WO2012053342A1 - 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム - Google Patents

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム Download PDF

Info

Publication number
WO2012053342A1
WO2012053342A1 PCT/JP2011/072749 JP2011072749W WO2012053342A1 WO 2012053342 A1 WO2012053342 A1 WO 2012053342A1 JP 2011072749 W JP2011072749 W JP 2011072749W WO 2012053342 A1 WO2012053342 A1 WO 2012053342A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
radiation
alignment mark
small
ray
Prior art date
Application number
PCT/JP2011/072749
Other languages
English (en)
French (fr)
Inventor
金子 泰久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012053342A1 publication Critical patent/WO2012053342A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Definitions

  • the present invention relates to a grid used for radiographic imaging, a method for manufacturing the grid, and a radiographic imaging system using the grid.
  • phase imaging is used to obtain a high-contrast image (hereinafter referred to as a phase contrast image) from a subject having a low X-ray absorption capacity based on the phase change of the X-ray by the subject.
  • An X-ray imaging system using the Talbot interference effect is known as a kind of X-ray phase imaging (see, for example, Patent Document 1 and Non-Patent Document 1).
  • the first grid is disposed behind the subject as viewed from the X-ray source, and the second grid is disposed downstream from the first grid by the Talbot distance.
  • An X-ray image detector that detects an X-ray and generates an image is disposed behind the second grid.
  • the first grid and the second grid are striped grids in which X-ray absorbing portions and X-ray transmitting portions extended in one direction are alternately arranged along an arrangement direction orthogonal to the extension direction.
  • the Talbot distance is a distance at which X-rays that have passed through the first grid form a self-image (stripe image) due to the Talbot interference effect.
  • a phase contrast image is acquired based on a change in a striped image intensity-modulated by superimposing the self-image of the first grid and the second grid depending on the subject.
  • This is called a fringe scanning method.
  • the second grid is intermittently moved with respect to the first grid, and photographing is performed while the second grid is stopped. This intermittent movement is performed at a constant scanning pitch obtained by equally dividing the grid pitch in a direction substantially parallel to the plane of the first grid and substantially perpendicular to the grid direction of the first grid.
  • a phase differential image representing the distribution of the X-ray refraction angle in the subject is obtained.
  • a phase contrast image is obtained from this phase differential image.
  • This fringe scanning method is also used in an imaging apparatus using laser light (see, for example, Non-Patent Document 2).
  • the first and second grids have a fine structure in which X-ray absorbers are arranged at a pitch of several ⁇ m.
  • This X-ray absorption part is required to have high X-ray absorption.
  • the X-ray absorption part of the second grid needs higher X-ray absorption than the X-ray absorption part of the first grid in order to surely modulate the intensity of the fringe image.
  • the X-ray absorption parts of the first and second grids are made of heavy atomic weight gold (Au).
  • the X-ray absorption part of the second grid needs to have a relatively large thickness with respect to the X-ray traveling direction and have a high aspect ratio (a value obtained by dividing the thickness of the part that absorbs X-rays by the width). (For example, see Patent Document 2).
  • the imaging range is limited to the sizes of the first and second grids, when a grid manufactured by a silicon semiconductor process is simply used as the first and second grids, the imaging range is Narrow.
  • FIG. 18 shows a conventional large-area grid 95 configured by arranging four small grids 91 to 94 vertically and horizontally.
  • Each of the small grids 91 to 94 is a striped grid portion 91a to 94a composed of a plurality of X-ray absorbing portions and X-ray transmitting portions that are extended in one direction and alternately arranged along the arrangement direction orthogonal to the extending direction. It has.
  • Patent Document 1 does not describe how to fix a plurality of small grids to each other.
  • a method of fixing the small grid as shown in the figure, it is conceivable to fix the small grids 91 to 94 to a flat plate-like support substrate 96 having X-ray transparency.
  • outer edge portions 91b to 94b are provided on the outer circumferences of the grid portions 91a to 94a, and alignment marks 91c to 94c are provided on the outer edge portions 91b to 94b.
  • the alignment marks 91c to 94c are used to position the small grids 91 to 94 with respect to the support substrate 96.
  • interval S2 depends on the width of the outer edge portions 91b to 94b and the gap S1 necessary for adjusting the positions of the small grids 91 to 94. Since the area of the interval S2 does not function as a grid, when the size is larger than the size corresponding to one pixel of the X-ray image detector (for example, 150 to 300 ⁇ m with a general flat panel detector), the phase contrast image The quality of the will deteriorate.
  • Patent Document 2 describes that an alignment mark may be provided when a grid having a high aspect ratio is manufactured by stacking a plurality of grids. Where the alignment mark is specifically provided on the grid. Is not disclosed, and the X-ray transparency of the alignment mark and the influence on the grid performance are not mentioned.
  • An object of the present invention is to eliminate the outer edge of the small grid and reduce the gap between the small grids.
  • a radiographic imaging grid includes a grid portion having a radiation absorbing portion and a radiation transmitting portion, and a first alignment mark provided in the grid portion and having radiation transparency.
  • a small grid provided; and a support substrate that has a second alignment mark having radiation transparency and supports the small grid in a state where the first and second alignment marks correspond to each other.
  • a plurality of small grids may be supported on the support substrate.
  • an interval between adjacent small grids is preferably smaller than a size corresponding to one pixel of a radiation image detector that detects radiation that has passed through the small grids.
  • the first and second alignment marks may be formed of a material having radiation transparency.
  • the first and second alignment marks may have a thickness that allows radiation to pass through.
  • the first alignment mark may be configured by the radiation transmitting part or the radiation absorbing part. Further, the first alignment mark may be constituted by a bridge portion that connects the radiation transmitting portion or the radiation absorbing portion.
  • the method for manufacturing a grid for radiographic imaging includes a first alignment mark forming step of forming a first alignment mark having radiation transparency on a grid portion having a radiation absorbing portion and a radiation transmitting portion of a small grid. And a second alignment mark forming step for forming a second alignment mark having radiation transparency on the support substrate, and the position of the small grid relative to the support substrate is adjusted based on the first and second alignment marks.
  • the position adjusting step includes a step of bringing a surface of the small grid on which the first alignment mark is provided and a surface of the support substrate on which the second alignment mark is provided, and the small grid And a step of detecting a positional shift between the first alignment mark and the second alignment mark by a position detection device inserted between the first alignment mark and the support substrate.
  • the position adjusting step includes a step of bringing a surface of the small grid on which the first alignment mark is provided and a surface of the support substrate on which the second alignment mark is provided, and the support substrate. It is also preferable to include a step of detecting a positional deviation between the first alignment mark and the second alignment mark by a position detection device disposed on the opposite side of the small grid.
  • the radiographic imaging system of the present invention includes a first grid that generates a fringe image by passing radiation emitted from a radiation source, a second grid that applies intensity modulation to the fringe image, and the second grid. And a radiological image detector for detecting a fringe image whose intensity is modulated by the radio frequency image detector, and a phase contrast image is generated from the fringe image detected by the radiological image detector.
  • At least one of the first and second grids is a small grid provided with a grid part having a radiation absorbing part and a radiation transmissive part, and a first alignment mark provided on the grid part and having radiation transparency.
  • a support substrate for supporting the small grid in a state in which the first and second alignment marks correspond to each other.
  • a third grid disposed between the radiation source and the first grid and configured to selectively shield the radiation emitted from the radiation source to form a plurality of line-shaped radiations; desirable.
  • the third grid has a grid part having a radiation absorbing part and a radiation transmissive part, a small grid provided on the grid part and having a first alignment mark having radiation transparency, and a radiation transmissive first grid. And a support substrate that supports the small grid in a state where the first and second alignment marks correspond to each other.
  • the first alignment mark having radiation transparency is provided in the grid portion of the small grid, the outer edge portion of the outer periphery of the grid portion can be eliminated. Therefore, when a plurality of small grids are arranged on the support substrate, the gap between the small grids can be reduced, and the quality of the phase contrast image is improved.
