撮影装置 |
JP6604772B2 (ja) | 2015-08-05 | 2019-11-13 | キヤノン株式会社 | X線トールボット干渉計 |
JP6656391B2 (ja) * | 2016-09-27 | 2020-03-04 | 株式会社島津製作所 | 放射線位相差撮影装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06308293A (ja) * | 1993-04-28 | 1994-11-04 | Shimadzu Corp | ソーラスリット |
JP2005202013A (ja) * | 2004-01-14 | 2005-07-28 | Mitsubishi Electric Corp | 周期可変回折格子 |
DE102006015356B4 (de) * | 2006-02-01 | 2016-09-22 | Siemens Healthcare Gmbh | Verfahren zur Erzeugung projektiver und tomographischer Phasenkontrastaufnahmen mit einem Röntgen-System |
JP5451150B2 (ja) * | 2008-04-15 | 2014-03-26 | キヤノン株式会社 | X線用線源格子、x線位相コントラスト像の撮像装置 |
-
2010
- 2010-01-26 JP JP2010014618A patent/JP5578868B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011153869A (ja) | 2011-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5578868B2 (ja) | 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム | |
JP6316889B2 (ja) | 傾けられた格子 | |
US8718228B2 (en) | Phase grating used for X-ray phase imaging, imaging apparatus for X-ray phase contrast image using phase grating, and X-ray computed tomography system | |
US8737561B2 (en) | X-ray phase grating and method for producing the same | |
US8351570B2 (en) | Phase grating used to take X-ray phase contrast image, imaging system using the phase grating, and X-ray computer tomography system | |
JP5451150B2 (ja) | X線用線源格子、x線位相コントラスト像の撮像装置 | |
US20150071402A1 (en) | X-ray imaging system | |
US8532252B2 (en) | X-ray shield grating, manufacturing method therefor, and X-ray imaging apparatus | |
JP2012013530A (ja) | 回折格子及びその製造方法、並びに放射線撮影装置 | |
JP2014178130A (ja) | X線撮像装置及びx線撮像システム | |
US9024251B2 (en) | Encoder having a scale that includes block patterns | |
US9123451B2 (en) | Imaging apparatus and imaging method | |
JP2016032573A (ja) | トールボット干渉計、トールボット干渉システム、及び縞走査法 | |
WO2018066198A1 (ja) | 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置 | |
JP2009244662A (ja) | 撮像装置 | |
CN102540298B (zh) | 软x射线双频光栅及其制作方法 | |
US10643760B2 (en) | Method of producing diffraction grating | |
JP6362103B2 (ja) | 遮蔽格子及びトールボット干渉計 | |
JP2012127734A (ja) | 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム | |
JP2015135322A (ja) | X線遮蔽格子およびその製造方法 | |
CN109974636B (zh) | 一种天线面形测量方法 | |
WO2012081376A1 (ja) | 放射線画像撮影用グリッド及び放射線画像撮影システム | |
JP2012093117A (ja) | 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム | |
JP2010099287A (ja) | X線位相イメージングに用いられる位相格子及びその製造方法、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム | |
CN116819917B (zh) | 一种掩模板、曝光设备及掩模板对准方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130123 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130123 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20131212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140708 |
|
LAPS | Cancellation because of no payment of annual fees |