JP2012093117A - 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム - Google Patents

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム Download PDF

Info

Publication number
JP2012093117A
JP2012093117A JP2010238620A JP2010238620A JP2012093117A JP 2012093117 A JP2012093117 A JP 2012093117A JP 2010238620 A JP2010238620 A JP 2010238620A JP 2010238620 A JP2010238620 A JP 2010238620A JP 2012093117 A JP2012093117 A JP 2012093117A
Authority
JP
Japan
Prior art keywords
radiation
grid
region
layer
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010238620A
Other languages
English (en)
Inventor
Yasuhisa Kaneko
泰久 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010238620A priority Critical patent/JP2012093117A/ja
Publication of JP2012093117A publication Critical patent/JP2012093117A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】ナノインプリントを用いて構成された高アスペクト比のグリッドを提供する。
【解決手段】第2のグリッド14は、複数のX線吸収部20及びX線透過部21を有するグリッド部17と、グリッド部17を支持する支持基板18とから構成されている。グリッド部17は、X線照射方向であるz方向に沿って積層された第1〜第4のグリッド層23〜26からなり、X線吸収部20及びX線透過部21は、第1〜第4のX線吸収領域23a〜26a及び第1〜第4のX線透過領域23b〜26bにより構成されている。第1〜第4のグリッド層23〜26の第1〜第4のX線吸収領域23a〜26a及び第1〜第4のX線透過領域23b〜26bは、X線焦点側で隣接する隣接グリッド層のX線吸収領域及びX線透過領域に対し、X線光軸Aの外側に向かう方向にずらして配置されている。
【選択図】図2

Description

本発明は、放射線画像の撮影に用いられるグリッド及びその製造方法と、このグリッドを用いた放射線画像撮影システムとに関する。
X線は、物体に入射したときの相互作用により強度と位相とが変化し、位相の変化が強度の変化よりも高い相互作用を示すことが知られている。このX線の性質を利用し、被検体によるX線の位相変化(角度変化)に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。
X線位相イメージングの一種として、2枚の透過型の回折格子(グリッド)によるタルボ干渉効果を用いたX線画像撮影システムが考案されている(例えば、特許文献1、非特許文献1参照)。このX線画像撮影システムは、X線源から見て、被検体の背後に第1のグリッドを配置し、第1のグリッドからタルボ干渉距離だけ下流に第2のグリッドを配置している。第2のグリッドの背後には、X線を検出して画像を生成するX線画像検出器(FPD:Flat Panel Detector)が配置されている。第1のグリッド及び第2のグリッドは、一方向に延伸されたX線吸収部及びX線透過部を、延伸方向に直交する配列方向に沿って交互に配列した縞状のグリッドである。タルボ干渉距離とは、第1のグリッドを通過したX線が、タルボ干渉効果によって自己像(縞画像)を形成する距離である。
上記X線画像撮影システムでは、第1のグリッドの自己像と第2のグリッドとの重ね合わせ(強度変調)により生じるモアレ縞を、縞走査法により検出し、被検体によるモアレ縞の変化から被検体の位相情報を取得する。縞走査法とは、第1のグリッドに対して第2のグリッドを、第1のグリッドの面にほぼ平行で、かつ第1のグリッドの格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素値の変化から、被検体で屈折したX線の角度分布(位相シフトの微分像)を取得する方法であり、この角度分布に基づいて被検体の位相コントラスト画像を得る。この縞走査法は、レーザ光を利用した撮影装置においても用いられている(例えば、非特許文献2参照)。
第1及び第2のグリッドは、例えば、X線吸収部のピッチが数μmという微細な構造を要する。また、第1及び第2のグリッドのX線吸収部は、高いX線吸収性が求められる。特に第2のグリッドは、縞画像を確実に強度変調させるため、第1のグリッドよりも高いX線吸収性を必要とする。そのため、第1及び第2のグリッドのX線吸収部は、原子量の重い金(Au)で形成され、第2のグリッドのX線吸収部は、X線の進行方向に対して比較的大きな厚みを有すること、いわゆるアスペクト比(X線を吸収する部分における厚みを幅で除算した値)が高いことが必要とされている。
従来、第1及び第2のグリッドの製造方法として、基板上に設けられた感光性樹脂層にX線リソグラフィによって溝を形成し、この溝内に電解メッキ等によってAu等のX線吸収材を充填する方法が知られている。また、シリコン等の基板にドライエッチングによって溝を形成し、この溝内にAu等のX線吸収材を充填する方法も知られている。しかし、X線リソグラフィでは、指向性の高いシンクロトロン放射光により感光性樹脂層を露光する必要があるが、シンクロトロン放射光による露光が可能な設備は国内でも限られており、露光に長時間を要するためスループットが悪いという問題がある。また、ドライエッチングを用いる手法も、コストが高くスループットが低い。
微小な構造体を形成する手法として、ナノインプリントが知られている。ナノインプリントとは、微小な凹凸を有する金型を感光性樹脂等に押し付けて凹凸の構造体を形成する手法であり、ミクロンオーダーの微小な構造体を精度よくローコストに製造することができ、かつ高いスループットも得ることができる。また、特許文献1、2では、位相コントラスト画像の撮影に用いるグリッドの製造に、ナノインプリントを用いることが提案されている。
特開2009−244260号公報 特開2008−197593号公報
C. David, et al., Applied Physics Letters, Vol.81, No.17, 2002年10月,3287頁 Hector Canabal, et al., Applied Optics, Vol.37, No.26, 1998年9月,6227頁
上述したように、ナノインプリントは、ミクロンオーダーの微小な構造体を精度よくローコストに製造することができ、かつ高いスループットも得ることができるため、グリッドの製造に好適である。しかし、ナノインプリントでは、グリッドに必要な高アスペクト比の構造体を形成することはできない。また、X線源から放射されたX線は、コーンビーム状に広がるので、グリッドの周縁部でX線がけられてしまう。X線がグリッドによりけられると、X線量が低下するため、位相コントラスト画像の画質が低下してしまう。
本発明の目的は、ナノインプリントを用いて構成された高アスペクト比のグリッドを提供することにある。
上記課題を解決するために、本発明の放射線画像撮影用グリッドは、放射線吸収領域及び放射線透過領域を有する複数のグリッド層を放射線の照射方向に沿って積層し、放射線照射方向において重ねられた放射線吸収領域及び放射線透過領域により、放射線吸収部及び放射線透過部を構成した放射線画像撮影用グリッドであって、各グリッド層の放射線吸収領域及び放射線透過領域を、放射線の焦点側に配置された隣接グリッド層の放射線吸収領域及び放射線透過領域に対してずらして配置したものである。
各グリッド層の放射線吸収領域及び放射線透過領域は、隣接グリッド層の放射線吸収領域及び放射線透過領域に対し、放射線の光軸に対して外側の方向にずらして配置されているのが好ましい。
また、各グリッド層の放射線吸収領域及び放射線透過領域が、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に複数個が配置されている場合には、各グリッド層の放射線吸収領域及び放射線透過領域は、隣接グリッド層の放射線吸収領域及び放射線透過領域に対し、配列方向にずらして配置されていることが好ましい。
本発明の放射線画像撮影用グリッドの製造方法は、支持基板に設けられた放射線透過層に金型を押し付けて凸状の放射線透過領域を形成する工程と、放射線透過領域の間に放射線吸収材を充填して放射線吸収領域を形成し、放射線透過領域及び放射線吸収領域からなるグリッド層を形成する工程と、グリッド層の上に再び放射線透過層を形成する工程と、を繰り返し行なってグリッド層を積層し、積層方向において重ねられた放射線吸収領域及び放射線透過領域により、放射線吸収部及び放射線透過部を構成している。
また、本発明の別の放射線画像撮影用グリッドの製造方法は、支持基板に設けられた放射線透過層と、放射線透過層の上に設けられた放射線吸収層とに金型を押し付け、放射線透過層に放射線吸収層を部分的に押し込んで放射線透過領域と放射線吸収領域とを有するグリッド層を形成する工程と、グリッド層の上に再び放射線透過層と放射線吸収層とを形成する工程と、を繰り返し行なってグリッド層を積層し、積層方向において重ねられた放射線吸収領域及び放射線透過領域により、放射線吸収部及び放射線透過部を構成している。
上述した製造方法に使用する金型には、各グリッド層にそれぞれ対応した型形状を有するものを使用し、各グリッド層の放射線吸収領域及び放射線透過領域が、放射線の焦点側に配置された隣接グリッド層の放射線吸収領域及び放射線透過領域に対してずらして配置されるようにしてもよい。
また、各グリッド層の放射線吸収領域及び放射線透過領域は、隣接グリッド層の放射線吸収領域及び放射線透過領域に対し、放射線の光軸に対して外側の方向にずらして配置してもよい。
各グリッド層の放射線吸収領域及び放射線透過領域が、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に複数個が配置されている場合には、各グリッド層の放射線吸収領域及び放射線透過領域を、隣接グリッド層の放射線吸収領域及び放射線透過領域に対し、配列方向にずらして配置してもよい。
金型の押し付け及び移動を繰り返すことにより、金型のサイズ以上の面積のグリッド層を形成してもよい。また、ロール状金型を使用して、大きな面積のグリッド層を形成してもい。
