JP5572038B2 - 半導体発光装置及びそれを用いた車両用灯具 - Google Patents

半導体発光装置及びそれを用いた車両用灯具 Download PDF

Info

Publication number
JP5572038B2
JP5572038B2 JP2010190843A JP2010190843A JP5572038B2 JP 5572038 B2 JP5572038 B2 JP 5572038B2 JP 2010190843 A JP2010190843 A JP 2010190843A JP 2010190843 A JP2010190843 A JP 2010190843A JP 5572038 B2 JP5572038 B2 JP 5572038B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
wavelength conversion
semiconductor light
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010190843A
Other languages
English (en)
Other versions
JP2012049022A (ja
Inventor
光範 原田
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010190843A priority Critical patent/JP5572038B2/ja
Priority to US13/218,960 priority patent/US8702285B2/en
Publication of JP2012049022A publication Critical patent/JP2012049022A/ja
Application granted granted Critical
Publication of JP5572038B2 publication Critical patent/JP5572038B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Description

本発明は、半導体発光装置及び車両用灯具に関し、特に、明瞭なカットオフラインを形成することが可能な車両用灯具及び半導体発光装置に関する。
車両用灯具の光源として、近年、半導体発光装置が用いられている(特許文献1、特許文献2)。一般的な半導体発光装置は、LED素子とLED素子が発する光の波長を変換する蛍光体等を組み合わせた発光素子からなり、LED素子の上に蛍光体を分散した層(波長変換層)を積層した構造を有している。このような半導体発光装置の輝度分布は、発光面すなわち波長変換層表面の中心部を最大として周辺に向かってなだらかに減少するもの、発光面内でほぼ均一なものが存在する。
ところで車両用前照灯においては、照射した光が対向車(運転者)に直接照射されるのを防止するためカットオフラインが形成されている。明瞭なカットオフラインを形成するためには、光源の配光パターンは輝度分布の最大部をカットオフラインに配光することが好ましい。上述のような発光面周辺に向かってなだらかに輝度が減少する輝度分布を有する半導体発光装置を車両用前照灯に適用する場合、従来は、シェード等を用いて輝度分布の半分程度をカットし、カットオフラインを形成している。しかし、この場合、光の利用効率が低下するという問題がある。
また、遠方視認性の高い配光を形成するためには、カットオフラインから下側に行くに従って照度(輝度)が低下していく輝度グラデーションが形成されることが好ましい。しかし、半導体発光装置の輝度分布がほぼ一定のものを用いる場合、輝度グラデーションの形成が難しいという問題があった。
特開2005−322923号公報 特開2008−507850号公報
本発明は、このような事情に鑑みてなされたものであり、輝度分布の最大部をカットオフラインに配光することが可能な半導体発光装置及びそれを用いた車両用灯具を提供することを課題とする。
上記課題を達成する本発明の車両用灯具は半導体発光装置を光源とし、前記光源の光源像を車両前方に投影して、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系を有するものであって、前記半導体発光装置は以下の特徴を備える。
半導体発光素子と、その発光面に積層され、波長変換層を含む1ないし複数の光取り出し層とを備え、光取り出し層は、発光面に平行な一つの方向について、その一端から他端に向かって変化する光学特性を有し、半導体発光装置の輝度分布が一端側で最大であって他端側で最小となる分布を有している。
車両用灯具における前記半導体発光装置の配置は、好適には、灯具から出射される投影光の輝度分布が、垂直方向の一端側で最大であって他端側で最小となるように配置される。
また本発明は上記特徴を持つ半導体発光装置を提供する。
本発明の半導体発光装置において、光取り出し層の光学特性は、一端から他端に向かってなだらかに変化するものであってもよいし、階段状に変化するものであってもよい。後者の場合、光取り出し層は、例えば、光学特性の異なる複数の光取り出し部からなり、複数の光取り出し部を、発光面の一端側から他端側に向かって、輝度の大きさの順となるように配置する。
本発明の半導体発光装置において、光取り出し層の光学特性とは、発光素子から発せられ、光取り出し層を経て出射される出射光の輝度(発光効率)と相関を持つ特性を意味し、具体的には、波長変換層に含有される波長変換材料の密度分布、波長変換層に含有される波長変換材料の平均粒径および種類、光取り出し層の表面の表面粗さ、光取り出し層の屈折率などである。
本発明の半導体発光装置において、半導体発光素子は、その発光面に平行な一つの方向について、その一端から他端に向かって、輝度分布が変化するものであってもよい。
本発明によれば、半導体発光素子を用いた車両用灯具において、半導体発光装置が発する光を無駄にすることなく、極めて明瞭なカットオフラインを持つ投影光を得ることができる。また、一方の端部に行くに従い輝度が低下していく半導体発光装置の輝度分布をカットオフラインから下の配光に対応させて、遠方視認性の高い車両用灯具を提供することができる。
本発明が適用される半導体発光装置を示す図で、(a)は上面図、(b)は側面図である。 第1の実施形態の半導体発光装置の要部を示す図で、(a)は上面図、(b)は側断面図である。 波長変換材料の含有量を同一にして濃度を変えた場合(膜厚の変化に対応)の発光効率の変化を示すグラフ。 第1の実施形態の半導体発光装置の製造方法を説明する図で、(a)は波長変換層を形成する型を示す上面図、(b)は側断面図、(c)は波長変換層用樹脂液が硬化時に生じる変化を示す図、(d)は最終工程を示す図である。 (a)、(b)は第2の実施形態の半導体発光装置を示す上面図および側断面図、(c)、(d)は変更例を示す上面図および側断面図。 粒子径による発光効率の変化を示すグラフ。 第2の実施形態の半導体製造装置の製造方法を説明する図。 変更例の半導体製造装置の製造方法を説明する図。 第3の実施形態の半導体発光装置を示す側断面図。 第4の実施形態の半導体発光装置の発光素子配列方向の断面図。 図10の半導体発光装置のA−A’線断面図。 第4の半導体発光装置製造方法を説明する図。 (a)は、第5の実施形態の半導体発光装置を示す断面図、(b)は変更例の断面図。 第8の実施形態の半導体発光素子の一例を示す図で、(a)は上面図、(b)は側断面図、(c)は輝度分布を示す図。 本発明の車両用灯具の第1の実施形態を模式的に示す図。 図15の車両用灯具の水平方向の配光パターンを模式的に示す図。 本発明の車両用灯具の第2の実施形態を模式的に示す図。 本発明の車両用灯具の第3の実施形態を模式的に示す図。 本発明の車両用灯具の第4の実施形態を模式的に示す図。
以下、本発明の半導体発光装置の実施形態を説明する。
以下の実施形態では、一例として、配列した複数の青色発光素子(LED)と、青色発光を励起光とし黄橙色の蛍光を発光する波長変換層とを組み合わせ、青色光と黄橙色とを混色して白色を得る白色発光装置について説明する。しかし、本発明において発光色は白色に限定されるものではなく、発光素子と波長変換材料とを組み合わせた発光装置であれば、発光色にかかわらず本発明を適用することができる。
また以下の説明で参照する各図面では、各層の膜厚や大きさ、層に含まれる粒子の形状や大きさなどを、わかりやすくために誇張して示しており、本発明はこれらに限定されるものではない。
<第1の実施形態>
本実施形態の半導体発光装置10は、図1(a)、(b)に示すように、実装基板11の上に、1ないし複数の発光素子12、波長変換層13がこの順に形成された構造を有する。実装基板11は、例えば、配線パターンが形成されたセラミック基板やシリコン基板からなる。図示する例では、4つの発光素子12が一列に配置された発光装置を示すが、発光素子12の数や配置については、用途に応じて任意に変更することが可能である。
