WO2017168844A1 - X線タルボ撮影装置 - Google Patents

X線タルボ撮影装置 Download PDF

Info

Publication number
WO2017168844A1
WO2017168844A1 PCT/JP2016/086097 JP2016086097W WO2017168844A1 WO 2017168844 A1 WO2017168844 A1 WO 2017168844A1 JP 2016086097 W JP2016086097 W JP 2016086097W WO 2017168844 A1 WO2017168844 A1 WO 2017168844A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
small
ray
interval
absorption
Prior art date
Application number
PCT/JP2016/086097
Other languages
English (en)
French (fr)
Inventor
篤史 ▲高▼橋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018508377A priority Critical patent/JPWO2017168844A1/ja
Publication of WO2017168844A1 publication Critical patent/WO2017168844A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms

Definitions

  • the present invention relates to an X-ray Talbot imaging apparatus using a Talbot-Lau interferometer.
  • X-rays using a Talbot-Lau interferometer and an X-ray detector that capture and image the X-ray phase shift that occurs when X-rays pass through an object 2.
  • FPD X-ray detector
  • Description of the Related Art Image photographing apparatuses are known (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
  • an X-ray imaging apparatus using such a Talbot-Lau interferometer is referred to as an X-ray Talbot imaging apparatus.
  • such an X-ray Talbot imaging apparatus includes an X-ray generator, a source grating (G0 grating), a phase grating (G1 grating), an absorption grating (G2 grating), an X-ray detector, and the like.
  • the moiré image formed on the absorption grating is captured by an X-ray detector. Then, each time any one of the source grating, the phase grating, and the absorption grating is moved (scanned) relative to the other gratings, a moire image is taken, thereby taking a plurality of moire images.
  • a conventional X-ray image capturing apparatus can capture images of differential phase images reconstructed based on each moire image captured using such an X-ray Talbot image capturing apparatus.
  • the cartilage of the joint portion such as the finger of the patient who has not been present (more precisely, the interface between the end of the cartilage and the surrounding joint fluid, see the arrow in the figure) can be taken.
  • cartilage for example, tendons and tumors may be photographed.
  • the phase grating or the like of the X-ray Talbot imaging apparatus is often formed of a silicon wafer.
  • the silicon wafer cannot be manufactured with a large diameter.
  • it is difficult to photograph a larger joint portion such as a patient's shoulder, knee, or hip joint.
  • Patent Document 1 describes that a phase grating or the like is configured so as to connect (or abut) the ends of small gratings.
  • a plurality of small lattices g1 small lattices g1a, g1b in which a plurality of slits S and non-slit portions Sn are formed alternately and in parallel are arranged in parallel.
  • the edge portions Ed of the adjacent small lattices g1 small lattices g1a and g1b
  • the lattice period of the slits S is small even at the end portions Ed.
  • phase grating G1 and the like it is desirable to configure the phase grating G1 and the like by arranging the small gratings g1 in parallel so as to be the same as the grating period d of the slits S formed in the gratings g1a and g1b (that is, the grating period of the phase grating G1 and the like).
  • the non-slit portion Sn is hatched so that the slit S and the non-slit portion Sn can be easily distinguished.
  • the slit S refers to a portion that transmits X-rays or a portion that is relatively easy to transmit X-rays
  • the non-slit portion Sn refers to a portion that does not transmit X-rays or a portion that is relatively difficult to transmit X-rays.
  • the grating period d is on the order of several ⁇ m, and the variation of the grating period d is required to be on the order of less than 1 ⁇ m. Then, after cutting the end portions Ed of each small lattice g1 with such accuracy, the end portions Ed are brought into contact with each other, and the lattice period of the slits S is also formed in each small lattice g1 at the end portion Ed. It is difficult to configure the slit S to have the same grating period d.
  • Patent Document 2 for example, as described in FIG. 40 of the same document, in the phase grating G1 and the absorption grating G2, there is a non-slit portion Sn between end portions Ed of the small gratings g1 arranged side by side.
  • any of the source grating, phase grating, and absorption grating is moved relative to other gratings as described above.
  • the first group of plural moire images are taken while changing the relative positional relationship of each grating, and the potential source grating, phase grating, or absorption grating is again relative to the other gratings.
  • the second group of a plurality of moire images are photographed while moving the target.
  • An image generation method is described in which reconstruction processing is performed based on each moire image in the first group and each moire image in the second group to generate a reconstructed image such as a differential phase image.
  • a reconstructed image is generated based only on a plurality of moire images in the first group, artifacts due to lattice defects may appear in the reconstructed image, which may not be suitable as a diagnostic image.
  • a high-quality reconstructed image suitable for diagnosis can be generated.
  • the lattice is scanned (moved) twice, which has been once, and the patient as the subject is irradiated with X-rays accordingly.
  • the number of times increases, and the total amount of X-ray dose irradiated to the patient, that is, the patient's exposure dose may increase compared to the conventional case.
  • the present inventor in the phase grating G1 formed by arranging the small gratings g1 in parallel, the grating period d of the phase grating G1 is such that the grating period of the slit S is at the end portion Ed between the small gratings g1 as described above.
  • the present invention has been made in view of the above points, and is an X-ray Talbot imaging apparatus using a phase grating and an absorption grating configured by arranging small gratings side by side, and a plurality of captured moire images.
  • An object of the present invention is to provide an X-ray Talbot imaging apparatus capable of appropriately generating a reconstructed image based on the above.
  • an X-ray Talbot imaging apparatus reflecting one aspect of the present invention includes the following.
  • An X-ray detector comprising a plurality of conversion elements arranged in a two-dimensional shape and capturing a moire image formed on the absorption grating;
  • At least the phase grating is configured in a state in which a plurality of small gratings in which a plurality of slits and non-slit portions are alternately and in parallel are arranged in parallel, Among the plurality of small gratings constituting the phase grating, of the non-slit parts formed at positions closest to the other small grating among the non-slit parts of the two adjacent small gratings
  • the distance is x1
  • the distance between the source grating and the phase grating is z1, the distance between the source grating and the ab
  • the plurality of small lattices constituting the phase grating have the interval x1 represented by the following formula (1): X-ray Talbot radiographing apparatus arranged side by side so as to satisfy an interval that satisfies the conditions represented. Ds ⁇ (zd ⁇ z1) / zd ⁇ x1 ⁇ P ⁇ z1 / zd + Ds ⁇ (zd ⁇ z1) / zd ... (1)
  • an X-ray Talbot imaging apparatus reflecting another aspect of the present invention includes the following.
  • An X-ray detector comprising a plurality of conversion elements arranged in a two-dimensional shape and capturing a moire image formed on the absorption grating;
  • At least the absorption grating is configured in a state in which a plurality of small gratings in which a plurality of slits and non-slit portions are formed alternately and in parallel are arranged in parallel, Of the plurality of small lattices constituting the absorption lattice, the non-slit portions formed between the non-slit portions of the two adjacent small lattices closest to the other small lattice.
  • An interval is x2
  • a distance between the source grating and the absorption grating is z2
  • a distance between the source grating and the conversion element of the X-ray detector is zd, and among the slits formed in the source grating
  • the plurality of small lattices constituting the absorption lattice have the following interval x2: X-ray Talbot imaging apparatus arranged side by side so as to satisfy an interval that satisfies the condition represented by the expression (2).
  • a reconstructed image based on a plurality of captured moire images in an X-ray Talbot imaging apparatus using a phase grating configured by arranging small gratings in parallel. Can be generated appropriately.
  • FIG. 1 is a diagram illustrating an overall configuration of an X-ray Talbot imaging apparatus according to a first embodiment. It is a schematic plan view of a source grating, a phase grating, and an absorption grating. It is an enlarged view of the conversion elements etc. which were arranged two-dimensionally by the X-ray detector. It is a figure explaining the principle of a Talbot low interferometer. It is a figure showing that the phase grating is comprised in the state which arranged the some small grating in parallel. It is a figure showing the example comprised so that each non-slit part of two small grating
  • FIG. 8 is a graph showing a change in intensity of X-rays incident on a position ⁇ in FIG. 7 through paths ⁇ 1 to ⁇ 3 while the grating is scanned.
  • FIG. 8 is a graph showing a change in intensity of X-rays incident on a position ⁇ in FIG. 7 through paths ⁇ 1 to ⁇ 3 while the grating is scanned. It is a graph showing the intensity
  • FIG. 8 is a graph showing a change in intensity of X-rays incident on the position of ⁇ in FIG. 7 through paths ⁇ 1 to ⁇ 3 while the grating is scanned.
  • FIG. 8 is a diagram showing positions A to G where a conversion element may be arranged in the arrangement of FIG. It is a figure showing the state which two line defects generate
  • lattice which comprises a phase grating. It is a figure showing the example comprised so that each non-slit part of two adjacent small grating
  • FIG. 6 is an enlarged view showing a state in which the grating period is also maintained in the end part of the small grating when the phase grating is formed by arranging the small gratings in parallel.
  • the X-ray Talbot imaging apparatus 1 is configured to irradiate X-rays toward an object H below from an X-ray generator 11 provided on the upper side.
  • the present invention is not limited to this, and it is also possible to irradiate X-rays in an arbitrary direction such as irradiation in the horizontal direction (so-called horizontal type).
  • FIG. 1 is a diagram illustrating an overall configuration of an X-ray Talbot imaging apparatus 1 according to the present embodiment.
  • the X-ray Talbot imaging apparatus 1 includes an X-ray generator 11, a source grating (also referred to as a G0 grating, a multi-slit) G0, a subject table 13, and a phase grating (G1 grating, first G1; absorption grating (also referred to as G2 grating, second grating, etc.) G2, X-ray detector 14 and controller 16;
  • the X-ray generator 11 can use a general X-ray source including, for example, a rotating anode.
  • a source grid G0 is disposed below the X-ray generator 11.
  • the source grid G0 is not attached to the support column 15 via the mounting arm 12, but the X-ray generator 11. It is attached.
  • a plurality of slits S and non-slit portions Sn extend in the y direction in the drawing in the source grating G0, the phase grating G1, and the absorption grating G2, which will be described later.
  • the width of the slit S and the grating period d are expressed very large with respect to the overall size of the grating. Further, T in FIG. 2 will be described later.
  • the mounting arm 12 has a filtration filter (also referred to as an additional filter) for changing the quality of X-rays transmitted through the source grating G0. 112), an irradiation field stop 113 for narrowing the X-ray irradiation field, an irradiation field lamp 114 for performing alignment by irradiating the subject H with visible light before X-ray irradiation, and the like are attached.
  • a first cover unit 120 is provided around the radiation source grid G0 and the like to protect them.
  • a subject table 13 for placing a patient's body (imaging region such as a finger joint) as the subject H is disposed.
  • a fixing device (not shown) that fixes the subject H may be disposed on the subject table 13 in order to prevent body movement of the subject H.
  • the phase grating G1 it is also possible to configure so as to be disposed between the absorption grating G2.
  • the phase grating G1 and the absorption grating G2 are arranged below the subject table 13, and the X-ray detector 14 is arranged immediately below the absorption grating G2.
  • the X-ray detector 14 includes a plurality of conversion elements 4 arranged two-dimensionally, and is formed on the absorption grating G2 as will be described later. Moire images are taken.
  • a plurality of scanning lines 2 and a plurality of signal lines 3 are arranged in the X-ray detector 14 so as to cross each other.
  • a conversion element 4 is provided in each small area partitioned by the line 3.
  • Each conversion element 4 is connected to a signal line 3 through a TFT (Thin FilmTransistor) 5, and each conversion element 4 is connected to a bias line 6 for applying a reverse bias voltage. ing.
  • the X-ray detector 14 outputs image data of the captured moire image to the controller 16 (see FIG. 1).
  • a second cover unit 130 is disposed around the phase grating G1, the absorption grating G2, and the X-ray detector 14 to protect them from the patient's legs and the like.
  • the X-ray Talbot imaging apparatus 1 is configured to capture a plurality of moire images by a so-called fringe scanning method, and the source grating G0, the phase grating G1, and the absorption grating G2 are relatively positioned. Imaging is performed by irradiating X-rays while moving (scanning) in the x direction in the figure. At that time, any of the source grating G0, the phase grating G1, and the absorption grating G2 may be moved. At that time, for example, when shooting n moire images, shooting is performed while moving the grating by a distance obtained by dividing the above-described grating period d (see FIG. 2 and FIG. 29) by n by a moving mechanism (not shown). Configured to do.
  • the controller 16 is configured by a computer (not shown) having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), an input / output interface, and the like connected to a bus. It is also possible to configure as a dedicated device instead of such a general-purpose computer.
  • a computer not shown having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), an input / output interface, and the like connected to a bus. It is also possible to configure as a dedicated device instead of such a general-purpose computer.
  • the controller 16 reconstructs them and absorbs the image, the differential phase image, the small angle scattered image, etc. as described above.
  • the reconstructed image is generated.
  • the image data of the moire image is transferred from the controller 16 to the external image processing apparatus, and the external image processing apparatus is configured to generate a reconstructed image such as an absorption image, a differential phase image, or a small angle scattered image. It is also possible.
  • phase grating G1 and the absorption grating G2 are formed as a single grating instead of a plurality of small gratings arranged side by side.
  • description of the X-ray generator 11, the X-ray detector 14 (refer FIG. 1), etc. is abbreviate
  • the relative sizes of the grating periods d (see FIG. 2) in the source grating G0, the phase grating G1, and the absorption grating G2 do not necessarily reflect reality.
  • FIG. 4 and the like show a case where only three slits S are formed in the source grid G0, but more slits S are actually provided. Further, in FIG. 4 and the like, only X-ray paths that pass through the slits S of the source grating G0 and enter the three non-slit parts Sn of the absorption grating G2 are shown, and the other non-slit parts Sn. The description of the path of the X-rays incident on is omitted.
  • a plurality of slits S and non-slit portions Sn are formed alternately and in parallel in the source grating G0, the phase grating G1, and the absorption grating G2 so as to extend in the y direction in the figure.
  • the non-slit portions Sn are arranged in the x direction in the drawing at a predetermined grating period d (see FIG. 2) in the source grating G0, the phase grating G1, and the absorption grating G2.
  • the X-rays pass through the source grid G0.
  • the slits S are used as multiple light sources, and the X-rays are irradiated from the slits S to the phase grating G1.
  • the transmitted X-rays form an image at a position away from the phase grating G1 by a predetermined distance in the z direction in the figure. This image is called a self-image, and the phenomenon in which a self-image is formed at a constant period in the z direction in the figure is called a Talbot effect.
  • the absorption grating G2 in which the slits S and the non-slit portions Sn are formed with the same grating period d as the self-image of the phase grating G1 is disposed at a position where the self-image of the phase grating G1 joins the image, the illustration is omitted.
  • a moire image having moire fringes appears on the absorption grating G2.
  • the subject H when the subject H exists between the source grating G0 and the phase grating G1 (or between the phase grating G1 and the absorption grating G2), the subject H causes a phase difference in the X-rays. Therefore, the moire fringes on the moire image are disturbed by the subject H.
  • a plurality of moiré images are taken while moving (scanning) the phase grating G1, and the moiré fringes are detected by performing image processing to reconstruct the subject image.
  • imaging that is, generation of a reconstructed image such as an absorption image, a differential phase image, or a small angle scattered image
  • This is the principle of the Talbot interferometer.
  • the absorption grating G2 in which the slit S and the non-slit portion Sn are formed with the same grating period d as the self-image of the phase grating G1 is disposed at a position where the self-image of the phase grating G1 joins the images.
  • the grating period d of the absorption grating G2 does not have to be exactly the same as the period of the self-image of the phase grating G1.
  • the position where the absorption grating G2 is arranged is not necessarily the position where the self-image of the phase grating G1 connects the images, and the moire fringes that appear between the self-image of the phase grating G1 and the self-image of the absorption grating G2. Any position where Visibility is sufficiently maintained is acceptable.
  • phase grating G1 of the X-ray Talbot imaging apparatus 1 includes a plurality of slits S and non-slit portions Sn formed alternately and in parallel as shown in FIG.
  • the small lattice g1 is arranged in parallel.
  • phase grating G1 in which a plurality of small gratings are arranged in parallel is configured to be a flat plate shape is described, for example, as described in Patent Document 1 and Patent Document 2 described above.
  • the non-slit portions Sn (or slits S) of two adjacent small gratings g1a and g1b constituting the phase grating G1 are arranged in parallel with the same grating period.
  • the non-slit portion Sn (or slit S) of the absorption grating G2 is arranged with the same period as the self-image of the phase grating G1 (small gratings g1a and g1b). Therefore, in this case, a moire image can be taken without any problem as in the case of the single phase grating G1 shown in FIG.
  • each non-slit portion Sn of the small grating g1b is separated from the small grating g1a.
  • the non-slit portion Sn is arranged at a position deviated from the lattice period (indicated by a two-dot chain line in the figure).
  • any one of the source grating G0, the phase grating G1, and the absorption grating G2 is moved relative to the x direction in the drawing by the distance obtained by dividing the grating period d by n (scanning). ), The X-ray passing through the path ⁇ 1 is transmitted through the non-slit portion Sn of the small lattice g1a or the slit S by the above scanning.
  • the intensity of the X-ray incident on the position ⁇ of the absorption grating G2 through the paths ⁇ 2 and ⁇ 3 is also the intensity of the X-ray incident on the position ⁇ of the absorption grating G2 through the path ⁇ 1 shown in FIG. 8A. It changes with the same period and the same phase as the change. Therefore, in this case, since the X-rays incident on the position ⁇ of the absorption grating G2 through the paths ⁇ 1 to ⁇ 3 reinforce each other, the intensity I of the X-rays incident on the position ⁇ of the absorption grating G2 is shown in FIG. 8B. As shown, the amplitude increases.
  • the intensity I of the X-ray that enters the position of ⁇ of the absorption grating G2 through the paths ⁇ 1 to ⁇ 3 enters the position of ⁇ through the paths ⁇ 1 and ⁇ 2, as shown in FIG. 9B.
  • the X-rays intensify each other, and the graph is such that the X-rays incident through the path ⁇ 3 are shifted upward as much as the X-rays having a constant intensity Icon. Note that the intensity I shown in FIG. 9B changes in the same cycle and the same phase as the intensity I shown in FIG. 8B.
  • the X-ray incident on the position of ⁇ through the path ⁇ 2 does not pass through the non-slit portion Sn of any of the small lattices g1 of the small lattices g1a and g1b.
  • the intensity of the X-ray incident on the position of ⁇ through the path ⁇ 2 becomes a constant value while the grating is scanned as described above.
  • the intensity I3 is the intensity of the X-ray incident on the position of ⁇ of the absorption grating G2 through the path ⁇ 1 shown in FIG. 8A (see the dashed line in FIG. 10A).
  • Change and the period are the same (because the grating period d is the same in one small grating g1a and the other small grating g1b), but each non-slit portion Sn of the other small grating g1b as shown in FIG.
  • the phase is accordingly shifted.
  • X-rays whose intensity I is out of phase are incident on the ⁇ position (see FIG. 7) of the absorption grating G2 and are added together, so that the grating is scanned as described above as shown in FIG. 10B.
  • the X-ray intensity I observed at the position ⁇ of the absorption grating G2 during this period is the phase of the X-ray intensity I3 transmitted through one small grating g1a (see the solid line in FIG. 10A) and the other small grating. It changes so as to draw a sine curve having a phase different from any of the phases of the intensity I3 of the X-ray transmitted through g1b (see the two-dot chain line in FIG. 10A). Note that since the X-rays that have passed through the path ⁇ 2 also enter the position of ⁇ of the absorption grating G2, the graph is entirely shifted upward by that amount.
  • the intensity of the X-rays is as described above. While being scanned, it changes in the same way as the graph shown by the solid line in FIG. 10A.
  • the intensity I of X-rays incident on the position ⁇ of the absorption grating G2 through the paths ⁇ 1 to ⁇ 3 is the same as in the case of [Phenomenon 2]. That is, although illustration is omitted, the X-rays incident on the position ⁇ through the paths ⁇ 2 and ⁇ 3 reinforce each other, and the X-rays having a certain intensity of the X-rays incident through the path ⁇ 1 as a whole. It looks like a graph shifted upward. In this case, the intensity I changes with the same period and the same phase as the intensity I3 indicated by the solid line in FIG. 10A.
  • the amplitude of the X-ray intensity change is increased, as in FIG. 8B showing the case of the non-slit portion Sn at the position ⁇ of the absorption grating G2 shown in FIG.
  • the phase of the intensity change of the X-rays is not the one-dot chain line in FIG. 10A in the same phase as FIG. 8B, but the same phase as the graph shown by the solid line in FIG. 10A, and the amplitude increases.
  • the intensity I of the X-rays added together is the phase of the intensity I3 of the X-rays transmitted through one small lattice g1a (see the solid line in FIG. 10A).
  • the X-ray intensity I3 transmitted through the other small lattice g1b changes so as to draw a sine curve having a phase different from any of the phases of the intensity I3 (see the two-dot chain line in FIG. 10A).
  • the grating period d (see FIG. 2 and the like) of the absorption grating G2 is on the order of several ⁇ m, while the size of each conversion element 4 (see FIG. 3) of the X-ray detector 14 (that is, so-called pixel). Size) is about several tens of ⁇ m to 100 ⁇ m. Therefore, X-rays having various intensities I corresponding to several to several tens of non-slit portions of the absorption grating G2 are incident on one conversion element 4 of the X-ray detector 14.
  • the conversion element 4 can normally shoot a moire image (that is, can read a normal signal value).
  • the conversion element 4 capable of normally capturing a moire image is referred to as a normal pixel.
  • the conversion element 4 Is treated as a normal pixel that is a pixel that can normally shoot a moire image (that is, can read a normal signal value).
  • the X-ray incident on the conversion element 4 via the non-slit portion Sn at the position of ⁇ includes the above-described plain X-ray.
  • the intensity I of the incident X-ray shifts slightly upward (see FIG. 9B), the changes in the intensity I of each X-ray incident on the conversion element 4 are all in the same period and in the same phase.
  • the respective X-rays incident on the conversion element 4 do not cancel each other at least, and normally change so as to draw a sine curve while the grating is scanned as described above. Therefore, the conversion element 4 can normally shoot a moire image (that is, can read a normal signal value).
  • the X-rays that are incident on the conversion element 4 include the X-rays that pass through the X-rays that are incident on the conversion element 4.
  • the intensity I of the shift slightly upwards.
  • the average intensity of the X-rays incident on the conversion element 4 is increased by that amount and Visibility is lowered. Therefore, in the differential phase image and the small-angle scattering image generated by reconstruction as described above, in FIG. S / N ratio of the pixel corresponding to the conversion element 4 arranged at the position indicated by B in FIG. 11 is based on the S / N ratio of the pixel corresponding to the conversion element 4 arranged at the position indicated by A in FIG. Also gets worse.
  • the conversion element 4 that can normally capture a moire image but has reduced visibility is referred to as a normal pixel with reduced visibility.
  • a normal pixel with reduced visibility is treated in the same manner as the normal pixel in the image correction processing performed by the controller 16 or the like, but the signal value read from the conversion element 4 that is a normal pixel with reduced visibility. For this, processing such as noise removal is performed as necessary.
  • the X-rays incident on the conversion element 4 are X-rays whose intensity I changes as shown by the one-dot chain line in FIG. 10A (that is, the non-slit at the position of ⁇ ) while the grating is scanned as described above.
  • X-rays incident through the part Sn and transmitted through the small grating g1a) and X-rays whose intensity I changes as shown by a solid line in FIG. 10A (that is, the non-slit part Sn at the position of ⁇ ) X-rays incident through the X-rays and transmitted through the small lattice g1b) are simultaneously incident.
  • the conversion element 4 When the X-ray intensity I changes in a phase different from the change in the X-ray intensity I detected by the other conversion element 4 as described above, the conversion element 4 appropriately captures a moire image. In the differential phase image and the small angle scattered image reconstructed based on the moire image, it is impossible to appropriately form an image at the pixel portion. In other words, the image is lost at that pixel.
  • each X-ray transmitted through the two small gratings g1a and g1b is incident, and the change in the intensity I of the X-ray is changed in the phase at the other conversion element 4 (that is, X transmitted through one small grating g1a).
  • the phase of the intensity I of the line or the phase of the intensity I of the X-ray transmitted through the other small lattice g1b), and the image is lost in the moire image, differential phase image, small angle scattering image, etc.
  • the conversion element 4 that may end up is referred to as a defective pixel.
  • image correction is performed, for example, by interpolating using signal values of surrounding pixels.
  • the conversion element 4 is arranged at a position of D to G
  • the conversion element 4 is arrange
  • the conversion element 4 is arranged at the position indicated by F in FIG. 11, since the transparent X-ray and the X-ray transmitted through the small lattice g1b are incident on the conversion element 4, in this case Therefore, the conversion element 4 is a normal pixel with reduced visibility.
  • the above-described defective pixel may occur linearly (that is, a so-called line defect occurs) along the gap between the ends of the small gratings g1a and g1b constituting the phase grating G1, in which case
  • the image correction is performed by performing interpolation using the signal value of the pixel of the line defect or the like during the image correction processing by the controller 16 or the like.
  • line defects are continuously generated as shown in FIG. 12 (see lines Ln and Ln + 1)
  • the signal values of the pixels on the surrounding lines Ln-1 and Ln + 2 are used.
  • the signal value of the defective pixel on the lines Ln and Ln + 1 where the line defect is generated is corrected by linear interpolation.
  • the cartilage (see the arrow in FIG. 28) of the joint part such as the above-mentioned patient's finger is photographed at the missing pixel part on the lines Ln, Ln + 1, and the line Ln-1, If cartilage is not photographed at each pixel on the line Ln + 2, if interpolation processing is performed as described above, it should have been photographed at the missing pixel portion on the line Ln, Ln + 1.
  • Cartilage disappears when it is interpolated using the signal values of each pixel on the lines Ln-1 and Ln + 2 where the cartilage is not photographed, and the cartilage is not photographed in the differential phase image. End up.
  • the defective pixel continues for three lines or more, the possibility becomes higher.
  • a defective pixel that is, a line defect
  • it must be considered as a premise that it is limited to one line at most. If the line defect is for one line, cartilage is not lost at least from the differential phase image even if the interpolation process is performed as described above.
  • a defective pixel is generated when each X-ray transmitted through two adjacent small gratings g1a and g1b constituting the phase grating G1 enters one conversion element 4.
  • the non-slit portions Sn of the two small lattices g1a and g1b may not be arranged in parallel with the same lattice period.
  • the small lattice g1a and the small lattice g1b are too far apart, and only the above-described plain X-ray (that is, the X-ray that does not transmit through the small lattices g1a and g1b) is incident on the conversion element 4. It is possible that Also in this case, since the conversion element 4 cannot capture a moire image, such a conversion element 4 is also treated as a defective pixel.
  • this interval is closest to the other small grating among the non-slit portions Sn of the two adjacent small gratings g1a and g1b among the plurality of small gratings g1 constituting the phase grating G1.
  • This is an interval between the non-slit portions Sn formed at the position (hereinafter, this interval is referred to as x1). That is, this interval x1 is the interval between the rightmost non-slit portion Sn in the drawing of the small lattice g1a and the leftmost non-slit portion Sn in the drawing of the small lattice g1b in FIGS.
  • it is simply referred to as an interval x1 between the small lattices g1a and g1b.
  • the range R on the X-ray detector 14 is narrowed as shown in FIG. 14, but the portion of the range R is shown in FIG.
  • the image is taken by the two conversion elements 4A and 4B of the X-ray detector 14, and there are two conversion elements 4A and 4B (in reality, two rows of conversion elements 4 extending in a direction perpendicular to the paper surface). ) May become defective pixels.
  • the lower limit value x1min of the interval x1 is such that the distance between the source grating G0 and the phase grating G1 is z1, and the distance between the source grating G0 and the conversion element 4 of the X-ray detector 14 is zd.
  • each X-ray transmitted through the two small lattices g1a and g1b passes through the conversion element 4D in the range R (width is 0) on the X-ray detector 14 described above. Is incident, the conversion element 4D becomes a defective pixel.
  • the X-rays that have passed through the two small gratings g1a and g1b do not enter the conversion element 4C adjacent to the conversion element 4D and the conversion element 4E adjacent to the conversion element 4D at the same time. 4E is not at least a defective pixel. Therefore, in this case, only one line defect (that is, one pixel) occurs.
  • the boundary portion between the two conversion elements 4F and 4G is a range R (width is 0. That is, in this case, the range R is a line representing the X-ray boundary. ),
  • the X-rays respectively transmitted through the two small gratings g1a and g1b are not simultaneously incident on the conversion element 4F or the conversion element 4G.
  • the conversion elements 4F and 4G do not become at least defective pixels (the conversion elements 4F and 4G become normal pixels with reduced visibility). Therefore, in this case, no defective pixel occurs and no line defect occurs.
  • the upper limit value x1max of the interval x1 between the small lattices g1a and g1b will be described.
  • the space x1 between the small lattices g1a and g1b is further opened from the state shown in FIG. 15, the state shown in FIG. 17 is obtained.
  • R * in the drawing X-rays are irradiated in a transparent state without passing through either of the small lattices g1a and g1b.
  • the conversion element 4D * has two small lattices g1a and g1b. Since each X-ray that has passed through each of the X-rays enters, the conversion element 4D * becomes a defective pixel. However, the X-rays respectively transmitted through the two small gratings g1a and g1b do not enter the conversion element 4C * and the conversion element 4E * adjacent to the conversion element 4D * at the same time. For this reason, the conversion elements 4C * and 4E * are not at least defective pixels (the conversion elements 4C * and 4E * are normal pixels with reduced visibility). Therefore, in this case, only one line defect occurs.
  • the conversion element 4F * and 4G * are not at least defective pixels. Therefore, in this case, no defective pixel occurs and no line defect occurs.
  • the distance x1 between the small lattices g1a and g1b is further increased from the state shown in FIG. 17, and to what extent the interval x1 between the small lattices g1a and g1b can be expanded, that is, the upper limit value x1max of the distance x1 is Considering the state, the interval x1 is further expanded from the state shown in FIG. 18B, and as shown in FIG. 19, the X-rays that are transparent to any of the two adjacent conversion elements 4F * and 4G * are used.
  • the interval x1 when only incident light is present is the upper limit value x1max.
  • the interval x1 between the small lattices g1a and g1b reaches the upper limit value x1max, only the plain X-rays are incident on either of the two conversion elements 4F * and 4G * , resulting in a defective pixel. Since two line defects may occur continuously, the interval x1 between the small lattices g1a and g1b can only take a range less than the upper limit value x1max.
  • the upper limit value x1max of the interval x1 is such that the distance between the source grating G0 and the phase grating G1 is z1, and the distance between the source grating G0 and the conversion element 4 of the X-ray detector 14 is zd.
  • the phase grating G1 includes a plurality of small gratings in which a plurality of slits S and non-slit portions Sn are formed alternately and in parallel.
  • the plurality of small gratings g1 constituting the phase grating G1 has an interval x1 between adjacent small gratings g1a and g1b.
  • the phase grating G1 includes the plurality of small gratings g1 in which the plurality of slits S and the non-slit portions Sn are formed alternately and in parallel.
  • the plurality of small gratings g1 constituting the phase grating G1 are arranged in parallel with each other so that the interval x1 between the adjacent small gratings g1a and g1b satisfies the condition represented by the above expression (6). It is arranged side by side.
  • a line defect (see FIG. 12) occurs in a reconstructed image such as a moire image or a differential phase image by forming a phase grating G1 by arranging a plurality of small gratings g1 in parallel, there are two or more line defects. It is not possible to produce a continuous state, and it is possible to suppress the number of generated line defects to one or less. For this reason, even if the line defect is image-corrected, for example, the cartilage (see the arrow in FIG. 28) of the joint portion of the patient's finger or the like captured in the differential phase image disappears from the image by the image correction processing. Can be prevented accurately.
  • a plurality of small gratings g1 are arranged in parallel to form the phase grating G1, thereby forming a line on a reconstructed image such as a moire image or a differential phase image. Even if a defect (see FIG. 12) occurs, a reconstructed image can be appropriately generated based on a plurality of photographed moire images. That is, for example, when cartilage of a joint portion such as a finger of a patient is imaged as described above, cartilage can be appropriately imaged in a differential phase image as shown in FIG. 28, for example.
  • the X-ray detector 14 is arranged so that the boundary (see R in FIG. 16B) with the X-ray transmitted through g1b corresponds to the boundary between the two conversion elements 4F and 4G in the X-ray detector 14. Then, since the two conversion elements 4F and 4G are both normal pixels with reduced visibility, no defective pixels are generated and no line defects are generated.
  • the X-ray detector 14 thus sets the boundary x1 between the adjacent two conversion elements 4F and 4G among the plurality of conversion elements 4 arranged two-dimensionally and the above-described interval x1 to the lower limit value x1min ( In other words, when Ds ⁇ (zd ⁇ z1) / zd (see the above equation (6))) (see FIG. 15), the X-ray boundary R transmitted through the two small lattices g1a and g1b adjacent to each other corresponds. It is preferable to arrange (see FIG. 16B).
  • the conversion element 4 of the X-ray detector 14 has two small elements as shown in the conversion element 4D * shown in FIG. 18A. If the X-rays respectively transmitted through the gratings g1a and g1b enter at the same time, the conversion element 4 can only be a defective pixel, but two conversion elements 4F * and 4G * shown in FIG. When the X-rays respectively transmitted through the small lattices g1a and g1b do not enter at the same time, the conversion element 4 is not at least a defective pixel (the conversion elements 4F and 4G are all normal pixels with reduced visibility). ).
  • the boundary portion between two adjacent conversion elements 4 is arranged within a range R * in which X-rays are irradiated without passing through any of the small lattices g1a and g1b, The conversion element 4 is not at least a defective pixel, and no line defect occurs. Therefore, it is preferable that the X-ray detector 14 is arranged in this way.
  • a so-called grating ear portion (for example, T in the example of the phase grating G1 shown in FIG. 2) formed in the small grating g1 and not having the slit S or the non-slit portion Sn is formed.
  • a so-called grating ear portion (for example, T in the example of the phase grating G1 shown in FIG. 2) formed in the small grating g1 and not having the slit S or the non-slit portion Sn is formed.
  • an interval x1 between the small lattices g1a and g1b is not considered. It is possible to form the ears T so as to satisfy the above condition (see the above formula (6)).
  • the constant value Icon of the X-ray intensity shown in FIG. 9A is approximately the same as the intensity when the X-ray passes through the non-slit portion Sn of the small lattice g1, compared with the case where the X-ray passes through.
  • the degree of increase in the average intensity of X-rays incident on the conversion element 4 of the X-ray detection unit 14 is reduced, so that the degree of decrease in visibility is suppressed, and pixels such as a differential phase image corresponding to the conversion element 4 are suppressed. It becomes possible to further reduce the degree of deterioration of the S / N ratio in the portion.
  • the absorption grating G2 (see FIG. 1 and the like) of the X-ray Talbot imaging apparatus 1 is configured with a plurality of small gratings arranged in parallel
  • the absorption grating g2 includes a plurality of slits S and non-slit portions Sn as in the case of the phase grating G1 (see FIG. 5) in the first embodiment.
  • the absorption grating g2 includes a plurality of slits S and non-slit portions Sn as in the case of the phase grating G1 (see FIG. 5) in the first embodiment.
  • the absorption grating G2 in which a plurality of small gratings are arranged side by side is configured to be a flat plate is described, for example, in Patent Document 1 and Patent Document 2 described above.
  • Patent Document 1 and Patent Document 2 described above.
  • the non-slit portions Sn (or slits S) of two adjacent small lattices g2a and g2b constituting the absorption lattice G2 are arranged in parallel with the same lattice period. If so, the non-slit portion Sn (or slit S) of the absorption grating G2 is arranged at the same period as the self-image of the phase grating G1. Therefore, in this case, a moire image can be taken without any problem as in the case of the single absorption grating G2 shown in FIG.
  • each non-slit portion Sn of the small lattice g2b is separated from the small lattice g2a. Care must be taken when it is arranged at a position shifted from the lattice period of the non-slit portion Sn (indicated by a two-dot chain line in the figure).
  • the intensities of the X-rays incident on the ⁇ * position and the ⁇ * position of the absorption grating G2 change with the same period and the same phase, but are incident on the ⁇ * position and the ⁇ * position of the absorption grating G2. It is out of phase with the change in X-ray intensity.
  • the X-ray (or ⁇ * position incident on the conversion element 4 of the X-ray detector 14 is incident on the position of ⁇ * or ⁇ * of the absorption grating G2 shown in FIG. 23, for example.
  • the conversion element 4 can be treated as a normal pixel.
  • the conversion elements 4H and 4I shown in FIG. 24 X-rays incident on the positions of ⁇ * and ⁇ * of the absorption grating G2 (or X-rays incident on the positions of ⁇ * and ⁇ * ). ) And X-rays transmitted through the position of ⁇ * where there is no non-slit portion Sn, the conversion elements 4H and 4I normally shoot moire images as in the first embodiment. It is possible to do this, but it is treated as a normal pixel whose visibility is reduced.
  • the conversion element 4J shown in FIG. 25 there are X-rays incident on the positions of ⁇ * and ⁇ * of the absorption grating G2, and X-rays incident on the positions of ⁇ * and ⁇ *.
  • these X-rays are added on the conversion element 4J, and the phase of the intensity I of the X-rays incident on the position of ⁇ * or ⁇ * of the absorption grating G2, the position of ⁇ * , and ⁇
  • the X-ray intensity I changes at a phase different from any of the phases of the X-ray intensity I incident on the position of * . Therefore, in such a case, the conversion element 4J is treated as a defective pixel.
  • the interval between the small lattices g2a and g2b (more precisely, the absorption lattice G2
  • the absorption grating G2 includes a plurality of small gratings in which a plurality of slits S and non-slit portions Sn are formed alternately and in parallel.
  • the plurality of small lattices g2 constituting the absorption lattice G2 has an interval x2 between adjacent small lattices g2a and g2b, x2min ⁇ x2 ⁇ x2max (9) That is, using the above equations (7) and (8), Ds ⁇ (zd ⁇ z2) / zd ⁇ x2 ⁇ P ⁇ z2 / zd + Ds ⁇ (zd ⁇ z2) / zd (10) It can be seen that they should be arranged side by side so as to satisfy the condition represented by
  • the absorption grating G2 includes the plurality of small gratings g2 in which the plurality of slits S and the non-slit portions Sn are formed alternately and in parallel.
  • the plurality of small lattices g2 constituting the absorption lattice G2 are arranged in parallel with each other so that the interval x2 between the adjacent small lattices g2a and g2b satisfies the condition represented by the above expression (10). It is arranged side by side.
  • a line defect (see FIG. 12) occurs in a reconstructed image such as a moire image or a differential phase image by configuring the absorption grating G2 by arranging a plurality of small gratings g2 in parallel, there are two or more line defects. It is not possible to produce a continuous state, and it is possible to suppress the number of generated line defects to one or less. For this reason, even if the line defect is image-corrected, for example, the cartilage (see the arrow in FIG. 28) of the joint portion of the patient's finger or the like captured in the differential phase image disappears from the image by the image correction processing. Can be prevented accurately.
  • a plurality of small gratings g2 are arranged side by side to form the absorption grating G2, thereby forming a line on a reconstructed image such as a moire image or a differential phase image. Even if a defect (see FIG. 12) occurs, a reconstructed image can be appropriately generated based on a plurality of photographed moire images. That is, for example, when cartilage of a joint portion such as a finger of a patient is imaged as described above, cartilage can be appropriately imaged in a differential phase image as shown in FIG. 28, for example.
  • the absorption grating G2 is located closer to the X-ray detector 14 than the phase grating G1. For this reason, for example, the interval x2 of the absorption grating G2 is compared with the variation in the width of the above-described range R or range R * (see FIGS. 13 to 19) when the interval x1 of the phase grating G1 is expanded by a certain length r. When the same length r is expanded, the variation in the width of the above-described range R and range R * becomes small.
  • the width of the range R and the range R * varies greatly only by slightly changing the interval x1, so the range of the interval x1 (that is, the lower limit value x1min or more and less than the upper limit value x1max). ) Should be set as large as possible.
  • the width of the range R and the range R * does not vary so much as compared to the phase grating G1, even if the interval x2 is slightly changed.
  • the interval x2 is preferably as small as possible as long as it is not less than the lower limit value x2min.
  • the upper limit value x2max of the interval x2 in the absorption grating G2 is calculated with P as the size of two conversion elements as shown in FIG. 27.
  • the size is as large as one conversion element. May be configured to calculate the upper limit value x2max of the interval x2 in the absorption grating G2.
  • the absorption grating G2 is configured in a state where a plurality of small gratings g2 in which a plurality of slits S and non-slit portions Sn are formed alternately and in parallel are arranged in parallel
  • the absorption grating G2 is
  • the X-ray detector 14 is also used when the absorption grating G2 is composed of a plurality of small gratings g2, as shown in FIG. Is the lower limit value x2min (that is, Ds ⁇ (zd ⁇ z2) / zd (the above (the above (2)) and the boundary portion between two adjacent conversion elements 4 among the plurality of conversion elements 4 arranged two-dimensionally. 10) and (12) (see formula (12))), if the X-ray boundary R transmitted through two adjacent small lattices is arranged so as to correspond to each other, This is preferable because no defective pixel occurs and no line defect occurs.
  • the X-ray detector 14 is configured so that the X-rays can be detected from any of the small gratings g2a.
  • the boundary portion between two adjacent conversion elements 4 among the plurality of conversion elements 4 arranged in a two-dimensional manner is arranged in a range in which g2b is not transmitted but is irradiated in a transparent state. For example, these conversion elements 4 do not become at least defective pixels and no line defects occur. Therefore, it is preferable that the X-ray detector 14 is arranged in this way.
  • the present invention is not limited to the above-described embodiment and the like, and can be appropriately changed without departing from the gist of the present invention.
  • It may be used in the field of radiographic imaging (especially in the medical field).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

小格子を並設させて構成された位相格子を用いたX線タルボ撮影装置において、撮影した複数のモアレ画像に基づいて再構成画像を適切に生成することが可能なX線タルボ撮影装置を提供する。 X線タルボ撮影装置1の位相格子G1は、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1を並設させた状態で構成されており、位相格子G1を構成する複数の小格子g1a、g1bは、隣接する2枚の小格子g1a、g1bの最も内側の非スリット部Sn同士の間隔x1が、線源格子G0と位相格子G1との距離z1と、線源格子G0と吸収格子G2との距離z2と、線源格子G0に形成されているスリットSのうち最も外側のスリットS同士の間隔Dsと、X線検出器14の変換素子4の2個分の大きさPとで決まる下限値以上、上限値未満の範囲になるように並設されている。

Description

X線タルボ撮影装置
 本発明は、タルボ・ロー干渉計を用いたX線タルボ撮影装置に関する。
 X線が物体を透過するときに生じるX線の位相シフトを捉えて画像化する、タルボ・ロー(Talbot-Lau)干渉計とX線検出器(Flat Panel Detector:FPD)とを用いたX線画像撮影装置が知られている(例えば特許文献1、2、非特許文献1等参照)。なお、本発明では、このようなタルボ・ロー干渉計等を用いたX線画像撮影装置を、X線タルボ撮影装置という。
 このようなX線タルボ撮影装置は、後述するように、X線発生装置や線源格子(G0格子)、位相格子(G1格子)、吸収格子(G2格子)、X線検出器等を備えており、X線検出器で吸収格子上に形成されるモアレ画像を撮影する。そして、線源格子や位相格子、吸収格子のいずれかを他の格子に対して相対的に移動(走査)させるごとにモアレ画像を撮影することで、モアレ画像を複数枚撮影する。
 そして、撮影された複数枚のモアレ画像を画像解析して再構成することで、従来のX線画像撮影装置で撮影されていた吸収画像と同様の吸収画像だけでなく、モアレ画像の位相情報を画像化した微分位相画像や、モアレ画像のVisibility(鮮明度)を画像化した小角散乱画像の少なくとも3種類の再構成画像を生成することができる。また、これらの再構成画像等をさらに再構成して種々の画像を生成することも可能である。
 そして、例えば図28に示すように、このようなX線タルボ撮影装置を用いて撮影された各モアレ画像に基づいて再構成された微分位相画像中に、従来のX線画像撮影装置では撮影できなかった患者の手指等の関節部分の軟骨(正確には軟骨の端部と周囲の関節液との界面。図中の矢印参照)を撮影することができる。また、軟骨の他にも、例えば腱や腫瘤等を撮影することができる場合もある。
 ところで、現在、X線タルボ撮影装置の位相格子等はシリコンウェハで形成される場合が多いが、シリコンウェハを大きな径で製造することができない等の理由があるため、位相格子等を1枚のシリコンウェハで構成する場合には位相格子等の面積の拡大には限界がある。そのため、位相格子等を1枚のシリコンウェハで構成する場合、例えば患者の肩や膝、股関節等のより大きな関節部分を撮影することが困難になる。
 そこで、例えば上記の特許文献1、2等に記載されているように、位相格子等を、複数の小格子を並設させて構成することで大面積化する技術の研究が進められている。そして、例えば特許文献1には、小格子の端部同士をつなげる(或いは当接される)ようにして位相格子等を構成することが記載されている。
 そして、この場合、例えば図29の拡大図に示すように、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1(小格子g1a、g1b)を並設し、隣接する各小格子g1(小格子g1a、g1b)の端部Ed同士を接合して位相格子G1等を構成する際に、端部Edの部分においても、スリットSの格子周期が、小格子g1a、g1bに形成されたスリットSの格子周期d(すなわち位相格子G1等の格子周期)と同一になるように各小格子g1を並設して位相格子G1等を構成することが望ましい。
 なお、図29では、スリットSと非スリット部Snとを区別し易いように非スリット部Snに斜線が付されている。また、スリットSはX線を透過する部分或いは相対的にX線を透過し易い部分をいい、非スリット部SnはX線を透過しない部分或いは相対的にX線を透過しにくい部分をいう。
 しかし、格子周期dは数μmオーダーであり、格子周期dのばらつきは1μm未満のオーダーであることが求められる。そして、このような精度で各小格子g1の端部Edを切削する等したうえで端部Ed同士を突き合わせて、端部Edの部分においてもスリットSの格子周期が各小格子g1に形成されたスリットSの格子周期dと同一になるように構成することは困難である。
 そこで、特許文献2では、例えば同文献の図40に記載されているように、位相格子G1や吸収格子G2において、並設された小格子g1の端部Ed同士の間に非スリット部Snが形成されていない部分(同文献では格子の欠損箇所Ba)ができることを容認したうえで、上記のように線源格子や位相格子、吸収格子のいずれかを他の格子に対して相対的に移動させながら第1群の複数枚のモアレ画像を撮影し、各格子の相対的な位置関係を変えて、再度、位線源格子や位相格子、吸収格子のいずれかを他の格子に対して相対的に移動させながら第2群の複数枚のモアレ画像を撮影する。そして、第1群の各モアレ画像と第2群の各モアレ画像に基づいて再構成処理を行って、微分位相画像等の再構成画像を生成する画像生成方法が記載されている。
 例えば、第1群の複数枚のモアレ画像のみに基づいて再構成画像を生成すると、再構成画像中に格子の欠損に起因するアーチファクトが現れてしまい診断用の画像として適さないものとなる可能性があるが、上記のように第1群の複数枚のモアレ画像と第2群の複数枚のモアレ画像を撮影するように構成することで、格子の欠損に起因する再構成画像におけるアーチファクトを補正して、診断に適した高品位な再構成画像を生成することが可能となる。
特開2007-203061号公報 特開2014-132977号公報
永島雅文、外7名,「関節軟骨の描出-微分干渉の原理を応用したX線撮影技術の可能性(第14回臨床解剖研究会記録 2010.9.11)」,臨床解剖研究会記録,2011年2月,No11,p.56-57、[平成28年3月24日検索]、インターネット<URL : http://www.jrsca.jp/contents/records/>
 しかしながら、特許文献2に記載された画像生成方法では、従来は1回であった格子の走査(移動)を2回行わせるものであり、その分、被写体である患者にX線が照射される回数が増えてしまい、患者に照射されるX線の線量の総量すなわち患者の被曝線量が従来の場合よりも増えてしまう可能性がある。
 そこで、本発明者は、小格子g1を並設させて形成した位相格子G1において、上記のようにスリットSの格子周期が小格子g1同士の端部Edの部分で位相格子G1の格子周期d(すなわち小格子g1に形成されたスリットSの格子周期d)になっていない場合であっても、従来と同様に格子を1回だけ走査させて撮影された複数枚のモアレ画像に基づいて、微分位相画像等の再構成画像を適切に撮影することを可能とするための位相格子G1や吸収格子G2の構造上の条件について研究を重ねた結果、有益な知見を得ることができた。
 本発明は、上記の点を鑑みてなされたものであり、小格子を並設させて構成された位相格子や吸収格子を用いたX線タルボ撮影装置であって、撮影した複数のモアレ画像に基づいて再構成画像を適切に生成することが可能なX線タルボ撮影装置を提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したX線タルボ撮影装置は、以下を有する。
 線源格子、位相格子および吸収格子と、
 X線を照射するX線発生装置と、
 2次元状に配列された複数の変換素子を備え、前記吸収格子上に形成されるモアレ画像を撮影するX線検出器と、
を備え、
 少なくとも前記位相格子は、複数のスリットと非スリット部とが交互にかつ平行に形成された複数の小格子を並設させた状態で構成されており、
 前記位相格子を構成する前記複数の小格子のうち、隣接する2枚の前記小格子の各非スリット部の中で相手方の前記小格子に最も近い位置に形成されている前記非スリット部同士の間隔をx1、前記線源格子と前記位相格子との距離をz1、前記線源格子と前記吸収格子との距離をz2、前記線源格子に形成されているスリットのうち最も外側の位置に形成されている前記スリット同士の間隔をDs、前記変換素子2個分の大きさをPとするとき、前記位相格子を構成する前記複数の小格子は、前記間隔x1が下記の(1)式で表される条件を満たす間隔になるように並設されているX線タルボ撮影装置。
 Ds×(zd-z1)/zd≦x1<P×z1/zd+Ds×(zd-z1)/zd
                                    …(1)
 上述した目的のうち少なくとも一つを実現するために、本発明の別の側面を反映したX線タルボ撮影装置は、以下を有する。
 線源格子、位相格子および吸収格子と、
 X線を照射するX線発生装置と、
 2次元状に配列された複数の変換素子を備え、前記吸収格子上に形成されるモアレ画像を撮影するX線検出器と、
を備え、
 少なくとも前記吸収格子は、複数のスリットと非スリット部とが交互にかつ平行に形成された複数の小格子を並設させた状態で構成されており、
 前記吸収格子を構成する前記複数の小格子のうち、隣接する2枚の前記小格子の各非スリット部の中で相手方の前記小格子に最も近い位置に形成されている前記非スリット部同士の間隔をx2、前記線源格子と前記吸収格子との距離をz2、前記線源格子と前記X線検出器の前記変換素子との距離をzd、前記線源格子に形成されているスリットのうち最も外側の位置に形成されている前記スリット同士の間隔をDs、前記変換素子2個分の大きさをPとするとき、前記吸収格子を構成する前記複数の小格子は、前記間隔x2が下記の(2)式で表される条件を満たす間隔になるように並設されているX線タルボ撮影装置。
 Ds×(zd-z2)/zd≦x2<P×z2/zd+Ds×(zd-z2)/zd
                                    …(2)
 本発明のような方式のX線タルボ撮影装置によれば、小格子を並設させて構成された位相格子を用いたX線タルボ撮影装置において、撮影した複数のモアレ画像に基づいて再構成画像を適切に生成することが可能となる。
第1の実施形態に係るX線タルボ撮影装置の全体構成を表す図である。 線源格子や位相格子、吸収格子の概略平面図である。 X線検出器で2次元状に配列された変換素子等の拡大図である。 タルボ・ロー干渉計の原理を説明する図である。 位相格子が複数の小格子を並設させた状態で構成されていることを表す図である。 位相格子の隣接する2枚の小格子の各非スリット部が同じ格子周期で平行に並ぶように構成された例を表す図である。 位相格子の隣接する2枚の小格子の端部同士が離れ、小格子の各非スリット部が格子周期からずれた位置に配置された場合等を表す図である。 格子が走査される間に経路α1を通って図7のαの位置に入射するX線の強度変化を表すグラフである。 格子が走査される間に経路α1~α3を通って図7のαの位置に入射するX線の強度変化を表すグラフである。 格子が走査される間に図7のβの位置に入射する素通しのX線の強度が一定になることを表わす図である。 格子が走査される間に経路β1~β3を通って図7のβの位置に入射するX線の強度変化を表すグラフである。 格子が走査される間に経路γ1、γ3を通って図7のγの位置にそれぞれ入射するX線の強度変化を表すグラフである。 格子が走査される間に経路γ1~γ3を通って図7のγの位置に入射するX線の強度変化を表すグラフである。 図7の配置において変換素子が配置される可能性がある位置A~Gを表した図である。 線欠陥が2本連続して発生した状態を表す図である。 小格子の端部同士を非常に接近させた場合に2枚の小格子をそれぞれ透過したX線がいずれもが入射する範囲等を表す図である。第2の実施形態に係るX線タルボ撮影装置の構成を表す図である。 図13の状態から小格子同士の間隔を拡げると上記の範囲が狭まること等を表す図である。 位相格子の小格子同士の間隔x1がとり得る範囲の下限値となる場合の各小格子や線源格子、X線検出器の位置関係等を表す図である。 図15の状態におけるX線検出器上での範囲RとX線検出器の変換素子との位置関係の例を表す図である。 図15の状態におけるX線検出器上での範囲RとX線検出器の変換素子との位置関係の例を表す図である。 図15の状態から小格子同士の間隔をさらに拡げた状態を表す図である。 図17の状態におけるX線検出器上での範囲RとX線検出器の変換素子との位置関係の例を表す図である。 図17の状態におけるX線検出器上での範囲RとX線検出器の変換素子との位置関係の例を表す図である。 位相格子の小格子同士の間隔x1がとり得る範囲の上限値となる場合のX線検出器上での範囲RとX線検出器の変換素子との位置関係を表す図である。 位相格子の小格子同士の間隔x1がとり得る範囲の上限値となる場合の各小格子や線源格子、X線検出器の位置関係等を表す図である。 位相格子を構成する各小格子の耳同士を当接させた状態を表す図である。 吸収格子の隣接する2枚の小格子の各非スリット部が同じ格子周期で平行に並ぶように構成された例を表す図である。 吸収格子の隣接する2枚の小格子の端部同士が離れ、小格子の各非スリット部が格子周期からずれた位置に配置された場合等を表す図である。 変換素子4H、4IがVisibility低下正常画素になることを説明する図である。 変換素子4Jが欠損画素になることを説明する図である。 吸収格子の小格子同士の間隔x2がとり得る範囲の下限値となる場合の各小格子や線源格子、X線検出器の位置関係等を表す図である。 吸収格子の小格子同士の間隔x2がとり得る範囲の上限値となる場合の各小格子や線源格子、X線検出器の位置関係等を表す図である。 関節部分が撮影された微分位相画像の例、および画像中に撮影されている関節部分の軟骨を示す写真である。 小格子を並設して位相格子を構成する際に小格子の端部の部分においても格子周期が維持されるように構成された状態を表す拡大図である。
 以下、本発明に係るX線タルボ撮影装置の実施の形態について、図面を参照して説明する。
 なお、以下では、後述する図1に示すように、X線タルボ撮影装置1が、上側に設けられたX線発生装置11から下方の被写体Hに向けてX線を照射するように構成されている場合(いわゆる縦型の場合)について説明するが、これに限らず、X線を水平方向(いわゆる横型の場合)に照射するなど任意の方向に照射するように構成することも可能である。
[X線タルボ撮影装置の全体構成について]
 図1は、本実施形態に係るX線タルボ撮影装置1の全体構成を表す図である。本実施形態では、X線タルボ撮影装置1は、X線発生装置11と、線源格子(G0格子、マルチスリット等ともいう。)G0と、被写体台13と、位相格子(G1格子、第1格子等ともいう。)G1と、吸収格子(G2格子、第2格子等ともいう。)G2と、X線検出器14と、コントローラー16とを備えている。
 X線発生装置11は、例えば回転陽極等を備える一般的なX線源を用いることが可能である。また、X線発生装置11の下方には、線源格子G0が配置されている。本実施形態では、X線発生装置11の振動が線源格子G0に伝わらないようにするために、線源格子G0は、X線発生装置11ではなく、取付用アーム12を介して支柱15に取り付けられている。
 本実施形態では、図2に示すように、線源格子G0や後述する位相格子G1、吸収格子G2には、複数のスリットSと非スリット部Snとが図中のy方向に延在するように交互にかつ平行に形成されており、y方向に直交するx方向に所定の格子周期dで配列されている。なお、この点については後で詳しく説明する。また、図2では、スリットSを見やすくするために、格子全体の大きさに対してスリットSの幅や格子周期dが非常に大きく表現されている。さらに、図2におけるTについては後で説明する。
 図1に示すように、本実施形態では、取付用アーム12には、線源格子G0のほかに、線源格子G0を透過したX線の線質を変えるためのろ過フィルター(付加フィルターともいう。)112や、X線の照射野を絞るための照射野絞り113、X線の照射前に可視光を被写体Hに照射して位置合わせを行うための照射野ランプ114等が取り付けられている。また、線源格子G0等の周囲には、それらを保護するための第1のカバーユニット120が設けられている。
 X線発生装置11と位相格子G1との間には、被写体Hである患者の身体(手指の関節等の撮影部位)を載置するための被写体台13が配置されている。なお、被写体Hの体動を防止するために被写体Hを固定する図示しない固定装置を被写体台13上に配置することも可能である。また、被写体HをX線発生装置11と位相格子G1との間に配置する代わりに(すなわち被写体台13をX線発生装置11と位相格子G1との間に設ける代わりに)、位相格子G1と吸収格子G2との間に配置するように構成することも可能である。
 本実施形態では、図1に示すように、被写体台13の下方に位相格子G1および吸収格子G2が配置されており、吸収格子G2の直下に、X線検出器14が配置されている。本実施形態では、図3の拡大図に示すように、X線検出器14は、2次元状に配列された複数の変換素子4を備えており、後述するように吸収格子G2上に形成されるモアレ画像を撮影するようになっている。
 具体的には、図3に示すように、X線検出器14内には、複数の走査線2と複数の信号線3とが互いに交差するように配設されており、走査線2と信号線3とで区画される小領域にそれぞれ変換素子4が設けられている。そして、各変換素子4はそれぞれTFT(Thin Film Transistor)5を介して信号線3と接続されており、また、各変換素子4には、逆バイアス電圧を印加するためのバイアス線6が接続されている。
 そして、X線検出器14は、撮影したモアレ画像の画像データをコントローラー16(図1参照)に出力するようになっている。また、本実施形態では、位相格子G1や吸収格子G2、X線検出器14の周囲には、それらを患者の脚等から保護するための第2のカバーユニット130が配置されている。
 なお、本実施形態では、X線タルボ撮影装置1は、いわゆる縞走査法によりモアレ画像を複数枚撮影するように構成されており、線源格子G0や位相格子G1、吸収格子G2を相対的に図中のx方向に移動(走査)させながらそれぞれX線を照射して撮影を行うようになっている。その際、線源格子G0、位相格子G1、吸収格子G2のいずれを移動させてもよい。そして、その際、例えばn枚のモアレ画像を撮影する場合には、図示しない移動機構により、前述した格子周期d(図2や図29参照)をn等分した距離ずつ格子を移動させながら撮影を行うように構成される。
 コントローラー16は、本実施形態では、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)、入出力インターフェース等がバスに接続されたコンピューターで構成されているが、このような汎用コンピューターではなく専用装置として構成することも可能である。
 そして、コントローラー16は、上記のようにしてX線検出器14からモアレ画像の画像データが送信されてくると、それらを再構成して前述したように吸収画像や微分位相画像、小角散乱画像等の再構成画像を生成するようになっている。なお、コントローラー16から外部の画像処理装置にモアレ画像の画像データを転送して、外部の画像処理装置で、吸収画像や微分位相画像、小角散乱画像等の再構成画像を生成するように構成することも可能である。
[タルボ・ロー干渉計の原理について]
 次に、本実施形態に係るX線タルボ撮影装置1に用いられているタルボ・ロー干渉計の原理について図4に基づいて説明する。
 なお、この原理では、位相格子G1や吸収格子G2は、複数の小格子を並設させるのではなく、1枚の格子として形成されている場合について説明する。また、図4や後述する各図では、X線発生装置11やX線検出器14(図1参照)等の記載が省略されている。さらに、図4等では、線源格子G0や位相格子G1、吸収格子G2における格子周期d(図2参照)の相対的な大きさは、必ずしも現実を反映するものではない。
 また、図4等では、線源格子G0にスリットSが3本しか形成されていない場合が示されているが、実際にはより多くのスリットSが設けられる。さらに、図4等では、線源格子G0の各スリットSを透過し吸収格子G2の3本の非スリット部Snにそれぞれ入射するX線の経路のみが記載されており、他の非スリット部Snに入射するX線の経路の記載が省略されている。
 図4に示すように、線源格子G0や位相格子G1、吸収格子G2には、複数のスリットSと非スリット部Snとが図中のy方向に延在するように交互にかつ平行に形成されている。そして、非スリット部Sn(スリットS)は、図中のx方向に、線源格子G0や位相格子G1、吸収格子G2においてそれぞれ所定の格子周期d(図2参照)で配列されている。
 そして、図4では図示を省略したX線発生装置11の焦点11a(図の線源格子G0の上方にある。)からX線が照射されると、X線が線源格子G0を透過する際に各スリットSで多光源化され、各スリットSから位相格子G1にそれぞれX線が照射される。そして、それらのX線が位相格子G1を透過すると、透過したX線が、位相格子G1から図中z方向に所定の距離だけ離れた位置で像を結ぶ。この像を自己像といい、このように自己像が図中z方向に一定の周期で形成される現象をタルボ効果という。
 そして、位相格子G1の自己像が像を結ぶ位置に、位相格子G1の自己像と同じ周期の格子周期dでスリットSや非スリット部Snが形成された吸収格子G2を配置すると、図示を省略するが、吸収格子G2上に、モアレ縞を有するモアレ画像が現れる。また、図1に示したように、線源格子G0と位相格子G1との間(或いは位相格子G1と吸収格子G2との間)に被写体Hが存在すると、被写体HによってX線に位相差が生じるため、モアレ画像上のモアレ縞が被写体Hにより乱れる。
 そして、モアレ画像を上記の縞走査法を用いて例えば位相格子G1を移動(走査)させながら複数枚撮影し、それらを画像処理することによってこのモアレ縞の乱れを検出し、被写体像を再構成して画像化(すなわち吸収画像や微分位相画像、小角散乱画像等の再構成画像の生成)することが可能となる。これがタルボ干渉計の原理である。
 なお、上記では、位相格子G1の自己像が像を結ぶ位置に位相格子G1の自己像と同じ周期の格子周期dでスリットSや非スリット部Snが形成された吸収格子G2を配置するとして説明したが、吸収格子G2の格子周期dは位相格子G1の自己像の周期と厳密に同じである必要はない。また、吸収格子G2を配置する位置は、必ずしも位相格子G1の自己像が像を結ぶ位置でなくてもよく、位相格子G1の自己像と吸収格子G2の自己像との間で発現するモアレ縞のVisibilityが十分保たれている位置であればよい。
[第1の実施の形態]
[位相格子を複数の小格子を並設させた状態で構成した場合についての考察]
 次に、本発明の第1の実施形態として、X線タルボ撮影装置1の位相格子G1を複数の小格子を並設させた状態で構成した場合について説明する。具体的には、本実施形態では、X線タルボ撮影装置1の位相格子G1は、図5に示すように、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1を並設させた状態で構成されている。
 なお、図5および下記の各図では、位相格子G1を構成する小格子g1として隣接する2枚の小格子g1a、g1bのみを用いて説明するが、これは、本発明が、位相格子G1が2枚の小格子g1a、g1bのみで構成される場合に限定して適用されることを意味するものではなく、位相格子G1を3枚以上の小格子g1を並設させた状態で構成する場合も以下と同様に説明される。また、吸収格子G2等を、複数の小格子を並設して構成することも可能である。
 また、本実施形態では、複数の小格子を並設させた位相格子G1が平板状になるように構成した場合について説明するが、例えば前述した特許文献1や特許文献2に記載されているように、位相格子G1がいわば湾曲した状態になるように複数の小格子を並設させるように構成することも可能であり、本発明には、この場合も含まれる。
 いま仮に、例えば図6に示すように、位相格子G1を構成する隣接する2枚の小格子g1a、g1bの各非スリット部Sn(或いはスリットS)が、同じ格子周期で平行に並ぶように構成されている場合には、位相格子G1(小格子g1a、g1b)の自己像と同じ周期で吸収格子G2の非スリット部Sn(或いはスリットS)が配置される状態になる。そのため、この場合は、図4に示した1枚の位相格子G1の場合と同様に問題なくモアレ画像を撮影することができる。
 次に、例えば図7に示すように、位相格子G1を構成する隣接する2枚の小格子g1a、g1bの端部同士が離れ、しかも、小格子g1bの各非スリット部Snが、小格子g1aの非スリット部Snの格子周期(図中に二点鎖線で示す。)からずれた位置に配置された場合について考察する。
[現象1-入射するX線が全ての経路で一方の小格子を透過する場合]
 この場合、吸収格子G2のαの位置の非スリット部Snには、線源格子G0の3本のスリットSから出射されたX線が、図中のα1、α2、α3の各経路を通り、いずれも小格子g1aの非スリット部SnやスリットSを透過して入射する。
 そして、上記のように線源格子G0や位相格子G1、吸収格子G2のいずれか(例えば位相格子G1)を相対的に図中のx方向に格子周期dをn等分した距離ずつ移動(走査)させながらX線をn回照射すると、例えば経路α1を通るX線は、上記の走査により、小格子g1aの非スリット部Snを透過したりスリットSを透過したりするようになる。そのため、経路α1を通って吸収格子G2のαの位置に入射するX線の強度I1は、X線の照射回数k(k=0~n)を横軸に取ると、上記のように格子が走査される間に、例えば図8Aに示すようにサインカーブを描くように変化する。
 そして、経路α2、α3を通って吸収格子G2のαの位置に入射するX線の強度も、図8Aに示した経路α1を通って吸収格子G2のαの位置に入射するX線の強度の変化と同じ周期で、かつ同じ位相で変化する。そのため、この場合は、経路α1~α3を通って吸収格子G2のαの位置に入射するX線が互いに強め合うため、吸収格子G2のαの位置に入射するX線の強度Iは図8Bに示すように振幅が大きくなる。
[現象2-入射するX線が一部の経路では一方の小格子を透過し、他の経路では素通しの場合]
 また、例えば図7に示した吸収格子G2のβの位置の非スリット部Snには、線源格子G0の3本のスリットSから出射されたX線が、図中のβ1、β2、β3の各経路を通って入射する。その際、経路β1、β2を通ってβの位置に入射するX線は、いずれも小格子g1aの非スリット部SnやスリットSを透過して入射するため、その強度は、上記のように格子が走査される間に、図8Aに示した強度I1のグラフと同じように変化する。
 しかし、経路β3を通ってβの位置に入射するX線は、小格子g1a、g1bのいずれの小格子g1の非スリット部Snも透過せず、いわば素通しの状態になる。そのため、図9Aに示すように、経路β3を通ってβの位置に入射するX線の強度I3は、上記のように格子が走査される間、一定値Iconになる。
 そのため、この場合は、経路β1~β3を通って吸収格子G2のβの位置に入射するX線の強度Iは、図9Bに示すように、経路β1、β2を通ってβの位置に入射するX線が互いに強め合うとともに、経路β3を通って入射したX線の一定の強度IconのX線の分だけ全体的に上方にシフトしたようなグラフになる。なお、図9Bに示した強度Iは、図8Bに示した強度Iと同じ周期で、かつ同じ位相で変化する状態になる。
[現象3-入射するX線が一部の経路では一方の小格子を透過し、他の経路では他方の小格子を透過する場合]
 また、例えば図7に示した吸収格子G2のγの位置の非スリット部Snには、線源格子G0の3本のスリットSから出射されたX線が、図中のγ1、γ2、γ3の各経路を通って入射するが、その際、経路γ1を通ってγの位置に入射するX線は、一方の小格子g1aの非スリット部SnやスリットSを透過して入射するため、その強度は、上記のように格子が走査される間に、図8Aに示した強度I1のグラフと同じように変化する。
 また、経路γ2を通ってγの位置に入射するX線は、小格子g1a、g1bのいずれの小格子g1の非スリット部Snも透過せず、いわば素通しの状態になるため、図9Aに示したように、経路γ2を通ってγの位置に入射するX線の強度は、上記のように格子が走査される間、一定値になる。
 一方、経路γ3を通ってγの位置に入射するX線は、他方の小格子g1bの非スリット部SnやスリットSを透過して入射する。そのため、その強度I3は、図10Aに示すように、上記のように格子が走査される間にサインカーブを描くように変化する。
 しかし、その際、強度I3(図10A中の実線参照)は、図8Aに示した経路γ1を通って吸収格子G2のγの位置に入射するX線の強度(図10A中の一点鎖線参照)の変化と周期は同じだが(一方の小格子g1aと他方の小格子g1bとで格子周期dが同じであるため。)、図7に示したように他方の小格子g1bの各非スリット部Snが一方の小格子g1aの非スリット部Snの格子周期(図中の二点鎖線参照)からずれた位置に配置されているため、その分だけ位相がずれる。
 そのため、強度Iの位相がずれたX線が吸収格子G2のγの位置(図7参照)に入射し、それらが足し合わされるため、図10Bに示すように、上記のように格子が走査される間に吸収格子G2のγの位置で観測されるX線の強度Iは、一方の小格子g1aを透過したX線の強度I3の位相(図10A中の実線参照)と、他方の小格子g1bを透過したX線の強度I3の位相(図10A中の二点鎖線参照)のいずれとも異なる位相のサインカーブを描くように変化することになる。なお、吸収格子G2のγの位置には経路γ2を通ったX線も入射するため、グラフがその分だけ全体的に上方にシフトしている。
[吸収格子のδの位置について]
 また、例えば図7に示した吸収格子G2のδの位置の非スリット部Snには、X線が図中のδ1、δ2、δ3の各経路を通って入射する。そして、この場合、経路δ1を通ってδの位置に入射するX線は素通しの状態になるため、経路δ1を通ってδの位置に入射するX線の強度は、上記のように格子が走査される間、図9Aに示したグラフと同様に一定値になる。また、経路δ2、δ3を通ってδの位置に入射するX線は、いずれも小格子g1bの非スリット部SnやスリットSを透過して入射するため、その強度は、上記のように格子が走査される間に、図10Aに実線で示したグラフと同じように変化する。
 そのため、この場合、経路δ1~δ3を通って吸収格子G2のδの位置に入射するX線の強度Iは、上記の[現象2]の場合と同様になる。すなわち、図示を省略するが、経路δ2、δ3を通ってδの位置に入射するX線が互いに強め合うとともに、経路δ1を通って入射したX線の一定の強度のX線の分だけ全体的に上方にシフトしたようなグラフになる。なお、この場合、強度Iは、図10Aに実線で示した強度I3と同じ周期で、かつ同じ位相で変化する状態になる。
[吸収格子のεの位置について]
 また、例えば図7に示した吸収格子G2のεの位置の非スリット部Snには、経路の図示を省略するが、いずれも小格子g1bの非スリット部SnやスリットSを透過して入射する。そのため、吸収格子G2のεの位置に入射するX線の強度の変化はいずれも同じ周期で、かつ同じ位相で変化する(図10Aの実線参照)。
 そのため、この場合は、図7に示した吸収格子G2のαの位置の非スリット部Snの場合と同様に、吸収格子G2のεの位置に入射するX線が互いに強め合うため、吸収格子G2のεの位置に入射するX線の強度Iは振幅が大きくなる。そのため、この場合は、上記の[現象1]の場合と同様になる。
 なお、図示を省略するが、この場合は、図7に示した吸収格子G2のαの位置の非スリット部Snの場合を表す図8Bと同様に、X線の強度変化の振幅は大きくなるが、X線の強度変化の位相が、図8Bと同位相の図10Aの一点鎖線ではなく、図10Aの実線で示したグラフと同じ位相になり、かつ、その振幅が大きくなる。
[各現象のまとめ]
 以上のことから、以下のように結論付けることができる。
(a)図7に示した吸収格子G2のαの位置(上記の[現象1]参照)やεの位置の非スリット部Snの場合のように、線源格子G0の各スリットSから吸収格子G2の1つの非スリット部Sn(或いはスリットS)に入射するX線が、全ての経路で同じ小格子g1を透過する場合には、X線が互いに強め合い、入射するX線の強度Iは振幅が大きくなる(図8B参照)。
(b)図7に示した吸収格子G2のβの位置(上記の[現象2]参照)やδの位置の非スリット部Snの場合のように、線源格子G0の各スリットSから吸収格子G2の1つの非スリット部Sn(或いはスリットS)に入射するX線が、一部の経路では1つの小格子g1を透過し、他の経路では素通しの場合には、小格子g1を透過したX線同士は互いに強め合うが、素通しのX線の強度が一定になる分だけX線の強度Iが上方にシフトする(図9B参照)。
(c)図7に示した吸収格子G2のγの位置(上記の[現象3]参照)の非スリット部Snの場合のように、線源格子G0の各スリットSから吸収格子G2の1つの非スリット部Sn(或いはスリットS)に入射するX線が、一部の経路では一方の小格子g1(例えば小格子g1a)を透過し、他の経路では他方の小格子g1(例えば小格子g1b)を透過する場合、一方の小格子g1aを透過したX線と他方の小格子g1bを透過したX線とでは、強度Iの変化の位相が異なる。
 そのため、この場合は、図10Bに示したように、それらが足し合わされたX線の強度Iは、一方の小格子g1aを透過したX線の強度I3の位相(図10A中の実線参照)と、他方の小格子g1bを透過したX線の強度I3の位相(図10A中の二点鎖線参照)のいずれとも異なる位相のサインカーブを描くように変化するようになる。
[X線検出器で吸収格子上のモアレ画像を撮影する場合についての考察]
 次に、X線タルボ撮影装置1の位相格子G1や吸収格子G2等で上記のような各現象が生じている場合に、吸収格子G2上に形成されるモアレ画像をX線検出器14(図1参照)で撮影する場合について考察する。なお、以下では、X線検出器14の変換素子4(図3参照)を画素という場合がある。
 前述したように、吸収格子G2の格子周期d(図2等参照)は数μmオーダーであるのに対し、X線検出器14の各変換素子4(図3参照)の大きさ(すなわちいわゆる画素サイズ)は数十μmから100μm程度である。そのため、X線検出器14の1つの変換素子4には、吸収格子G2の非スリット部数本から数十本分の種々の強度Iを有するX線が入射する。
 以下、説明を簡単にするために、X線検出器14の1つの変換素子4に、吸収格子G2の非スリット部3本分のX線が入射するとして説明する。この場合、吸収格子G2に対する変換素子4の配置次第で、変換素子4から読み出される信号値の状態が変わり、コントローラー16(図1参照)や外部の画像処理装置における画像補正処理の際の変換素子4(すなわち画素)の扱いが変わる。
[変換素子が正常画素として扱われる場合]
 いま、X線タルボ撮影装置1における各格子の構成が前述した図7に示した状態と同じ状態(図11参照)である場合に、図11中のAで示される位置に変換素子4が配置されたとすると、変換素子4に対応する吸収格子G2の位置の非スリット部Snは全て前述したαの位置の非スリット部Snである。
 そして、αの位置では、図8Bに示したように、変換素子4に入射する各X線の強度Iの変化はいずれも同じ周期で、かつ同じ位相であるため、少なくとも互い打ち消し合うことはなく、上記のように格子が走査される間、サインカーブを描くように正常に変化する。そのため、変換素子4ではモアレ画像を正常に撮影することが可能(すなわち正常な信号値を読み出すことが可能)となる。以下、このようにモアレ画像を正常に撮影することが可能な変換素子4を正常画素という。
 そして、このように、吸収格子G2の各非スリット部Snを介して変換素子4に入射する全てのX線が、それらの強度が同じ周期で、かつ同じ位相で変化する場合、当該変換素子4は、モアレ画像を正常に撮影することが可能(すなわち正常な信号値を読み出すことが可能)な画素である正常画素として扱われる。
[変換素子がVisibility低下正常画素として扱われる場合]
 次に、図11中のBで示される位置に変換素子4が配置されたとすると、変換素子4に対応する吸収格子G2の位置の非スリット部Snの一部は前述したαの位置の非スリット部Snであり、他は前述したβの位置の非スリット部Snである。
 そして、この場合は、前述したように、βの位置の非スリット部Snを介して変換素子4に入射するX線には前述した素通しのX線が含まれるため、その分、変換素子4に入射するX線の強度Iはやや上方にシフトするが(図9B参照)、変換素子4に入射する各X線の強度Iの変化はいずれも同じ周期で、かつ同じ位相である。
 そのため、この場合も、変換素子4に入射する各各X線は、少なくとも互いに打ち消し合うことはなく、上記のように格子が走査される間、サインカーブを描くように正常に変化する。そのため、変換素子4ではモアレ画像を正常に撮影することが可能(すなわち正常な信号値を読み出すことが可能)となる。
 しかし、この場合は、上記の[各現象のまとめ]の(b)の場合と同様に、変換素子4に入射するX線に素通しのX線が含まれるため、変換素子4に入射するX線の強度Iがやや上方にシフトする。そのため、その分だけ変換素子4に入射するX線の平均強度が上昇してVisibilityが低下するため、前述したようにして再構成されて生成される微分位相画像や小角散乱画像において、図11中のBで示される位置に配置された変換素子4に対応する画素のS/N比が、図11中のAで示される位置に配置された変換素子4に対応する画素のS/N比よりも悪くなる。
 このように、モアレ画像を正常に撮影することが可能であるがVisibilityが低下する変換素子4を、以下、Visibility低下正常画素という。そして、このようなVisibility低下正常画素は、コントローラー16等で行われる画像補正処理では、上記の正常画素と同様に扱われるが、Visibility低下正常画素とされた変換素子4から読み出された信号値に対しては、必要に応じてノイズ除去等の処理が行われる。
[変換素子が欠損画素として扱われる場合]
 一方、図11中のCで示される位置に変換素子4が配置されたとすると、変換素子4に対応する吸収格子G2の位置の非スリット部Snの一部は前述したαの位置の非スリット部Snであり、一部は前述したβの位置の非スリット部Snであり、残りの一部は前述したγの位置の非スリット部Snである。
 この場合、変換素子4に入射するX線には、上記のように格子が走査される間、図10Aに一点鎖線で示したように強度Iが変化するX線(すなわちαの位置の非スリット部Snを介して入射するX線であり、小格子g1aを透過したX線)と、図10Aに実線で示したように強度Iが変化するX線(すなわちγの位置の非スリット部Snを介して入射するX線であり、小格子g1bを透過したX線)とが同時に入射する。
 そのため、この場合は、上記の[各現象のまとめ]の(c)の場合と同様に、変換素子4に入射する各X線の強度Iの変化の位相が異なるため、強度Iの変化の位相が異なるX線が同一の変換素子4に入射して足し合わされることで、その変換素子4で観測されるX線の強度Iの変化が、一方の小格子g1aを透過したX線の強度I3の位相と他方の小格子g1bを透過したX線の強度I3の位相のいずれとも異なる位相のサインカーブを描くように変化するようになる。
 そして、このように他の変換素子4で検出されるX線の強度Iの位相の変化とは異なる位相でX線の強度Iが変化する場合、その変換素子4ではモアレ画像を適切に撮影することができなくなり、モアレ画像に基づいて再構成された微分位相画像や小角散乱画像では、当該画素の部分で画像を適切に形成することができなくなる。すなわち、その画素では、画像が欠損した状態になる。
 このように、2枚の小格子g1a、g1bをそれぞれ透過した各X線が入射してX線の強度Iの変化が他の変換素子4での位相(すなわち一方の小格子g1aを透過したX線の強度Iの位相、或いは他方の小格子g1bを透過したX線の強度Iの位相)とは異なる位相になってしまい、モアレ画像や微分位相画像、小角散乱画像等で画像が欠損してしまう可能性がある変換素子4を、以下、欠損画素という。そして、このような欠損画素については、コントローラー16等における画像補正処理では、例えばその周囲の画素の信号値等を用いて補間する等して画像補正が行われる。
[変換素子がD~Gの位置に配置された場合]
 なお、図11中のD、Eで示される位置に変換素子4が配置された場合には、変換素子4には、小格子g1a、g1bをそれぞれ透過した各X線が入射するため、いずれの場合も、変換素子4は欠損画素ということになる。
 また、図11中のFで示される位置に変換素子4が配置された場合には、変換素子4には、素通しのX線と小格子g1bを透過したX線とが入射するため、この場合、変換素子4はVisibility低下正常画素ということになる。
 さらに、図11中のGで示される位置に変換素子4が配置された場合には、変換素子4に入射するX線は全て小格子g1bを透過したX線であるため、この場合、変換素子4は正常画素ということになる。
[位相格子を構成する小格子同士の間隔について]
 次に、上記の考察に基づいて、本実施形態に係るX線タルボ撮影装置1の位相格子G1を構成する小格子g1のうち、隣接する小格子g1a、g1b同士の間隔が満たすべき条件がどのような条件であるかについて説明する。その際、以下の各点を考慮することが必要になる。
(A)前述した欠損画素は、位相格子G1を構成する小格子g1a、g1bの端部同士の間隙に沿って線状に生じる(すなわちいわゆる線欠陥が生じる)可能性があり、その場合には、前述したように、コントローラー16等での画像補正処理の際に線欠陥の画素の信号値等を用いて補間する等して画像補正が行われる。そして、例えば図12に示すように線欠陥が連続して生じた場合は(ラインLn、Ln+1参照)、その周囲のラインLn-1やラインLn+2上の各画素の信号値を用いて線形補間する等して、線欠陥が生じているラインLn,Ln+1上の欠損画素の信号値を補正する。
 しかし、その際、例えば、ラインLn,Ln+1上の欠損画素の部分に前述した患者の手指等の関節部分の軟骨(図28中の矢印参照)が撮影されており、ラインLn-1やラインLn+2上の各画素には軟骨が撮影されていない場合に、上記のように補間処理を行ってしまうと、ラインLn,Ln+1上の欠損画素の部分に撮影されていたはずの軟骨が、軟骨が撮影されていないラインLn-1、Ln+2上の各画素の信号値を用いて補間される際に消えてしまい、微分位相画像中に軟骨が撮影されていない状態になってしまう。なお、欠損画素が3ライン以上連続する場合にはその可能性がより高くなる。
 そのため、欠損画素(すなわち線欠陥)が生じるとしても、多くても1ライン分に留める前提として考慮しなければならない。線欠陥が1ライン分であれば、上記のように補間処理を行っても、少なくとも微分位相画像中から軟骨がなくなってしまうことはない。
(B)上記のように欠損画素は、位相格子G1を構成する隣接する2枚の小格子g1a、g1bをそれぞれ透過した各X線が1つの変換素子4に入射することによって生じる。その際、例えば図6に示したように2枚の小格子g1a、g1bの各非スリット部Snが同じ格子周期で平行に並ぶ場合もないわけではないが、最悪の場合を想定して、2枚の小格子g1a、g1bをそれぞれ透過した各X線が1つの変換素子4に入射する場合には、一律に、そのような変換素子4は欠損画素として扱われる。
 また、例えば、小格子g1aと小格子g1bとの間隔が開け過ぎていて、変換素子4に前述した素通しのX線(すなわち小格子g1a、g1bのいずれも透過していないX線)のみが入射する場合もあり得る。そして、その場合も、変換素子4ではモアレ画像を撮影することができないため、そのような変換素子4も欠損画素として扱われる。
 以上の各点を踏まえた上で、本実施形態に係るX線タルボ撮影装置1の位相格子G1を構成する小格子g1のうち、隣接する小格子g1a、g1b同士の間隔が満たすべき条件について考察する。
 上記の間隔は、正確には、位相格子G1を構成する複数の小格子g1のうち、隣接する2枚の小格子g1a、g1bの各非スリット部Snの中で、相手方の小格子に最も近い位置に形成されている非スリット部Sn同士の間隔(以下、この間隔をx1とする。)である。すなわち、この間隔x1は、図6や図7では、小格子g1aの図中最も右側の非スリット部Snと、小格子g1bの図中最も左側の非スリット部Snとの間隔である。なお、以下、簡単に小格子g1a、g1b同士の間隔x1という。
 図13や以下の各図において、SlとSrをそれぞれ線源格子G0に形成されている各スリットSのうち最も外側の位置に形成されているスリットとすると、例えば図13に示すように、位相格子G1を構成する小格子g1a、g1bの端部同士を非常に接近させた場合(すなわち小格子g1a、g1b同士の間隔x1≒0)、X線検出器14の図中Rで示す範囲には、小格子g1aを透過したX線と小格子g1bを透過したX線のいずれもが入射するため、この範囲Rの部分を撮影する変換素子4は欠損画素になる。なお、図13以下の各図では、図を見やすくするために、変換素子4が実際より非常に大きく記載されている。
 また、小格子g1a、g1b同士の間隔x1を拡げていくと、図14に示すように、X線検出器14上の上記の範囲Rは狭まっていくが、範囲Rの部分が図14に示すようにX線検出器14の2つの変換素子4A、4Bで撮影される可能性があり、2つの変換素子4A、4B(実際には紙面に直交する方向に延在する2列の変換素子4)とも欠損画素になってしまう可能性がある。
 そのため、この場合は、図12に示したように、線欠陥が2本(すなわち2画素分)連続して生じてしまう可能性がある。そして、上記の範囲Rの幅が0にならない限り、線欠陥が2本連続して生じる可能性がなくならない。そのため、線欠陥が2本連続して生じることがないようにするためには、上記の小格子g1a、g1b同士の間隔x1を図15に示す状態まで拡げる必要がある。すなわち、図15に示す状態における間隔x1が、上記の小格子g1a、g1b同士の間隔x1の下限値x1minになる(この場合、上記の範囲Rの幅は0になる。)。
 そして、間隔x1の下限値x1minは、図15に示すように、線源格子G0と位相格子G1との距離をz1、線源格子G0とX線検出器14の変換素子4との距離をzd、線源格子G0に形成されているスリットのうち最も外側の位置に形成されているスリットSl、Sr同士の間隔をDsとするとき、
  x1min:Ds=(zd-z1):zd
 ∴x1min=Ds×(zd-z1)/zd  …(3)
を演算することにより算出することができる。
 そして、この場合、図16Aに示すように、上記のX線検出器14上の範囲R(幅は0)の変換素子4Dには、2枚の小格子g1a、g1bをそれぞれ透過した各X線が入射するため、変換素子4Dは欠損画素になる。しかし、変換素子4Dに隣接する変換素子4Cや変換素子4Dに隣接する変換素子4Eに、2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射することはないため、変換素子4C、4Eは少なくとも欠損画素にはならない。そのため、この場合、線欠陥は1本(すなわち1画素分)しか生じない。
 また、図16Bに示すように、2つの変換素子4F、4Gの境界部分が吸収格子G2上の範囲R(幅は0。すなわち、この場合、範囲RはX線の境界を表す線になる。)の直下に位置する場合、変換素子4Fや変換素子4Gに、2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射することはない。そのため、変換素子4F、4Gは少なくとも欠損画素にはならない(変換素子4F、4GはVisibility低下正常画素になる。)。そのため、この場合は、欠損画素は発生せず、線欠陥も発生しない。
 このように、上記のように構成すれば、少なくとも図12に示したように線欠陥が2本連続して生じてしまうような事態が生じることは確実に防止される。
 次に、上記の小格子g1a、g1b同士の間隔x1の上限値x1maxについて説明する。図15に示した状態から、小格子g1a、g1b同士の間隔x1をさらに開いていくと、図17に示す状態になる。その際、図中Rで示す範囲には、X線が小格子g1a、g1bのいずれも透過せず素通しの状態で照射される。
 そして、この場合、図18Aに示すように、上記のX線検出器14上の範囲Rが1つの変換素子4D内に収まる場合、変換素子4Dには2枚の小格子g1a、g1bをそれぞれ透過した各X線が入射するため、変換素子4Dは欠損画素になる。しかし、変換素子4Dに隣接する変換素子4Cや変換素子4Eに、2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射することはない。そのため、変換素子4C、4Eは少なくとも欠損画素にはならない(変換素子4C、4EはVisibility低下正常画素になる。)。そのため、この場合、線欠陥は1本しか生じない。
 また、図18Bに示すように、上記のX線検出器14上の範囲Rが2つの変換素子4F、4Gに跨るように位置する場合、変換素子4Fや変換素子4Gに、2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射することはない。そのため、変換素子4F、4Gは少なくとも欠損画素にはならない。そのため、この場合は、欠損画素は発生せず、線欠陥も発生しない。
 そして、小格子g1a、g1b同士の間隔x1を図17に示した状態からさらに開いていき、小格子g1a、g1b同士の間隔x1をどこまで拡げることが可能か、すなわちその間隔x1の上限値x1maxはどのような状態かを考えると、図18Bに示した状態から間隔x1をさらに拡げていき、図19に示すように、隣接する2つの変換素子4F、4Gのいずれにも素通しのX線しか入射しなくなる場合(すなわち範囲Rの幅が2つの変換素子4の大きさと一致する場合)の間隔x1が上限値x1maxということになる。
 なお、この場合、小格子g1a、g1b同士の間隔x1が上記の上限値x1maxになると、2つの変換素子4F、4Gのいずれにも素通しのX線しか入射しなくなって欠損画素になり、線欠陥が2本連続して発生することになる可能性があるため、小格子g1a、g1b同士の間隔x1は、上記の上限値x1max未満の範囲しか取ることができない。
 そして、間隔x1の上限値x1maxは、図20に示すように、線源格子G0と位相格子G1との距離をz1、線源格子G0とX線検出器14の変換素子4との距離をzd、線源格子G0に形成されているスリットのうち最も外側の位置に形成されているスリットSl、Sr同士の間隔をDs、変換素子2個分の大きさをPとするとき、
  (x1max-P):(Ds-P)=(zd-z1):zd
  x1max-P=(Ds-P)×(zd-z1)/zd
  x1max=P-P×(zd-z1)/zd+Ds×(zd-z1)/zd
 ∴x1max=P×z1/zd+Ds×(zd-z1)/zd  …(4)
を演算することにより算出することができる。
 従って、以上の考察から、本実施形態に係るX線タルボ撮影装置1のように、位相格子G1を、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1を並設させた状態で構成する場合、位相格子G1を構成する複数の小格子g1は、隣接する小格子g1a、g1b同士の間隔x1が、
  x1min≦x1<x1max  …(5)
すなわち、上記の(3)式および(4)式を用いて、
 Ds×(zd-z1)/zd≦x1<P×z1/zd+Ds×(zd-z1)/zd
                                   …(6)
で表される条件を満たす間隔になるように並設されているべきであることが分かる。
[効果]
 以上のように、本実施形態に係るX線タルボ撮影装置1によれば、位相格子G1は、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1を並設させた状態で構成されており、位相格子G1を構成する複数の小格子g1は、隣接する小格子g1a、g1b同士の間隔x1が上記(6)式で表される条件を満たす間隔になるように並設されている。
 そのため、複数の小格子g1を並設させて位相格子G1を構成することでモアレ画像や微分位相画像等の再構成画像に線欠陥(図12参照)が生じるとしても、線欠陥が2本以上連続して生じる状態にはならず、生じる線欠陥を1本以下に抑えることが可能となる。そのため、線欠陥を画像補正しても、例えば微分位相画像中に撮影されている患者の手指等の関節部分の軟骨(図28中の矢印参照)が画像補正処理により画像中から消えてしまうことを的確に防止することが可能となる。
 このように、本実施形態に係るX線タルボ撮影装置1によれば、複数の小格子g1を並設させて位相格子G1を構成することでモアレ画像や微分位相画像等の再構成画像に線欠陥(図12参照)が生じるとしても、撮影した複数のモアレ画像に基づいて再構成画像を適切に生成することが可能となる。すなわち、例えば上記のように患者の手指等の関節部分の軟骨を撮影した場合には、例えば図28に示したように微分位相画像中に軟骨を適切に撮影することが可能となる。
 なお、図15や図16Bに示したように、位相格子G1を構成する複数の小格子g1a、g1b同士の間隔x1を下限値x1minにした場合に、小格子g1aを透過したX線と小格子g1bを透過したX線との境界(図16BにおけるR参照)と、X線検出器14内の2つの変換素子4F、4Gの境界部分とが対応するようにX線検出器14が配置されていれば、2つの変換素子4F、4GはいずれもVisibility低下正常画素になるため、欠損画素は発生せず、線欠陥も発生しない。
 また、この場合、小格子g1a、g1b同士の間隔x1を拡げていっても、図18Bに示したように、変換素子4Fには小格子g1aを透過したX線と素通しのX線が入射し、変換素子4Gには小格子g1bを透過したX線と素通しのX線が入射するため、変換素子4F、4Gはいずれも前述したVisibility低下正常画素になる。そのため、この場合も、欠損画素は発生せず、線欠陥も発生しない。
 そのため、X線検出器14は、このように、2次元状に配列された複数の変換素子4のうち隣接する2つの変換素子4F、4Gの境界部分と、上記の間隔x1を下限値x1min(すなわちDs×(zd-z1)/zd(上記(6)式参照))にした場合(図15参照)に隣接する2枚の小格子g1a、g1bをそれぞれ透過したX線の境界Rとが対応するように配置されている(図16B参照)ことが好ましい。
 しかし、図16Bに示したように、X線検出器14を、隣接する2つの変換素子4F、4Gの境界部分と上記のX線の境界Rとが正確に対応するように配置することは必ずしも容易ではない。
 そして、図17に示したように、上記の間隔x1が下限値x1minよりも大きい場合、X線検出器14の変換素子4に、図18Aに示した変換素子4Dのように2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射してしまうと当該変換素子4は欠損画素とするしかないが、図18Aに示した変換素子4F、4Gのように、2枚の小格子g1a、g1bをそれぞれ透過した各X線が同時に入射することがない場合には、当該変換素子4は少なくとも欠損画素にはならない(変換素子4F、4GはいずれもVisibility低下正常画素になる。)。
 そこで、例えば、上記のように、上記の間隔x1が下限値x1minよりも大きくなるように小格子g1a、g1bが配置されている場合には、図18Bに示した変換素子4F、4Gのように、X線がいずれの小格子g1a、g1bも透過せずに素通しの状態で照射される範囲R内に、隣接する2つの変換素子4の境界部分が配置されていれば、それらの変換素子4は少なくとも欠損画素にはならず、線欠陥も発生しない。そのため、X線検出器14がこのように配置されていることが好ましい。
 一方、以上の考察では、小格子g1に形成される、スリットSや非スリット部Snが形成されていない、いわゆる格子の耳の部分(例えば図2に示した位相格子G1等の例におけるTで示されるような部分)については考察しなかったが、例えば、図21に示すように、各小格子g1a、g1bの耳T同士を当接させた際に、小格子g1a、g1b同士の間隔x1が上記の条件(上記(6)式参照)を満たす状態になるように耳Tをそれぞれ形成することが可能である。
 このように構成すれば、各小格子g1a、g1bの耳T同士を当接させるだけで、小格子g1a、g1b同士の間隔x1が上記の条件を満たすようにすることが可能となる。また、それとともに、上記のようにX線が素通しではなく、耳Tを透過して吸収格子G2(図21では不図示)に到達するようになる。
 そのため、例えば図9Aに示したX線の強度の一定値Iconが、X線が小格子g1の非スリット部Snを透過した場合の強度と同程度になり、X線が素通しする場合に比べて、X線検出部14の変換素子4に入射するX線の平均強度の上昇度合が低減されるためVisibilityの低下の度合の程度が抑えられ、当該変換素子4に対応する微分位相画像等の画素部分でのS/N比の悪化の程度をより低減することが可能となる。
[第2の実施の形態]
 次に、本発明の第1の実施形態として、X線タルボ撮影装置1の吸収格子G2(図1等参照)を複数の小格子を並設させた状態で構成した場合について説明する。具体的には、図示を省略するが、本実施形態では、第1の実施形態における位相格子G1(図5参照)の場合と同様に、吸収格子g2が、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g1を並設させた状態で構成されている。
 なお、本実施形態においても、複数の小格子を並設させた吸収格子G2が平板状になるように構成した場合について説明するが、例えば前述した特許文献1や特許文献2に記載されているように、吸収格子G2がいわば湾曲した状態になるように複数の小格子を並設させるように構成することも可能であり、本発明には、この場合も含まれる。
 そして、この場合も、上記の第1の実施形態の位相格子G1を構成する2枚の小格子g1a、g1bの場合と同様に考えることができる。
 すなわち、例えば図22に示すように、吸収格子G2を構成する隣接する2枚の小格子g2a、g2bの各非スリット部Sn(或いはスリットS)が、同じ格子周期で平行に並ぶように構成されていれば、位相格子G1の自己像と同じ周期で吸収格子G2の非スリット部Sn(或いはスリットS)が配置される状態になる。そのため、この場合は、図4に示した1枚の吸収格子G2の場合と同様に問題なくモアレ画像を撮影することができる。
 しかし、例えば図23に示すように、吸収格子G2を構成する隣接する2枚の小格子g2a、g2bの端部同士が離れ、しかも、小格子g2bの各非スリット部Snが、小格子g2aの非スリット部Snの格子周期(図中に二点鎖線で示す。)からずれた位置に配置された場合には注意が必要になる。
 すなわち、前述したように線源格子G0や位相格子G1、吸収格子G2を相対的に図中のx方向に移動させて走査させる場合、図23に示した吸収格子G2のαの位置とβの位置に入射するX線の強度は、同じ周期で、かつ同じ位相で変化する。
 また、吸収格子G2のγの位置には非スリット部Snがないため、モアレ縞が有効に形成されない。
 さらに、吸収格子G2のδの位置とεの位置に入射するX線の強度は同じ周期でかつ同じ位相で変化するが、吸収格子G2のαの位置やβの位置に入射するX線の強度の変化とは位相がずれる。
 そして、本実施形態においても、X線検出器14の変換素子4に、例えば図23に示した吸収格子G2のαの位置やβの位置に入射するX線(或いはδの位置とεの位置に入射するX線)のように、互いに同じ周期でかつ同じ位相で変化するX線のみが入射する場合には、その変換素子4は正常画素として扱うことができる。
 また、例えば図24に示す変換素子4H、4Iのように、吸収格子G2のαの位置やβの位置に入射するX線(或いはδの位置とεの位置に入射するX線)と、非スリット部Snがないγの位置を透過したX線とが入射する場合には、変換素子4H、4Iは、第1の実施形態の場合と同様に、モアレ画像を正常に撮影することは可能であるがVisibilityが低下するVisibility低下正常画素として扱われる。
 また、例えば図25に示す変換素子4Jのように、吸収格子G2のαの位置やβの位置に入射するX線と、δの位置とεの位置に入射するX線とが入射する場合には、それらのX線が変換素子4J上で足し合わされ、吸収格子G2のαの位置やβの位置に入射するX線の強度Iの位相と、δの位置とεの位置に入射するX線の強度Iの位相のいずれの位相とも異なる位相でX線の強度Iが変化するようになる。そのため、このような場合には、変換素子4Jは欠損画素として扱われる。
 以上のことを前提として、第1の実施形態の場合(図13~図20参照)と同様に考えると、図26に示すように、小格子g2a、g2b同士の間隔(正確には吸収格子G2を構成する複数の小格子のうち隣接する2枚の小格子g2a、g2bの各非スリット部Snの中で相手方の小格子に最も近い位置に形成されている非スリット部Sn同士の間隔)をx2、線源格子G0と吸収格子G2との距離をz2、線源格子G0とX線検出器14の変換素子4との距離をzd、線源格子G0に形成されているスリットのうち最も外側の位置に形成されているスリットSl、Sr同士の間隔をDsとするとき、間隔x2の下限値x2minは、
  x2min:Ds=(zd-z2):zd
 ∴x2min=Ds×(zd-z2)/zd  …(7)
を演算することにより算出することができる。
 また、間隔x2の上限値x2maxは、図27に示すように、変換素子2個分の大きさをPとするとき、
  (x2max-P):(Ds-P)=(zd-z2):zd
  x2max-P=(Ds-P)×(zd-z2)/zd
  x2max=P-P×(zd-z2)/zd+Ds×(zd-z2)/zd
 ∴x2max=P×z2/zd+Ds×(zd-z2)/zd  …(8)
を演算することにより算出することができる。
 従って、以上のことから、本実施形態に係るX線タルボ撮影装置1のように、吸収格子G2を、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g2を並設させた状態で構成する場合、吸収格子G2を構成する複数の小格子g2は、隣接する小格子g2a、g2b同士の間隔x2が、
  x2min≦x2<x2max  …(9)
すなわち、上記の(7)式および(8)式を用いて、
 Ds×(zd-z2)/zd≦x2<P×z2/zd+Ds×(zd-z2)/zd
                                  …(10)
で表される条件を満たす間隔になるように並設されているべきであることが分かる。
[効果]
 以上のように、本実施形態に係るX線タルボ撮影装置1によれば、吸収格子G2は、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g2を並設させた状態で構成されており、吸収格子G2を構成する複数の小格子g2は、隣接する小格子g2a、g2b同士の間隔x2が上記(10)式で表される条件を満たす間隔になるように並設されている。
 そのため、複数の小格子g2を並設させて吸収格子G2を構成することでモアレ画像や微分位相画像等の再構成画像に線欠陥(図12参照)が生じるとしても、線欠陥が2本以上連続して生じる状態にはならず、生じる線欠陥を1本以下に抑えることが可能となる。そのため、線欠陥を画像補正しても、例えば微分位相画像中に撮影されている患者の手指等の関節部分の軟骨(図28中の矢印参照)が画像補正処理により画像中から消えてしまうことを的確に防止することが可能となる。
 このように、本実施形態に係るX線タルボ撮影装置1によれば、複数の小格子g2を並設させて吸収格子G2を構成することでモアレ画像や微分位相画像等の再構成画像に線欠陥(図12参照)が生じるとしても、撮影した複数のモアレ画像に基づいて再構成画像を適切に生成することが可能となる。すなわち、例えば上記のように患者の手指等の関節部分の軟骨を撮影した場合には、例えば図28に示したように微分位相画像中に軟骨を適切に撮影することが可能となる。
 なお、図1や図27等に示したように、吸収格子G2は位相格子G1よりもX線検出器14に近い位置にある。そのため、例えば位相格子G1の間隔x1をある長さrだけ拡げた場合の前述した範囲Rや範囲R(図13~図19参照)の幅の変動に比べて、吸収格子G2の間隔x2を同じ長さrだけ拡げた場合の前述した範囲Rや範囲Rの幅の変動は小さくなる。
 すなわち、位相格子G1の場合は、間隔x1を少し変動させただけで上記の範囲Rや範囲Rの幅が大きく変動するため、上記の間隔x1の範囲(すなわち下限値x1min以上上限値x1max未満)をできるだけ大きく設定しておいた方がよい。
 しかし、吸収格子G2の場合は、位相格子G1の場合に比べて、間隔x2を多少変動させても上記の範囲Rや範囲Rの幅はさほど大きくは変動しない。そして、欠損画素をできるだけ少なくするという観点から言えば、上記の間隔x2は、下限値x2min以上である限り、できるだけ小さい方がよい。
 そこで、上記の考察では、図27に示したように変換素子2個分の大きさをPとして吸収格子G2における間隔x2の上限値x2maxを算出したが、例えば、変換素子1個分の大きさをpとして、吸収格子G2における間隔x2の上限値x2maxを算出するように構成してもよい。
 その場合、吸収格子G2における間隔x2の上限値x2maxは、上記(8)式におけるPをpで置き換えれば算出できるため、
  x2max=p×z2/zd+Ds×(zd-z2)/zd  …(11)
を演算することにより算出することができる。
 そのため、この場合は、吸収格子G2を、複数のスリットSと非スリット部Snとが交互にかつ平行に形成された複数の小格子g2を並設させた状態で構成する場合、吸収格子G2を構成する複数の小格子g2は、隣接する小格子g2a、g2b同士の間隔x2が、
 Ds×(zd-z2)/zd≦x2<p×z2/zd+Ds×(zd-z2)/zd
                                  …(12)
で表される条件を満たす間隔になるように並設されて構成される。
 そして、このように構成すれば、吸収格子G2に間隔x2が存在することにより発生する欠損画素をより少なくすることが可能となる。
 一方、前述した位相格子G1を複数の小格子g1で構成する場合と同様に、吸収格子G2をを複数の小格子g2で構成する場合も、図26に示したように、X線検出器14が、2次元状に配列された複数の変換素子4のうち隣接する2つの変換素子4の境界部分と、上記の間隔x2を下限値x2min(すなわちDs×(zd-z2)/zd(上記(10)式や(12)式参照))にした場合に、隣接する2枚の小格子をそれぞれ透過したX線の境界Rとが対応するように配置されているように構成されていれば、欠損画素が発生せず、線欠陥も発生しなくなるため好ましい。
 しかし、図26に示したように、X線検出器14を、隣接する2つの変換素子4の境界部分と上記のX線の境界Rとが正確に対応するように配置することは必ずしも容易ではない。
 そのため、前述した位相格子G1を複数の小格子g1で構成する場合と同様に、X線検出器14を、上記の間隔x2が下限値x2minよりも大きい場合にX線がいずれの小格子g2a、g2bも透過せずに素通しの状態で照射される範囲内に、2次元状に配列された複数の変換素子4のうち隣接する2つの変換素子4の境界部分が配置されているように構成すれば、それらの変換素子4は少なくとも欠損画素にはならず、線欠陥も発生しない。そのため、X線検出器14がこのように配置されていることが好ましい。
 なお、本発明が上記の実施形態等に限定されず、本発明の趣旨を逸脱しない限り、適宜変更可能であることは言うまでもない。
 放射線画像撮影を行う分野(特に医療分野)において利用可能性がある。
1 X線タルボ撮影装置
4 変換素子
4F、4G 隣接する2つの変換素子
11 X線発生装置
14 X線検出器
Ds 線源格子の最も外側のスリット同士の間隔
G0 線源格子
G1 位相格子
g1 小格子
g1a、g1b 隣接する2枚の小格子
G2 吸収格子
g2 小格子
g2a、g2b 隣接する2枚の小格子
P 変換素子2個分の大きさ
p 変換素子1個分の大きさ
R X線の境界
 X線が素通しの状態で照射される範囲
S スリット
Sn 非スリット部
x1 位相格子を構成する小格子同士の間隔(間隔)
x2 吸収格子を構成する小格子同士の間隔(間隔)
z1 線源格子と位相格子との距離
z2 線源格子と吸収格子との距離
zd 線源格子とX線検出器の変換素子との距離

Claims (7)

  1.  線源格子、位相格子および吸収格子と、
     X線を照射するX線発生装置と、
     2次元状に配列された複数の変換素子を備え、前記吸収格子上に形成されるモアレ画像を撮影するX線検出器と、
    を備え、
     少なくとも前記位相格子は、複数のスリットと非スリット部とが交互にかつ平行に形成された複数の小格子を並設させた状態で構成されており、
     前記位相格子を構成する前記複数の小格子のうち、隣接する2枚の前記小格子の各非スリット部の中で相手方の前記小格子に最も近い位置に形成されている前記非スリット部同士の間隔をx1、前記線源格子と前記位相格子との距離をz1、前記線源格子と前記X線検出器の前記変換素子との距離をzd、前記線源格子に形成されているスリットのうち最も外側の位置に形成されている前記スリット同士の間隔をDs、前記変換素子2個分の大きさをPとするとき、前記位相格子を構成する前記複数の小格子は、前記間隔x1が下記の(1)式で表される条件を満たす間隔になるように並設されているX線タルボ撮影装置。
     Ds×(zd-z1)/zd≦x1<P×z1/zd+Ds×(zd-z1)/zd
                                        …(1)
  2.  前記X線検出器は、2次元状に配列された複数の前記変換素子のうち隣接する2つの前記変換素子の境界部分と、前記間隔x1を下限値Ds×(zd-z1)/zdにした場合に隣接する2枚の前記小格子をそれぞれ透過したX線の境界とが対応するように配置されている請求項1に記載のX線タルボ撮影装置。
  3.  前記X線検出器は、前記間隔x1が下限値Ds×(z2-z1)/z2よりも大きい場合にX線がいずれの前記小格子も透過せずに素通しの状態で照射される範囲内に、2次元状に配列された複数の前記変換素子のうち隣接する2つの前記変換素子の境界部分が配置されている請求項1に記載のX線タルボ撮影装置。
  4.  線源格子、位相格子および吸収格子と、
     X線を照射するX線発生装置と、
     2次元状に配列された複数の変換素子を備え、前記吸収格子上に形成されるモアレ画像を撮影するX線検出器と、
    を備え、
     少なくとも前記吸収格子は、複数のスリットと非スリット部とが交互にかつ平行に形成された複数の小格子を並設させた状態で構成されており、
     前記吸収格子を構成する前記複数の小格子のうち、隣接する2枚の前記小格子の各非スリット部の中で相手方の前記小格子に最も近い位置に形成されている前記非スリット部同士の間隔をx2、前記線源格子と前記吸収格子との距離をz2、前記線源格子と前記X線検出器の前記変換素子との距離をzd、前記線源格子に形成されているスリットのうち最も外側の位置に形成されている前記スリット同士の間隔をDs、前記変換素子2個分の大きさをPとするとき、前記吸収格子を構成する前記複数の小格子は、前記間隔x2が下記の(2)式で表される条件を満たす間隔になるように並設されているX線タルボ撮影装置。
     Ds×(zd-z2)/zd≦x2<P×z2/zd+Ds×(zd-z2)/zd
                                        …(2)
  5.  前記変換素子1個分の大きさをpとするとき、前記吸収格子を構成する前記複数の小格子は、前記間隔x2が下記の(3)式で表される条件を満たす間隔になるように並設されている請求項4に記載のX線タルボ撮影装置。
     Ds×(zd-z2)/zd≦x2<p×z2/zd+Ds×(zd-z2)/zd
                                        …(3)
  6.  前記X線検出器は、2次元状に配列された複数の前記変換素子のうち隣接する2つの前記変換素子の境界部分と、前記間隔x2を下限値Ds×(zd-z2)/zdにした場合に隣接する2枚の前記小格子をそれぞれ透過したX線の境界とが対応するように配置されている請求項4または請求項5に記載のX線タルボ撮影装置。
  7.  前記X線検出器は、前記間隔x2が下限値Ds×(zd-z2)/zdよりも大きい場合にX線がいずれの前記小格子も透過せずに素通しの状態で照射される範囲内に、2次元状に配列された複数の前記変換素子のうち隣接する2つの前記変換素子の境界部分が配置されている請求項4または請求項5に記載のX線タルボ撮影装置。
PCT/JP2016/086097 2016-03-28 2016-12-05 X線タルボ撮影装置 WO2017168844A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508377A JPWO2017168844A1 (ja) 2016-03-28 2016-12-05 X線タルボ撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063129 2016-03-28
JP2016-063129 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017168844A1 true WO2017168844A1 (ja) 2017-10-05

Family

ID=59963892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086097 WO2017168844A1 (ja) 2016-03-28 2016-12-05 X線タルボ撮影装置

Country Status (2)

Country Link
JP (1) JPWO2017168844A1 (ja)
WO (1) WO2017168844A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026303A1 (ja) * 2018-07-30 2020-02-06 株式会社島津製作所 回折格子
JPWO2019087605A1 (ja) * 2017-10-31 2020-04-02 株式会社島津製作所 X線位相差撮像システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203061A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2013198661A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc 格子および格子の製造方法ならびに格子ユニットおよび格子ユニットの製造方法
JP2013541699A (ja) * 2010-09-03 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ サンプリングを改善した微分位相差イメージング
JP2014006047A (ja) * 2010-10-19 2014-01-16 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
WO2014187885A1 (de) * 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Phasenkontrast-rontgenbildgebungsvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203061A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2013541699A (ja) * 2010-09-03 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ サンプリングを改善した微分位相差イメージング
JP2014006047A (ja) * 2010-10-19 2014-01-16 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2013198661A (ja) * 2012-03-26 2013-10-03 Konica Minolta Inc 格子および格子の製造方法ならびに格子ユニットおよび格子ユニットの製造方法
WO2014187885A1 (de) * 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Phasenkontrast-rontgenbildgebungsvorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019087605A1 (ja) * 2017-10-31 2020-04-02 株式会社島津製作所 X線位相差撮像システム
WO2020026303A1 (ja) * 2018-07-30 2020-02-06 株式会社島津製作所 回折格子

Also Published As

Publication number Publication date
JPWO2017168844A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6448649B2 (ja) 収集及び再構築技術を含む離調構成に基づく大視野位相差撮影法
JP5475737B2 (ja) 放射線撮影装置及び画像処理方法
JP5796908B2 (ja) 放射線位相画像撮影装置
JP5174180B2 (ja) X線撮像装置およびx線撮像方法
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP6187298B2 (ja) X線撮影システム及び画像処理方法
JP5783987B2 (ja) 放射線撮影装置
JP2016501630A5 (ja)
JP2015519091A (ja) 医療用放射線撮像のためのハイブリッドpciシステム
JP2011174715A (ja) X線撮像装置
JP2015213681A (ja) 等価ファントム、および等価ファントムを用いたx線タルボ撮影装置の品質評価方法
JP2014135989A (ja) 医用画像システム
WO2017168844A1 (ja) X線タルボ撮影装置
JP6881682B2 (ja) X線イメージング装置
JP2017518099A (ja) コンピュータ断層撮影(ct)ハイブリッドデータ収集
US11051774B2 (en) Computed tomography apparatus and associated method
WO2019239624A1 (ja) X線イメージング装置
JP2018102558A (ja) X線位相撮影装置
WO2012169426A1 (ja) 放射線撮影システム
WO2012169427A1 (ja) 放射線撮影システム
JP6237001B2 (ja) 医用画像処理装置及び位相画像生成方法
JP2013146537A (ja) 放射線撮影装置及び画像処理方法
JPWO2017094294A1 (ja) X線タルボ撮影装置
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
JP6665504B2 (ja) X線タルボ撮影装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897060

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897060

Country of ref document: EP

Kind code of ref document: A1