本発明の放射線画像撮影システムは、放射線源から放射された放射線を通過させて縞画像を生成する第1のグリッドと、縞画像に強度変調を与える第2のグリッドと、第2のグリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、放射線画像検出器により検出した縞画像から位相コントラスト画像を生成する放射線画像撮影システムであって、第1または第2のグリッドの少なくとも1つに、上述した放射線画像撮影用グリッドのいずれかを用いたものである。
放射線画像撮影システムが、放射線源と第1のグリッドとの間に、放射線源から照射された放射線を領域選択的に遮蔽して多数の線光源とする第3のグリッドを有する場合には、第3グリッドに上記の放射線画像撮影用グリッドを用いてもよい。
本発明によれば、高精度かつローコストでスループットが高いナノインプリントを用いて、高アスペクト比でかつコーンビーム状のX線のケラレが少ない収束構造のグリッドを容易に得ることができる。したがって、本発明のグリッドを使用することにより、高画質な位相コントラスト画像を撮影することができる。
本発明のX線画像撮影システムの構成を示す模式図である。 第1実施形態の第2のグリッドの平面図及び要部断面図である。 第1実施形態の第2のグリッドの製造手順の一部を示す説明図である。 第1実施形態の第2のグリッドの製造手順の続きを示す説明図である。 第2実施形態の第2のグリッドの製造手順の一部を示す説明図である。 第2実施形態の第2のグリッドの製造手順の続きを示す説明図である。 第2実施形態の第2のグリッドの要部断面図である。 第3実施形態の第2のグリッドの製造手順の一部を示す説明図である。 第4実施形態の第2のグリッドの製造手順の一部を示す説明図である。
[第1実施形態]
図1は、X線画像撮影システム10の構成を示す概念図である。X線画像撮影システム10は、X線照射方向であるz方向に沿って配置されたX線源11、線源グリッド12、第1のグリッド13、第2のグリッド14、及びX線画像検出器15を備えている。X線源11は、例えば、回転陽極型のX線管と、X線の照射野を制限するコリメータとを有し、被検体Hにコーンビーム状のX線を放射する。X線画像検出器15は、例えば、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)であり、第2のグリッド14の背後に配置されている。
線源グリッド12、第1のグリッド13及び第2のグリッド14は、X線を吸収する吸収型グリッドであり、z方向においてX線源11に対向配置されている。線源グリッド12と第1のグリッド13との間には、被検体Hが配置可能な間隔が設けられている。また、第1のグリッド13と第2のグリッド14との距離は、最小のタルボ干渉距離以下とされている。すなわち、本実施形態のX線画像撮影システム10は、タルボ干渉効果を用いずに位相コントラスト画像を撮影する。
第2のグリッド14を例にして、グリッドの構造を説明する。図2(A)は、第2のグリッド14をX線画像検出器15側から見た正面図であり、同図(B)は同図(A)のA−A断面図である。第2のグリッド14は、グリッドとして機能するグリッド部17と、このグリッド部17の一方の面に設けられた支持基板18とからなる。
グリッド部17は、z方向に直交する面内のy方向に延伸された複数のX線吸収部20及びX線透過部21を備えている。X線吸収部20及びX線透過部21は、z方向及びy方向に直交するx方向に沿って交互に配列されており、縞状のグリッドを構成している。X線吸収部20は、例えば金、白金等のX線吸収性を有する金属からなる。X線透過部21は、感光性樹脂等のX線透過性を有する材質からなる。
支持基板18は、第2のグリッド14を補強するとともに、第2のグリッド14の製造時に、電解メッキ用のシーズ層となる。支持基板18の材質には、導電性を有し、かつX線吸収の低いものが好ましく、例えば、Mg、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znまたはそれらの合金、SUSなどが望ましい。
X線吸収部20の幅W2及びピッチP2は、線源グリッド12と第1のグリッド13との間の距離、第1のグリッド13と第2のグリッド14との間の距離、及び第1のグリッド13のX線吸収部のピッチ等によって決まるが、幅W2はおよそ2〜20μm、ピッチP2は4〜40μm程度である。また、X線吸収部20のz方向の厚みT2は、高いX線吸収性を得るには厚いほどよいが、X線源11から放射されるコーンビーム状のX線のケラレを考慮して、例えば100μm程度となっている。本実施形態では、例えば、幅W2が2.5μm、ピッチP2が5μm、厚みT2が100μmであり、X線吸収部のアスペクト比は例えば40である。
グリッド部17は、z方向に積層された第1グリッド層23〜第4グリッド層26によって構成されている。グリッド層の数は、グリッド層の製造可能なアスペクト比によって決まるが、例えば2〜10層程度であり、本実施形態では4層構造のグリッド部17を用いている。第1〜第4のグリッド層23〜26は、y方向に延伸されかつx方向に沿って交互に配置された第1〜第4のX線吸収領域23a〜26a、及び第1〜第4のX線透過領域23b〜26bを有しており、これらがz方向において積層されることにより、グリッド部17のX線吸収部20及びX線透過部21を構成する。
第1〜第4のグリッド層23〜26の第1〜第4のX線吸収領域23a〜26a、及び第1〜第4のX線透過領域23b〜26bは、X線源11の焦点側のグリッド層のX線吸収領域及びX線透過領域に対して、X線の光軸Aの外側、すなわち、x方向の端縁側に少しずつずらして配置されている。これにより、本実施形態の第2のグリッド14は、X線源11の焦点を中心に放射された線上に、グリッド部17の各X線吸収部20及びX線透過部21が配置された収束構造のグリッドとなる。したがって、本実施形態の第2のグリッド14は、X線吸収部及びX線透過部が光軸Aと平行に配置された従来のグリッドと比べて、X線のケラレを少なくすることができる。
線源グリッド12及び第1のグリッド13は、第2のグリッド14と同様に、支持基板と、複数のグリッド層からなるグリッド部とから構成されている。線源グリッド12及び第1のグリッド13のグリッド部は、第2のグリッド14と同様に、x方向に延伸されx方向に直交するy方向に沿って交互に配列されたX線吸収部及びX線透過部を備えている。このように、線源グリッド12及び第1のグリッド13は、各小グリッドのX線吸収部及びX線透過部のy方向の幅及びピッチと、z方向の厚さ等が異なる以外は第2のグリッド14とほぼ同様の構成であるため、詳しい説明は省略する。
次に、第2のグリッド14を例にして、本発明のグリッドの製造方法について説明する。図3(A)に示すように、最初の工程では、支持基板18の上に形成された第1の感光性樹脂層28に、ナノインプリント用の第1の金型29が押し付けられる。第1の金型29には、第1のグリッド層23の第1のX線吸収領域23aに対応した複数の凸部29aが設けられているので、同図(B)に示すように、第1の感光性樹脂層28の表面には第1の金型29の凹凸形状が転写形成される。
図3(B)に示すように、第1の感光性樹脂層28には、第1の金型29の凹凸形状が転写されることにより複数の凸部が形成される。これらの凸部は、第1のグリッド層23の第1のX線透過領域23bとなる。また、第1のX線透過領域23bの下には、支持基板18の全域を覆う感光性樹脂の残留層28aが生じる。この残留層28aは、同図(C)に示すように、例えばO2アッシング等を用いて除去される。なお、残留層28aは、グリッド内のX線透過性及びX線の散乱抑制のために除去するのが望ましいが、残留層28aが十分薄い場合(例えば1μm以下)には、除去せずに残しておいてもよい。
図3(D)に示すように、次の工程では、第1のX線透過領域23bの間に電解メッキによってAuなどのX線吸収材が充填され、第1のX線吸収領域23aが形成される。電解メッキ工程では、支持基板18は電流端子が接続されてメッキ液中に浸漬され、支持基板18と対向させた位置には、もう一方の電極(陽極)が用意される。そして、これらの電極に電流が流されることにより、メッキ液中の金属イオンが第1のX線透過領域23bの間に析出され、第1のX線吸収領域23aが形成される。なお、第1のX線吸収領域23aの形成方法は、電解メッキに限定されるものではなく、例えば、ペースト状、コロイド状のX線吸収材を第1のX線透過領域23bの間に充填してもよい。この場合、支持基板18には導電性が不要になるので、支持基板18には、X線透過性が高いガラス、カーボン、アクリル等を用いてもよい。
図3(D)に示すように、電解メッキ工程では、第1のX線透過領域23bの間にAuを確実に充填するため、第1のX線透過領域23bの上部を覆うようにAuがメッキされる。そのため、同図(E)に示すように、次の工程では、化学機械研磨(CMP:Chemical Mechanical Polishing)等を用いて、第1のX線透過領域23b上のAuが除去される。これにより、支持基板18上には、第1のグリッド層23が形成される。
図4(F)に示すように次の工程では、第1のグリッド層23の上に第2の感光性樹脂層31が形成される。また、第2の感光性樹脂層31には、ナノインプリント用の第2の金型32が押し付けられる。第2の金型32には、第2のグリッド層24の第2のX線吸収領域24aに対応した複数の凸部32aが設けられているので、同図(G)に示すように、第2の感光性樹脂層31の表面には、第2のX線透過領域24bととともに、第1のグリッド層23の全域を覆う感光性樹脂の残留層31aが生じる。残留層31aは、同図(H)に示すように、第1のグリッド層23と同様に除去される。
図4(I)に示すように、次の工程では、第2のX線透過領域24bの間に電解メッキによってAuなどのX線吸収材が充填され、第2のX線吸収領域24aが形成される。また、次の工程では、同図(J)に示すように、第2のX線透過領域24bの上部を覆うようにメッキされたAuがCMP等によって除去され、第2のグリッド層24が形成される。第2のX線吸収領域24aを形成する工程、及び余分なAuを除去する工程は、第1のグリッド層23の形成時と同様であるため、詳しい説明は省略する。
第2のグリッド層24の上には、第1及び第2のグリッド層23、24と同様の手法で第3及び第4のグリッド層25、26が順に形成される。これにより、図2に示すように、収束構造を備えた第2のグリッド14が完成する。なお、線源グリッド12及び第1のグリッド13は、第2のグリッド14と同様に製造されるため、詳しい説明は省略する。