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 2A. It is sectional drawing which shows the X direction cross section of the small grid in the part of the 1st alignment mark. It is a top view which shows the structure of a support substrate. It is explanatory drawing which shows a 2nd alignment mark. It is sectional drawing which shows the manufacture procedure 1 of a small grid. It is sectional drawing which shows the manufacturing procedure 2 of a small grid. It is sectional drawing which shows the manufacturing procedure 3 of a small grid. It is sectional drawing which shows the manufacture procedure 4 of a small grid.
  • an X-ray imaging system 10 includes an X-ray source 11, a source grid 12, a first grid 13, and a second grid arranged along the Z direction that is an X-ray irradiation direction. 14 and an X-ray image detector 15.
  • the X-ray source 11 has a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and the subject H is irradiated with X-rays. Radiate.
  • the radiation source grid 12, the first grid 13, and the second grid 14 are absorption grids that absorb X-rays, and are disposed to face the X-ray source 11 in the Z direction. Between the radiation source grid 12 and the first grid 13, an interval at which the subject H can be arranged is provided. The distance between the first grid 13 and the second grid 14 is not more than the minimum Talbot distance.
  • the X-ray image detector 15 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 14.
  • the second grid 14 is composed of four small grids 17 to 20 and a support substrate 22 to which the small grids 17 to 20 are joined by an adhesive 21.
  • the small grids 17 to 20 have a substantially square shape, and are arranged vertically and horizontally on an XY plane orthogonal to the Z direction.
  • the small grids 17 to 20 include grid portions 17a to 20a and a pair of first alignment marks 17b to 20b.
  • the grid portions 17a to 20a are Functions as a grid for X-rays.
  • the first alignment marks 17 b to 20 b are used for positioning when the small grids 17 to 20 are attached to the support substrate 22.
  • the first alignment marks 17b to 20b are arranged on the surface of the grid portions 17a to 20a to be bonded to the support substrate 22 and close to the two sides facing the Y direction.
  • a space S is provided between the small grids 17 to 20 so that the positions of the small grids 17 to 20 can be adjusted when the small grids 17 to 20 are joined to the support substrate 22.
  • the interval S is set to a size corresponding to one pixel of the X-ray image detector 15 (for example, 150 to 300 ⁇ m) or less in consideration of the influence on the phase contrast image.
  • the size corresponding to one pixel is one pixel of the X-ray image detector 15 based on the positions of the source grid 12, the first grid 13, the second grid 14, and the X-ray image detector 15. Is a value that is geometrically converted into a size at the position of the second grid 14.
  • the spaces between the small grids 17 to 20 are filled with a material having X-ray absorption.
  • the grid portion 17a includes X-ray absorbing portions 25 and X-ray transmitting portions 26 that are extended in the Y direction and are alternately arranged along the X direction orthogonal to the Y direction.
  • the X-ray absorption part 25 is formed of a material having X-ray absorption such as gold or platinum.
  • the X-ray transmission part 26 is made of a material having X-ray transmission properties such as silicon.
  • the width W2 and the pitch P2 in the X direction of the X-ray absorber 25 are the distance between the source grid 12 and the first grid 13, the distance between the first grid 13 and the second grid 14, And the pitch of the X-ray absorption part of the first grid 13 and the like.
  • the width W2 is about 2 to 20 ⁇ m.
  • the pitch P2 is about 4 to 40 ⁇ m.
  • the thickness T2 in the Z direction of the X-ray absorber 25 is preferably as thick as possible to obtain high X-ray absorption, but considering the vignetting of cone-beam X-rays emitted from the X-ray source 11.
  • the thickness is preferably about 100 ⁇ m.
  • the width W2 is 2.5 ⁇ m
  • the pitch P2 is 5 ⁇ m
  • the thickness T2 is 100 ⁇ m.
  • the first alignment marks 17b to 20b have a cross shape in which two sections provided along the X direction and the Y direction cross each other, and are provided on a surface to be joined to the support substrate 22 of the grid portion 17a.
  • the first alignment mark 17b is formed of a material having X-ray transparency such as Al, Ti, Cr, resist or the like.
  • the first alignment mark 17b is opaque to visible light, but transparent to X-rays. Therefore, the first alignment mark 17b is used by being visually recognized by visible light when the small grid 17 is joined to the support substrate 22, but does not affect the photographing when the phase contrast image is photographed.
  • the first alignment mark 17b has a thickness H1 that does not affect the visibility by visible light and does not hinder the bonding between the small grid 17 and the support substrate 22.
  • This thickness H1 is preferably about 0.01 to 1 ⁇ m.
  • the size U1 of the first alignment mark 17b is set to be equal to or smaller than the size corresponding to one pixel of the X-ray image detector 15 in consideration of the influence on the phase contrast image. This size U1 is preferably about 50 to 100 ⁇ m.
  • the other small grids 18 to 20 have the same configuration as the small grid 17 and will not be described in detail.
  • the support substrate 22 is made of a material having high X-ray transparency such as glass, carbon, acrylic and the like.
  • bonding regions 22a to 22d and second alignment marks 28a to 28b are provided on the upper surface of the support substrate 22.
  • the joining regions 22a to 22d are regions where the small grids 17 to 20 are joined.
  • the second alignment marks 28a to 28b correspond to the first alignment marks 17b to 20b, respectively.
  • the second alignment marks 28a to 28b have a quadrangular frame shape constituted by four sections provided along the X direction and the Y direction, and slightly more than the first alignment marks 17b to 20b. It has a large external size. Therefore, when the first alignment marks 17b to 20b and the second alignment marks 28a to 28b are respectively overlapped, the first alignment marks 17b to 20b are placed in the opening portions of the second alignment marks 28a to 28b. To position.
  • the second alignment marks 28a to 28b are formed of a material having X-ray transmissivity such as Al, Ti, Cr, resist, or the like.
  • the second alignment marks 28a to 28b are opaque to visible light, but are transparent to X-rays. Accordingly, the second alignment marks 28a to 28b are used by being visually recognized with visible light when the small grids 17 to 20 are joined to the support substrate 22, but do not affect imaging when capturing a phase contrast image.
  • the second alignment mark 28a has a thickness that does not affect the visibility by visible light and does not hinder the bonding between the small grid 17 and the support substrate 22, like the first alignment mark.
  • Has H2 This thickness H2 is preferably about 0.01 to 1 ⁇ m.
  • the size U2 of the second alignment mark 28a is the size corresponding to one pixel of the X-ray image detector 15 (for example, 150) in consideration of the influence on the phase contrast image, similarly to the first alignment mark. ⁇ 300 ⁇ m) or less. This size U2 is preferably about 50 to 100 ⁇ m. Since the other second alignment marks 28b to 28d have the same configuration as the second alignment mark 28a, detailed description thereof is omitted.
  • the source grid 12 and the first grid 13 are composed of a plurality of small grids and a support substrate to which the small grids are bonded with an adhesive, as in the second grid 14. Similar to the second grid 14, the small grids of the radiation source grid 12 and the first grid 13 include a grid portion and a pair of first alignment marks. Similar to the small grids 17 to 20, the small grids of the radiation source grid 12 and the first grid 13 are X-ray absorbers and X-ray absorbers extending in the X direction and alternately arranged along the Y direction orthogonal to the X direction. A line transmission part is provided. Similarly to the second grid 14, a second alignment mark corresponding to the first alignment mark is provided on the support substrate of the source grid 12 and the first grid 13.
  • the source grid 12 and the first grid 13 are the same except that the X-ray absorbing portion and the X-ray transmitting portion of each small grid have different widths and pitches in the X direction and thicknesses in the Z direction. Since the configuration is almost the same as that of the grid 14 in FIG.
  • a base substrate 31 is bonded to the lower surface of an X-ray transparent substrate 30 formed of silicon or the like.
  • a conductive seed layer 32 is provided on the surface of the base substrate 31 bonded to the X-ray transparent substrate 30.
  • a metal film such as Au or Ni, or a metal film such as Al, Ti, Cr, Cu, Ag, Ta, W, Pb, Pd, Pt, or an alloy thereof is used.
  • the seed layer 32 is not limited to the base substrate 31, and may be provided on the X-ray transparent substrate 30, or may be provided on both the X-ray transparent substrate 30 and the base substrate 31.
  • an etching mask 34 is formed on the X-ray transparent substrate 30 by using a general photolithography technique.
  • the etching mask 34 has a striped pattern extending linearly in the Y direction and periodically arranged at a predetermined pitch in the X direction.
  • a plurality of grooves 36 and a plurality of X-ray transmission portions 26 are formed in the X-ray transparent substrate 30 by dry etching using the etching mask 34.
  • the groove 36 requires a high aspect ratio with a width of several ⁇ m and a depth of about 100 ⁇ m. For this reason, for the dry etching for forming the groove 36, deep etching such as a Bosch process or a cryo process is used.
  • the groove 36 may be formed by forming the X-ray transparent substrate 30 using a photosensitive resist instead of silicon and exposing with synchrotron radiation.
  • the groove 36 is filled with an X-ray absorbing material such as gold by electrolytic plating, and the X-ray absorbing portion 25 is formed.
  • the X-ray transparent substrate 30 is immersed in the plating solution with the current terminal connected to the sheath layer 32 while being held on the base substrate 31.
  • the other electrode (anode) is disposed at a position facing the X-ray transmissive substrate 30, and a current flows between the current terminal and the anode.
  • gold is embedded in the groove 36.
  • the filling method of the X-ray absorbing material into the groove 36 is not limited to the electrolytic plating method.
  • the X-ray absorbing material may be filled as a paste or a colloid. In this case, the seeds layer 32 is not necessary.
  • the base substrate 31, the seed layer 32, and the etching mask 34 are removed from the X-ray transmissive substrate 30 by using a chemical mechanical polishing (CMP) method or the like.
  • CMP chemical mechanical polishing
  • the X-ray transparent substrate 30 is cut into a rectangular shape before or after the base substrate 31 and the like are removed from the X-ray transparent substrate 30. Thereby, the grid part 17a mentioned above is completed.
  • the remaining base substrate 31 has a thickness of about 10 to 100 ⁇ m, for example.
  • a pair of first alignment marks 17b is formed on one surface of the grid portion 17a in the vicinity of two sides facing each other in the Y direction.
  • the first alignment mark 17b is formed, for example, by forming a thin film on the grid portion 17a with the above-described X-ray transmissive material and patterning the thin film using a photolithography technique, etching, or the like.
  • the first alignment mark 17b is formed on the grid portion 17a, whereby the small grid 17 is completed.
  • the first alignment mark 17b may be formed before chemical mechanical polishing is performed on the base substrate 31.
  • the second alignment mark 28 a is formed on the support substrate 22.
  • the small grid 17 is bonded to the support substrate 22.
  • the small grid 17 is held so that the first alignment mark 17b faces downward by a joining holder (not shown) that performs suction by air suction, for example.
  • the small grid 17 is moved above the support substrate 22 by a moving mechanism (not shown) while being held by the bonding holder.
  • An adhesive 21 (not shown in FIG. 8) is applied on the support substrate 22.
  • the position detection unit 40 is composed of a pair of alignment cameras 38 and 39 arranged back to back so that the upper and lower sides can be photographed simultaneously, and the first and second alignment marks 17b and 28a are the respective cameras. 38, 39. Images taken by the alignment cameras 38 and 39 are processed by an image processing device (not shown), and the amount of positional deviation between the first alignment mark 17b and the second alignment mark 28a is detected.
  • the moving mechanism for the joining holder moves the small grid 17 based on the detected amount of positional deviation and adjusts the position.
  • the adhesive 21 is preferably one that has X-ray transparency and does not undergo deformation such as shrinkage when solidified.
  • a thermosetting adhesive or an instantaneous adhesive is used.
  • the small grids 18 to 20 are manufactured in the same manner as the small grid 17 and are bonded to the support substrate 22, detailed description thereof is omitted. Further, since the source grid 12 and the first grid 13 are manufactured in the same manner as the second grid 14, a detailed description thereof is omitted.
  • the X-rays radiated from the X-ray source 11 are partially shielded by the X-ray absorption part of the source grid 12, thereby reducing the effective focal size in the X direction, and many arranged in the X direction.
  • a line-shaped X-ray is formed.
  • the phase of each line-shaped X-ray changes when passing through the subject H.
  • a fringe image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmitted optical path length is formed.
  • the fringe image generated by each line-shaped X-ray is projected onto the second grid 14 and overlaps at the position of the second grid 14.
  • the stripe image is intensity-modulated by being partially shielded by the second grid 14.
  • the second grid 14 is intermittently moved with respect to the first grid 13, and the subject H is irradiated with X-rays from the X-ray source 11 immediately after each intermittent movement.
  • the X-ray image detector 15 takes an image. This intermittent movement is performed in the X direction at a scanning pitch obtained by equally dividing the grating pitch in the direction along the grating surface with the X-ray focus as the center (for example, dividing into five).
  • phase differentiation An image is obtained.
  • the phase differential image corresponds to the distribution of the X-ray refraction angle in the subject H.
  • the radiation source grid 12, the first grid 13, and the second grid 14 are configured by a plurality of small grids 17 to 20 to increase the area. For this reason, an imaging area expands rather than the case where each of the source grid 12, the first grid 13, and the second grid 14 is configured by one grid formed using a semiconductor process.
  • the first alignment marks 17b to 20b are provided in the grid portions 17a to 20a, it is possible to eliminate the outer edge portion from the outer periphery of the grid portions 17a to 20a, and the interval between the grid portions 17a to 20a. S can be made equal to or smaller than the size corresponding to one pixel of the X-ray image detector 15. As a result, the deterioration of the quality of the phase contrast image at the joint between the small grids 17 to 20 can be suppressed.
  • the first alignment marks 17b to 20b and the second alignment marks 28a to 28d are made of a material having X-ray transparency, but are made of a material having no X-ray transparency. May be.
  • the first alignment marks 17b to 20b and the second alignment marks 28a to 28d may have a thickness (eg, about 0.1 ⁇ m) such that X-ray absorption can be ignored.
  • the second alignment marks 28 a to 28 d may be configured by forming grooves in the support substrate 22.
  • the second alignment marks 28a to 28d have a rectangular frame shape.
  • other shapes can be used as long as the first alignment marks 17b to 20b having a cross shape can be easily aligned.
  • the second alignment mark 50 may be configured by four L-ordered sections arranged so as to correspond to the four corners of the first alignment marks 17b to 20b.
  • the first alignment mark may have any shape such as a circle or a triangle, but it is preferably a cross shape in consideration of the influence on the grid performance.
  • the first alignment mark is separately formed on the surface of the grid portion of the small grid.
  • the alignment mark may be built when the small grid is manufactured.
  • the step for forming the alignment mark after the completion of the small grid can be omitted.
  • the X-ray absorbing portion 25 of the small grid may be partially divided, and the cross-shaped first alignment mark 55 may be configured by the X-ray transmitting portion 26.
  • the X-ray transmission part 26 may be partially divided, and the X-ray absorption part 25 may constitute a cross-shaped first alignment mark 57.
  • a first alignment mark 60 in which the X-ray absorber 25 is partially arranged may be provided.
  • the X-ray absorber 25 is configured as shown in FIG. You may provide the 1st alignment mark 62 which has arrange
  • the first alignment mark 65 having a cross shape as a whole may be configured by partially shifting the X-ray absorption unit 25 and the X-ray transmission unit 26 by a half pitch. In this case, a phase contrast image is obtained over the entire area of the first alignment mark 65.
  • a cross-shaped first alignment mark 71 may be configured by providing a plurality of bridge portions 70 that connect adjacent X-ray transmission portions 26.
  • the bridge portion 70 reinforces the X-ray transmission portion 26 to prevent the collapse, so that when the gold is filled in the groove 36 of the X-ray transmission substrate 30 by electrolytic plating, the adjacent X-ray transmission portions 26 are connected to each other. The phenomenon of sticking that sticks can be prevented.
  • a cross-shaped first alignment mark 76 may be formed by providing a plurality of bridge portions 75 that connect adjacent X-ray absorption portions 25.
  • the source grid, the first grid, and the second grid are each configured by a plurality of small grids. If the size of the grid is a size that can be formed by a semiconductor process, 1 is used. You may comprise by the small grid of a sheet
  • the position detection unit 40 is inserted between the small grid 17 and the support substrate 22 to detect the displacement amount of the first and second alignment marks 17 b and 28 a.
  • the support substrate 22 is formed of a transparent material, and the position detection unit 80 is disposed on the opposite side of the support substrate 22 from the small grid 17, thereby supporting the support substrate 22.
  • the amount of displacement of the first and second alignment marks 17b and 28a may be detected by photographing the first alignment mark 17b of the small grid 17 with the camera 81 via
  • the first and second grids are configured to linearly (geometrically optically) project the X-rays that have passed through the X-ray transmission part, but International Publication WO 2004/058070.
  • the Talbot interference effect may be generated by diffracting X-rays at the X-ray transmission part.
  • the first grid can be a phase grid instead of the absorption grid.
  • the phase type grid forms a fringe image (self-image) generated by the Talbot interference effect at the position of the second grid.
  • the subject H is disposed between the X-ray source and the first grid.
  • the subject H may be disposed between the first grid and the second grid. Good.
  • a phase contrast image is similarly generated.
  • the radiation source grid is provided, but the radiation source grid may be omitted.
  • the cone-beam-shaped X-ray irradiated from the X-ray source 11 is made into X-ray absorption part. It may be curved to prevent it from being scraped.
  • a striped one-dimensional grid having X-ray absorbing portions and X-ray transmitting portions that are stretched in one direction and alternately arranged along the arrangement direction orthogonal to the stretching direction has been described as an example.
  • the present invention can also be applied to a two-dimensional grid in which an X-ray absorption part and an X-ray transmission part are arranged in two orthogonal directions.
  • the phase contrast image may be generated by a fringe scanning method in which a plurality of shootings are performed, or the phase contrast image may be generated by a single shooting.
  • a checkered phase type grid is used for the first grid and a net type amplitude type grid is used for the second grid.
  • This single photographed image is subjected to Fourier transform, and the primary spectra in the vertical and horizontal directions are respectively extracted. By performing inverse Fourier transform on these primary spectra, a phase differential image in two directions is obtained.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the grid of the present invention can also be applied to a scattered radiation removal grid that removes scattered radiation in X-ray imaging.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 複数枚の小グリッドにより構成されるグリッドにおいて、小グリッド間の隙間を小さくする。 各小グリッドは、外縁部がなく、全面にグリッド部が形成されている。このグリッド部に、一対の第1のアライメントマークが形成されている。この第1のアライメントマークは、X線透過性を有しており、対向する2辺に近接して配置されている。支持基板には、第2のアライメントマークが形成されている。各小グリッドは、第1のアライメントマークと第2のアライメントマークとが一致するように位置調整したうえで、支持基板に取り付けられる。

Description

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
 本発明は、放射線画像の撮影に用いられるグリッド及びその製造方法と、このグリッドを用いた放射線画像撮影システムとに関する。
 放射線、例えばX線は、物体との相互作用により強度と位相とが変化し、位相変化が強度の変化よりも高い相互作用を示すことが知られている。このX線の性質を利用し、被検体によるX線の位相変化に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が着目されている。
 X線位相イメージングの一種として、タルボ干渉効果を用いたX線画像撮影システムが知られている(例えば、特許文献1、非特許文献1参照)。このX線画像撮影システムは、X線源から見て、被検体の背後に第1のグリッドを配置し、第1のグリッドからタルボ距離だけ下流に第2のグリッドを配置している。第2のグリッドの背後には、X線を検出して画像を生成するX線画像検出器が配置されている。第1のグリッド及び第2のグリッドは、一方向に延伸されたX線吸収部及びX線透過部を、延伸方向に直交する配列方向に沿って交互に配列した縞状のグリッドである。タルボ距離とは、第1のグリッドを通過したX線が、タルボ干渉効果によって自己像(縞画像)を形成する距離である。
 このX線画像撮影システムでは、第1のグリッドの自己像と第2のグリッドとの重ね合わせにより強度変調された縞画像の被検体による変化に基づき、位相コントラスト画像を取得する。これは縞走査法と呼ばれている。縞走査法では、第1のグリッドに対して第2のグリッドを間欠移動させるとともに、その停止中に撮影を行う。この間欠移動は、第1のグリッドの面にほぼ平行で、かつ第1のグリッドの格子方向にほぼ垂直な方向に、格子ピッチを等分割した一定の走査ピッチずつ行う。X線画像検出器で得られる各画素値の強度変化から、被検体でのX線の屈折角度の分布を表す位相微分画像が得られる。この位相微分画像から位相コントラスト画像が得られる。この縞走査法は、レーザ光を利用した撮影装置においても用いられている(例えば、非特許文献2参照)。
 第1及び第2のグリッドは、X線吸収部が数μmのピッチで配列された微細構造を有する。このX線吸収部には、高いX線吸収性が求められる。特に、第2のグリッドのX線吸収部は、縞画像を確実に強度変調させるために、第1のグリッドのX線吸収部よりも高いX線吸収性が必要である。このため、第1及び第2のグリッドのX線吸収部は、原子量の重い金(Au)で形成されている。第2のグリッドのX線吸収部は、X線の進行方向に対して比較的大きな厚みを有し、アスペクト比(X線を吸収する部分における厚みを幅で除算した値)が高いことが必要である(例えば、特許文献2参照)。
 第1及び第2のグリッドを製造する方法として、シリコン半導体プロセスを用いることが考えられる。この場合、例えば、シリコンウエハに異方性エッチングを行なって溝を形成し、この溝内にAu等を充填してX線吸収部を形成する。しかし、シリコン半導体プロセスでは、製造されるグリッドの面積がウエハのサイズに制限され、ウエハのサイズより大きな大面積のグリッドを製造することができない。上記位相イメージングでは、撮影範囲が第1及び第2グリッドのサイズに制限されるため、単純にシリコン半導体プロセスで製造されたグリッドを第1及び第2のグリッドとして用いた場合には、撮影範囲が狭くなる。
 大面積のグリッドを得るため、小面積のグリッド(以下、小グリッドと呼ぶ)を複数枚並べることにより大面積化する方法が知られている(例えば、特許文献1参照)。図18は、4枚の小グリッド91~94を縦横に配置して構成した従来の大面積のグリッド95を示している。各小グリッド91~94は、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に並べられた複数のX線吸収部及びX線透過部からなる縞状のグリッド部91a~94aを備えている。
 特許文献1には、複数枚の小グリッドを互いにどのように固定するかについては記載されていない。小グリッドの固定方法として、同図のように、小グリッド91~94を、X線透過性を有する平板状の支持基板96に固定することが考えられる。さらに、複数枚の小グリッド91~94を精度よく配置するには、グリッド部91a~94aの外周に、外縁部91b~94bを設け、この外縁部91b~94bにアライメントマーク91c~94cを設けることが考えられる。アライメントマーク91c~94cは、支持基板96に対して小グリッド91~94を位置決めするために用いられる。
特開2007-203061号公報 特開2010-099287号公報
C. David, et al., Applied Physics Letters, Vol.81, No.17, 2002年10月,3287頁 Hector Canabal, et al., Applied Optics, Vol.37, No.26, 1998年9月,6227頁
 しかしながら、図18に示すように、支持基板86に複数枚の小グリッド91~94を固設して大面積のグリッド94を形成する場合、小グリッド91~94のうち、隣り合う小グリッド間には、間隔S2が生じる。この間隔S2は、外縁部91b~94bの幅と、各小グリッド91~94の位置調整に必要な隙間S1に依存する。この間隔S2の領域は、グリッドとして機能しないため、X線画像検出器の1画素に相当するサイズ(例えば、一般的なフラットパネル検出器で150~300μm)よりも大きい場合には、位相コントラスト画像の品質が低下してしまう。
 間隔S2を小さくするには、外縁部91b~94bをなくすか、あるいはできるだけ小さくすればよいが、この場合、アライメントマーク91c~94cを設けるスペースが無くなってしまう。特許文献2には、複数のグリッドを積層してアスペクト比の高いグリッドを製造する際に、アライメントマークを設けてもよい旨の記載があるが、具体的にグリッドのどこにアライメントマークを設けるかについては開示されておらず、アライメントマークのX線透過性や、グリッド性能への影響についても言及されていない。
 本発明の目的は、小グリッドの外縁部をなくして、小グリッド間の隙間を小さくすることにある。
 上記課題を解決するために、本発明の放射線画像撮影用グリッドは、放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、を備える。
 前記支持基板には、複数枚の小グリッドが支持されていてもよい。前記複数枚の小グリッドのうち、隣り合う小グリッドの間の間隔は、前記小グリッドを通過した放射線を検出する放射線画像検出器の1画素に相当するサイズよりも小さいことが好ましい。
 前記第1及び第2のアライメントマークは、放射線透過性を有する材料により形成されていてもよい。また、前記第1及び第2のアライメントマークは、放射線が透過可能な厚さを有していてもよい。また、前記第1のアライメントマークは、前記放射線透過部または前記放射線吸収部により構成されていてもよい。また、前記第1のアライメントマークは、前記放射線透過部または前記放射線吸収部を連結するブリッジ部により構成されていてもよい。
 本発明の放射線画像撮影用グリッドの製造方法は、小グリッドの放射線吸収部及び放射線透過部を有するグリッド部に、放射線透過性を有する第1のアライメントマークを形成する第1のアライメントマーク形成工程と、支持基板に放射線透過性を有する第2のアライメントマークを形成する第2のアライメントマーク形成工程と、前記第1及び第2のアライメントマークに基づいて、前記支持基板に対する前記小グリッドの位置を調整する位置調整工程と、前記小グリッドを前記支持基板に取り付ける取り付け工程と、を備える。
 前記位置調整工程は、前記小グリッドの前記第1のアライメントマークが設けられている面と、前記支持基板の前記第2のアライメントマークが設けられている面とを対面させる工程と、前記小グリッドと前記支持基板との間に挿入された位置検出装置により、前記第1のアライメントマークと前記第2のアライメントマークとの位置ずれを検出する工程と、を含むことが好ましい。
 前記位置調整工程は、前記小グリッドの前記第1のアライメントマークが設けられている面と、前記支持基板の前記第2のアライメントマークが設けられている面とを対面させる工程と、前記支持基板の前記小グリッドとは反対側に配置された位置検出装置により、前記第1のアライメントマークと前記第2のアライメントマークとの位置ずれを検出する工程と、を含むことも好ましい。
 本発明の放射線画像撮影システムは、放射線源から放射された放射線を通過させて縞画像を生成する第1のグリッドと、前記縞画像に強度変調を与える第2のグリッドと、前記第2のグリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、前記放射線画像検出器により検出された縞画像から位相コントラスト画像を生成する。前記第1または第2のグリッドの少なくとも1つは、放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、を備えている。
 前記放射線源と前記第1のグリッドとの間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽して多数のライン状の放射線を形成する第3のグリッドをさらに備えることが望ましい。この第3グリッドは、放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、を備えている。
 本発明は、小グリッドのグリッド部に放射線透過性を有する第1のアライメントマークを設けているので、グリッド部の外周の外縁部をなくすことができる。したがって、支持基板上に複数枚の小グリッドを配置したときに、小グリッド間の隙間を小さくすることができ、位相コントラスト画像の品質が向上する。
本発明のX線画像撮影システムの構成を示す模式図である。 第2のグリッドの平面図である。 図2AのIIB-IIB線に沿う断面図である。 第1のアライメントマークの部分における小グリッドのX方向断面を示す断面図である。 支持基板の構成を示す平面図である。 第2のアライメントマークを示す説明図である。 小グリッドの製造手順1を示す断面図である。 小グリッドの製造手順2を示す断面図である。 小グリッドの製造手順3を示す断面図である。 小グリッドの製造手順4を示す断面図である。 小グリッドの製造手順5を示す断面図である。 第1のアライメントマークが設けられた下地基板を示す斜視図である。 小グリッドと支持基板との位置調整工程を示す斜視図である。 第2のアライメントマークの別の形態を示す説明図である。 X線透過部からなる第1のアライメントマークを示す説明図である。 X線吸収部からなる第1のアライメントマークを示す説明図である。 X線吸収部を部分的に配置した第1のアライメントマークを示す説明図である。 X線透過部を部分的に配置した第1のアライメントマークを示す説明図である。 X線透過部及びX線吸収部を半ピッチずつずらして構成した第1のアライメントマークを示す説明図である。 X線透過部を連結するブリッジ部により構成した第1のアライメントマークを示す説明図である。 X線吸収部を連結するブリッジ部により構成した第1のアライメントマークを示す説明図である。 位置検出ユニットの変形例を説明する斜視図である。 外縁部を有する複数の小グリッドにより構成された従来のグリッドを示す平面図である。
 図1において、X線画像撮影システム10は、X線照射方向であるZ方向に沿って配置されたX線源11、線源グリッド(source grid)12、第1のグリッド13、第2のグリッド14、及びX線画像検出器15を備えている。
 X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体HにX線を放射する。線源グリッド12、第1のグリッド13、及び第2のグリッド14は、X線を吸収する吸収型グリッドであり、Z方向においてX線源11に対向配置されている。線源グリッド12と第1のグリッド13との間には、被検体Hが配置可能な間隔が設けられている。第1のグリッド13と第2のグリッド14との距離は、最小のタルボ距離以下とされている。X線画像検出器15は、周知のように、半導体回路を用いたフラットパネル検出器であり、第2のグリッド14の背後に配置されている。
 第2のグリッド14を例にして、グリッドの構造を説明する。図2A及び図2Bにおいて、第2のグリッド14は、4枚の小グリッド17~20と、接着剤21により小グリッド17~20が接合された支持基板22とで構成されている。
 小グリッド17~20は、ほぼ正方形状であり、Z方向に直交するXY平面上に縦横に並べて配置されている。小グリッド17~20は、グリッド部17a~20aと、一対の第1のアライメントマーク17b~20bとを備えている。グリッド部17a~20aは、
X線に対するグリッドとして機能する。第1のアライメントマーク17b~20bは、小グリッド17~20を支持基板22に取り付ける際に位置決めを行うために用いられる。第1のアライメントマーク17b~20bは、グリッド部17a~20aの支持基板22に接合される面に、Y方向に対向する2辺に近接して配置されている。これにより、各小グリッド17~20のグリッド部17a~20aの外周には、従来のような、アライメントマークを設けるための外縁部は存在しない。
 各小グリッド17~20の間には、小グリッド17~20を支持基板22に接合する際に、小グリッド17~20の位置調整を可能とするための間隔Sが設けられている。この間隔Sは、位相コントラスト画像への影響を考慮して、X線画像検出器15の1画素に相当するサイズ(例えば、150~300μm)以下とされている。ここで、1画素に相当するサイズとは、線源グリッド12、第1のグリッド13、第2のグリッド14、及びX線画像検出器15の位置に基づき、X線画像検出器15の1画素のサイズを、幾何学的に、第2のグリッド14の位置におけるサイズに換算した値である。なお、詳しくは図示していないが、各小グリッド17~20の間は、X線吸収性を有する材料によって埋められている。
 図3において、グリッド部17aは、Y方向に延伸され、Y方向に直交するX方向に沿って交互に配置されたX線吸収部25とX線透過部26とを備える。X線吸収部25は、金やプラチナ等のX線吸収性を有する材料により形成されている。X線透過部26は、シリコン等のX線透過性を有する材料により形成されている。
 X線吸収部25のX方向への幅W2及びピッチP2は、線源グリッド12と第1のグリッド13との間の距離、第1のグリッド13と第2のグリッド14との間の距離、及び第1のグリッド13のX線吸収部のピッチ等によって決定されている。幅W2は、2~20μm程度である。ピッチP2は、4~40μm程度である。また、X線吸収部25のZ方向への厚みT2は、高いX線吸収性を得るには厚いほどよいが、X線源11から放射されるコーンビーム状のX線のケラレを考慮して、100μm程度とすることが好ましい。本実施形態では、例えば、幅W2を2.5μm、ピッチP2を5μm、厚みT2を100μmとする。
 第1のアライメントマーク17b~20bは、X方向及びY方向に沿って設けられた2つの切片が交差した十字形状であり、グリッド部17aの支持基板22に接合される面上に設けられている。第1のアライメントマーク17bは、Al、Ti、Cr、レジスト等のX線透過性を有する材料によって形成されている。第1のアライメントマーク17bは、可視光に対しては不透明であるのに対して、X線に対しては透明である。したがって、第1のアライメントマーク17bは、小グリッド17を支持基板22に接合する際には可視光により視認して用いられるが、位相コントラスト画像の撮影時には撮影に影響を及ぼさない。
 第1のアライメントマーク17bは、可視光による視認性に影響を及ぼさず、かつ小グリッド17と支持基板22との接合を阻害しない厚さH1を有する。この厚さH1は、0.01~1μm程度であることが好ましい。また、第1のアライメントマーク17bのサイズU1は、位相コントラスト画像への影響を考慮して、X線画像検出器15の1画素に相当するサイズ以下とされている。このサイズU1は、50~100μm程度であることが好ましい。なお、他の小グリッド18~20は、小グリッド17と同様の構成であるため、詳しい説明は省略する。
 支持基板22は、ガラス、カーボン、アクリル等の高いX線透過性を有する材料によって形成されている。図4において、支持基板22の上面には、接合領域22a~22d、及び第2のアライメントマーク28a~28bが設けられている。接合領域22a~22dは、小グリッド17~20がそれぞれ接合される領域である。第2のアライメントマーク28a~28bは、第1のアライメントマーク17b~20bのそれぞれに対応している。
 図5において、第2のアライメントマーク28a~28bは、X方向及びY方向に沿って設けられた4つの切片により構成された四角枠形状であり、第1のアライメントマーク17b~20bよりも僅かに大きな外形サイズを有している。したがって、第1のアライメントマーク17b~20bと第2のアライメントマーク28a~28bとがそれぞれ重ね合わされたときに、第2のアライメントマーク28a~28bの開口部分内に第1のアライメントマーク17b~20bが位置する。
 第2のアライメントマーク28a~28bは、第1のアライメントマーク17b~20bと同様に、Al、Ti、Cr、レジスト等のX線透過性を有する材料によって形成されている。第2のアライメントマーク28a~28bは、可視光に対しては不透明であるのに対して、X線に対しては透明である。したがって、第2のアライメントマーク28a~28bは、小グリッド17~20を支持基板22に接合する際には可視光により視認して用いられるが、位相コントラスト画像の撮影時には撮影に影響を及ぼさない。
 図3に示すように、第2のアライメントマーク28aは、第1のアライメントマークと同様に、可視光による視認性に影響を及ぼさず、かつ小グリッド17と支持基板22との接合を阻害しない厚さH2を有する。この厚さH2は、0.01~1μm程度であることが好ましい。また、第2のアライメントマーク28aのサイズU2は、第1のアライメントマークと同様に、位相コントラスト画像への影響を考慮して、X線画像検出器15の1画素に相当するサイズ(例えば、150~300μm)以下とされている。このサイズU2は、50~100μm程度であることが好ましい。なお、他の第2のアライメントマーク28b~28dも、第2のアライメントマーク28aと同様の構成であるため、詳しい説明は省略する。
 線源グリッド12及び第1のグリッド13は、第2のグリッド14と同様に、複数枚の小グリッドと、接着剤によって小グリッドが接合された支持基板とで構成されている。線源グリッド12及び第1のグリッド13の小グリッドは、第2のグリッド14と同様に、グリッド部及び一対の第1のアライメントマークにより構成されている。線源グリッド12及び第1のグリッド13の小グリッドは、小グリッド17~20と同様に、X方向に延伸されX方向に直交するY方向に沿って交互に配列されたX線吸収部及びX線透過部を備えている。また、線源グリッド12及び第1のグリッド13の支持基板には、第2のグリッド14と同様に、第1のアライメントマークに対応した第2のアライメントマークが設けられている。このように、線源グリッド12及び第1のグリッド13は、各小グリッドのX線吸収部及びX線透過部のX方向への幅及びピッチと、Z方向の厚さ等が異なる以外は第2のグリッド14とほぼ同様の構成であるため、詳しい説明は省略する。
 次に、第2のグリッド14を例にして、本発明のグリッドの製造方法について説明する。なお、小グリッド18~20も同様の手順で製造されるため、詳しい説明は省略する。図6Aにおいて、シリコン等により形成されたX線透過性基板30の下面に下地基板31が接合される。下地基板31のX線透過性基板30に接合された面には、導電性を有するシーズ層32が設けられている。シーズ層32には、例えば、AuまたはNi、もしくはAl、Ti、Cr、Cu、Ag、Ta、W、Pb、Pd、Pt等の金属膜、あるいはそれらの合金を材料とする金属膜が用いられる。なお、シーズ層32は、下地基板31に限られず、X線透過性基板30に設けてもよいし、X線透過性基板30と下地基板31との両方に設けてもよい。
 図6Bにおいて、一般的なフォトリソグラフィ技術を用いて、X線透過性基板30の上にエッチングマスク34が形成される。エッチングマスク34は、Y方向に直線状に延伸され、かつX方向に所定ピッチで周期的に配列された縞模様のパターンを有する。
 図6Cにおいて、エッチングマスク34を用いたドライエッチングにより、X線透過性基板30に、複数の溝36と、複数のX線透過部26とが形成される。溝36は、幅数μm、深さ100μm程度の高いアスペクト比を必要とする。このため、溝36を形成するドライエッチングには、ボッシュプロセス、クライオプロセス等の深堀用のドライエッチングが用いられる。なお、シリコンに代えて感光性レジストを用いてX線透過性基板30を形成し、シンクロトロン放射光で露光することにより溝36を形成してもよい。
 図6Dにおいて、電解メッキにより溝36内に金などのX線吸収材が充填され、X線吸収部25が形成される。X線透過性基板30は、下地基板31に保持されたまま、シーズ層32に電流端子が接続されて、メッキ液中に浸漬される。X線透過性基板30と対向した位置には、もう一方の電極(陽極)が配置され、電流端子と陽極との間に電流が流される。メッキ液中の金属イオンがパターン加工されたX線透過性基板30に析出されることにより、溝36内に金が埋め込まれる。なお、溝36へのX線吸収材の充填方法は、電解メッキ法に限られず、例えば、X線吸収材を、ペースト状やコロイド状として充填してもよい。この場合にはシーズ層32は不要である。
 図6Eにおいて、X線透過性基板30から、下地基板31、シーズ層32、及びエッチングマスク34が、化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いて除去される。また、X線透過性基板30から下地基板31等を除去する前、または後の工程において、X線透過性基板30が矩形状に裁断される。これにより、上述したグリッド部17aが完成する。
 なお、図6Eの研磨工程では、グリッド部17aの機械的強度を向上させるために、下地基板31を全て除去せずに一部残存させてもよい。この場合、残存させる下地基板31の厚みを、例えば、10~100μm程度とする。
 図7において、グリッド部17aの一方の面に、Y方向に対向する2辺に近接して一対の第1のアライメントマーク17bが形成される。第1のアライメントマーク17bは、例えば、グリッド部17aの上に、上述したX線透過性を有する材料によって薄膜を形成し、この薄膜をフォトリソグラフィ技術やエッチング等を用いてパターニングすることにより形成される。このように、グリッド部17aに第1のアライメントマーク17bが形成されることにより、小グリッド17が完成する。なお、第1のアライメントマーク17bの形成は、下地基板31に化学機械研磨を行う前に行なってもよい。また、支持基板22にも同様に第2のアライメントマーク28aが形成される。
 図8において、小グリッド17が、支持基板22に接合される。小グリッド17は、例えばエアー吸引により吸着を行う接合用ホルダ(図示せず)により、第1のアライメントマーク17bが下方を向くように保持される。小グリッド17は、接合用ホルダに保持されたまま、移動機構(図示せず)により、支持基板22の上方に移動される。支持基板22上には、接着剤21(図8では図示省略)が塗布されている。
 小グリッド17と支持基板22との間には、2つの位置検出ユニット40が挿入される。位置検出ユニット40は、上方及び下方を同時に撮影可能とするように、背中合わせに配置された一対のアライメント用カメラ38、39により構成され、第1及び第2のアライメントマーク17b、28aがそれぞれのカメラ38、39により撮影される。アライメント用カメラ38、39により撮影された画像は、画像処理装置(図示せず)によって処理され、第1のアライメントマーク17bと第2のアライメントマーク28aとの位置ずれ量が検出される。接合用ホルダの移動機構は、検出された位置ずれ量に基づいて小グリッド17を移動させ、位置調整を行う。
 小グリッド17の位置調整後、小グリッド17と支持基板22との間から位置検出ユニット40が退避される。そして、小グリッド17を保持した接合用ホルダが支持基板22に向けて下降することにより、グリッド部17aが接着剤21を介して支持基板22に接合される。接着剤21としては、X線透過性を有し、固化時に収縮等の変形をしないものが好ましく、例えば、熱硬化接着剤、瞬間接着剤等が用いられる。また、接着剤の代わりに、X線透過性を有する低融点金属(例えば、ハンダ、インジウム等)を用いてもよい。
 小グリッド18~20は、小グリッド17と同様に製造され、支持基板22に接合されるため、詳しい説明は省略する。また、線源グリッド12及び第1のグリッド13は、第2のグリッド14と同様に製造されるため、詳しい説明は省略する。
 次に、X線画像撮影システムの作用について説明する。X線源11から放射されたX線は、線源グリッド12のX線吸収部によって部分的に遮蔽されることにより、X方向に関する実効的な焦点サイズが縮小され、X方向に配列された多数のライン状のX線が形成される。各ライン状のX線は、被検体Hを通過する際に位相が変化する。この各X線が第1のグリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した縞画像が形成される。各ライン状のX線により生成された縞画像は、第2のグリッド14に投影され、第2のグリッド14の位置で重なり合う。
 縞画像は、第2のグリッド14により部分的に遮蔽されることにより強度変調される。本実施形態では、縞走査法を用い、第1のグリッド13に対して第2のグリッド14を、間欠移動させ、各間欠移動の直後にX線源11から被検体HにX線を照射してX線画像検出器15により撮影を行う。この間欠移動は、X線焦点を中心として格子面に沿った方向に格子ピッチを等分割(例えば、5分割)した走査ピッチでX方向に行う。X線画像検出器15の各画素の画素データの強度変化を表す強度変調信号の位相ズレ量(被検体Hがある場合とない場合とでの位相のズレ量)を算出することにより、位相微分画像が得られる。位相微分画像は、被検体HでのX線の屈折角度の分布に対応する。この位相微分画像をX方向に沿って積分することにより、位相コントラスト画像が得られる。
 以上の通り、X線画像撮影システム10は、線源グリッド12、第1のグリッド13、及び第2のグリッド14を、複数枚の小グリッド17~20により構成して大面積化している。このため、半導体プロセスを用いて形成された1枚のグリッドで線源グリッド12、第1のグリッド13、及び第2のグリッド14のそれぞれを構成する場合よりも、撮影面積が拡大する。また、第1のアライメントマーク17b~20bをグリッド部17a~20a内に設けているため、グリッド部17a~20aの外周から外縁部をなくすことが可能となり、各グリッド部17a~20aの間の間隔Sを、X線画像検出器15の1画素に相当するサイズ以下にすることができる。これにより、各小グリッド17~20のつなぎ目部分における位相コントラスト画像の品質の低下が抑えられる。
 上記実施形態では、第1のアライメントマーク17b~20bと、第2のアライメントマーク28a~28dとをX線透過性を有する材料で形成しているが、X線透過性を有しない材料で形成してもよい。この場合には、第1のアライメントマーク17b~20b及び第2のアライメントマーク28a~28dを、X線吸収が無視できる程度の厚さ(例えば0.1μm程度)にすればよい。また、第2のアライメントマーク28a~28dは、支持基板22に溝を形成することによって構成したものであってもよい。
 また、上記実施形態では、第2のアライメントマーク28a~28dを、四角枠形状としているが、十字形状の第1のアライメントマーク17b~20bに対してアライメントが行いやすい形状であれば他の形状でもよい。例えば、図9に示すように、第1のアライメントマーク17b~20bの4つの角部に対応するように配置された、L次状の4つの切片により第2のアライメントマーク50を構成してもよい。また、第1のアライメントマークは、丸、三角等、どのような形状であってもよいが、グリッド性能への影響を考慮すると、十字形状であることが好ましい。
 また、上記実施形態では、小グリッドのグリッド部の面上に第1のアライメントマークを別途形成しているが、小グリッドの製造時にアライメントマークを造り込んでもよい。この場合、小グリッドの完成後にアライメントマークを形成するための工程を省略することができる。例えば、図10に示すように、小グリッドのX線吸収部25を部分的に分断し、X線透過部26によって十字形状の第1のアライメントマーク55を構成してもよい。或いは逆に、図11に示すように、X線透過部26を部分的に分断し、X線吸収部25によって十字形状の第1のアライメントマーク57を構成してもよい。
 また、X線透過部26で構成された第1のアライメントマーク55内においても部分的に位相コントラスト画像を得ることを可能にするために、図12に示すように、X線透過部26で構成され、その内部にX線吸収部25を部分的に配置した第1のアライメントマーク60を設けてもよい。また、X線吸収部25で構成された第1のアライメントマーク57内においても位相コントラスト画像を得ることを可能にするために、図13に示すように、X線吸収部25で構成され、その内部にX線透過部26を部分的に配置した第1のアライメントマーク62を設けてもよい。
 また、図14に示すように、X線吸収部25及びX線透過部26を部分的に半ピッチずつずらすことにより、全体として十字形状となる第1のアライメントマーク65を構成してもよい。この場合には、第1のアライメントマーク65の全域で位相コントラスト画像が得られる。
 さらに、図15に示すように、隣り合うX線透過部26の間を連結する複数のブリッジ部70を設けることにより、十字形状の第1のアライメントマーク71を構成してもよい。ブリッジ部70は、X線透過部26を補強して倒れを防止するため、X線透過性基板30の溝36内に電解メッキによって金を充填する際に、隣り合うX線透過部26同士がくっついてしまうスティッキングという現象を防止することができる。或いは逆に、図16に示すように、隣り合うX線吸収部25の間を連結する複数のブリッジ部75を設けることにより、十字形状の第1のアライメントマーク76を構成してもよい。
 上記実施形態は、線源グリッド、第1のグリッド、及び第2のグリッドを、複数枚の小グリッドによりそれぞれ構成しているが、グリッドのサイズが半導体プロセスによって形成可能なサイズであれば、1枚の小グリッドにより構成してもよい。この場合においても、小グリッドの厚さは非常に薄いため、小グリッドを支持基板等に保持して補強する必要がある。そのため、1枚の小グリッドを支持基板に接合する際のアライメントのために、グリッド領域内にアライメントマークを設けることが好ましい。
 上記実施形態では、図8に示すように、小グリッド17と支持基板22との間に位置検出ユニット40を挿入して第1及び第2のアライメントマーク17b、28aの位置ずれ量を検出しているが、これに代えて、図17に示すように、支持基板22を透明材料で形成するとともに、支持基板22の小グリッド17とは反対側に位置検出ユニット80を配置して、支持基板22を介して小グリッド17の第1のアライメントマーク17bをカメラ81で撮影することにより、第1及び第2のアライメントマーク17b、28aの位置ずれ量を検出してもよい。さらに、位置検出ユニット80に、支持基板22を透過する照明光を発する照明装置を設けることも好ましい。
 上記実施形態は、第1及び第2のグリッドを、そのX線透過部を通過したX線を線形的(幾何光学的)に投影するように構成しているが、国際公開WO2004/058070号公報(米国特許7180979号明細書)等に記載のように、X線透過部でX線を回折することによりタルボ干渉効果が生じる構成としてもよい。この場合には、第1及び第2のグリッド間の距離をタルボ距離に設定する必要がある。また、この場合には、第1のグリッドを、吸収型グリッドに代えて、位相型グリッドとすることが可能である。位相型グリッドは、タルボ干渉効果により生じる縞画像(自己像)を、第2のグリッドの位置に形成する。
 また、上記実施形態では、被検体HをX線源と第1のグリッドとの間に配置しているが、被検体Hを第1のグリッドと第2のグリッドとの間に配置してもよい。この場合にも同様に位相コントラスト画像が生成される。また、上記実施形態では、線源グリッドを設けているが、線源グリッドを省略してもよい。また、上記実施形態では、線源グリッド、第1のグリッド、及び第2のグリッドは、それぞれ平板状であるが、X線源11から照射されたコーンビーム状のX線がX線吸収部によってけられるのを防止するため、湾曲させてもよい。
 また、上記実施形態では、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に配置されたX線吸収部及びX線透過部を有する縞状の一次元グリッドを例に説明したが、本発明は、X線吸収部及びX線透過部が直交する2方向に配列された二次元グリッドにも適用が可能である。この場合、複数回の撮影を行う縞走査法により位相コントラスト画像を生成してもよいし、1回の撮影によって位相コントラスト画像を生成してもよい。1回の撮影で位相コントラスト画像を生成するには、例えば、第1のグリッドに市松模様の位相型グリッドを使用し、第2のグリッドに網目模様の振幅型グリッドを使用して、撮影を行う。この1枚の撮影画像にフーリエ変換を行い、縦横方向の1次スペクトルをそれぞれ抽出する。これらの1次スペクトルをフーリエ逆変換することで、2方向の位相微分画像が得られる。
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明のグリッドは、X線撮影において散乱線を除去する散乱線除去用グリッドにも適用可能である。更に、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。
 10 X線画像撮影システム
 11 X線源
 12 線源グリッド
 13 第1のグリッド
 14 第2のグリッド
 15 X線画像検出器
 17~20 小グリッド
 17a~20a グリッド部
 17b~20b 第1のアライメントマーク
 22 支持基板
 25 X線吸収部
 26 X線透過部
 28a~28d 第2のアライメントマーク
 38、39 アライメント用カメラ
 40 位置検出ユニット

Claims (12)

  1.  放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、
     放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、
     を備えることを特徴とする放射線画像撮影用グリッド。
  2.  前記支持基板には、複数枚の前記小グリッドが支持されていることを特徴とする請求の範囲第1項に記載の放射線画像撮影用グリッド。
  3.  前記複数枚の小グリッドのうち、隣り合う小グリッドの間の間隔は、前記小グリッドを通過した放射線を検出する放射線画像検出器の1画素に相当するサイズよりも小さいことを特徴とする請求の範囲第2項に記載の放射線画像撮影用グリッド。
  4.  前記第1及び第2のアライメントマークは、放射線透過性を有する材料により形成されていることを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線画像撮影用グリッド。
  5.  前記第1及び第2のアライメントマークは、放射線が透過可能な厚さを有することを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線画像撮影用グリッド。
  6.  前記第1のアライメントマークは、前記放射線透過部または前記放射線吸収部により構成されていることを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線画像撮影用グリッド。
  7.  前記第1のアライメントマークは、前記放射線透過部または前記放射線吸収部を連結するブリッジ部により構成されていることを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線画像撮影用グリッド。
  8.  小グリッドの放射線吸収部及び放射線透過部を有するグリッド部に、放射線透過性を有する第1のアライメントマークを形成する第1のアライメントマーク形成工程と、
     支持基板に放射線透過性を有する第2のアライメントマークを形成する第2のアライメントマーク形成工程と、
     前記第1及び第2のアライメントマークに基づいて、前記支持基板に対する前記小グリッドの位置を調整する位置調整工程と、
     前記小グリッドを前記支持基板に取り付ける取り付け工程と、
     を備えることを特徴とする放射線画像撮影用グリッドの製造方法。
  9.  前記位置調整工程は、
     前記小グリッドの前記第1のアライメントマークが設けられている面と、前記支持基板の前記第2のアライメントマークが設けられている面とを対面させる工程と、
     前記小グリッドと前記支持基板との間に挿入された位置検出装置により、前記第1のアライメントマークと前記第2のアライメントマークとの位置ずれを検出する工程と、
     を含むことを特徴とする請求の範囲第8項に記載の放射線画像撮影用グリッドの製造方法。
  10.  前記位置調整工程は、
     前記小グリッドの前記第1のアライメントマークが設けられている面と、前記支持基板の前記第2のアライメントマークが設けられている面とを対面させる工程と、
     前記支持基板の前記小グリッドとは反対側に配置された位置検出装置により、前記第1のアライメントマークと前記第2のアライメントマークとの位置ずれを検出する工程と、
     を含むことを特徴とする請求の範囲第8項に記載の放射線画像撮影用グリッドの製造方法。
  11.  放射線源から放射された放射線を通過させて縞画像を生成する第1のグリッドと、前記縞画像に強度変調を与える第2のグリッドと、前記第2のグリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、前記放射線画像検出器により検出された縞画像から位相コントラスト画像を生成する放射線画像撮影システムにおいて、
     前記第1または第2のグリッドの少なくとも1つは、
     放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、
     放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、
     を備えることを特徴とする放射線画像撮影システム。
  12.  前記放射線源と前記第1のグリッドとの間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽して多数のライン状の放射線を形成する第3のグリッドをさらに備え、この第3グリッドは、
     放射線吸収部及び放射線透過部を有するグリッド部と、前記グリッド部に設けられ、放射線透過性を有する第1のアライメントマークとを備えた小グリッドと、
     放射線透過性を有する第2のアライメントマークを有し、前記第1及び第2のアライメントマークが対応した状態で前記小グリッドを支持する支持基板と、
     を有することを特徴とする請求の範囲第11項に記載の放射線画像撮影システム。
PCT/JP2011/072749 2010-10-19 2011-10-03 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム WO2012053342A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234513A JP2014006047A (ja) 2010-10-19 2010-10-19 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2010-234513 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053342A1 true WO2012053342A1 (ja) 2012-04-26

Family

ID=45975061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072749 WO2012053342A1 (ja) 2010-10-19 2011-10-03 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Country Status (2)

Country Link
JP (1) JP2014006047A (ja)
WO (1) WO2012053342A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162962A1 (ja) * 2015-04-08 2016-10-13 株式会社日立製作所 放射線撮像装置
WO2017168844A1 (ja) * 2016-03-28 2017-10-05 コニカミノルタ株式会社 X線タルボ撮影装置
JP6601590B1 (ja) * 2018-02-06 2019-11-06 東レ株式会社 放射線検出器の製造方法および放射線検出器の製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071819A (ja) * 2000-08-31 2002-03-12 Toshiba Corp 検出器ユニット、x線コンピュータ断層撮影装置及びx線コンピュータ断層撮影装置の製造方法
JP2007203061A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071819A (ja) * 2000-08-31 2002-03-12 Toshiba Corp 検出器ユニット、x線コンピュータ断層撮影装置及びx線コンピュータ断層撮影装置の製造方法
JP2007203061A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム

Also Published As

Publication number Publication date
JP2014006047A (ja) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2012026223A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
US20140270060A1 (en) X-ray talbot interferometer and x-ray talbot imaging system
JP6460226B2 (ja) X線撮影装置
EP3310259B1 (en) Dual energy differential phase contrast imaging
JP2012013530A (ja) 回折格子及びその製造方法、並びに放射線撮影装置
US20120201349A1 (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
JP2012236005A (ja) 放射線撮影装置
US9239304B2 (en) X-ray imaging apparatus
WO2012053342A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5204880B2 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
US20120148029A1 (en) Grid for use in radiation imaging, method for producing the same, and radiation imaging system
WO2012081376A1 (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
WO2013099652A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
EP3538879B1 (en) Grating-based phase contrast imaging
JP2012122840A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
WO2012053368A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
US20160256122A1 (en) Imaging System and Imaging Method
JP2012093117A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012132793A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012249847A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012068225A (ja) 放射線画像撮影用グリッド及びその製造方法
JP2012130503A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5930614B2 (ja) X線撮像装置
WO2013051647A1 (ja) 放射線撮影装置及び画像処理方法
JP6696296B2 (ja) タルボ撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP