WO2018066198A1 - 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置 - Google Patents

回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置 Download PDF

Info

Publication number
WO2018066198A1
WO2018066198A1 PCT/JP2017/025425 JP2017025425W WO2018066198A1 WO 2018066198 A1 WO2018066198 A1 WO 2018066198A1 JP 2017025425 W JP2017025425 W JP 2017025425W WO 2018066198 A1 WO2018066198 A1 WO 2018066198A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
ray
diffraction grating
grating
absorber
Prior art date
Application number
PCT/JP2017/025425
Other languages
English (en)
French (fr)
Inventor
敏 徳田
和田 幸久
貴弘 土岐
信和 林
吉牟田 利典
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2018543742A priority Critical patent/JPWO2018066198A1/ja
Publication of WO2018066198A1 publication Critical patent/WO2018066198A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the present invention relates to a diffraction grating unit, a method for manufacturing the grating unit, and an X-ray phase image photographing apparatus.
  • a diffraction grating unit having a diffraction grating and an X-ray phase image photographing apparatus having a diffraction grating are known.
  • a diffraction grating unit including such a diffraction grating and an X-ray phase imaging apparatus including the diffraction grating are disclosed in, for example, International Publication No. 2011/033798 and Japanese Patent Application Laid-Open No. 2013-198661.
  • an X-ray diffraction grating When an X-ray diffraction grating is used in an X-ray diagnostic apparatus as in International Publication No. 2011/033798, an area that is equal to or larger than the imaging area (for example, one side is larger) A 20 mm or more square) diffraction grating is required. Even in an X-ray image observation apparatus for nondestructive inspection, there is a need for a large area, and a large diffraction grating is required. However, it is difficult to manufacture a diffraction grating having the above-mentioned area using a semiconductor wafer such as silicon, a resin, or a glass substrate in terms of uniformity.
  • the above Japanese Patent Application Laid-Open No. 2013-198661 describes a method of creating a diffraction grating unit by providing a connection area outside the grating area of the diffraction grating and bringing the connection areas into contact with each other.
  • the present invention has been made in order to solve the above-described problems, and one object of the present invention is to suppress artifacts occurring in an X-ray image while increasing the area.
  • a diffraction grating unit, a method for manufacturing the diffraction grating unit, and an X-ray phase image photographing apparatus are provided.
  • a diffraction grating unit includes a first direction in which an X-ray high absorber and an X-ray low absorber are alternately arranged, an X-ray high absorber and an X-ray.
  • a plurality of flat unit diffraction gratings having an X-ray transmission surface defined by a second direction extending in parallel with the low absorber is provided, and each unit diffraction grating is orthogonal to the X-ray transmission surface.
  • the unit diffraction grating and the unit diffraction grating partially overlapped in the third direction are arranged so as to be partially overlapped with each other in the third direction.
  • an “X-ray high absorber” is an object having a high X-ray absorption rate, and includes, for example, heavy elements such as gold and lead.
  • An “X-ray low-absorber” is an object or space having a low X-ray absorption rate, and includes, for example, a light element such as silicon or resin, and is simply constituted by a slit (space, gap). Good.
  • the unit diffraction grating is partially overlapped in the third direction orthogonal to the X-ray transmission surface, and the X-ray height of the unit diffraction grating is set.
  • the absorbers or the X-ray low absorbers are configured to have a region overlapping each other in the third direction.
  • the grating arrangement of the adjacent unit diffraction gratings can be partially overlapped to make the grating arrangement continuous, so that the grating pitch due to the arrangement of the X-ray high absorber and the X-ray low absorber in the entire diffraction grating unit It can be made substantially uniform.
  • the diffraction grating unit can be regarded as a diffraction grating having a large area. As a result, it is possible to suppress the occurrence of artifacts in the X-ray image while increasing the area by using a diffraction grating unit including a plurality of unit diffraction gratings.
  • the diffraction grating unit according to the first aspect is preferably a unit diffraction grating so that the grating pitches of the plurality of unit diffraction gratings arranged to overlap each other are kept substantially constant as viewed from the third direction. They are placed one on top of the other.
  • the grating pitch of the diffraction grating unit viewed from the third direction can be made substantially uniform, artifacts that occur when the grating pitch is not constant can be suppressed. As a result, artifacts generated in the X-ray image can be further suppressed.
  • an X-ray high-absorber is disposed at an end portion of the unit diffraction grating in the first direction, and the X-ray high absorption at the end portion is overlapped with each other.
  • the bodies are arranged so as to overlap each other in the third direction. If comprised in this way, since the X-ray superabsorber is provided in order to absorb X-rays, the thickness of the X-ray superabsorber will increase at the overlapping portion, and in the direction of more absorbing X-rays. Contributes and improves Visibility.
  • the diffraction grating unit according to the first aspect is preferably laminated with adjacent unit diffraction gratings in contact with each other in the third direction. If comprised in this way, adjacent unit diffraction gratings can be laminated
  • a plurality of unit diffraction gratings are preferably arranged on one surface and the other surface of the flat substrate, respectively. If comprised in this way, a diffraction grating unit can be comprised by joining a some unit diffraction grating to one board
  • the unit diffraction grating is preferably a connection portion provided at least outside the grating region in which the X-ray high absorber and the X-ray low absorber are alternately arranged.
  • the connecting portion is made of an X-ray low absorber, and the connecting portion is disposed so as to overlap in the third direction. If comprised in this way, the X-ray superabsorbers of the edge part of a unit diffraction grating, or X-rays by connecting the connection parts of a unit diffraction grating in the 3rd direction orthogonal to an X-ray transmissive surface.
  • the low absorbers can be arranged so as to overlap each other in a third direction orthogonal to the X-ray transmission surface. Thereby, even when it has a connection part in the outer side of a grating
  • the method of manufacturing a diffraction grating unit according to the second aspect of the present invention includes a first direction in which an X-ray high absorber and an X-ray low absorber are alternately arranged, an X-ray high absorber and an X-ray low absorber.
  • a method of manufacturing a grating unit including a plurality of flat unit diffraction gratings having an X-ray transmission surface defined by a second direction extending in parallel, wherein adjacent unit diffraction gratings are defined as an X-ray transmission surface.
  • the process of aligning the position of a 1st direction and the process of fixing unit diffraction gratings which matched the position of a 1st direction are provided.
  • the step of holding the unit diffraction gratings adjacent to each other while shifting them in the third direction orthogonal to the X-ray transmission surface, and the unit diffraction grating A step of aligning the positions in the first direction so that the X-ray high absorber or the X-ray low absorbers overlap each other, and a step of fixing the unit diffraction gratings aligned in the first direction.
  • the grating pitch can be made uniform.
  • the diffraction grating unit can be regarded as a single diffraction grating, it is possible to manufacture a diffraction grating unit capable of suppressing artifacts generated in an X-ray image while increasing the area.
  • the step of aligning the unit diffraction grating and the unit diffraction grating held in the third direction so as to be shifted from each other in the first direction is obtained by irradiating the unit diffraction grating with an electromagnetic wave having a predetermined wavelength.
  • An X-ray phase imaging apparatus includes an X-ray source, a plurality of grating units configured by arranging a plurality of slits in a direction orthogonal to the X-ray irradiation direction, a detector,
  • the lattice unit is configured to have any one of the structures described in the first aspect.
  • the X-ray phase imaging apparatus is configured to include the X-ray source, any one of the grating units described in the first aspect, and the detector as described above. Has been. Accordingly, an X-ray image is captured by a diffraction grating unit in which a plurality of unit diffraction gratings are arranged so that X-ray high absorbers or X-ray low absorbers overlap each other in the X-ray irradiation direction. be able to. As a result, it is possible to capture an X-ray image in which the generation of artifacts is suppressed while increasing the area.
  • a diffraction grating unit a method of manufacturing a diffraction grating unit, and X-ray phase image imaging capable of suppressing an artifact generated in an X-ray image while increasing the area.
  • An apparatus can be provided.
  • FIG. 4 is a plan view of the diffraction grating unit taken along line 200-200 in FIG. 3 of the diffraction grating unit according to the first embodiment of the present invention. It is a block diagram of the apparatus which aligns the diffraction grating unit of 1st Embodiment of this invention.
  • the X-ray phase image apparatus 100 includes an X-ray source 101, a multi slit 102, a phase grating 103, a subject 104, a diffraction grating unit 10, and a detector 105.
  • the direction from the X-ray source 101 toward the multi-slit 102 is the Z2 direction, and the opposite direction is the Z1 direction.
  • the left-right direction in the plane orthogonal to the Z direction is defined as the X direction
  • the direction toward the back of the sheet is defined as the X2 direction
  • the direction toward the front side of the sheet is defined as the X1 direction.
  • the vertical direction in the plane orthogonal to the Z direction is the Y direction
  • the upper direction is the Y1 direction
  • the lower direction is the Y2 direction.
  • the X direction, the Y direction, and the Z direction are examples of the “first direction”, “second direction”, and “third direction” in the claims, respectively.
  • the X-ray source 101 is configured to generate X-rays and irradiate the generated X-rays when a high voltage is applied.
  • the multi slit 102 has a plurality of slits 102a and an X-ray absorbing portion 102b arranged in a predetermined cycle (pitch) in the Y direction.
  • Each slit 102a and the X-ray absorber 102b are configured to extend in the X direction.
  • the multi-slit 102 is installed between the X-ray source 101 and the phase grating 103, and X-rays are irradiated from the X-ray source 101.
  • the multi-slit 102 is configured so that the X-rays that have passed through each slit 102a serve as a line light source corresponding to the position of each slit 102a. Thereby, the multi slit 102 can enhance the coherence of X-rays emitted from the X-ray source 101.
  • the phase grating 103 has a plurality of slits 103a and an X-ray phase change portion 103b arranged in a predetermined cycle (pitch) in the Y direction. Each slit 103a and the X-ray phase change portion 103b are formed to extend in the X direction.
  • the phase grating 103 is installed between the multi-slit 102 and the diffraction grating unit 10 and is irradiated with X-rays that have passed through the multi-slit 102.
  • the phase grating 103 is provided for forming a self-image by the Talbot effect.
  • an image of the grating (self-image) is formed at a position away from the grating by a predetermined distance (Talbot distance). This is called the Talbot effect.
  • the self-image is an interference fringe generated by X-ray interference.
  • the diffraction grating unit 10 includes a plurality of unit diffraction gratings 1 each having a plurality of X-ray low absorbers 2 and X-ray high absorbers 3 arranged at a predetermined period (pitch) in the Y direction.
  • the diffraction grating unit 10 is disposed between the phase grating 103 and the detector 105 and is irradiated with X-rays that have passed through the phase grating 103. Further, the diffraction grating unit 10 is disposed at a position away from the phase grating 103 by a Talbot distance. The diffraction grating unit 10 interferes with the self-image of the phase grating 103 to form moire fringes (not shown).
  • the detector 105 is configured to detect X-rays, convert the detected X-rays into electric signals, and read the converted electric signals as image signals.
  • the detector 105 is, for example, an FPD (Flat Panel Detector).
  • the detector 105 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements and the pixel electrodes are arranged side by side in the X direction and the Y direction at a predetermined cycle (pixel pitch).
  • the X-ray phase image apparatus 100 From the detection signal of the detector 105, a moire image showing moire fringes is obtained.
  • the X-ray phase image apparatus 100 generates a reconstructed image (X-ray phase image) based on the phase difference of each image from a plurality of moire images obtained by scanning the diffraction grating unit 10 in the Y direction at regular intervals. Is configured to do.
  • the diffraction grating unit 10 forms a deep groove in an X-ray low-absorption substrate such as silicon or resin by a technique such as X-ray lithography or Deep-RIE, and then high X-ray absorption such as gold in the formed deep groove.
  • the unit 3 includes a plurality of unit diffraction gratings 1 manufactured by filling and plating the body 3. As an example of the unit diffraction grating, there is a unit diffraction grating 1 shown in FIG. The unit diffraction grating 1 shown in FIG.
  • the unit diffraction grating 1 has an X-ray superabsorber 3 having a width L (for example, 2.5 ⁇ m) made of a heavy metal such as gold, and a width S (for example, 2.5 ⁇ m) made of silicon or resin.
  • an X-ray low-absorber 2 has a comb shape in which deep grooves are dug in silicon or resin. Further, the X-ray high absorber 3 has a rectangular shape having long sides in the Z direction.
  • the unit diffraction grating 1 is configured such that the X-ray high absorber 3 and the X-ray low absorber 2 are alternately arranged in the X direction.
  • the ratio between the width L and the width S may be the same or different.
  • the grating pitch P of the unit diffraction grating 1 is a total length (for example, 5.0 ⁇ m) of the width L of the X-ray high absorber 3 and the width S of the X-ray low absorber 2.
  • rectangular unit diffraction gratings 1a to 1d that are long in the Y direction may be used.
  • the diffraction grating unit 10 includes an X direction in which the X-ray high absorber 3 and the X-ray low absorber 2 are alternately arranged, and the X-ray high absorber 3 and the X-ray low absorber 2.
  • Flat unit diffraction gratings 1a, 1b, 1c and 1d having X-ray transmission surfaces 4a to 4d defined by the Y direction extending in parallel are provided.
  • the unit diffraction gratings 1a to 1d are arranged such that adjacent unit diffraction gratings are partially overlapped in the Z direction orthogonal to the X-ray transmission surface.
  • Each of the unit diffraction gratings 1a to 1d arranged partially overlapping in the Z direction has overlapping portions 11a to 11c where the X-ray high absorbers 3 or the X-ray low absorbers 2 overlap each other in the Z direction. It is configured. In the first embodiment, an example of a configuration in which the X-ray low absorbers 2 overlap each other is shown.
  • the X-ray low-absorbers 2 at the ends of the unit diffraction gratings are also connected to each other.
  • overlap in the Z direction means that the Z1 side of the X-ray transmission surface 4a of the unit diffraction grating 1a and the Z2 side of the X-ray transmission surface 4b of the unit diffraction grating 1b overlap at the overlapping portion 11a.
  • the X-ray low absorbers 2 that overlap each other may overlap so that the positions in the X direction completely coincide with each other, or may deviate from each other (for example, about S / 2).
  • the unit diffraction gratings 1a to 1d are arranged so that the grating pitch P of the unit diffraction gratings 1a to 1d arranged so as to overlap each other when viewed from the Z direction is maintained substantially constant as a whole. They are placed one on top of the other. That is, the X-direction positions of the overlapping X-ray low absorbers 2 are completely matched.
  • adjacent unit diffraction gratings 1a to 1d are stacked in a state of being in contact with each other in the Z direction. That is, the X-ray transmission surfaces 4a to 4d are in contact with each other in the overlapping portions 11a to 11c.
  • adjacent unit diffraction gratings 1a to 1d are joined to each other at the overlapping portions 11a to 11c.
  • the diffraction grating unit 10 in which the unit diffraction gratings 1 are fixed to each other is configured.
  • any one of methods such as vacuum joining, optical contact, anodic oxidation joining, and adhesion can be used.
  • the diffraction grating unit 10 is provided with the unit diffraction gratings 1a, 1b, 1c, and 1d, and the unit diffraction gratings 1a to 1d and the adjacent unit diffraction gratings are orthogonal to the X-ray transmission surface.
  • the unit diffraction gratings 1a to 1d that are partially overlapped in the Z direction and partially overlapped in the Z direction are respectively connected to the X-ray high absorbers 3 or the X-ray low absorbers 2 to each other. It is configured to have overlapping portions 11a to 11c that overlap each other in the Z direction.
  • the grating arrangement of the unit diffraction gratings 1a to 1d adjacent to each other can be partially overlapped and the grating arrangement can be made continuous, the X-ray high absorber 3 and the X-ray low absorber 2 in the entire diffraction grating unit 10 can be obtained.
  • the lattice pitch by the arrangement can be made substantially uniform. Therefore, the diffraction grating unit 10 can be regarded as one diffraction grating. As a result, an artifact generated in an X-ray image having a continuous lattice can be suppressed while increasing the area.
  • the unit diffraction grating 1a is maintained so that the grating pitch P of the unit diffraction gratings 1a to 1d arranged so as to overlap each other when viewed from the Z direction is maintained as a whole. ⁇ 1d are placed on top of each other. Thereby, the grating pitch P becomes uniform in the entire diffraction grating unit 10. As a result, artifacts generated in the X-ray image can be further suppressed.
  • the adjacent unit diffraction gratings 1a to 1d are stacked in contact with each other in the Z direction. Thereby, the gap between the adjacent unit diffraction gratings 1 can be eliminated. As a result, compared to the case where the adjacent unit diffraction gratings 1 are separated and stacked, the artifacts generated in the X-ray image can be further suppressed.
  • Step of shifting the X-ray transmission surface in the Z direction First, as shown in FIG. 4, the unit diffraction grating 1b is held while being shifted in the Z1 direction with respect to the unit diffraction grating 1a. Similarly, the unit diffraction gratings 1c and 1d are aligned and held.
  • Step of matching the position of the unit diffraction grating in the X direction is performed so that the grating pitch P between the unit diffraction gratings 1a and 1b is continuous.
  • alignment in the X direction is performed using the X-ray phase image device 110 shown in FIG. That is, the X-ray source 101 irradiates the diffraction grating unit 10 with X-rays and aligns the position in the X direction based on the diffraction image that appears on the detector 105.
  • the unit diffraction gratings 1a and 1b are displaced in the X direction, there is a portion where the pitches of the diffraction images 10a of the diffraction grating unit 10 do not match as shown in the region 12 of FIG. Therefore, as in the diffraction image 10b shown in FIG. 6B, the unit diffraction gratings 1a and 1b are aligned in the X direction so that the pitch of the diffraction grating unit 10 is constant. Similarly, the unit diffraction gratings 1c and 1d are aligned in the X direction.
  • Step of fixing unit diffraction grating Thereafter, the unit diffraction grating is fixed by any one of the above-described joining methods in the overlapping portions 11a to 11c of the unit diffraction gratings 1a, 1b, 1c, and 1d in which the alignment in the Z direction and the X direction is completed.
  • the diffraction grating unit 10 is completed.
  • the grating arrangement of the unit diffraction gratings 1a to 1d adjacent to each other can be partially overlapped and the grating arrangement can be made continuous, the X-ray high absorber 3 and the X-ray low absorber 2 in the entire diffraction grating unit 10 can be obtained. It is possible to make the lattice pitch uniform by the arrangement. Therefore, the diffraction grating unit 10 can be regarded as a diffraction grating having a large area. As a result, it is possible to create the diffraction grating unit 10 that suppresses artifacts generated in the X-ray image while increasing the area.
  • a diffraction grating unit 20 according to a second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment has an end portion
  • the X-ray superabsorbers 3 of the unit diffraction gratings 1e to 1h in which the X-ray superabsorbers 3 are arranged are stacked.
  • symbol is attached
  • the diffraction grating unit 20 is composed of unit diffraction gratings 1e to 1h in which the X-ray high-absorber 3 is disposed at the end.
  • the diffraction grating unit 20 is configured such that the X-ray superabsorbers 3 of the unit diffraction gratings 1e to 1h overlap in the Z direction at the overlapping portions 21a to 21c.
  • the X-ray superabsorber 3 Since the X-ray superabsorber 3 is provided to absorb X-rays, the thickness of the X-ray superabsorber 3 in the Z direction increases at the overlapping portions 21a to 21c, and the X-ray superabsorber 3 absorbs more X-rays. And Visibility is improved. On the other hand, if the X-ray low absorber 2 is overlapped as in the first embodiment, the thickness of the X-ray low absorber 2 in the Z direction increases, leading to a decrease in the amount of X-ray transmission, Not good for Visibility. Therefore, it is preferable that the X-ray superabsorbers 3 are configured to overlap in the Z direction.
  • the strength of the overlapping portions 21a to 21c can be increased.
  • a diffraction grating unit 30 according to a third embodiment of the present invention will be described with reference to FIG.
  • the X-ray low absorber 2 and the X-ray high absorber 3 in which unit diffraction gratings are alternately arranged are arranged.
  • a plurality of them are configured to overlap each other in the Z direction.
  • what is necessary is just two or more X-ray low absorber 2 or X-ray high absorber 3 with multiple. As a plurality of examples, FIG.
  • the diffraction grating unit 30 As shown in FIG. 8, in the diffraction grating unit 30 according to the third embodiment, three pairs of X-ray low absorbers 2 and two pairs of X-ray heights are formed in the overlapping portions 31a to 31c of the unit diffraction gratings 1a to 1d. It is comprised so that the absorber 3 may overlap with a Z direction. For this reason, in the third embodiment, the areas of the overlapping portions 31a to 31c are large, and the unit diffraction gratings 1a to 1d are joined to each other in a state of surface contact with the entire overlapping portions 31a to 31c. Yes.
  • the remaining configuration of the third embodiment is the same as that of the first embodiment.
  • the three pairs of X-ray low absorbers 2 and the two pairs of X-ray high absorbers 3 are configured to overlap in the Z direction.
  • the contact area between the unit diffraction gratings 1 can be increased, so that the unit diffraction gratings 1 can be easily aligned in the X direction, and the unit diffraction gratings 1 are joined at the overlapping portions 31a to 31c. Therefore, the mechanical strength of the diffraction grating unit 30 can be improved.
  • a diffraction grating unit 40 according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the unit diffraction gratings 1a to 1d are formed on the one surface 7a and the other surface 7b of the flat substrate 7 respectively. Each is arranged.
  • symbol is attached
  • the substrate 7 is made of an X-ray low absorber such as resin.
  • the thickness of the substrate 7 is shown smaller than the unit diffraction grating 1 in FIG. 9 for convenience, but may have a thickness equal to or greater than that of the unit diffraction grating 1.
  • the Z1 side of the X-ray transmission surface 4 and the other surface 7b of the substrate 7 or the Z2 side of the X-ray transmission surface 4 and the one surface 7a of the substrate 7 are joined. Since the unit diffraction gratings 1a to 1d are shifted and overlapped with each other in the Z direction via the substrate 7, the unit diffraction gratings are joined to each other at a distance.
  • the remaining configuration of the fourth embodiment is similar to that of the aforementioned first embodiment.
  • the unit diffraction gratings 1a to 1d are joined to the one surface 7a and the other surface 7b of the substrate 7, respectively.
  • the bonding area between the unit diffraction gratings 1a to 1d and the substrate 7 can be increased, so that the unit diffraction gratings 1a to 1d can be easily bonded and the mechanical strength of the diffraction grating unit 40 can be improved. be able to.
  • the unit diffraction gratings 1a and 1b are grating regions in which the X-ray high absorber 3 and the X-ray low absorber 2 are alternately arranged.
  • the connecting portion 8 is provided at least outside in the X direction.
  • symbol is attached
  • the connecting portion 8 is made of an X-ray low absorber, and the connecting portion 8 is disposed so as to overlap in the Z direction.
  • the recessed part 51 is formed in the Z2 side of the connection part 8b
  • the convex part 52 is formed in the Z1 side of the connection part 8c
  • the recessed part 51 of the connection part 8b, and the convex part 52 of the connection part 8c, Are fitted and joined.
  • a connection part is a part provided in the outer side of a grating
  • the connecting portion is formed to protect the grating region of the fine unit diffraction grating.
  • the connecting portion may be formed integrally with the unit diffraction grating, or may be formed separately from a resin or the like.
  • the shape of the connecting portion may be a U-shape as shown in FIG. 10 or may be a rectangular shape having the same surface as the unit diffraction grating.
  • connection portions 8 are provided at both ends of the unit diffraction grating 1 in the X direction, and are arranged so as to overlap each other in the Z direction perpendicular to the X-ray transmission surface 4. If comprised in this way, the connection part 8b of the unit diffraction grating 1a and the connection part 8c of the unit diffraction grating 1b will be arrange
  • the X-ray high absorbers 3 at the end of 1b or the X-ray low absorbers 2 can be arranged to overlap each other in the Z direction orthogonal to the X-ray transmission surface 4.
  • the diffraction grating unit 10 with which X-ray low absorber 2 or X-ray high absorber 3 overlapped can be obtained.
  • a rectangular diffraction grating that is long in the Y direction is provided, but the present invention is not limited to this.
  • a configuration in which unit diffraction gratings are also stacked in the Y direction may be employed.
  • the unit diffraction grating has two layers in the Z direction.
  • the present invention is not limited to this.
  • the unit diffraction grating may be configured to have four layers in the Z direction.
  • the present invention is not limited to this. If the two unit diffraction gratings are displaced in the X direction, the number of overlapping pitches is not limited.
  • connection portions 8 are provided on both sides in the X direction of the unit diffraction grating 1
  • the present invention is not limited to this.
  • the connection part 8 may be further provided at both ends in the Z direction, and the connection part 8 may be provided on the four surfaces of the unit diffraction grating 1, or the connection part 8 may be further provided at both ends in the Y direction, as shown in FIG.
  • the structure which has the connection part 8 in 6 surfaces of the unit diffraction grating 1 may be sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

この回折格子ユニット(10)は、第1方向と第2方向とにより規定されるX線透過面(4)を有する平板状の単位回折格子(1)を複数備える。単位回折格子(1)は、隣接する単位回折格子(1)をX線透過面(4)と直交する第3方向に部分的に重ねて配置されているとともに、X線高吸収体(3)同士、またはX線低吸収体(2)同士が第3方向に互いに重なる領域を有する。

Description

回折格子ユニット、格子ユニットの製造方法およびX線位相イメージ撮影装置
 本発明は、回折格子ユニット、格子ユニットの製造方法およびX線位相イメージ撮影装置に関する。
 従来、回折格子を備えた回折格子ユニットおよび回折格子を備えたX線位相イメージ撮影装置が知られている。このような回折格子を備えた回折格子ユニットおよび回折格子を備えたX線位相イメージ撮影装置は、たとえば、国際公開第2011/033798号および特開2013-198661号公報に開示されている。
 上記国際公開第2011/033798号には、回折格子を用いてX線の位相変化によってコントラストを得る位相コントラスト法を用いたX線位相イメージ撮影装置が開示されている。すなわち、位相格子と、位相格子の後面に設けられた吸収格子との干渉によって形成されるモアレ縞を観察する方法が開示されている。モアレ縞の観察方法として、格子を一定周期間隔に走査して得られた複数のモアレ縞画像から再構成画像を作成する方法(縞走査法)によって、位相イメージ画像を得ている。
 上記国際公開第2011/033798号のように、X線用の回折格子をX線診断装置に用いる場合、一度に診断する診断面積の都合上、撮像面積と同程度以上の面積(たとえば、一辺が20cm以上の正方形)の回折格子が必要となる。非破壊検査用のX線画像観察装置においても、大面積化のニーズが存在しており、大型の回折格子が求められている。しかしながら、シリコン等の半導体ウェハ、樹脂もしくはガラス基板を用いて上記面積の回折格子を製造することは、均一性等の点から困難である。
 そこで、従来、撮像面積と同程度以上の面積の回折格子を得る方法として、複数の回折格子を備えた回折格子ユニットを用いる方法が提案されている(特開2013-198661号公報参照)。
 上記特開2013-198661号公報では、回折格子の格子領域の外側に接続しろ領域を設け、接続しろ同士を当接させて回折格子ユニットを作成する方法が記載されている。
国際公開第2011/033798号 特開2013-198661号公報
 しかしながら、上記特開2013-198661号公報のように、回折格子の接続しろ同士を当接させて回折格子ユニットを作成する場合、各回折格子の当接部分において、接続しろの分だけ互いの格子が離れることにより、回折格子ユニット全体での格子ピッチが不均等になるため、取得するX線画像にアーチファクトが発生するという問題点がある。アーチファクトが発生すると、X線画像診断や、非破壊検査の妨げとなる。なお、本明細書において、「アーチファクト」とは、回折格子の接続部分において、格子ピッチが不均等になることにより画像に発生する縞模様のことである。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、大面積化を図りつつ、X線画像に発生するアーチファクトを抑制することが可能な、回折格子ユニット、回折格子ユニットの製造方法および、X線位相イメージ撮影装置を提供することである。
 上記目的を達成するために、この発明の第1の局面における回折格子ユニットは、X線高吸収体とX線低吸収体とが交互に並ぶ第1方向と、X線高吸収体とX線低吸収体とが平行に延びる第2方向とにより規定されるX線透過面を有する平板状の単位回折格子を複数備え、単位回折格子は、隣接する単位回折格子をX線透過面と直交する第3方向に部分的に重ねて配置されているとともに、単位回折格子と、第3方向に部分的に重ねて配置された単位回折格子とがX線高吸収体同士、またはX線低吸収体同士が第3方向に互いに重なる領域を有するように構成されている。なお、本明細書において、「X線高吸収体」とは、X線の吸収率が高い物体であり、たとえば、金や鉛などの重元素を含む。また、「X線低吸収体」とは、X線の吸収率が低い物体または空間であり、たとえば、シリコンや樹脂などの軽元素を含み、単にスリット(空間、隙間)で構成されていてもよい。
 この発明の第1の局面による回折格子ユニットでは、上記のように、単位回折格子を、X線透過面と直交する第3方向に部分的に重ねて配置するとともに、単位回折格子のX線高吸収体同士、またはX線低吸収体同士が第3方向に互いに重なる領域を有するように構成する。これにより、隣接する単位回折格子の格子同士を部分的に重ねて格子配列を連続させることができるので、回折格子ユニット全体におけるX線高吸収体とX線低吸収体との配列による格子ピッチを略均一化することができる。したがって、回折格子ユニットを、大面積を有する回折格子とみなすことができる。その結果、複数の単位回折格子を備えた回折格子ユニットを用いて大面積化を図りつつ、X線画像にアーチファクトが発生することを抑制することができる。
 上記第1の局面による回折格子ユニットは、好ましくは、第3方向から見て、互いに重ねて配置された複数の単位回折格子の格子ピッチが全体として略一定の状態を保つように、単位回折格子同士が重ねて配置されている。このように構成すれば、第3方向から見た回折格子ユニットの格子ピッチを略均等にすることができるので、格子ピッチが一定でない部分を含む場合に発生するアーチファクトを抑制することができる。その結果、X線画像に発生するアーチファクトを、より一層抑制することができる。
 上記第1の局面による回折格子ユニットは、好ましくは、単位回折格子の第1方向の端部にX線高吸収体が配置され、単位回折格子同士の重なり部において、端部のX線高吸収体同士が第3方向に互いに重なり合うように配置されている。このように構成すれば、X線高吸収体はX線を吸収するために設けられているので、重なり部においてX線高吸収体の厚みが増加することとなり、X線をより吸収する方向に寄与し、Visibilityが向上する。
 上記第1の局面による回折格子ユニットは、好ましくは、隣接する単位回折格子同士が、第3方向に互いに接触した状態で積層されている。このように構成すれば、隣接する単位回折格子同士を隙間なく積層することができる。その結果、隣接する単位回折格子同士を離して配置する場合と比較して、X線画像に発生するアーチファクトの発生をより一層抑制することができる。
 上記第1の局面による回折格子ユニットは、好ましくは、複数の単位回折格子が、平板状の基板の一方表面および他方表面にそれぞれ配置されている。このように構成すれば、1枚の基板に複数の単位回折格子を接合することによって回折格子ユニットを構成することができる。その結果、単位回折格子同士を直接接合させる場合と比較して、単位回折格子と、基板との接合面積が大きくなるため、単位回折格子の接合が容易になるとともに、回折格子ユニットの機械的強度を向上させることができる。
 上記第1の局面による回折格子ユニットは、好ましくは、単位回折格子は、X線高吸収体とX線低吸収体とが交互に並ぶ格子領域の少なくとも第1方向の外側に設けられた接続部を有しており、接続部は、X線低吸収体から構成されているとともに、接続部は、第3方向に重ねて配置されている。このように構成すれば、単位回折格子の接続部同士をX線透過面と直交する第3方向に重ねて配置することによって、単位回折格子の端部のX線高吸収体同士、またはX線低吸収体同士をX線透過面と直交する第3方向に重ねて配置することができる。これにより、格子領域の外側に接続部を有している場合でも、X線低吸収体同士またはX線高吸収体同士が重なった回折格子ユニットを得ることができる。
 この発明の第2の局面における回折格子ユニットの製造方法は、X線高吸収体とX線低吸収体とが交互に並ぶ第1方向と、X線高吸収体とX線低吸収体とが平行に延びる第2方向とにより規定されるX線透過面を有する平板状の単位回折格子を複数備えた格子ユニットの製造方法であって、互いに隣接する単位回折格子同士を、X線透過面と直交する第3方向に相互にずらして保持する工程と、第3方向に相互にずらして保持された単位回折格子のX線高吸収体同士、またはX線低吸収体同士が互いに重なる領域を有するように、第1方向の位置を合わせる工程と、第1方向の位置を合わせた単位回折格子同士を固定する工程とを備える。
 この発明の第2の局面における回折格子ユニットの製造方法では、上記のように、互いに隣接する単位回折格子同士をX線透過面と直交する第3方向にずらして保持する工程と、単位回折格子のX線高吸収体またはX線低吸収体同士が重なる領域を有するように第1方向の位置を合わせる工程と、第1方向の位置を合わせた単位回折格子同士を固定する工程とを備える。これらの工程により、隣接する単位回折格子の格子同士を部分的に重ねて格子配列を連続させることができるので、回折格子ユニット全体における、X線高吸収体とX線低吸収体との配列による格子ピッチを均一化することができる。その結果、回折格子ユニットを、単一の回折格子とみなすことができるので、大面積化を図りつつ、X線画像に発生するアーチファクトを抑制できる回折格子ユニットを製造することが可能となる。
 この場合、好ましくは、単位回折格子と第3方向に相互にずらして保持された単位回折格子との第1方向の位置を合わせる工程は、単位回折格子に所定波長の電磁波を照射することによって得られる透過像もしくは回折像に基づいて、各単位回折格子の相互位置を合わせる工程を含む。これにより、微細構造の単位回折格子を直接見て位置合わせを行うのではなく、投影面に投影された透過像もしくは回折像に基づいてピッチを拡大させて位置合わせを行うことができる。その結果、単位回折格子同士の位置合わせが容易になる。
 この発明の第3の局面におけるX線位相イメージ撮影装置は、X線源と、X線の照射方向と直交する方向に複数のスリットが配列されて構成された複数の格子ユニットと、検出器とを備え、格子ユニットが、上記第1の局面に記載のいずれか1つの構造を有するように構成されている。
 この発明の第3の局面によるX線位相イメージ撮影装置では、上記のように、X線源と、上記第1の局面に記載のいずれか1つの格子ユニットと、検出器とを備えるように構成されている。これにより、複数の単位回折格子が、X線高吸収体同士またはX線低吸収体同士がX線の照射方向に重なるように配置されて構成されている回折格子ユニットによってX線画像を撮像することができる。その結果、大面積化を図りつつ、アーチファクトの発生が抑制されたX線画像を撮像することができる。
 本発明によれば、上記のように、大面積化を図りつつ、X線画像に発生するアーチファクトを抑制することが可能な、回折格子ユニット、回折格子ユニットの製造方法および、X線位相イメージ撮影装置を提供することができる。
本発明の第1実施形態のX線位相イメージ装置の全体構造を示す図である。 本発明の第1実施形態の回折格子ユニットを構成する単位回折格子を示す斜視図である。 本発明の第1実施形態の回折格子ユニットの全体を示す模式的な斜視図である。 本発明の第1実施形態の回折格子ユニットの図3の200-200線に沿った回折格子ユニットの平面図である。 本発明の第1実施形態の回折格子ユニットの位置合わせを行う装置の構成図である。 本発明の第1実施形態の回折格子ユニットの位置がずれている状態を表すイメージ図(A)と位置があっている状態を表すイメージ図(B)である。 本発明の第2実施形態の回折格子ユニットの平面図である。 本発明の第3実施形態の回折格子ユニットの平面図である。 本発明の第4実施形態の回折格子ユニットの平面図である。 本発明の第5実施形態の回折格子ユニットの平面図である。 本発明の第1実施形態の第1変形例の回折格子ユニットの斜視図である。 本発明の第1実施形態の第2変形例の回折格子ユニットの斜視図である。 本発明の第5実施形態の第1変形例の回析格子ユニットの斜視図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 [第1実施形態]
 図1~図6を参照して、本発明の第1実施形態によるX線位相イメージ装置100の構成、回折格子ユニット10の構成および回折格子ユニット10の製造方法について説明する。
 (X線位相イメージ装置の構成)
 まず、図1を参照して、第1実施形態によるX線位相イメージ装置100の構成について説明する。
 図1に示すように、X線位相イメージ装置100は、X線源101と、マルチスリット102と、位相格子103と、被写体104と、回折格子ユニット10と、検出器105とを備えている。なお、本明細書において、X線源101からマルチスリット102に向かう方向をZ2方向、その逆向きの方向をZ1方向とする。また、Z方向と直交する面内の左右方向をX方向とし、紙面の奥に向かう方向をX2方向、紙面の手前側に向かう方向をX1方向とする。また、Z方向と直交する面内の上下方向をY方向とし、上方向をY1方向、下方向をY2方向とする。なお、X方向、Y方向およびZ方向はそれぞれ、請求の範囲の「第1方向」、「第2方向」および「第3方向」の一例である。
 X線源101は、高電圧が印加されることにより、X線を発生させるとともに、発生されたX線を照射するように構成されている。
 マルチスリット102はY方向に所定の周期(ピッチ)で配列される複数のスリット102aおよびX線吸収部102bを有している。各スリット102aおよびX線吸収部102bはX方向に延びるように構成されている。
 マルチスリット102は、X線源101と位相格子103との間に設置されており、X線源101からX線が照射される。マルチスリット102は、各スリット102aを通過したX線を、各スリット102aの位置に対応する線光源とするように構成されている。これにより、マルチスリット102は、X線源101から照射されるX線の可干渉性を高めることが可能である。
 位相格子103は、Y方向に所定の周期(ピッチ)で配列される複数のスリット103aおよび、X線位相変化部103bを有している。各スリット103aおよびX線位相変化部103bはそれぞれ、X方向に延びるように形成されている。
 位相格子103は、マルチスリット102と、回折格子ユニット10との間に設置されており、マルチスリット102を通過したX線が照射される。位相格子103は、タルボ効果により、自己像を形成するために設けられている。可干渉性を有するX線が、スリットが形成された格子を通過すると、格子から所定の距離(タルボ距離)離れた位置に、格子の像(自己像)が形成される。これをタルボ効果という。自己像は、X線の干渉によって生じる干渉縞である。
 回折格子ユニット10は、Y方向に所定の周期(ピッチ)で配列される複数のX線低吸収体2およびX線高吸収体3とを有する複数の単位回折格子1を備えている。
 回折格子ユニット10は、位相格子103と検出器105との間に配置されており、位相格子103を通過したX線が照射される。また、回折格子ユニット10は、位相格子103からタルボ距離離れた位置に配置される。回折格子ユニット10は、位相格子103の自己像と干渉して、モアレ縞(図示せず)を形成する。
 検出器105は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器105は、たとえば、FPD(Flat Panel Detector)である。検出器105は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、X方向およびY方向に並んで配置されている。
 検出器105の検出信号から、モアレ縞を写したモアレ画像が得られる。X線位相イメージ装置100は、回折格子ユニット10をY方向に一定周期間隔で走査して得られた複数のモアレ画像から、各画像の位相差に基づく再構成画像(X線位相イメージ)を生成するように構成されている。
 (回折格子ユニットの構成)
 次に、回折格子ユニット10の構成について詳細に説明する。回折格子ユニット10は、たとえば、X線リソグラフィやDeep-RIEなどの手法によって、シリコンや樹脂などのX線低吸収基板に深溝を形成し、その後、形成された深溝に金などのX線高吸収体3の充填めっきを行うことによって作製される単位回折格子1を複数備えた構成となっている。単位回折格子の例として、たとえば、図2に示す単位回折格子1がある。図2に示す単位回折格子1は、一辺が長さA(たとえば、5cm)の正方形であり、厚さがH(たとえば、200μm)の回折格子である。単位回折格子1は、金などの重金属により構成される幅L(たとえば、2.5μm)のX線高吸収体3と、シリコンや樹脂などから構成される幅S(たとえば、2.5μm)のX線低吸収体2とを有している。X線低吸収体2は、シリコンや樹脂などに深溝が掘られた櫛形となっている。また、X線高吸収体3は、Z方向に長辺を有する矩形状となっている。単位回折格子1は、X線高吸収体3と、X線低吸収体2とが、X方向に交互に並ぶように構成されている。幅Lと幅Sとの比率は、同じであってもよいし、異なっていてもよい。また、単位回折格子1の格子ピッチPは、X線高吸収体3の幅LとX線低吸収体2の幅Sとを合わせた長さ(たとえば5.0μm)となっている。また、単位回折格子1の別の例としては、図3に示すように、Y方向に長手の矩形状の単位回折格子1a~1dであってもよい。
 図3に示すように、回折格子ユニット10は、X線高吸収体3とX線低吸収体2とが交互に並ぶX方向と、X線高吸収体3とX線低吸収体2とが並行に延びるY方向とによって規定されるX線透過面4a~4dを有する平板状の単位回折格子1a、1b、1cおよび1dを備える。単位回折格子1a~1dは、隣接する単位回折格子をX線透過面と直交するZ方向にそれぞれ部分的に重ねて配置されている。Z方向に部分的に重ねて配置された単位回折格子1a~1dそれぞれが、X線高吸収体3同士、またはX線低吸収体2同士がZ方向に互いに重なる重なり部11a~11cを有するように構成されている。第1実施形態では、X線低吸収体2同士が互いに重なる構成の例を示す。
 具体的には、図4に示す回折格子ユニット10では、重なり部11aにおいて、単位回折格子1aの端部のX線低吸収体2と、単位回折格子1bの端部のX線低吸収体2とが重なるように配置されている。単位回折格子1bと単位回折格子1cとの重なり部11bおよび、単位回折格子1cと単位回折格子1dとの重なり部11cにおいても同様に、単位回折格子の端部のX線低吸収体2同士がZ方向に重なるように配置されている。なお、「Z方向に重なる」とは、単位回折格子1aのX線透過面4aのZ1側と単位回折格子1bのX線透過面4bのZ2側とが、重なり部11aで重なることをいう。
 互いに重なり合うX線低吸収体2同士は、X方向位置が完全に一致するように重なってもよいし、互いにずれて(たとえば、S/2程度)いてもよい。図4に示す第1実施形態では、Z方向から見て互いに重ねて配置された単位回折格子1a~1dの格子ピッチPが全体として略一定の状態を保つように単位回折格子1a~1d同士が重ねて配置されている。つまり、重なり合うX線低吸収体2同士のX方向位置が完全に一致している。
 また、第1実施形態では、隣接する単位回折格子1a~1dが、Z方向に互いに接触した状態で積層されている。つまり、重なり部11a~11cにおいて、X線透過面4a~4dが互いに接触している。
 また、第1実施形態では、隣接する単位回折格子1a~1dが、重なり部11a~11cにおいて、互いに接合されている。これにより、各単位回折格子1同士が相互に固定された回折格子ユニット10が構成されている。単位回折格子1同士の接合は、たとえば、真空接合、オプティカルコンタクト、陽極酸化接合、接着などの方法のうちのいずれか1つを用いることができる。
 (第1実施形態の構造の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、回折格子ユニット10に、単位回折格子1a、1b、1cおよび1dを設け、単位回折格子1a~1dを、隣接する単位回折格子をX線透過面と直交するZ方向にそれぞれ部分的に重ねて配置し、Z方向に部分的に重ねて配置された単位回折格子1a~1dそれぞれを、X線高吸収体3同士、またはX線低吸収体2同士がZ方向に互いに重なる重なり部11a~11cを有するように構成する。これにより、隣接する単位回折格子1a~1dの格子同士を部分的に重ねて格子配列を連続させることができるので、回折格子ユニット10全体における、X線高吸収体3とX線低吸収体2との配列による格子ピッチを略均一化することができる。したがって、回折格子ユニット10を一つの回折格子であるとみなすことができる。その結果、大面積化を図りつつ、連続した格子を有するX線画像に発生するアーチファクトを抑制することができる。
 また、第1実施形態では、上記のように、Z方向から見て互いに重ねて配置された単位回折格子1a~1dの格子ピッチPが全体として略一定の状態を保つように、単位回折格子1a~1d同士を重ねて配置する。これにより、回折格子ユニット10の全体で、格子ピッチPが均等となる。その結果、X線画像に発生するアーチファクトをより一層抑制することができる。
 また、第1実施形態では、上記のように、隣接する単位回折格子1a~1dが、Z方向に互いに接触した状態で積層されている。これにより、隣接する単位回折格子1同士の隙間をなくすことができる。その結果、隣接する単位回折格子1同士を離して積層する場合と比べて、X線画像に発生するアーチファクトをさらに抑制することができる。
 (回折格子ユニットの製造方法)
 次に、回折格子ユニット10の製造方法について説明する。
 (X線透過面をZ方向にずらす工程)
 まず、図4に示すように、単位回折格子1bを単位回折格子1aに対してZ1方向にずらして保持する。単位回折格子1cおよび1dに対しても同様に位置合わせを行い保持する。
 (単位回折格子のX方向の位置を合わせる工程)
 次に、第1実施形態では、単位回折格子1aと1bとの格子ピッチPが連続するように、X方向の位置合わせを行う。具体的には、図5に示すX線位相イメージ装置110を用いてX方向の位置合わせを行う。すなわち、X線源101から回折格子ユニット10に対してX線を照射し、検出器105に現れる回折像に基づき、X方向の位置を合わせる。単位回折格子1aと1bとのX方向の位置がずれている場合、図6(A)の領域12に示すように、回折格子ユニット10の回折像10aのピッチが一致しない部分がある。そこで、図6(B)に示す回折像10bのように、回折格子ユニット10のピッチが一定となるように単位回折格子1aと1bとのX方向の位置合わせを行う。単位回折格子1cおよび1dに対しても同様にX方向の位置合わせを行う。
 (単位回折格子を固定する工程)
 その後、Z方向およびX方向の位置合わせが完了した単位回折格子1a、1b、1cおよび1dのそれぞれの重なり部11a~11cにおいて、上記接合方法のうちのいずれか1つにより単位回折格子を固定することにより、回折格子ユニット10が完成する。
 (第1実施形態の製造方法の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、単位回折格子1をZ方向にずらす工程と、X線位相イメージ装置110のX線源101から回折格子ユニット10に対してX線を照射し、検出器105で得られる回折像に基づき単位回折格子1a~1dのX方向の位置を合わせる工程と、回折格子を固定する工程とを設ける。これにより、隣接する単位回折格子1a~1dの格子同士を部分的に重ねて格子配列を連続させることができるので、回折格子ユニット10全体における、X線高吸収体3とX線低吸収体2との配列による格子ピッチを均一化することができる。したがって、回折格子ユニット10を、大面積を有する回折格子とみなすことができる。その結果、大面積化を図りつつ、X線画像に発生するアーチファクトを抑制する回折格子ユニット10を作成することができる。
 [第2実施形態]
 次に、図7を参照して、本発明の第2実施形態による回折格子ユニット20について説明する。端部にX線低吸収体2が配置された単位回折格子1a~1dのX線低吸収体2同士を重ねて構成されている第1実施形態とは異なり、第2実施形態では、端部にX線高吸収体3を配置した単位回折格子1e~1hのX線高吸収体3同士を重ねて構成されている。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
 図7に示すように、第2実施形態による回折格子ユニット20では、端部にX線高吸収体3を配置した単位回折格子1e~1hによって構成されている。具体的には、回折格子ユニット20では、重なり部21a~21cにおいて、単位回折格子1e~1hのX線高吸収体3同士がZ方向に重なり合うように構成されている。
 X線高吸収体3はX線を吸収するために設けられているので、重なり部21a~21cにおいてX線高吸収体3のZ方向の厚みが増加することとなり、X線をより吸収する方向に寄与し、Visibilityが向上する。一方、第1実施形態のように、X線低吸収体2の部分で重ね合わせると、X線低吸収体2のZ方向の厚みが増加することとなり、X線の透過量の減少につながり、Visibilityにとっては良くない。従って、X線高吸収体3同士がZ方向に重なり合うように構成することが好ましい。また、X線高吸収体3は金や鉛等の重元素を含むことから、シリコンや樹脂等の軽元素を含むX線低吸収体2と比較して強度が高く、従って、X線高吸収体3同士がZ方向に重なり合うように構成すれば重なり部21a~21cの強度を高めることができる。
 [第3実施形態]
 次に、図8を参照して、本発明の第3実施形態による回折格子ユニット30について説明する。第3実施形態では、上記第1実施形態とは異なり、単位回折格子1a~1dの重なり部31a~31cにおいて、単位回折格子の交互に並ぶX線低吸収体2およびX線高吸収体3のうち複数が、Z方向に互いに重なり合うように構成されている。なお、複数とは、2つ以上のX線低吸収体2またはX線高吸収体3であればよい。複数の一例として、図8では、3つのX線低吸収体2と、2つのX線高吸収体3とが重なりあう例を示している。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
 図8に示すように、第3実施形態による回折格子ユニット30では、単位回折格子1a~1dそれぞれの重なり部31a~31cにおいて、3対のX線低吸収体2と、2対のX線高吸収体3とがZ方向に重なるように構成されている。このため、第3実施形態では、重なり部31a~31cの面積が大きくなっており、各単位回折格子1a~1dは、これらの重なり部31a~31cの全体で面接触した状態で互いに接合されている。
 なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
 (第3実施形態の効果)
 第3実施形態では、以下のような効果を得ることができる。
 第3実施形態では、上記のように、重なり部31a~31cにおいて、3対のX線低吸収体2と2対のX線高吸収体3とがZ方向に重なるように構成されている。これにより、単位回折格子1同士の当接面積を大きくすることができるので、単位回折格子1のX方向の位置合わせが容易になるとともに、重なり部31a~31cにおいて、単位回折格子1同士が接合されるので、回折格子ユニット30の機械的強度を向上させることができる。
 [第4実施形態]
 次に、図9を参照して、本発明の第4実施形態による回折格子ユニット40について説明する。第4実施形態では、単位回折格子1a~1dの端部同士をそれぞれ接合する上記第1実施形態とは異なり、単位回折格子1a~1dが平板状の基板7の一方表面7aおよび他方表面7bにそれぞれ配置されている。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
 第4実施形態では、基板7は、樹脂などのX線低吸収体で作成されている。基板7の厚みは、図9では便宜上、単位回折格子1よりも小さく図示しているが、単位回折格子1と同等かそれ以上の厚みを有していてもよい。単位回折格子1と基板7とは、X線透過面4のZ1側と基板7の他方表面7bと、もしくはX線透過面4のZ2側と基板7の一方表面7aとが接合されている。単位回折格子1a~1dは、基板7を介してZ方向にずれて重なっているので、単位回折格子同士は離れた位置で接合されている。
 なお、第4実施形態のその他の構成は、上記第1実施形態と同様である。
 (第4実施形態の効果)
 第4実施形態では、以下のような効果を得ることができる。
 第4実施形態では、基板7の一方表面7aおよび他方表面7bに単位回折格子1a~1dをそれぞれ接合するように構成されている。これにより、単位回折格子1a~1dと、基板7との接合面積を大きくすることができるので、単位回折格子1a~1dの接合が容易になるとともに、回折格子ユニット40の機械的強度を向上させることができる。
 [第5実施形態]
 次に、図10を参照して、本発明の第5実施形態による回折格子ユニット50について説明する。第5実施形態では、上記第1実施形態で用いた単位回折格子1とは異なり、単位回折格子1aおよび1bは、X線高吸収体3とX線低吸収体2とが交互に並ぶ格子領域の少なくともX方向の外側に接続部8を有している。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
 接続部8は、X線低吸収体から構成されているとともに、接続部8はZ方向に重ねて配置されている。また、第5実施形態では、接続部8bのZ2側に凹部51を形成し、接続部8cのZ1側に凸部52を形成し、接続部8bの凹部51と接続部8cの凸部52とを嵌め合わせて接合している。なお、接続部とは、格子領域の外側に設けられる部分であり、X線低吸収体で形成されている。接続部は、微細構造の単位回折格子の格子領域を保護するために形成される。また、接続部は、単位回折格子と一体的に形成されていてもよいし、樹脂などにより別体で形成されていてもよい。接続部の形状は、図10に示すようなコの字型でもよいし、単位回折格子と同じ面が長手の矩形状でもよい。
 第5実施形態では、単位回折格子1のX方向の両端に、接続部8が設けられ、互いにX線透過面4と直交するZ方向に重ねて配置されている。このように構成すれば、単位回折格子1aの接続部8bと、単位回折格子1bの接続部8cとを、X線透過面4と直交するZ方向に重ねて配置することによって、単位回折格子1aおよび、1bの端部のX線高吸収体3同士、またはX線低吸収体2同士をX線透過面4と直交するZ方向に重ねて配置することができる。これにより、格子領域の外側に接続部8を有している場合でも、X線低吸収体2同士または、X線高吸収体3同士が重なった回折格子ユニット10を得ることができる。
 (変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1~第5実施形態では、Y方向に長い長方形の回折格子を備える例を示したが、本発明はこれに限られない。たとえば、図11に示すように、Y方向にも単位回折格子を重ねて配置する構成でもよい。
 また、上記第1~第5実施形態では、単位回折格子がZ方向に2層となる例を示したが、本発明はこれに限られない。たとえば、図12に示すように、単位回折格子がZ方向に4層となるように構成されていてもよい。
 また、上記第3実施形態では、3対のX線低吸収体2と、2対のX線高吸収体3とを重ねる構成を示したが、本発明はこれに限られない。2つの単位回折格子がX方向でずれていれば、重ねるピッチ数は問わない。
 また、上記第5実施形態では、単位回折格子1のX方向の両側に接続部8を設ける例を示したが、本発明はこれに限られない。たとえば、Z方向の両端にさらに接続部8を設けて、単位回折格子1の4面に接続部8を有する構成でもよいし、Y方向の両端にさらに接続部8を設けて、図13に示すように、単位回折格子1の6面に接続部8を有する構成でもよい。
 1、1a~1d 単位回折格子
 2 X線低吸収体
 3 X線高吸収体
 4 X線透過面
 7 平板状の基板
 8a~8d 接続部
 10、40、50 回折格子ユニット
 11、11a~11c 重なり部
 100 X線位相イメージ装置
 101 X線源
 105 検出器

Claims (9)

  1.  X線高吸収体とX線低吸収体とが交互に並ぶ第1方向と、前記X線高吸収体と前記X線低吸収体とが平行に延びる第2方向とにより規定されるX線透過面を有する平板状の単位回折格子を複数備え、
     前記単位回折格子は、隣接する単位回折格子を前記X線透過面と直交する第3方向に部分的に重ねて配置されているとともに、前記単位回折格子と、前記第3方向に部分的に重ねて配置された単位回折格子とがX線高吸収体同士、またはX線低吸収体同士が前記第3方向に互いに重なる領域を有する、回折格子ユニット。
  2.  前記第3方向から見て、互いに重ねて配置された複数の前記単位回折格子の格子ピッチが全体として略一定の状態を保つように、前記単位回折格子同士が重ねて配置されている、請求項1に記載の回折格子ユニット。
  3.  前記単位回折格子の前記第1方向の端部に前記X線高吸収体が配置され、
     前記単位回折格子同士の重なり部において、前記端部の前記X線高吸収体同士が前記第3方向に互いに重なり合うように配置されている、請求項1に記載の回折格子ユニット。
  4.  隣接する前記単位回折格子同士が、前記第3方向に互いに接触した状態で積層されている、請求項1に記載の回折格子ユニット。
  5.  複数の前記単位回折格子が、平板状の基板の一方表面および他方表面にそれぞれ配置されている、請求項1に記載の回折格子ユニット。
  6.  前記単位回折格子は、前記X線高吸収体と前記X線低吸収体とが交互に並ぶ格子領域の少なくとも前記第1方向の外側に設けられた接続部を有しており、
     前記接続部は、X線低吸収体から構成されているとともに、前記接続部は、前記第3方向に重ねて配置されている、請求項1に記載の回折格子ユニット。
  7.  X線高吸収体とX線低吸収体とが交互に並ぶ第1方向と、前記X線高吸収体と前記X線低吸収体とが平行に延びる第2方向とにより規定されるX線透過面を有する平板状の単位回折格子を複数備えた格子ユニットの製造方法であって、
     互いに隣接する前記単位回折格子同士を、前記X線透過面と直交する第3方向に相互にずらして保持する工程と、
     前記第3方向に相互にずらして保持された前記単位回折格子のX線高吸収体同士、またはX線低吸収体同士が互いに重なる領域を有するように、前記第1方向の位置を合わせる工程と、
     前記第1方向の位置を合わせた単位回折格子同士を固定する工程と、を備える、格子ユニットの製造方法。
  8.  前記単位回折格子と前記第3方向に相互にずらして保持された単位回折格子との前記第1方向の位置を合わせる工程は、前記単位回折格子に所定波長の電磁波を照射することによって得られる透過像もしくは回折像に基づいて、各単位回折格子の相互位置を合わせる工程を含む、請求項7に記載の格子ユニットの製造方法。
  9.  X線源と、
     X線の照射方向と直交する方向に複数のスリットが配列されて構成された複数の格子ユニットと、
     検出器とを備え、
     前記格子ユニットが、請求項1に記載の構造を有する、X線位相イメージ撮影装置。
PCT/JP2017/025425 2016-10-06 2017-07-12 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置 WO2018066198A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018543742A JPWO2018066198A1 (ja) 2016-10-06 2017-07-12 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-198128 2016-10-06
JP2016198128 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066198A1 true WO2018066198A1 (ja) 2018-04-12

Family

ID=61831485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025425 WO2018066198A1 (ja) 2016-10-06 2017-07-12 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置

Country Status (2)

Country Link
JP (1) JPWO2018066198A1 (ja)
WO (1) WO2018066198A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522085A (zh) * 2020-05-12 2020-08-11 深圳大学 二维x射线吸收光栅制作方法
WO2020170494A1 (ja) * 2019-02-21 2020-08-27 株式会社島津製作所 X線位相イメージング装置およびx線位相イメージング方法
JP2020534514A (ja) * 2017-09-06 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. X線位相コントラスト及び/又は暗視野イメージングのための回折格子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188261B2 (ja) * 2019-04-24 2022-12-13 株式会社島津製作所 X線位相イメージング装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244260A (ja) * 2008-03-13 2009-10-22 Canon Inc X線位相イメージングに用いられる位相格子、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012127734A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2013255536A (ja) * 2012-06-11 2013-12-26 Konica Minolta Inc 放射線画像撮影装置
WO2014034033A1 (ja) * 2012-09-03 2014-03-06 コニカミノルタ株式会社 回折格子および回折格子の製造方法、格子ユニットならびにx線撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244260A (ja) * 2008-03-13 2009-10-22 Canon Inc X線位相イメージングに用いられる位相格子、該位相格子を用いたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム
JP2012045099A (ja) * 2010-08-25 2012-03-08 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012127734A (ja) * 2010-12-14 2012-07-05 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
JP2013255536A (ja) * 2012-06-11 2013-12-26 Konica Minolta Inc 放射線画像撮影装置
WO2014034033A1 (ja) * 2012-09-03 2014-03-06 コニカミノルタ株式会社 回折格子および回折格子の製造方法、格子ユニットならびにx線撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534514A (ja) * 2017-09-06 2020-11-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. X線位相コントラスト及び/又は暗視野イメージングのための回折格子
WO2020170494A1 (ja) * 2019-02-21 2020-08-27 株式会社島津製作所 X線位相イメージング装置およびx線位相イメージング方法
JPWO2020170494A1 (ja) * 2019-02-21 2021-10-28 株式会社島津製作所 X線位相イメージング装置およびx線位相イメージング方法
CN111522085A (zh) * 2020-05-12 2020-08-11 深圳大学 二维x射线吸收光栅制作方法

Also Published As

Publication number Publication date
JPWO2018066198A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2018066198A1 (ja) 回折格子ユニット、格子ユニットの製造方法およびx線位相イメージ撮影装置
JP6384588B2 (ja) X線検出器
US8718228B2 (en) Phase grating used for X-ray phase imaging, imaging apparatus for X-ray phase contrast image using phase grating, and X-ray computed tomography system
JP6460226B2 (ja) X線撮影装置
JP7188261B2 (ja) X線位相イメージング装置
US9046466B2 (en) X-ray imaging apparatus
WO2012026223A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012161412A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5578868B2 (ja) 光源格子、該光源格子を備えたx線位相コントラスト像の撮像装置、x線コンピューター断層撮影システム
JP6365299B2 (ja) 回折格子および回折格子の製造方法、格子ユニットならびにx線撮像装置
US10643760B2 (en) Method of producing diffraction grating
JP6515682B2 (ja) X線タルボ撮影装置及び格子保持具
JP6149343B2 (ja) 格子および格子ユニットならびにx線用撮像装置
JP2012127734A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
WO2012053342A1 (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012143536A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに、放射線画像撮影システム
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
WO2012081376A1 (ja) 放射線画像撮影用グリッド及び放射線画像撮影システム
JP2012249847A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2012093117A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP5787597B2 (ja) 撮像装置
JP2012068225A (ja) 放射線画像撮影用グリッド及びその製造方法
JP2013134196A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
JP2013063166A (ja) 放射線撮影装置及び画像処理方法
JP2012130503A (ja) 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858038

Country of ref document: EP

Kind code of ref document: A1