なお、感光性樹脂層にナノインプリント用の金型を押し付ける工程では、支持基板18の感光性樹脂層によって隠れない位置に設けたアライメントマークを基準にして、支持基板18と金型との位置調整を行なってもよい。また、第1の金型29の第1の感光性樹脂層28への押し付けでは、アライメントマークによる位置調整は行なわず、第1の金型29により第1の感光性樹脂層28にグリッドパターンと一緒にアライメントマークを形成し、このアライメントマークを基準にして、次の第2の金型32と支持基板18との位置調整を行なってもよい。
次に、X線画像撮影システム10の作用について説明する。X線源11から放射されたX線は、線源グリッド12のX線吸収部によって部分的に遮蔽されることにより、x方向に関する実効的な焦点サイズが縮小され、x方向に多数の線光源(分散光源)が形成される。線源グリッド12により形成された多数の線光源のX線は、被検体Hを通過することにより位相差が生じ、このX線が第1のグリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した縞画像が形成される。各線光源の縞画像は、第2のグリッド14に投影され、第2のグリッド14の位置で一致する(重なり合う)ので、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。
縞画像は、第2のグリッド14により強度変調され、例えば、縞走査法により検出される。縞走査法とは、第1のグリッド13に対し第2のグリッド14を、X線焦点を中心として格子面に沿った方向に格子ピッチを等分割(例えば、5分割)した走査ピッチでy方向に並進移動させながら、X線源11から被検体HにX線を照射して複数回の撮影を行なってX線画像検出器15により検出し、X線画像検出器15の各画素の画素データの位相のズレ量(被検体Hがある場合とない場合とでの位相のズレ量)から位相微分像(被検体で屈折したX線の角度分布に対応)を取得する方法である。この位相微分像を上記の縞走査方向に沿って積分することにより、被検体Hの位相コントラスト画像を得ることができる。
以上で説明したように、本実施形態のX線画像撮影システム10は、線源グリッド12、第1のグリッド13及び第2のグリッド14の製造にナノインプリントを用いているので、線源グリッド12、第1のグリッド13及び第2のグリッド14を精度よくローコストに製造することができ、かつ高いスループットも得ることができる。また、ナノインプリントを繰り返し行なって第1〜第4のグリッド層23〜26を積層しているので、高アスペクト比を有するグリッド部17を形成することができる。更に、第1〜第4のグリッド層23〜26を積層する際に、第1〜第4のX線吸収領域23a〜26a及び第1〜第4のX線透過領域23b〜26bをX線焦点側の隣接グリッド層に対してずらして収束構造にしているので、コーンビーム状のX線のけられを少なくすることができる。そして、このような構造を有する線源グリッド12、第1のグリッド13及び第2のグリッド14を用いて位相コントラスト画像の撮影行なうので、位相コントラスト画像の画質を向上させることができる。
[第2実施形態]
上記実施形態では、グリッド層を形成する際に、感光性樹脂層にナノインプリント用の金型を押し付けて複数のX線透過領域を形成し、このX線透過領域の間にAuを充填してX線吸収領域を形成したが、Auに直接ナノインプリントを行なってグリッド層を形成してもよい。図5(A)に示すように、この実施形態では、支持基板40の上に第1の感光性樹脂層41と第1のAu層42とを形成し、第1のAu層42に、第1のグリッド層に対応した第1の金型43が押し付けられる。これにより、同図(B)に示すように、第1の金型43の凸部43aにより押された第1のAu層42は、第1の感光性樹脂層41内に部分的に押し込まれる。その後、同図(C)に示すように、第1の感光性樹脂層41の上に残っている第1のAu層42がCMP等によって除去されることにより、支持基板40の上には、第1のX線吸収領域44a及び第1のX線透過領域44bからなる第1のグリッド層44が形成される。
図6(D)に示すように、次の工程では、第1のグリッド層44の上に、第2の感光性樹脂層46と第2のAu層47とが形成される。第2のAu層47には、第2のグリッド層に対応した第2の金型48が押し付けられる。これにより、同図(E)に示すように、第2の金型48の凸部48aにより押された第2のAu層47は、第2の感光性樹脂層46内に部分的に押し込まれる。その後、同図(F)に示すように、第2の感光性樹脂層46の上に残っている第2のAu層47をCMP等によって除去することにより、第1のグリッド層44の上には、第2のX線吸収領域49a及び第2のX線透過領域49bからなる第2のグリッド層49が形成される。
図7に示すように、第2のグリッド層49の上には、第1及び第2のグリッド層44、49と同様の手法で第3及び第4のグリッド層50、51が順に形成される。これにより、第1実施形態と同様に、収束構造の第2のグリッド52が完成する。なお、線源グリッド12及び第1のグリッド13も、本実施形態と同様の手法により形成することができる。
本実施形態を用いることにより、第1の実施形態と同様に、線源グリッド12、第1のグリッド13及び第2のグリッド14を精度よくローコストに製造することができ、かつ高いスループットも得ることができる。また、第1実施形態と同様に、複数のグリッド層を積層しているので、高アスペクト比を有するグリッド部を形成することができる。更に、複数のグリッド層を積層する際に、各グリッド層のX線吸収部及びX線透過部を下層に対してずらして設けているので、第1実施形態同様に、コーンビーム状のX線のけられが少ない収束構造のグリッドを簡単に得ることができる。
[第3実施形態]
上記各実施形態では、ナノインプリント用の金型のサイズによって、製造可能なグリッドのサイズが限定されてしまう。そこで、図8に示すように、大きなサイズの支持基板60に設けられた感光性樹脂層61に対し、ナノインプリント用の金型62の押し付けと移動とを繰り返すことにより、感光性樹脂層61の全域にX線透過部63を形成してもよい。なお、詳しくは説明しないが、感光性樹脂層61へのX線透過部63の形成後には、第1の実施形態と同様に、複数のグリッド層が形成される。
本実施形態によれば、高アスペクト比でかつ大面積を有するグリッドを高精度かつローコストに製造することができ、高いスループットも得ることができる。また、第1実施形態と同様に、収束構造を有するグリッドも簡単に製造できるので、グリッドを大面積化した場合でもX線のけられを少なくすることができる。
[第4実施形態]
上記実施形態では、ナノインプリント用の金型の押し付けと移動とを繰り返すことにより、大きな面積を有する感光性樹脂層に凹凸構造を形成したが、図9に示すように、感光性樹脂層70が設けられた支持基板71を矢印方向に走行させながら、ロール状の金型72により、感光性樹脂層70に凹凸形状を形成してもよい。なお、詳しくは説明しないが、感光性樹脂層70への凹凸形状の形成後には、第1の実施形態と同様に、複数のグリッド層が形成される。本実施形態によれば、第3実施形態と同様の効果を得ることができるが、グリッドサイズが大きくなるほど、本実施形態のほうが第3実施形態よりも高いスループットを得ることができる。
上記各実施形態は、第1及び第2のグリッドを、そのX線透過部を通過したX線を線形的に投影するように構成しているが、本発明はこの構成に限定されるものではなく、X線透過部でX線を回折することにより、いわゆるタルボ干渉効果が生じる構成(国際公開WO2004/058070号公報等に記載の構成)としてもよい。ただし、この場合には、第1及び第2のグリッド間の距離をタルボ干渉距離に設定する必要がある。また、この場合には、第1のグリッドを吸収型グリッドに代えて、位相型グリッドを用いることが可能であり、第1のグリッドに代えて用いた位相型グリッドは、タルボ干渉効果により生じる縞画像(自己像)を、第2のグリッドに射影する。
さらに、上記実施形態では、被検体HをX線源と第1のグリッドとの間に配置しているが、被検体Hを第1のグリッドと第2のグリッドとの間に配置した場合にも同様に位相コントラスト画像の生成が可能である。また、線源グリッドを備えたX線画像撮影システムについて説明したが、本発明は、線源グリッドを使用しないX線画像撮影システムにも適用可能である。また、上記各実施形態は、矛盾しない範囲で相互に組み合わせることが可能である。
また、上記各実施形態では、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に配置されたX線吸収部及びX線透過部を有する縞状の一次元グリッドを例に説明したが、本発明は、X線吸収部及びX線透過部が2方向に配列された二次元グリッドにも適用が可能である。この場合、第2のグリッドにより強度変調された縞画像を上述した縞走査法によって検出して位相コントラスト画像を生成してもよいし、1回の撮影によって位相コントラスト画像を生成してもよい。1回の撮影で位相コントラスト画像を生成する場合には、例えば第1のグリッドに市松模様の位相型グリッドを使用し、第2のグリッドに網目模様の振幅型グリッドを使用して、1回の撮影を行なう。そして、撮影画像にフーリエ変換を行なって縦横方向の1次スペクトルをそれぞれ抽出し、これらの1次スペクトルを逆変換することで、2方向の微分位相像を1枚の画像から得ることができる。
以上説明した実施形態は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用することが可能である。また、本発明は、X線撮影において散乱線を除去する散乱線除去用グリッドにも適用可能である。更に、本発明は、放射線として、X線以外にガンマ線等を用いることも可能である。
10 X線画像撮影システム
11 X線源
12 線源グリッド
13 第1のグリッド
14、52 第2のグリッド
15 X線画像検出器
17 グリッド部
18 支持基板
20 X線吸収部
21 X線透過部
23〜26 第1〜第4のグリッド層
23a〜26a 第1〜第4のX線吸収領域
23b〜26b 第1〜第4のX線透過領域
28、41 第1の感光性樹脂層
29、43 第1の金型
31、46 第2の感光性樹脂層
32、48 第2の金型
42 第1のAu層
47 第2のAu層
62、72 金型

Claims (14)

  1. 放射線吸収領域及び放射線透過領域を有する複数のグリッド層を放射線の照射方向に沿って積層し、前記放射線照射方向において重ねられた前記放射線吸収領域及び前記放射線透過領域により、放射線吸収部及び放射線透過部を構成した放射線画像撮影用グリッドであって、
    前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記放射線の焦点側に配置された隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、ずらして配置されていることを特徴とする放射線画像撮影用グリッド。