発光素子12は、それが固定される基板11とは逆の方向(上面方向)に青色光を発光する構造である。波長変換層13は、青色光を励起光とし、黄橙色の蛍光を発する蛍光体粒子、例えば、Y3Al512:Ce等のYAG系蛍光体、(Ba,Sr,Ca)2SiO4:Eu等のBOSE系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のαSiAlON系蛍光体粒子など、が分散された樹脂層である。発光素子12の上面には同じ極性の電極(ワイヤボンドパッド)14がそれぞれ配置され、ボンディングワイヤ15によって基板11上の配線と接続されている。また、発光素子12の下面には、上面に設けられた電極14の対極(図示していない)が配置されており、基板11上に形成された電極パターン上に電気的に接続されている。波長変換層13は、電極14およびボンディングワイヤ15の一部を埋め込むように配置されている。
発光素子12から上面に向かって発せられた青色光は、波長変換層13を通過する。その際に青色光の一部は、波長変換層13の蛍光体粒子を励起し、蛍光体粒子は黄橙色の蛍光を発する。波長変換層13を透過した青色光と黄橙色蛍光とは混合され、白色光が波長変換層13から上面に向かって出射される。
本実施形態の半導体発光装置10は、波長変換層13における蛍光体粒子の分布に特徴があり、図2(a)に示すように、波長変換層13を上面から見た場合、蛍光体粒子16の分布は均一であり、単位面積当たりの粒子数はほぼ同じである。一方、図2(b)に示すように、波長変換層13を側面側から見た場合、波長変換層13の厚み方向における蛍光体粒子の密度分布が、一端側13aから他端側13bに向かって変化している。具体的には、一端側13aでは、発光素子11側(下側)で粒子密度が高く、波長変換層13側(上側)で低い。また他端側13bでは、波長変換層13の厚み方向で粒子密度がほぼ均一である。一端側13aの下側の高い粒子密度は、他端側13bに向かうにつれ、低くなり、最終的に波長変換層13の厚み方向で均一な粒子密度となる。
蛍光体の量を同一にして、蛍光体の濃度を変化させた場合、波長変換層から出射される光量は、蛍光体濃度と相関があり、濃度が高いほど発光効率は高まる。図3に、蛍光体濃度と発光効率との関係を示す。この関係は、シリコーン樹脂中にYAG蛍光体を分散させた波長変換層と青色発光素子とを組み合わせた発光装置において、YAG蛍光体の濃度を変化させたときに同一の色温度を達成できる波長変換層を作成し、その波長変換層の厚みと発光効率を測定することにより得られたものである。図3のグラフからわかるように、層の厚みが40μm、蛍光体濃度52%のときの発光効率を基準にしたとき、層の厚みが厚くなるにしたがって、即ち蛍光体濃度が薄くなるにしたがって発光効率は低下し、厚み50μm、蛍光体濃度41%では、0.994に、厚み100μm、蛍光体濃度28.5%では、0.947に低下している。これは、発光素子から発する光が、蛍光体粒子に衝突する確率が高まり発光効率が向上するためと考えられる。
図2に示す波長変換層13は、図3に示す濃度の変化を波長変換層13に含まれる蛍光体粒子の密度分布を変えることにより実現したものであり、蛍光体粒子が存在する領域は、一端部13aに近いほど密度が高く、他端部13bに近いほど密度が低くなっている。このような密度分布とすることにより、図3に示す結果と同様に、一端部13aに近いほど高い発光効率が得られることになる。
また波長変換層13の厚みを一定にして、一端部13aに近いほど密度が高い密度分布にするために、蛍光体粒子は一端部13aに近づくにつれ狭い厚み範囲に偏在することになる。この蛍光体粒子を偏在させる領域は、波長変換層13の厚み方向について、種々の位置に配置することが考えられ、例えば、図2(b)の波長変換層13の上下を反転させた配置も取りえる。しかし、発光効率の観点から発光素子に近接する領域に蛍光体粒子を偏在させることが好ましい。蛍光体粒子が存在する領域が発光素子に近いほうが高い発光効率が得られる。
蛍光体が存在する位置と発光効率との関係を確認するため、シリコーン樹脂にYAG蛍光体を含有させた材料を厚み約100μmのガラス板の片面に吹き付けて約35μmの波長変換層を形成した。このガラス板付き波長変換層を、波長変換層側が青色LED(発光素子)に接するように貼りつけた場合と、ガラス板側が青色LEDに接するように貼りつけた場合とで発光効率を比較した。その結果、後者は前者に比べ明るさが約13%低下することが確認された。
上記構成の本実施形態の半導体発光装置10の輝度分布17は、図2(b)に示すように、他端部13bから一端部13aにかけて輝度が高くなる分布を示し、一端部13aで最大となる。図2に示す波長変換層13において、蛍光体粒子が存在する領域の蛍光体濃度を例えば20%〜60%の範囲で変化させることにより、波長変換層13の蛍光体濃度が変化する方向の両端では、輝度を約数%〜20%程度変化させることができる。一方、波長変換層13を垂直方向に等分した領域については各領域の蛍光体粒子の含有量は同じであるので、発光の色味は全体として均一な光、本実施形態では白色の光を得ることができる。
次に、本実施形態の半導体発光装置の製造方法の一例を、図4(a)〜(d)を参照して説明する。本実施形態の半導体発光装置の製造方法において、基板11上に発光素子12をダイボンディング等により固定し、発光素子12の下部電極(不図示)と基板11上の対応する電極を電気的且つ機械的に接続すること、及び、発光素子12の上部電極14をボンディングワイヤ15によって基板11上の配線と接続することは、従来の発光装置の製造方法と同様である。
配線後の発光素子12の上に積層される波長変換層13を、図4(a)〜(d)に示すステップで作成する。まず、耐熱性のある材料からなり、表面が離型性を有する板材401を用意する。板材401の材料として、具体的には、フッ素樹脂からなる板や金属板の表面にフッ素樹脂等のコーティング膜を設けたものを用いることができる。板材401の離型性表面上に、波長変換層13の幅wに相当する間隔を持って、一対のヒーターブロック402、403を配置し、ヒーターブロック402、403との間の空間の両端を断熱材405で封止する。板材401上に配置されるヒーターブロック402、403及び断熱材405の厚みは、図4(a)、(b)に示すように、波長変換層13の設計厚みdとほぼ同じか、波長変換層を構成する樹脂の熱収縮を考慮して設計厚みより若干厚くすることが好ましい。
次に図4(c)に示すように、ヒーターブロック402、403と両側の断熱材405で囲まれる空間を満たすように、波長変換層を構成する材料404’を注入する。波長変換層を構成する材料は、透明な熱硬化型樹脂を母材とし、蛍光体等の波長変換材料と、必要に応じて、シリカ、酸化チタン等のフィラーを含む。樹脂として、エポキシ樹脂、シリコーン樹脂等を用いることができるが、粘度が下がりにくいシリコーン樹脂が特に好適である。フィラーは、製造工程における封止樹脂の粘度を調整するためや、色むらを軽減するための拡散材として用いられる。蛍光体およびフィラーの含有量は特に限定されないが、樹脂に対する蛍光体およびフィラーの合計含有量の重量割合で、好ましくは5〜80重量%、より好ましくは20〜50重量%である。
次いで、ヒーターブロック402、403を加熱し樹脂を硬化させる。この際、2つのヒーターブロック402、403のうち一方が他方よりも高温となるように、ヒーターブロック402、403の温度を制御する。具体的には、高温側のヒーターブロック402の温度を樹脂の硬化温度かそれよりやや高い温度、例えば200℃程度に設定し、低温側ヒーターブロックを樹脂の硬化温度より低い温度、例えば50〜100℃に設定する。これによりヒーターブロック402、403との間で温度傾斜を生じ、間に注入された樹脂404’の、高温側のヒーターブロック402に近い部分では急速に硬化が始まる。一方、低温側のヒーターブロック403に近い部分では硬化の速度は遅く、比較的長い時間、樹脂の流動性が保たれ、樹脂に分散された蛍光体およびフィラーが沈降する。即ち、樹脂の硬化速度と樹脂中の粒子の沈降速度は、前者は高温側のヒーターブロック402に近いほど速く、後者は低温側のヒーターブロック403に近いほど速い。その結果、樹脂がほぼ硬化し、樹脂中の粒子が移動できなくなった状態では、樹脂の厚み方向の分布は、高温側のヒーターブロック402から低温側のヒーターブロック403に向かって、均一な分布から下側で密度が高くなる分布に連続的に変化する。
この状態で、必要に応じて、低温側のヒーターブロック403の温度を上げて、例えば200℃に設定して樹脂を本硬化させる。
次いで硬化した波長変換材料を含む樹脂板404を、板材401から剥離し、図4(d)に示すように、発光素子12の大きさに合わせてカットし、配線後の発光素子12の上に貼り合わせ、波長変換層13を形成する。貼り合わせる樹脂板404の方向は、完成後の発光装置においてカットオフラインを形成すべき端部に、波長変換層13の蛍光体粒子密度の偏りが最大である端部が一致するようにする。
これにより、図2に示すような、一端から他端に向かって輝度分布17が連続的に変化する発光装置を得ることができる。この方法によれば、波長変換層を樹脂板として製造する際、樹脂板を硬化させる一対のヒーターブロックの温度を制御するだけで容易に蛍光体粒子の密度分布を連続的に変化させた波長変換層を製造することができる。
本実施形態によれば、半導体発光装置を構成する波長変換層において、蛍光体粒子の密度分布に、発光面と平行な方向の傾斜をつけたことにより、一端部で輝度が高く、他端部に向かって輝度が連続的に減少する輝度分布を持つ半導体発光装置を提供することができる。これにより遮蔽板等を用いることなく、半導体発光装置が発する光を無駄にすることなく、半導体発光装置のカットオフラインを実現することができる。また、一方の端部に行くに従い輝度が低下していく半導体発光装置の輝度分布をカットオフラインから下の配光に対応させて、遠方視認性の高い車両用灯具を提供することができる。
なお、図2および図4では、単一の発光素子からなる発光装置を示したが、図1に示すような複数の発光素子を一列に配列させた発光装置の場合、波長変換層となる樹脂板は、個々の発光素子毎にカットし貼り合わせるのではなく、複数の発光素子からなるアレイに1枚の樹脂板を貼り合わせることができる。このことは以下の実施形態についても同様である。
図1では、発光装置において、両電極が上表面と下表面に配置された発光素子を示したが、両電極が片面側のみに配置されたものでもよい。また発光素子の両電極と基板上の配線との電気的接続については、ボンディンングワイヤを介するものに限られず、バンプ接続、共晶接続などの適宜な実装方法を用いることができる。このことは以下の実施形態についても同様である。
さらに上記実施形態では、蛍光体として黄橙色発光の蛍光体を用いる場合を説明したが、蛍光体として緑色発光の蛍光体と赤色発光の蛍光体とを組み合わせたものや、これらの組み合わせに黄橙色発光の蛍光体を組み合わせたものなど、用途に合わせて適宜選択することができる。
<第2の実施形態>
本実施形態の半導体発光装置も、実装基板11の上に、1ないし複数の発光素子12、波長変換層がこの順に形成された構造を有することは、図1に示す第1の実施形態と同様である。本実施形態は、波長変換層に含まれる蛍光体粒子の粒径分布に傾斜を設けた点が特徴である。以下、図5を参照して、第1の実施形態と異なる特徴を中心として説明する。
本実施形態の半導体発光装置は、図5(b)に示すように、波長変換層23を側面側から見た場合、波長変換層23に含まれる蛍光体粒子の粒径が、一端側23aから他端側23bに向かって変化し、一端側23aでは、粒子の粒子径が大きく、他端側23bでは、粒子径が小さい。具体的には、蛍光体粒子の平均粒子径の範囲は、好適には1μm〜50μmであり、このような範囲で平均粒子径分布を変化させる。
なお変化のさせ方は、図5(a)、(b)に示すように、連続的に変化するようにしてもよいし、段階的に変化するようにしてもよい。例えば、図5(c)、(d)に示すように、波長変換層23を一端側23aと平行に複数の部分231、232、233に分割し(図では3分割し)、各部分に含まれる粒子の平均粒子径が一端側から他端側に向かって順に小さくなるようにする。例えば、一端側23aの部分231では平均粒子径を20〜50μm、中央の部分232では平均粒子径を約15μ、他端側23bの部分233では平均粒子径を約5μmとする。なお粒子の粒径分布にはある程度幅があるので、各部231〜233には、平均粒子径より大きい粒子や小さい粒子が含まれることになるが、平均粒子径として上述した差があれば、全体として粒子径の傾斜を作り出すことができる。粒子径を段階的に変化させる場合、波長変換層の分割数は図示する3に限らず、製造方法等を考慮し適宜で選択することができる。なお粒子の含有量については、粒子の大きさに拘わらず、波長変換層23全体でほぼ均一である。
一般に粒子径が50μmまでの蛍光体粒子では、粒子径が大きいほど発光効率は高い。一例として、YAG蛍光体の粒子径と発光効率との関係(実測値)を図6に示す。図6のグラフからもわかるように、粒子径5μmの蛍光体の発光効率に対し、粒子径25μmの蛍光体の発光効率は10%以上向上する。従って、図5に示したように、一端部23aに近いほど蛍光体粒子の粒径が大きくような粒径分布とすることにより、この発光装置の輝度分布27は、他端部23bから一端部23aにかけて輝度が高くなる分布を示し、一端部23aで最大となる。他端側から一端側に向かって、平均粒子径を数μmから数十μmまで変化させた場合、他端の輝度を基準とした場合、一端側で約10%〜15%の輝度を高めることができる。一方、発光面と垂直な面で波長変換層23を分割した場合の単位体積当たりの蛍光体粒子の濃度は均一であるので、発光の色味は全体として均一な光、本実施形態では白色の光を得ることができる。
次に、本実施形態の半導体発光装置の製造方法について図7および図8を参照して説明する。本実施の形態でも、配線された発光素子を用意することは従来の製造方法と同様である。
図7は、図5(a)に示すような、連続的に平均粒子径が変化する波長変換層を製造する方法を説明する図である。この製造方法は、蛍光体粒子の沈降速度が粒径により異なることを利用した方法である。まず、波長変換層を構成する材料を硬化させるための型として、2枚の側板701、702と底板703からなる型700を用意する。側板701、702の高さ(上下方向の寸法)は、波長変換層の幅Wと同じで、2枚の側板の間隙は発光素子の厚みdと同じである。一方、シリコーン樹脂等の未硬化の樹脂中に、平均粒子径の異なる複数種の蛍光体粒子或いは粒径分布の幅が広い蛍光体粒子と、必要に応じてフィラーとを加えた波長変換層用樹脂液704’を用意し、型700内に注入する。注入後すぐに樹脂を硬化させるのではなく、樹脂中の蛍光体粒子が大きさに依存する異なる沈降速度で沈降するのに十分な時間を置く。この時間で、蛍光体粒子中比較的大きな粒子径を有する粒子は、速い速度で沈降し、型700の下の方に移動するのに対し、粒子径が小さく軽い粒子は沈降速度が遅いため、上方に残るとともに、下側では、粒子径の大きな粒子が沈降してくるのに伴い、逆に上の方に移動する。これにより型700の上下方向で、蛍光体粒子の粒子径に分布を生じる。このような分布差を生じさせるのに必要な時間は、樹脂の粘度や粒子径範囲によっても異なるが、約30分から120分/程度である。
上下方向で異なる粒子径分布を生ぜしめた後、型700を加熱し、注入された樹脂を硬化させる。樹脂の硬化は、上述した沈降に必要な時間を待って硬化温度に加熱するようにしてもよいし、比較的低い温度で加熱しながら粒子の沈降も進行させた後、温度を硬化温度まで上げて加熱するようにしてもよい。このように硬化の状態を制御して進行させることにより、粒子の粒径による沈降速度差を利用して、上下方向に連続的に変化する粒子径分布を持たせることができる。
硬化後、型700から取りだした波長変換層用樹脂板704を、発光素子12の大きさに合わせてカットし、配線後の発光素子12の上に貼り合わせ、波長変換層23を形成する。貼り合わせる樹脂板704の方向は、完成後の発光装置においてカットオフラインを形成すべき端部に、波長変換層23の蛍光体粒子径が最大である端部が一致するようにする。
図8は、図5(c)に示すような、段階的に平均粒子径が変化する波長変換層を製造する方法を説明する図である。この製造方法では、まず、平均粒子径の異なる複数種類の蛍光体をそれぞれ個別にシリコーン樹脂等の透明な樹脂に分散させて、蛍光体の種類の数と同数の波長変換層用樹脂液を用意する。
表面に離型性を持つ板材(フィルム)801上に、複数の樹脂液を、それに含まれる蛍光体粒子の平均粒子径の大きさ順に順次印刷等によって塗工し、硬化させて、複数の樹脂層231、232、233が積層されたブロック230を作製する。ブロック230の積層方向の厚みは、発光素子12の幅wと同じ、例えば約1mmとする。次いで、このブロック230を波長変換層13の設計厚みdと同じ幅で切り出し、発光素子12に貼り合わせる。貼り合わせる方向は、完成後の発光装置においてカットオフラインを形成すべき端部20aに、ブロック230の蛍光体粒子径が最大である端部(231側)が一致するようにする。
図7又は図8に示す製造方法によって、図5(a)又は(c)に示すような、一端から他端に向かって輝度分布27、27’が連続的または段階的に変化する発光装置を得ることができる。図7の方法は、波長変換層用樹脂液として一つの樹脂液を用意すればよいので、製造工程を簡易にすることができる。図8の方法は、樹脂の硬化と沈降との速度を調整する必要がないので、簡単な硬化条件の制御で波長変換層を製造することができる。また波長変換層全体としての蛍光体の含有量の均一性を容易に保つことができ、均一性のよい発光色が得られる。
本実施の形態によれば、発光装置を構成する波長変換層において、蛍光体粒子の粒径分布に、発光面と平行な方向の傾斜をつけたことにより、一端部で輝度が高く、他端部に向かって輝度が連続的に減少する輝度分布を持つ発光装置を提供することができる。
<第3の実施形態>
本実施形態の半導体発光装置も、実装基板の上に、1ないし複数の発光素子、波長変換層がこの順に形成された構造を有することは、第1及び第2の実施形態と同様である。本実施形態は、波長変換層33に含まれる蛍光体の種類を段階的に変化させた点が特徴である。以下、第1及び第2の実施形態と異なる特徴を中心として説明する。
青色に発光する発光素子と組み合わせて白色光を出す蛍光体としては、黄色発光蛍光体のほかに、緑色発光の蛍光体と赤色発光の蛍光体との組み合わせがある。例えば、緑色発光の蛍光体としては、Y3(Al,Ga)512:Ce、Lu3Al512:Ce、CaSc24:Ce、(Ba,Sr)2SiO4:Eu(BOSE蛍光体)、(Si,Al)6(O,N)8:Eu(βSiAlON蛍光体)などが挙げられる。また赤色発光の蛍光体としては、Ca2Si58:Eu、CaAlSiN3:Eu等が挙げられる。緑色発光の蛍光体と赤色発光の蛍光体とを適当な比率で混合して用いることにより、黄色発光の蛍光体を用いたときと同様の白色光を作り出すことができる。ただし、発光効率は、黄色発光の蛍光体を用いた場合が最も高く、高輝度が得られる。本実施の形態は、上述した蛍光体の種類による発光効率の差、すなわち輝度の差を利用したものである。
本実施形態の半導体発光装置の一例を図9に示す。図示するように、本実施形態の半導体発光素子は、波長変換層33が発光面と垂直な面に沿って、一端側33aから複数(図では3つ)に分割されており、それぞれの部分331〜333において蛍光体の種類の組み合わせが異なっている。一端33a側の部分331は、黄色発光の蛍光体1種類のみからなる。他端33b側の部分333は、緑色発光の蛍光体と赤色発光の蛍光体との2種類からなる。中間の部分332は、黄色、緑色および赤色の3種類の蛍光体からなる。すべての部分において、蛍光体の含有量は同一の色味となるように調整される。一例として、樹脂としてシリコーン樹脂、黄色発光の蛍光体として、Y3Al512:Ce、緑色発光の蛍光体としてY3(Al,Ga)512:Ce、赤色発光の蛍光体としてCaAlSiN3:Euを用いた場合、部分331では樹脂82重量%に対し黄色蛍光体を18重量%、部分333では、樹脂80重量%に対し緑色蛍光体を17重量%、赤色蛍光体を3重量%とすることにより、同じ色温度(5000K)を達成することができる。中間部分332における黄色発光の蛍光体と、緑色および赤色発光の蛍光体との比は、特に限定されないが、20:80〜80:20、好適には40:60〜60:40である。このような範囲とすることにより、部分331及び部分333との境界における色味や輝度の連続性を保つことができる。
本実施形態の半導体発光装置では、その一端部から他端部に向かって、波長変換層33における蛍光体の種類を異ならせたことにより、蛍光体の発光効率の違いに起因する輝度分布(傾斜)37を形成することができる。なお図9では、波長変換層を3分割した例を示したが、分割数は3に限定されず、製造方法等を考慮し適宜で選択することができる。
本実施形態の発光装置は、図5(d)に示す第2の実施形態の発光装置と類似する方法で製造することができる。即ち、第2の実施形態の発光装置では、平均粒子径の異なる複数種の蛍光体を用い、それらを用いた波長変換層用樹脂液を用意したが、本実施形態では、平均粒子径の異なる蛍光体の代わりに、蛍光体の組み合わせの異なる複数種類の波長変換層用樹脂液を用意する。
これら複数種の波長変換層用樹脂液を、離型性表面を持つフィルム上に順次積層し、複数の層からなる波長変換層のブロックを形成する。このブロックを波長変換層の厚みで切り出し、配線を施した発光素子の上に貼り合わせる。貼り合わせる方向は、完成後の発光装置においてカットオフラインを形成すべき端部に、白色発光の蛍光体1種類からなる部分331の端部が一致するようにする。
本実施形態によれば、波長変換層の一端から他端に向かって、波長変換材料である蛍光体の組み合わせを変化させることにより、蛍光体による発光効率の差を利用して、一端から他端に向かって輝度が傾斜する輝度分布を作り出すことができ、上述した第1、第2の実施形態と同様の効果を得ることができる。
<第4の実施形態>
上述した第1〜第3の実施形態の半導体発光装置は、樹脂中に蛍光体粒子を分散させた波長変換層において、蛍光体粒子の密度、粒子径、種類等の分布に傾斜を設けることにより、発光装置の輝度分布を傾斜させたものであるが、本実施形態は、波長変換層に導光機能を持つガラス或いはセラミックスを用いるとともに、その表面(発光面)に輝度分布に傾斜を形成する機能を持たせたことが特徴である。
図10に本実施形態の半導体発光装置40の側断面図を示す。図示するように、本実施形態の発光装置は、実装基板41の上に、1ないし複数の発光素子42および波長変換層43がこの順に形成された構造を有する。波長変換層43の側面には、白色樹脂等からなる光反射層44が形成されていることが好ましい。また第1の実施形態では、実装基板11および発光素子12の構成として、ボンディングワイヤによって発光素子の電極と基板上の配線が接続されているものを示したが、本実施形態では、サファイア基板の片面にアノードとカソードを形成し、基板41上に接合バンプを介して接続するタイプの発光素子42を用いた例を示している。ただし、発光素子のタイプは、図示するものに限定されるものではない。
波長変換層43は、ガラス中に蛍光体粒子を分散させたもの、または蛍光体セラミックスからなる。蛍光体セラミックスは、蛍光体の粉末を高温で焼成した焼結体である。ガラス或いはセラミックスは、樹脂に比べ高い導光性を有し、その光出射面(発光面)の表面粗さを制御することにより、正面に出射する光量を制御することができる。本実施形態は、このようなガラスおよびセラミックスの機能を利用して、発光装置の輝度分布を制御する。
図11に、波長変換層43の表面形状を示す。図示するように、波長変換層43の表面は、鏡面状から粗面へと連続的に変化している。表面粗さが最も粗い一端部43aの表面粗さは、Raで好ましくは0.5μm以上、より好ましくは5μm以上でり、また好ましくは10μm以下である。他端部43bは、好ましくはRa0.1μm以下の鏡面状とする。凹凸の形状は、断面形状が山型、三角形或いは台形など傾斜面を有する形状が好ましく、凸部がランダム或いは所定の配列で並んだものでもよいし、溝状型あってもよい。
このように表面粗さに傾斜を設けた場合、発光素子からの光およびそれを吸収して蛍光体が発する光は、鏡面性の高い波長変換層43の領域では、光が空気との界面(発光面)で全反射する割合が増加し、波長変換層43の内部を伝播する割合が増える。波長変換層43の内部を伝播する光のうち、他端部43bに配置された光反射材44で反射された光は一端部43aに向かう。一方、表面粗さが粗い波長変換層43の領域では、その下部に存在する発光素子からの光およびそれを吸収して蛍光体が発する光のうち発光面から出射する光の割合が多くなるとともに、波長変換層43内を伝播する光も加わるため、発光面からの光量は大幅に増加する。これにより一端部43aでは、正面方向への光出射量が最も大きく、他端部43bで光出射量が最も少ない輝度分布となる。波長変換層43の幅(一端部から他端部までの距離)によっても異なるが、一端部43aの表面粗さRaを5μm程度にした場合、一端部の輝度を他端部の輝度に対し約10%高めることができる。
本実施形態の半導体発光装置の製造方法を説明する。本実施の形態でも、配線された発光素子を用意することは従来の製造方法と同様であり、説明を省略する。
表面粗さが傾斜を持つ波長変換層の製造方法は、第2の実施形態と同様に2つの手法がある。一つは、1枚の波長変換層用板材の面内で表面粗さを変化させる方法であり、他の一つは、表面粗さの異なる複数種類の波長変換用板材を用意する方法である。波長変換層用板材の表面を所定の粗さにする手法は、サンドブラスト法、ドライエッチング法、研磨法など公知の手法を採用することができ、形成する表面凹凸の形状に合わせて適宜選択する。
1枚の波長変換層用板材の面内で表面粗さを変化させる手法の一例を、図12を参照して説明する。ガラス板或いは波長変換層用板材(例えばYAGプレート)430の表面にポジ型レジスト440を塗布する(ステップ1201)。波長変換層用板材を例えば3つの領域431、432、433に分けて、領域毎に異なるマスク450を用いてレジストを露光する。例えば領域431は全面をマスクし、領域432、433はマスク材の開口部の大きさが異なるマスク450でマスクし、露光する(ステップ1202)。なおマスクの開口の大きさを領域毎に異ならせるのではなく、図12に示すような開口部の大きさが同じマスクを用いて、露光量などの露光条件を異ならせることも可能である。
次いでレジスト440を現像し、マスクによって露光されなかった部分(未露光部分)を除去する(ステップ1203)。これによりマスクの開口部(あるいは露光量)に対応する形状の硬化レジストが板材430の上に残り、レジストが除去された部分の板材が露出する。この露出した部分をRIE(反応性イオンエッチング)加工によりエッチング処理する(ステップ1204)。最後に板材430の上に残っているレジスト440をリムーバーで除去し、領域毎に所定の表面粗さが形成された波長変換層用板材を得る(ステップ1205)。表面粗さは、マスクの開口部の大きさのほか、エッチングの条件を制御することにより、制御することができる。なお図12では、ポジ型レジストを用いた例を説明したが、ネガ型レジストを用いた場合にも類似する工程により、領域毎に表面粗さの異なる波長変換層用板材430を作製することができる。
こうして3つの領域の表面粗さの異なる波長変換層用板材430を作製した後、これを発光素子の大きさに合わせてカットし、配線後の発光素子に貼り合わせることにより本実施形態の半導体発光装置を得ることができる。光反射層44を形成する場合には、発光素子12に波長変換層用板材を張り合わせた後、発光素子および波長変換層の側面に光反射層を構成する白色樹脂の層を設ける。
表面粗さの異なる複数種類の波長変換用板材を用意する方法については、第2、第3の実施形態と同様に(図8を参照)、表面粗さの異なる複数種類の波長変換層用板材を積層してブロックを作製し、このブロックを積層方向と直交する方向に波長変換層の膜厚で板材を切り出す方法を採用することができる。
本実施形態によれば、波長変換層の材料として導光機能を有する材料を使用するとともに、その表面である発光面の表面粗さを一端から他端に向かって変化させることにより、一端から他端に向かって輝度が傾斜する輝度分布を作り出すことができ、上述した第1〜第3の実施形態と同様の効果を得ることができる。
<第5の実施形態>
本実施形態は、輝度分布に傾斜を形成する機能を発光装置の発光面に持たせる点は第4の実施形態と同じであるが、第4の実施形態では、波長変換層自体の表面に、表面粗さの傾斜をつけて上記機能を持たせているのに対し、本実施形態では、図13に示すように、波長変換層53の上に、透明な板材(光取り出し層)55を配置し、その表面である発光面に表面粗さの傾斜をつける。図13(a)は、1枚の板材55の表面に表面粗さの傾斜をつけた例、図13(b)は板材55を3つの部材551、552、553で構成し、各部材が、表面粗さの粗い順に配置された例を示している。図中、57、57’は輝度分布を示す。
透明な板材55としては、導光性のあるガラス、セラミックス、硬質のプラスチックなどを採用することができ、特に、ガラスが好適である。板材の厚みは、板材内部の導光による板材端面からの出射光成分を抑制する観点から100μm以下であることが好ましい。また表面凹凸を形成するという製造上の観点から20μm以上であることが好ましい。透明な板材に表面凹凸を形成する方法、および表面粗さを傾斜させる手法については、第4の実施形態と同様の手法を採用できるので、説明を省略する。
本実施形態の半導体発光装置において、波長変換層としては、一般的な樹脂中に蛍光体粒子を均一に分散させた波長変換層を採用してもよいし、上述した第1〜第3の実施形態で説明した波長変換層を採用することも可能である。
本実施形態の発光装置は、配線後の発光素子の上に波長変換層を形成し、さらにその上に上記透明な板材を貼り合わせた後、必要に応じて、周囲に光反射層を形成することにより、製造することができる。
本実施形態によれば、波長変換層の上に配置される透明な板材(光取り出し層)の材料として導光機能を有する材料を使用するとともに、その表面である発光面の表面粗さを一端から他端に向かって変化させることにより、一端から他端に向かって輝度が傾斜する輝度分布57、57’を作り出すことができ、上述した第1〜第4の実施形態と同様の効果を得ることができる。
<第6および第7の実施形態>
本実施形態は、波長変換層またはその上に設けられる透明な板材の、屈折率に傾斜を設けて、輝度分布に傾斜を形成したものである。一般に材料の屈折率が高いほど、空気との界面で全反射する光の割合が増加し、外側に出射する光の割合が少なくなる。そこで本実施形態の発光装置では、波長変換層または透明な板材を複数の領域に分けて、領域毎に屈折率の異なる材料(ガラス或いは樹脂)を用い、一端から他端に向かって、屈折率が大きくなるように配置する。これにより、一端から他端にかけて光の出射量が変化する、即ち一端で輝度が高く、他端に向かって輝度が減少する輝度分布を有する半導体発光装置が得られる。
樹脂に蛍光体粒子とフィラーとを分散させた波長変換層の場合、屈折率は、樹脂の種類及びフィラーの種類や添加量を調整することにより、変化させることができる。具体的には、波長変換層として一般的な樹脂として、シリコーン樹脂やエポキシ樹脂があるが、これらの屈折率は1.41〜1.60のものが入手可能であり、その範囲で変化させることができる。またフィラーの種類を変えた例として、屈折率1.4のシリコーン樹脂に対し、フィラーとしてシリカ粒子1.5重量%を添加した場合は、シリコーン樹脂とほぼ同じ屈折率であるが、酸化チタン粒子を同量添加した場合には、屈折率は2.3に変化することが確認されている。この例において、発光装置から出射する全光束は、屈折率の小さい前者では205(lm)であるのに対し、後者では139(lm)に低下し、屈折率により輝度が変化することが確認された。このように樹脂の種類とフィラーの種類や添加量との組み合わせを適宜選択することにより、領域によって屈折率の異なる波長変換層とすることができる。
領域により屈折率の異なる波長変換層を製造する手法は、第2〜第5の実施形態と同様であり(図8を参照)、屈折率の異なる複数種類の波長変換層用板材を積層してブロックを作製し、このブロックを積層方向と直交する方向に波長変換層の膜厚で板材を切り出す方法を採用することができる。切り出した波長変換層用板を、配線後の発光素子に貼り合わせることも他の実施形態と同様である。
以上、本発明の半導体発光装置の各実施形態を説明したが、本発明の半導体発光装置は、発光面に傾斜のある輝度分布を作り出す波長変換層或いは透明板材の構成に特徴があり、その趣旨の範囲で、上述した各実施形態に変更を加え、或いは各実施形態を組み合わせることも本発明の範囲に含まれる。
例えば、上記の実施形態では、発光素子としては、発光面の中心を最大輝度とし周辺に向かってなだらかに輝度が低下する一般的な発光特性の発光素子を用いる場合を説明したが、発光素子自体が、一辺から対向する他辺に向かって輝度が傾斜する輝度分布を持つ発光素子を用いることも可能である。このような発光素子は、上述した第1から第7のいずれの実施形態と組み合わせることも可能であり、組み合わせによってさらに明確な傾斜をもつ輝度分布、すなわち一端部で輝度が最大となる輝度分布を実現することができる。
第8の実施形態として、傾斜する輝度分布をもつ発光素子の例を図14(a)〜(c)に示す。図14(a)は発光素子の上面図、(b)は側面図、(c)は(b)の一端140aから他端140bに沿った輝度分布を示す図である。
図14(b)に示すように、この発光素子は、サファイア基板141と、サファイア基板141上に順次積層されたn型半導体層142、活性層143、p型半導体層144および反射電極1451および透明電極1452からなるp電極145と、n型半導体層142に電気的に接続されたn電極146とを備え、サファイア基板141の表面が発光面となる発光素子である。サファイア基板141の表面には光取り出し構造147として、多数の凸部或いは凹部(図では凹部)が形成されている。この構造物147(凹部)は、図14(a)に示すように、上面から見たとき、均一に配置されているのではなく一端側140aでは密に配置され、それと対向する他端側140bでは疎に配置されている。発光面における、このような構造物147の配置により、一端側と他端側とでは光取り出し効率に差を生じ、図14(c)に示すように、一端側で輝度が最大となる輝度分布を示す。
本実施形態は、輝度に傾斜を持つ発光素子を用いたことが特徴であり、その構造は図14に示すものに限定されず、別の光取り出し構造をもつものも採用できる。
次に本発明の車両用灯具の実施の形態を説明する。本発明の車両用灯具は、光源として、上述した本発明の半導体発光装置、即ち、輝度が一端で最大であり他端にむかって漸減する輝度分布を有する半導体発光装置を用いたものであり、半導体発光装置は、輝度が最大となる一端部からの光が、灯具からの照射光の上端側となり、輝度が最小となる他端部からの光が灯具からの照射光の下端側となるように灯具に配置される。このような配光パターンを実現するための、灯具内の半導体発光装置の配置は、灯具のタイプによって異なる。以下、本発明の車両用灯具の第1〜第4の実施形態を例に本発明の半導体発光装置の具体的な配置と配光パターンについて説明する。
<車両用灯具の第1の実施形態>
図15に、本発明の車両用灯具の第1の実施形態を示す。この車両用灯具150は、半導体発光装置151と、半導体発光装置151が発する光を反射し、水平方向に向ける反射面152と、カバーガラス153とを備えている。半導体発光装置151は、発光面(照射方向)が下側に向くように配置され、反射面152は半導体発光装置151の下方に配置されている。反射面152は、光源の光源像を車両前方に投影して、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンPを形成する投影光学系として機能する。即ち、反射面152は、焦点が半導体発光装置151近傍に設定された回転放物面系の反射面(複数の小反射領域に区画されたいわゆるマルチリフレクタ)であり、これにより反射面152から投影方向に向かう光を、図示する上限の位置よりも下側に向かわせ、カットオフライン以下を照射するように構成されている。また水平方向については、図16に示すように、水平カットオフラインCL1と、水平方向に対し15°程度の角度をもつ斜めカットオフラインCL2を形成するように構成されている。
半導体発光装置は、図1(a)或いは図10に示したように、一列に配列した複数の発光素子12と、発光素子12の配列を覆う波長変換層13を備えており、発光面と平行であって発光素子12の配列方向と直交する方向の輝度分布が、図2(b)等に示すように、一端側13aで輝度が高く他端側13bに向かって低くなる分布を示している。図15に示す車両用灯具150は、このような輝度分布を有する半導体発光装置151を、発光素子12の配列方向が車両の幅方向(図15の紙面に垂直な方向)であって、輝度が最大となる一端側151aがカバーガラス153に近い側となるように灯具内に固定される。
このような配置において、半導体発光装置151から出た光Lは反射面152で反射されて、図中、矢印で示す投影方向に照射されるが、その際、仮想鉛直スクリーンの照射面(配光パターンP)においては、一端側13aから発する光L1が上端P1に達し、他端側13bから発する光L2が下端P2に達する。従って、図16に示すカットオフラインCL1、CL2の前後で輝度が明瞭に変化し且つカットオフラインの端部で最大となる配光パターンを得ることができる。
<車両用灯具の第2の実施形態>
図15では、半導体発光装置151の発光面が下側を向く配置の車両用灯具を示したが、半導体発光装置の発光面が上側を向く配置の車両用灯具についても、同様に本発明の半導体発光装置を適用することができる。
車両用灯具の第2の実施形態として、半導体発光装置の発光面の取り付け位置が異なる車両用灯具を図17に示す。この車両用灯具170は、半導体発光装置171の発光面は上向きであって、反射面172が半導体発光装置171の上方に設けられている。投影光学系である反射面の形状や配置によって、光源の光源像を車両前方に投影して、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンPを形成するように構成されていることは図15の車両用灯具と同様である。
この車両用灯具170においては、半導体発光装置171の輝度が最大となる一端側171aをカバーガラス(図示省略)から遠い側に配置することにより、カットオフラインの端部P1で輝度が最大となる配光パターンPを得ることができる。
以上、説明した車両用灯具の実施形態は、遮蔽板を備えていないものであるが、本発明は、遮蔽板を備えた車両用灯具にも適用することができる。本発明が適用される遮蔽板を備えた車両用灯具の実施形態を図18及び図19に示す。
<車両用灯具の第3の実施形態>
図18に示す車両用灯具180は、半導体発光装置181と、反射面182、シェード(遮蔽板)184および投影レンズ185等の投影光学系とを備えている。半導体発光装置181は、発光面が略上向きであって、発光素子の最大輝度となる一端部が投影方向において投影レンズ185に近い側に配置されている。反射面182は、半導体発光装置181の上方に配置され、発光装置181からの光を反射して投影方向(投影レンズ185)に向ける。
シェード184は、反射面182からの反射光の一部を遮光してカットオフパターンを形成するための遮光部材であり、上端縁を投影レンズ185の焦点近傍に位置させた状態で投影レンズ185と半導体発光装置181との間に配置されている。
反射面182から反射されて生成する光源像のうち、最大輝度となる部分が、図16で示す水平方向および水平に対し例えば15°の斜め方向に高密度に配置することで、明瞭な水平カットオフラインCL1及び斜めカットオフラインCL2を形成することができる。
<車両用灯具の第4の実施形態>
図19に示す車両用灯具190は、半導体発光装置191と、シェード194および投影レンズ195等の投影光学系とを備えている。
半導体発光装置191は、その発光面が投影レンズ195を向き、発光面の最大輝度となる端部191aが下側となるように配置されている。シェード194は、反射面192からの反射光の一部を遮光してカットオフパターンを形成するための遮光部材であり、上端縁を投影レンズ195の焦点近傍に位置させた状態で投影レンズ195と半導体発光装置191との間に配置されている。
反射面192から反射されて生成する光源像のうち、最大輝度となる部分が、図16で示す水平方向および水平に対し例えば15°の斜め方向に高密度に配置することで、明瞭な水平カットオフラインCL1及び斜めカットオフラインCL2を形成することができる。
図18及び図19に示すような遮蔽板を備えた車両用灯具に本発明を適用した場合にも、発光装置の輝度の高い部分が一方の端部に偏っていることにより、発光装置の高輝度側の端部からごく一部の光を遮蔽するだけで、発光装置の発光形状をほぼそのまま利用することができ、かつ、発光装置の輝度グラデーションパターンを配光パターンの輝度グラデーションに利用できるため、高い光利用効率でヘッドランプに適した配光パターンを形成することができる。つまり、遮蔽板で遮蔽される光量を比較的少なくすることができ、光の利用効率の低下を抑制することができる。また遮蔽板の受けるエネルギーが小さくなるため、遮蔽板の温度上昇を緩和することができる。
以上、本発明が適用される車両用灯具の各実施形態を説明したが、本発明の車両用灯具は上記実施形態に限定されることなく、種々の車両用灯具に適用可能である。
また本発明の車両用灯具は、車両の前照灯を構成する種々の灯具、例えばハイビーム灯、ロービーム灯、フォグランプにも適用できることは言うまでもないが、カットオフラインの明瞭性の求められる灯具であれば種々の灯具に適用することができる。
本発明によれば、明瞭なカットオフラインを持つ車両用灯具が提供される。
11・・・基板、12・・・半導体発光素子、13、23、33、43、53・・・波長変換層、17、27、37・・・輝度分布、透明ガラス板(光取り出し層)・・・55、150、170、180、190・・・車両用灯具、152、172・・・反射面(投影光学系)、184、194・・・シェード(投影光学系)、185、195・・・投影レンズ(投影光学系)。

Claims (13)

  1. 半導体発光素子と、その発光面に積層され、波長変換層を含む1ないし複数の光取り出し層を備え、前記光取り出し層は、前記発光面に平行な一つの方向について、その一端から他端に向かって変化する光学特性を有し、輝度が一端側で最大であって他端側で最小である輝度分布を持つ半導体発光装置であって、
    前記波長変換層は、樹脂中に波長変換材料を分散させてなり、前記波長変換層を層の厚み方向に沿って等分した単位体積当たりの波長変換材料の含有量が前記一端から前記他端まで同じであり且つ波長変換材料の密度分布が、前記一端から前記他端に向かって変化していることを特徴とする半導体発光装置。
  2. 請求項に記載の半導体発光装置であって、
    前記波長変換材料の密度分布は、前記波長変換材料の層の厚み方向の分布が、前記他端側では均一であり、前記一端側に近づくにつれて、発光素子層に隣接する領域で高くなることを特徴とする半導体発光装置。
  3. 請求項2に記載の半導体発光装置であって、
    前記光取出し層は、前記波長変換層の上に透明な板材を備えることを特徴とする半導体発光装置。
  4. 半導体発光素子と、その発光面に積層され、波長変換層を含む1ないし複数の光取り出し層を備え、前記光取り出し層は、前記発光面に平行な一つの方向について、その一端から他端に向かって変化する光学特性を有し、輝度が一端側で最大であって他端側で最小である輝度分布を持つ半導体発光装置であって、
    前記波長変換層に含有される波長変換材料の平均粒径が、前記一端から前記他端に向かって変化していることを特徴とする半導体発光装置。
  5. 請求項4に記載の半導体発光装置であって、
    前記光取出し層は、前記波長変換層の上に透明な板材を備えることを特徴とする半導体発光装置。
  6. 半導体発光素子と、その発光面に積層され、波長変換層を含む1ないし複数の光取り出し層を備え、前記光取り出し層は、前記発光面に平行な一つの方向について、その一端から他端に向かって変化する光学特性を有し、輝度が一端側で最大であって他端側で最小である輝度分布を持つ半導体発光装置であって、
    前記波長変換層に含有される波長変換材料の種類又はその組み合わせが、前記一端から前記他端に向かって変化していることを特徴とする半導体発光装置。
  7. 請求項6に記載の半導体発光装置であって、
    前記光取出し層は、前記波長変換層の上に透明な板材を備えることを特徴とする半導体発光装置。
  8. 半導体発光素子と、その発光面に積層され、波長変換層を含む1ないし複数の光取り出し層を備え、前記光取り出し層は、前記発光面に平行な一つの方向について、その一端から他端に向かって変化する光学特性を有し、輝度が一端側で最大であって他端側で最小である輝度分布を持つ半導体発光装置であって、
    前記光取り出し層を形成する層の少なくとも一層は、前記一端側から前記他端側に向かって、屈折率が変化していることを特徴とする半導体発光装置。
  9. 請求項8に記載の半導体発光装置であって、
    前記光取出し層は、前記波長変換層の上に透明な板材を備えることを特徴とする半導体発光装置。
  10. 請求項3、5、7、9のいずれか1項に記載の半導体発光装置であって、
    前記透明な板材は、ガラス、セラミックスまたはプラスチックからなる半導体発光装置。
  11. 請求項9または10に記載の半導体発光装置であって、
    前記透明な板材の表面には表面凹凸が形成されていることを特徴とする半導体発光装置。
  12. 半導体発光装置を光源とし、前記光源の光源像を車両前方に投影して、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系を有する車両用灯具であって、
    前記半導体発光装置が、請求項1ないし11のいずれか1項に記載の半導体発光装置であることを特徴とする車両用灯具。
  13. 請求項12に記載の車両用灯具であって、
    前記半導体発光装置が、一列に配列した複数の発光素子と、前記複数の発光素子を覆う波長変換層を含む1ないし複数の光取出し層とを備え、前記複数の発光素子の配列方向が車両の幅方向となるように灯具内に固定されていることを特徴とする車両用灯具。
JP2010190843A 2010-08-27 2010-08-27 半導体発光装置及びそれを用いた車両用灯具 Active JP5572038B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010190843A JP5572038B2 (ja) 2010-08-27 2010-08-27 半導体発光装置及びそれを用いた車両用灯具
US13/218,960 US8702285B2 (en) 2010-08-27 2011-08-26 Semiconductor light emitting device and vehicle light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190843A JP5572038B2 (ja) 2010-08-27 2010-08-27 半導体発光装置及びそれを用いた車両用灯具

Publications (2)

Publication Number Publication Date
JP2012049022A JP2012049022A (ja) 2012-03-08
JP5572038B2 true JP5572038B2 (ja) 2014-08-13

Family

ID=45697067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190843A Active JP5572038B2 (ja) 2010-08-27 2010-08-27 半導体発光装置及びそれを用いた車両用灯具

Country Status (2)

Country Link
US (1) US8702285B2 (ja)
JP (1) JP5572038B2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197530A (ja) * 2012-03-22 2013-09-30 Sharp Corp 光源、発光装置、バックライト用光源、表示装置、および光源の製造方法
DE102012102647B4 (de) * 2012-03-27 2024-02-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Konverterelement, optoelektronisches Bauelement mit einem derartigen Konverterelement und Verfahren zum Herstellen eines derartigen Konverterelements
US9046228B2 (en) * 2012-04-06 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device for emitting light of multiple color temperatures
JP2014130998A (ja) * 2012-07-20 2014-07-10 Mitsubishi Chemicals Corp 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
KR20150035742A (ko) * 2012-07-20 2015-04-07 미쓰비시 가가꾸 가부시키가이샤 발광 장치, 파장 변환 부재, 형광체 조성물 및 형광체 혼합물
WO2014014079A1 (ja) * 2012-07-20 2014-01-23 三菱化学株式会社 発光装置、波長変換部材、蛍光体組成物、及び蛍光体混合物
JP2014170895A (ja) * 2013-03-05 2014-09-18 Mitsubishi Chemicals Corp 波長変換部材及びこれを用いた発光装置
JP5960565B2 (ja) * 2012-09-28 2016-08-02 スタンレー電気株式会社 自動車ヘッドランプ用発光装置及びその製造方法
WO2014080705A1 (ja) * 2012-11-22 2014-05-30 シャープ株式会社 発光装置およびその製造方法、照明装置、ならびに前照灯
JP6192025B2 (ja) * 2012-11-28 2017-09-06 エルジー・ケム・リミテッド 発光ダイオード
KR102126176B1 (ko) 2014-02-05 2020-06-25 삼성디스플레이 주식회사 파장 변환 부재 및 그 제조 방법, 및 이를 포함하는 백라이트 어셈블리
US9660151B2 (en) * 2014-05-21 2017-05-23 Nichia Corporation Method for manufacturing light emitting device
JP6331710B2 (ja) * 2014-05-30 2018-05-30 日亜化学工業株式会社 発光装置の製造方法及び発光装置
JP6248881B2 (ja) * 2014-09-22 2017-12-20 トヨタ紡織株式会社 複合膜、及びその製造方法
KR102374414B1 (ko) * 2015-04-24 2022-03-15 엘지이노텍 주식회사 전자파 차폐 구조물
JP6680868B2 (ja) 2015-08-17 2020-04-15 インフィニット アースロスコピー インコーポレーテッド, リミテッド 光源
WO2017087448A1 (en) 2015-11-16 2017-05-26 Infinite Arthroscopy Inc, Limited Wireless medical imaging system
JP6697275B2 (ja) * 2016-01-22 2020-05-20 スタンレー電気株式会社 半導体発光装置、照明装置、および、車両用照明装置
JP2017188592A (ja) 2016-04-06 2017-10-12 日亜化学工業株式会社 発光装置
JP2018106928A (ja) * 2016-12-27 2018-07-05 株式会社小糸製作所 車両用前照灯
ES2955917T3 (es) 2017-02-15 2023-12-11 Lazurite Holdings Llc Sistema médico inalámbrico de formación de imágenes que comprende unidad de cabezal y cable de luz que comprende fuente luminosa integrada
TWI740996B (zh) * 2017-08-02 2021-10-01 揚明光學股份有限公司 燈具
US11085602B2 (en) 2018-04-11 2021-08-10 Signify Holding B.V. LED filament lamp of candle light appearance
EP3956603A4 (en) * 2019-04-16 2023-02-01 Lazurite Holdings LLC LIGHT SOURCE CONVERTER
TWI801609B (zh) 2019-06-19 2023-05-11 聯華電子股份有限公司 磁阻式隨機存取記憶體結構及其製作方法
JPWO2021166772A1 (ja) * 2020-02-19 2021-08-26
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
JP7288203B2 (ja) * 2020-03-31 2023-06-07 日亜化学工業株式会社 波長変換部材及びその製造方法
CN113471350A (zh) * 2020-03-31 2021-10-01 日亚化学工业株式会社 波长转换构件及其制造方法
DE102020112898A1 (de) * 2020-05-13 2021-11-18 Bayerische Motoren Werke Aktiengesellschaft Beleuchtungsvorrichtung für ein Kraftfahrzeug
US11462666B2 (en) 2020-05-15 2022-10-04 Lumileds Llc Light-emitting device with configurable spatial distribution of emission intensity
US11563148B2 (en) 2020-05-15 2023-01-24 Lumileds Llc Light-emitting device with configurable spatial distribution of emission intensity
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source
EP4270483A1 (en) 2022-04-28 2023-11-01 Nichia Corporation Light-emitting device and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021233A1 (de) 2004-04-30 2005-12-01 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung
DE102004036157B4 (de) 2004-07-26 2023-03-16 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Elektromagnetische Strahlung emittierendes optoelektronisches Bauelement und Leuchtmodul
JP4790481B2 (ja) * 2006-04-26 2011-10-12 株式会社小糸製作所 車両用灯具ユニット
US20090034230A1 (en) * 2007-07-31 2009-02-05 Luminus Devices, Inc. Illumination assembly including wavelength converting material having spatially varying density
JP2009224191A (ja) * 2008-03-17 2009-10-01 Stanley Electric Co Ltd 照明装置
DE102008054218A1 (de) * 2008-10-31 2010-05-06 Osram Opto Semiconductors Gmbh Lumineszenzdiodenchip
JP5255421B2 (ja) * 2008-12-15 2013-08-07 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2010161303A (ja) * 2009-01-09 2010-07-22 Koito Mfg Co Ltd 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP5410167B2 (ja) * 2009-06-12 2014-02-05 株式会社小糸製作所 発光モジュールおよび車両用前照灯
JP5707697B2 (ja) * 2009-12-17 2015-04-30 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
US8702285B2 (en) 2014-04-22
JP2012049022A (ja) 2012-03-08
US20120051075A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5572038B2 (ja) 半導体発光装置及びそれを用いた車両用灯具
KR102339021B1 (ko) 경사 반사기를 갖는 발광 디바이스 및 그 제조 방법
JP6097084B2 (ja) 半導体発光装置
JP6269702B2 (ja) 発光装置の製造方法
US8581284B2 (en) Semiconductor light-emitting device and manufacturing method
US9599292B2 (en) Light emitting module, a lamp, a luminaire and a display device
CN103403894B (zh) 发光模块、灯、照明器和显示装置
US7745985B2 (en) Light-emitting module, and display unit and lighting unit using the same
JP4796031B2 (ja) 車両前照灯光源および車両前照灯
JP4756841B2 (ja) 半導体発光装置の製造方法
WO2016199804A1 (ja) Led光源装置およびプロジェクター
CN110323213B (zh) 发光装置的制造方法
JP6191453B2 (ja) 発光装置
JP6387954B2 (ja) 波長変換部材を用いた発光装置の製造方法
KR20130093640A (ko) 발광 변환 물질 층을 형성하는 방법, 발광 변환 물질 층을 위한 조성물 및 발광 변환 물질 층을 포함하는 소자
US20220238761A1 (en) Light-emitting device and method for manufacturing same
JP6997869B2 (ja) 波長変換素子および光源装置
TWI741339B (zh) 發光裝置及其製造方法
JP5582380B2 (ja) 車両用灯具
US20150137165A1 (en) Light-emitting device
JP2024050890A (ja) 発光装置および発光装置の製造方法
JP5227135B2 (ja) 半導体発光装置およびその製造方法
JP2017076673A (ja) 発光装置の製造方法
TW202220236A (zh) 發光裝置及發光裝置之製造方法
JP2023058756A (ja) 光学素子および発光システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5572038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250