  2. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、前記放射線の光軸に対して外側の方向にずらして配置されていることを特徴とする請求項1記載の放射線画像撮影用グリッド。
  3. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、一方向に延伸されかつ前記延伸方向に直交する配列方向に沿って交互に複数個が配置されていることを特徴とする請求項2記載の放射線画像撮影用グリッド。
  4. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、前記配列方向にずらして配置されていることを特徴とする請求項3記載の放射線画像撮影用グリッド。
  5. 支持基板に設けられた放射線透過層に金型を押し付けて凸状の放射線透過領域を形成する工程と、
    前記放射線透過領域の間に放射線吸収材を充填して放射線吸収領域を形成し、前記放射線透過領域及び前記放射線吸収領域からなるグリッド層を形成する工程と、
    前記グリッド層の上に再び放射線透過層を形成する工程と、を繰り返し行なって前記グリッド層を積層し、積層方向において重ねられた前記放射線吸収領域及び前記放射線透過領域により、放射線吸収部及び放射線透過部を構成することを特徴とする放射線画像撮影用グリッドの製造方法。
  6. 支持基板に設けられた放射線透過層と、前記放射線透過層の上に設けられた放射線吸収層とに金型を押し付け、前記放射線透過層に前記放射線吸収層を部分的に押し込んで放射線透過領域と放射線吸収領域とを有するグリッド層を形成する工程と、
    前記グリッド層の上に、再び放射線透過層と放射線吸収層とを形成する工程と、
    を繰り返し行なって前記グリッド層を積層し、積層方向において重ねられた前記放射線吸収領域及び前記放射線透過領域により、放射線吸収部及び放射線透過部を構成することを特徴とする放射線画像撮影用グリッドの製造方法。
  7. 前記金型は、前記各グリッド層にそれぞれ対応した型形状を有しており、前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記放射線の焦点側に配置された隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、ずらして配置されることを特徴とする請求項5または6記載の放射線画像撮影用グリッドの製造方法。
  8. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、前記放射線の光軸に対して外側の方向にずらして配置されることを特徴とする請求項7記載の放射線画像撮影用グリッドの製造方法。
  9. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、一方向に延伸されかつ前記延伸方向に直交する配列方向に沿って交互に複数個が配置されていることを特徴とする請求項8記載の放射線画像撮影用グリッドの製造方法。
  10. 前記各グリッド層の前記放射線吸収領域及び前記放射線透過領域は、前記隣接グリッド層の前記放射線吸収領域及び前記放射線透過領域に対し、前記配列方向にずらして配置されることを特徴とする請求項9記載の放射線画像撮影用グリッドの製造方法。
  11. 前記金型は、押し付け及び移動を繰り返し、前記金型のサイズ以上の面積の前記グリッド層を形成することを特徴とする請求項5〜10いずれか記載の放射線画像撮影用グリッドの製造方法。
  12. 前記金型は、ロール状金型であることを特徴とする請求項5〜10いずれか記載の放射線画像撮影用グリッドの製造方法。
  13. 放射線源から放射された放射線を通過させて縞画像を生成する第1のグリッドと、前記縞画像に強度変調を与える第2のグリッドと、前記第2のグリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、前記放射線画像検出器により検出した縞画像から位相コントラスト画像を生成する放射線画像撮影システムであって、
    前記第1または第2のグリッドの少なくとも1つに、請求項1〜4いずれか記載の放射線画像撮影用グリッドを用いたことを特徴とする放射線画像撮影システム。
  14. 前記放射線源と前記第1のグリッドとの間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽して多数の線光源とする第3のグリッドを有し、前記第3グリッドに、請求項1〜4いずれか記載の放射線画像撮影用グリッドを用いたことを特徴とする請求項13記載の放射線画像撮影システム。
JP2010238620A 2010-10-25 2010-10-25 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム Pending JP2012093117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238620A JP2012093117A (ja) 2010-10-25 2010-10-25 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238620A JP2012093117A (ja) 2010-10-25 2010-10-25 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Publications (1)

Publication Number Publication Date
JP2012093117A true JP2012093117A (ja) 2012-05-17

Family

ID=46386620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238620A Pending JP2012093117A (ja) 2010-10-25 2010-10-25 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Country Status (1)

Country Link
JP (1) JP2012093117A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575657A (zh) * 2014-03-31 2015-04-29 株式会社富士金 叠层型x线滤波栅、其制造装置及制法
KR20150117596A (ko) 2014-04-10 2015-10-20 가부시키가이샤 후지킨 산란 x선 제거용 그리드의 제조방법
CN105139913A (zh) * 2015-09-08 2015-12-09 清华大学 一种光栅和辐射成像装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575657A (zh) * 2014-03-31 2015-04-29 株式会社富士金 叠层型x线滤波栅、其制造装置及制法
JP2015194426A (ja) * 2014-03-31 2015-11-05 株式会社フジキン 積層型x線グリッド、その製造装置及び製法
KR20150117596A (ko) 2014-04-10 2015-10-20 가부시키가이샤 후지킨 산란 x선 제거용 그리드의 제조방법
JP2015203571A (ja) * 2014-04-10 2015-11-16 株式会社フジキン 散乱x線除去用グリッドの製造方法
CN105139913A (zh) * 2015-09-08 2015-12-09 清华大学 一种光栅和辐射成像装置
US10643759B2 (en) 2015-09-08 2020-05-05 Nuctech Company Limited Grating and radiation imaging device

Similar Documents

Publication Publication Date Title
JP5451150B2 (ja) X線用線源格子、x線位相コントラスト像の撮像装置
JP6460226B2 (ja) X線撮影装置
JP5459659B2 (ja) X線位相コントラスト像の撮像に用いられる位相格子、該位相格子を用いた撮像装置、x線コンピューター断層撮影システム
JP5660910B2 (ja) 放射線画像撮影用グリッドの製造方法
WO2012026223A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012161412A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5475737B2 (ja) 放射線撮影装置及び画像処理方法
JP2014178130A (ja) X線撮像装置及びx線撮像システム
JP5601909B2 (ja) X線撮像装置及びこれを用いるx線撮像方法
JP2008197495A (ja) X線撮像フイルム及び製造方法、x線撮像方法、システム
JP2015072263A (ja) X線撮像システム
CN102460237A (zh) 倾斜光栅和用于生产倾斜光栅的方法
JP2008197593A (ja) X線用透過型回折格子、x線タルボ干渉計およびx線撮像装置
JP2012236005A (ja) 放射線撮影装置
JP2012143553A (ja) 放射線画像撮影装置および放射線画像検出器
JP2012093117A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012149982A (ja) 放射線画像撮影用格子ユニット及び放射線画像撮影システム、並びに格子体の製造方法
JP5204880B2 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2012127734A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2012122840A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
WO2012053342A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2012026222A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012132793A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2012081376A1 (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
JP2012249847A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム