TW202220236A - 發光裝置及發光裝置之製造方法 - Google Patents

發光裝置及發光裝置之製造方法 Download PDF

Info

Publication number
TW202220236A
TW202220236A TW110136138A TW110136138A TW202220236A TW 202220236 A TW202220236 A TW 202220236A TW 110136138 A TW110136138 A TW 110136138A TW 110136138 A TW110136138 A TW 110136138A TW 202220236 A TW202220236 A TW 202220236A
Authority
TW
Taiwan
Prior art keywords
light
emitting device
mixture
covering member
powder
Prior art date
Application number
TW110136138A
Other languages
English (en)
Inventor
楠瀬健
田村和也
Original Assignee
日商日亞化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021150877A external-priority patent/JP7174290B2/ja
Application filed by 日商日亞化學工業股份有限公司 filed Critical 日商日亞化學工業股份有限公司
Publication of TW202220236A publication Critical patent/TW202220236A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

本發明係製作一種性能較高之具備光反射性被覆構件之發光裝置。 本發明之發光裝置具備發光元件、及光反射性被覆構件,該光反射性被覆構件包含板狀之光反射材、氧化矽、及鹼金屬,且被覆上述發光元件,上述光反射材之平均粒徑為0.6 μm以上43 μm以下,上述光反射材之平均縱橫比為10以上。

Description

發光裝置及發光裝置之製造方法
本發明係關於一種發光裝置及發光裝置之製造方法。
於LED(Light Emitting Diode,發光二極體)等發光裝置中,有包含發光元件及被覆發光元件之一部分之光反射性被覆構件者。例如,專利文獻1中,作為光反射性被覆構件,揭示有於聚矽氧樹脂等耐熱性樹脂或無機黏合劑之基材中含有包含氧化鈦、氧化鋅、氧化鉭、氧化鈮、氧化鋯、氧化鋁等白色顏料之反射材者。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2014-216416號公報
[發明所欲解決之問題]
然而,為了使發光裝置之性能提高,此種由無機材料形成之光反射性被覆構件尚有改善之餘地。本說明書中發光裝置之性能例如係耐熱性、光束、亮度、發光裝置之發光面與包圍該發光面之非發光面之亮度差之急遽度(分隔性)、可靠性(壽命)等。
因此,本發明之目的在於提供一種發光裝置之性能、尤其耐熱性較高之具備光反射性被覆構件之發光裝置及製作該發光裝置之方法。 [解決問題之技術手段]
本發明之發光裝置具備發光元件、及光反射性被覆構件,該光反射性被覆構件包含板狀之光反射材、氧化矽、及鹼金屬,且被覆上述發光元件,上述光反射材之平均粒徑為0.6 μm以上43 μm以下,上述光反射材之平均縱橫比為10以上。
又,本發明之發光裝置之製造方法包含如下步驟:將氧化矽之粉末、平均粒徑為0.6 μm以上43 μm以下且平均縱橫比為10以上板狀光反射材之粉末、及鹼性溶液混合而形成混合物;將上述混合物塗佈於發光元件;及藉由加熱上述混合物而使其硬化,形成光反射性被覆構件。 [發明之效果]
根據本發明之一實施方式之發光裝置及發光裝置之製造方法,可提供一種發光裝置之性能、尤其耐熱性較高之具備光反射性被覆構件之發光裝置及製作該發光裝置之方法。
以下,一面參照圖式一面說明用以實施本發明之實施方式或實施例。再者,以下說明之發光裝置及發光裝置之製造方法係用以使本發明之技術思想具體化者,只要無特定之記載,本發明並不限定於以下所述。 各圖式中,有時對具有相同功能之構件標註相同符號。考慮到要點之說明或理解之容易性,為方便起見,有時分為實施方式或實施例表示,但不同實施方式或實施例中所示之構成可進行部分替換或組合。於下述實施方式或實施例中,省略對與上述共通之事項之記述,僅針對不同之方面進行說明。尤其對於由相同構成產生之相同作用效果,並未針對每一實施方式或實施例逐次提及。關於各圖式所示之構件之大小或位置關係等,為明確說明,有時亦誇張表示。
實施方式1 如圖1所示,本實施方式之發光裝置1具備發光元件4、透光性構件6、及被覆發光元件4之光反射性被覆構件5。 發光元件4包含半導體積層體2、及設置於半導體積層體2之下表面之一對電極3。 透光性構件6以覆蓋發光元件4之上表面4a之方式配置。透光性構件6之表面之一部分自被覆構件5露出,該透光性構件6之表面中自被覆構件5露出之表面包含發光裝置1之光出射面1a。 被覆構件5以覆蓋發光元件4之側面及底面之一部分、與透光性構件6之側面及底面之一部分之方式配置。被覆構件5包含板狀之光反射材11、氧化矽、及鹼金屬。光反射材11之平均粒徑為0.6 μm以上43 μm以下,光反射材11之平均縱橫比為10以上。
(發光元件) 發光元件4所包含之半導體積層體2例如具備n型半導體層、p型半導體層、及配置於n型半導體層及p型半導體層之間之發光部。發光元件4於半導體積層體2之與形成電極3之面為相反側之面,具備用以使半導體層生長之生長用基板7(例如藍寶石基板)。但是,生長用基板亦可於形成半導體層之後去除。半導體積層體2出射之光之峰值波長例如為260 nm以上630 nm以下之範圍。發光元件4例如出射紫外光或藍色光。 設置於半導體積層體2之下表面之一對電極3為p電極與n電極。關於生長用基板7,較佳為生長用基板7之寬度(俯視下多邊形狀之生長用基板7之最長邊之長度)為生長用基板7之厚度之2.5倍以上3.5倍以下。若生長用基板7之厚度與寬度為此種關係,則來自發光元件4之光提取效率提高。
(透光性構件) 透光性構件6可包含樹脂,亦可為無機材料。若透光性構件6為無機材料,則耐熱性高於包含樹脂之透光性構件,故可製作耐熱性較高之發光裝置。作為無機材料,例如可使用玻璃。透光性構件6可含有如螢光體之波長轉換材料。於透光性構件6係無機材料之母材中含有螢光體者之情形時,例如,可使用YAG(釔-鋁-石榴石)作為螢光體,使用氧化鋁或氧化矽作為母材。再者,亦可不使透光性構件6含有波長轉換材料。該情形時,來自發光元件之光出射至外部而不進行波長轉換。
(被覆構件) 本實施方式中,被覆構件5以使發光元件4之電極3之下表面3a與透光性構件6之上表面6a露出之方式覆蓋著發光元件4與透光性構件6。此處,「覆蓋著」不僅包含被覆構件5與發光元件4及/或透光性構件5相接而配置之狀態,亦包含被覆構件5與發光元件4及/或透光性構件5之間介隔其他構件或空間(例如空氣層)而配置之狀態。又,本說明書中,「覆蓋」、「被覆」、「被覆蓋」等表達亦包含與「覆蓋著」相同之狀態。再者,於發光元件4之側面與被覆構件5之間配置有其他構件或空間(例如空氣層)之情形時,與發光元件4之側面對向之被覆構件5之內表面可具備於剖視下隨著自發光元件之下表面向上表面而自發光元件4之側面離開之傾斜面。該傾斜面於剖視下,例如可為直線狀,亦可為彎曲狀。 自被覆構件5露出之透光性構件6之上表面6a為發光裝置1之光出射面1a。但是,透光性構件6於本實施方式之發光裝置1中並非必須之構成構件。於未設置透光性構件6之情形時,被覆構件5例如使發光元件4之上表面4a與電極3之下表面3a露出而配置。該情形時,發光元件4之上表面4a為光出射面。
被覆構件5係混合有複數種無機材料者。 被覆構件5包含光反射材11、及支持光反射材11之支持構件12。支持構件12包含氧化矽及鹼金屬。如下所述,被覆構件5係經過將光反射材11之粉末、氧化矽之粉末、及鹼性溶液混合而成之混合物加熱之加熱步驟而形成。 被覆構件5可僅由無機材料構成,亦可主要由無機材料構成。 再者,此處,被覆構件5係被用作覆蓋發光元件4及透光性構件6之構件,但亦可用於其他用途。本實施方式之被覆構件5例如可配置於安裝基板之表面,作為用以使自發光元件行進至安裝基板側之光反射之光反射層使用。又,本實施方式之混合物50並不限於用作被覆構件5之材料,例如,亦可用作LED封裝體之構成包圍發光元件而配置之反射壁之材料。
(光反射材) 例如圖3所示,光反射材11之粉末係具有對向之2個主面11a、11b之板狀粒子。光反射材11之對向之2個主面11a、11b亦稱為光反射材11之上表面與下表面。又,光反射材11之粉末亦稱為鱗片狀粒子。再者,圖3僅係為了容易說明光反射材11之粉末之形狀,而將光反射材11之粉末視作例如較薄之圓柱狀而模式性表示之圖。 光反射材11例如係氮化硼或氧化鋁。若為該等材料,則可使來自發光元件之峰值波長之光反射。
光反射材11可為一次粒子,亦可為由2個以上之一次粒子凝集而成之二次粒子。又,一次粒子與二次粒子亦可混合存在。
光反射材11之平均縱橫比為10以上,較理想為10以上70以下。光反射材11之平均縱橫比由以下方法算出。
<平均縱橫比之算出方法> 光反射材11之平均縱橫比可藉由於發光裝置1之剖面測定被覆構件5中包含之光反射材11之厚度及橫寬而算出。 首先,使穿過發光裝置1之光出射面1a之中心且與光出射面1a大致正交之剖面露出。該剖面係藉由對發光裝置1進行切斷加工而露出。
其次,對露出之剖面進行鏡面研磨。利用掃描式顯微鏡(SEM)拍攝經鏡面研磨之剖面,提取光反射材11之剖面,選擇包含大約1000個光反射材11之剖面之測定區域。顯微鏡之像素數設定為約2000萬像素,倍率設定為500倍~3000倍。又,本說明書中,光反射材11之剖面係與光反射材11之一主面11a及/或另一主面11b大致垂直之面。再者,板狀之光反射材11因其形狀而有如下傾向,即,於被覆構件5內以主面11a或11b相互對向且重疊之方式配置。因此,藉由適當地選擇發光裝置1之露出之剖面,而可由SEM適當地提取光反射材11之剖面。
其次,藉由圖像解析軟體分別針對每一點測定所提取之光反射材11之各剖面之橫寬(光反射材之剖面之長邊方向之長度)與厚度(光反射材之剖面之短邊方向之長度),算出橫寬相對於厚度之平均值。繼而,將100個光反射材11之該測定值之平均值作為平均縱橫比。 於光反射材11為氮化硼之情形時,光反射材11之平均縱橫比例如為16.5以上19.2以下。於光反射材11為氧化鋁之情形時,光反射材11之平均縱橫比例如為10以上70以下。
又,光反射材11之平均粒徑為0.6 μm以上43 μm以下。 此處,上述加熱步驟引起之光反射材11之粉末與氧化矽之粉末之融合、及加熱步驟引起之光反射材11之粉末於鹼性溶液中之溶出為微量。因此,光反射材11之粉末之形狀及尺寸與經加熱步驟而形成之被覆構件5中包含之光反射材11之形狀及尺寸實質上相同。因此,上述光反射材11之平均粒徑係藉由按以下方法測定光反射材11之粉末之粒徑而算出。
<平均粒徑之算出方法> 光反射材11之粉末之粒徑例如使用日立高新技術股份有限公司製造之掃描電子顯微鏡「TM3030Plus」算出。 首先,將碳制雙面膠帶之一面貼合於該顯微鏡之試樣台,其後,將光反射材11之粉末配置於雙面膠帶之另一面。將顯微鏡之像素數設定為123萬像素,將倍率設定為1000倍~2000倍,取得100個光反射材11之粉末(粒子)之圖像。其後,藉由圖像解析軟體測定各粒子之粒徑。本說明書中,光反射材11之粉末之粒徑係自光反射材11之主面11a或11b觀察時直徑中最大之直徑。其次,算出所測定之粒子之中值粒徑,將該算出值作為光反射材11之平均粒徑。又,光反射材11之粉末之粒徑亦可藉由SEM提取被覆構件之剖面,且藉由圖像解析軟體進行測定而算出。
於光反射材11為氮化硼之情形時,光反射材11之平均粒徑例如為6 μm以上43 μm以下。於光反射材11為氧化鋁之情形時,光反射材11之平均粒徑例如為0.6 μm以上10 μm以下。
(氧化矽) 被覆構件5中包含之氧化矽與光反射材11之含有比率以重量比計,例如為1:4以上1:1以下。即,被覆構件5中包含之光反射材11之重量為被覆構件5中包含之氧化矽之重量之例如1倍以上4倍以下。若為該範圍,則可降低混合物硬化時之收縮。若光反射材之量過多,則有硬化性降低之虞。另一方面,若氧化矽之量過多,則硬化導致之收縮變大,從而有於硬化時產生裂縫之虞。 氧化矽之平均粒徑例如為0.1 μm以上10 μm以下。若為該範圍內,則可使原料(光反射材或氧化矽)之單位體積之密度提高,故可確保被覆構件之強度。 氧化矽粉末之平均粒徑較理想為小於光反射材之平均粒徑。藉此,氧化矽粉末可填充混合時光反射材彼此之間所形成之空隙。氧化矽粉末之平均粒徑可藉由以雷射繞射法測定氧化矽粉末之粒度分佈而算出。氧化矽之平均粒徑係與鹼性溶液混合前所測定之值。其原因在於,氧化矽粉末若與鹼性溶液混合則會熔融,故難以自被覆構件5確認粒徑。再者,為了自被覆構件算出氧化矽與光反射材之含有比率,例如亦可觀察藉由SEM提取之被覆構件之剖面,基於氧化矽與光反射材之佔有率而算出。
(鹼金屬) 鹼金屬係上述鹼性溶液中包含之鹼金屬。鹼金屬例如為鉀及/或鈉。
具有如上所述之平均粒徑及平均縱橫比之光反射材11係於被覆構件5被自發光元件4產生之熱加熱時作為被覆構件5之骨材發揮功能。藉此,可抑制由發光元件4之熱導致之被覆構件5之收縮,從而可獲得耐熱性較高之發光裝置1。此種發光裝置1之壽命變長。又,被覆構件5可利用光反射材與氧化矽之折射率差使來自發光元件之光反射。 進而,由於可獲得如此抑制因發光元件4之熱導致之收縮之被覆構件5,故即便於自發光元件產生之熱較大之條件(例如,供給至發光元件之電量較大之情形)下亦能夠使用發光裝置1。藉由可增大供給至發光元件之電量,而可增加每一發光裝置之光量。又,對於發出紫外光之發光元件而言,光具有之能量較發出可見光之發光元件大,易引起樹脂之光劣化,故有時搭載於對光能之耐久性較高之陶瓷製封裝體。然而,若使用本實施方式之被覆構件5,則可提供一種由被覆構件5被覆發出紫外光之發光元件之發光裝置而無需使用陶瓷製封裝體。如此具備被覆構件5之發光裝置相較包含陶瓷製之封裝體之發光裝置,可抑制製造成本,又可小型化。
被覆構件5之線性熱膨脹係數(Coefficient of Terminal Expansion)於40℃~300℃之溫度範圍內,較佳為0.0.5 ppm/℃以上5 ppm/℃以下。藉此,於使用發光裝置時,即便被覆構件5之溫度上升,亦可抑制被覆構件之膨脹,可提高可靠性。本實施方式中,被覆構件5之線性熱膨脹係數為約1 ppm。
進而,被覆構件5較理想為包含散射材。散射材例如主要為氧化鋯或氧化鈦。於發光元件出射紫外光之情形時,較理想為紫外波長區域之光吸收較少之氧化鋯。藉由被覆構件5包含散射材而使被覆構件5之光反射率提高。藉此,發光裝置1之發光面與包圍該發光面之被覆構件5(非發光面)之亮度差變得急遽。亦即,發光裝置1之光出射面1a之分隔性提高。
光散射材可使用氧化鈦單一成分,亦可使用對氧化鈦之表面進行了氧化矽、氧化鋁、氧化鋯、鋅、有機等各種表面處理者。 又,光散射材可使用氧化鋯單一成分,亦可使用對氧化鋯之表面進行了氧化矽、氧化鋁、鋅、有機等各種表面處理者。又,亦可使用添加有鈣或鎂、釔、鋁等之穩定化氧化鋯、或部分穩定化氧化鋯。
於被覆構件中添加有散射材之情形時,散射材分散存在於氧化矽中。
散射材之平均粒徑較理想為小於光反射材11之平均粒徑。藉此,將散射材配置於光反射材11彼此之間隙,故可抑制自發光元件4出射之光經由光反射材11彼此之間隙而出射至發光裝置1外。結果,發光裝置1之光出射面1a之分隔性提高。再者,散射材之平均粒徑藉由雷射繞射法測定。
實施方式1中,說明了具備透光性構件6之發光裝置,但亦可為不具備透光性構件6之發光裝置。於如實施方式1之具備透光性構件6之發光裝置中,透光性構件6之上表面與被覆構件5之上表面為同一面。相對於此,不具備透光性構件6之發光裝置中,發光元件之上表面與被覆構件之上表面為同一面。
製造方法 <第1製造方法> 其次,參照圖4A~圖4C,對本實施方式之發光裝置1之製造方法之一例(第1製造方法)進行說明。
(將發光元件安裝於安裝基板之步驟) 首先,準備於上表面4a配置有透光性構件6之複數個發光元件4。於透光性構件中含有螢光體。其次,如圖4A所示,將該發光元件4隔開特定之間隔安裝於安裝基板20。
(將光反射材之粉末、氧化矽之粉末、及鹼性溶液混合而形成混合物之步驟) 其次,將光反射材11之粉末、及氧化矽之粉末混合而成之混合粉與鹼性溶液混合而準備混合物50。混合粉與鹼性溶液之混合例如於混合至可獲得均勻之黏性之程度之後,藉由可減壓攪拌之攪拌消泡機進行消泡及攪拌。 光反射材11之粉末之平均粒徑為0.6 μm以上43 μm以下,且平均縱橫比為10以上,較理想為10以上70以下。光反射材11之粉末例如為氮化硼粉末或氧化鋁粉末。 氧化矽粉末例如平均粒徑為0.1 μm以上10 μm以下。 鹼性溶液之濃度例如為1 mol/L以上5 mol/L以下。若鹼性溶液之濃度過低,則有硬化性變差,被覆構件5之強度降低或產生分解之虞。另一方面,若鹼性溶液之濃度過高,則有剩餘之鹼金屬析出,發光元件之可靠性降低之虞。鹼性溶液例如為氫氧化鉀溶液或氫氧化鈉溶液。 氧化矽粉末與光反射材11之粉末例如於重量比1:4以上1:1以下之範圍混合。即,氧化矽粉末與光反射材11之粉末例如以光反射材11之粉末之重量相對於氧化矽粉末之重量為1倍以上4倍以下混合。鹼性溶液與混合粉例如以重量比2:10以上8:10以下混合。即,鹼性溶液與混合粉以混合粉之重量相對於鹼性溶液之重量例如為1.25倍以上5倍以下混合。若鹼性溶液過少,則混合時會形成複數個較細之結塊,難以成形。另一方面,若鹼性溶液過多,則有於硬化時產生裂縫,或硬化獲得之被覆構件之強度降低之虞。
進而,於使製造之發光裝置1具備之被覆構件5含有散射材之情形時,將散射材混合於該混合物50。散射材之平均粒徑例如小於光反射材11之粉末之平均粒徑。散射材例如主要包含氧化鋯或氧化鈦。
(對發光元件塗佈混合物之步驟) 本步驟中,至少對發光元件4之側面塗佈混合物50。於製作發光裝置1之本製造方法中,如圖4B所示,以覆蓋發光元件4及透光性構件6之方式將混合物50塗佈於安裝基板20上。當正在將混合物50塗佈於安裝基板20上之時及/或塗佈之後,較理想為使安裝基板振動。藉此,可容易將混合物50大範圍地塗開。再者,於未設置透光性構件6之發光裝置之情形時,本步驟中,以僅覆蓋發光元件4之方式將混合物50配置於安裝基板20上即可。又,亦可一面使混合物50振動一面塗佈,以此代替使安裝基板振動。
又,於塗佈混合物50之前,可於電極3及/或安裝基板20之配線電極形成保護膜。藉此,可抑制電極3及/或安裝基板20之配線電極因混合物50中包含之鹼性溶液而受到腐蝕等損傷。又,藉由於電極3及/或安裝基板20之配線電極形成保護膜,而可於使用所製造之發光裝置1之期間抑制因大氣中之腐蝕氣體等而受到損傷。即,可使發光裝置1之阻氣性提昇。上述保護膜可使用原子層沈積法(ALD:Atomic layer deposition)而形成。 又,於電極3及/或安裝基板20之配線電極形成保護膜可於混合物50塗佈後實施,亦可於混合物50塗佈前及塗佈後實施。再者,藉由於混合物50塗佈前及塗佈後實施於電極3及/或安裝基板20之配線電極形成保護膜,而可使發光裝置1之阻氣性進一步提高。
又,將混合物50配置於安裝基板20上之後,例如,可使用玻璃板按壓混合物,將混合物50之上表面成形為平坦之形狀。 藉由如此按壓混合物50之上表面以使其平坦,而於所製作之發光裝置1中,被覆構件5所包含之光反射材中位於發光元件4及透光性構件6之附近區域R1(參照圖9)之光反射材11以與發光元件4及透光性構件6之表面呈0°以上45°以下之角度而配置。該光反射材11之配置狀態於下述實施例中得以實證。附近區域R1(參照圖9)例如係位於距發光元件4及透光性構件6之表面10 μm之範圍之區域。進而,於發光元件4及/或透光性構件6之表面並非平坦之情形時,將使該表面之凹凸平均化後之面作為透光性構件之平面。 如此,若將位於附近區域R1之光反射材11以與發光元件4及透光性構件6之表面呈0°以上45°以下之角度配置,則可將光反射材11彼此以使主面11a、11b相互對向且接近之狀態配置。亦即,附近區域R1之光反射材11之密度可變高。因此,於光反射材11為高熱導材料,例如為氮化硼、氧化鋁等情形時,可促進自發光元件4及透光性構件6產生之熱之散熱。
又,於塗佈混合物50之前,可將氧化矽或氧化鋁於安裝基板20上成膜。藉此,安裝基板20與混合物50之接著力提高。
(加熱混合物而形成光反射性被覆構件之步驟/加熱步驟) 其次,藉由加熱混合物50而使其硬化,形成光反射性被覆構件5。該步驟包含使混合物50於第1溫度T1下硬化之暫時硬化步驟、及使混合物50於高於第1溫度T1之第2溫度T2下硬化之正式硬化步驟。暫時硬化步驟例如係於80℃以上100℃以下之第1溫度T1下進行10分鐘以上2小時以下。正式硬化步驟例如係於150℃以上250℃以下之第2溫度T2下進行10分鐘以上3小時以下。 如此於正式硬化步驟之前,以低於正式硬化步驟之溫度實施暫時硬化步驟,藉此所形成之被覆構件5不易產生裂縫。 進而,一面加壓一面進行暫時硬化步驟、及正式硬化步驟,藉此所形成之被覆構件5之光之反射率變高。認為其原因在於,藉由對混合物加壓而於混合物內之光反射材更密集地配置之狀態下進行硬化。正式硬化步驟之期間所施加之壓力例如為1 MPa。
(使透光性構件露出之步驟) 其次,如圖4C所示,研削被覆構件5,使透光性構件6之上表面6a露出。此時露出之透光性構件6之上表面6a成為發光裝置1之光出射面1a。
(單片化步驟) 其次,以包含1個發光元件4之方式沿特定之切斷位置CL實施單片化,獲得發光裝置1。單片化例如可使用刀片實施。
第1製造方法中,於塗佈混合物之步驟中,覆蓋透光性構件6之上表面6a而塗佈混合物50,於後續之使透光性構件露出之步驟中使透光性構件6之上表面6a露出。然而,於塗佈混合物之步驟中,亦可使透光性構件6之上表面6a露出而將混合物50配置於安裝基板20上。藉此,可省略使透光性構件露出之步驟。
如此,於塗佈混合物之步驟中,於使透光性構件6之上表面6a露出而塗佈混合物50之情形時,較理想為於塗佈混合物之步驟之後,且於加熱步驟之前,如圖5所示於混合物50形成槽90。槽90較理想為沿著單片化步驟之切斷位置CL配置。又,較理想為藉由槽90之形成而將被覆構件分斷。藉此,硬化時產生之收縮應力自切槽部位朝向發光元件4側,故可防止硬化時發光元件4與混合物50剝離。結果,可提高由混合物50硬化而形成之被覆構件5與發光元件4之接著強度。切槽例如可使用刀片實施。
於單片化步驟中,如上所述以使一個發光裝置中包含一個發光元件之方式實施單片化。但是並不限於此,亦可以使一個發光裝置中包含2個以上發光元件之方式實施單片化。關於下述第2製造方法亦同樣如此。
<第2製造方法> 其次,參照圖6A~圖6D,對本實施方式之發光裝置1之製造方法之另一例(第2製造方法)進行說明。
(將光反射材之粉末、氧化矽之粉末、及鹼性溶液混合而準備混合物50之步驟) 將由光反射材11之粉末、及氧化矽之粉末混合而成之混合粉與鹼性溶液混合而準備混合物50。本步驟與第1製造方法之將光反射材之粉末、氧化矽之粉末、及鹼性溶液混合而形成混合物50之步驟相同。
(準備於側面配置混合物50之透光性構件之步驟) 如圖6A所示,準備於側面配置混合物50之透光性構件6。於側面配置混合物50之透光性構件6例如可以如下方式製作。首先,於所準備之層狀之混合物50上設置1個或複數個貫通孔,成形為具備貫通孔之層狀之混合物50。於設置複數個貫通孔之情形時,較理想為將複數個貫通孔隔開特定之間隔而設置。其次,於貫通孔配置透光性構件6。藉此,可製作於側面配置混合物50之透光性構件6。再者,透光性構件可包含波長轉換構件(例如螢光體),亦可不包含。 配置於透光性構件6之側面之混合物50可於該階段進行加熱,亦可於將混合物50被覆於下述發光元件4之後進行加熱。 貫通孔亦可於形成層狀之混合物50之後,藉由打孔而形成。
(將發光元件載置於第1透光性構件之步驟) 其次,如圖6B所示,將複數個發光元件4以上表面4a與透光性構件6相接之方式載置於透光性構件6。再者,此處,將發光元件4之與形成有電極之面為相反側之面作為上表面4a。又,將透光性構件6之與發光元件側之面為相反側之面作為上表面6a。
(將混合物塗佈於發光元件之步驟) 其次,如圖6C所示,以覆蓋發光元件4之方式,將混合物50塗佈於層狀之混合物50上。與第1製造方法同樣地,本製造方法中,亦較理想的是於塗佈混合物50之期間或/及塗佈之後使安裝基板振動。又,與第1製造方法同樣地,本製造方法中,亦於塗佈混合物50之前及/或之後,使用原子層沈積法將保護膜配置於電極3表面。
(加熱混合物而形成光反射性被覆構件之步驟/加熱步驟) 其次,藉由加熱混合物50而使其硬化,形成被覆構件5。本步驟與第1製造方法之加熱混合物而形成光反射性被覆構件之步驟(加熱步驟)相同。
(使電極露出之步驟) 其次,如圖6D所示,研削被覆構件5,使發光元件4之電極3之下表面3a露出。再者,此處,將電極3之與發光元件4側之面為相反側之面作為下表面3a。
(單片化步驟) 其次,以包含1個發光元件4之方式沿著特定之切斷位置CL實施單片化,獲得發光裝置1。單片化例如可使用刀片實施。
此處,以於透光性構件6之側面配混合物50之例進行了說明,但亦可代替混合物50而配置樹脂中含有氧化鈦之白色樹脂。
<其他實施方式及其製造方法> 實施方式1之發光裝置1中,透光性構件6之上表面6a自被覆構件5露出,發光裝置1之上表面包含透光性構件6之上表面6a及被覆構件5之上表面,但並非限定於此。例如圖7所示,透光性構件106之上表面106a及側面106b自被覆構件5露出,發光裝置100之上表面亦可僅為透光性構件106之上表面106a。透光性構件106之上表面106a為發光裝置100之光出射面100a。再者,透光性構件106可包含波長轉換構件(例如螢光體),亦可不包含。
此種發光裝置100以如下之製造方法製造。 首先,如圖8A所示,將複數個發光元件4隔開特定之間隔載置於透光性片材60上。發光元件4以發光元件4之上表面與透光性片材60對向之方式載置於透光性片材60上。 其次,如圖8B所示,以覆蓋發光元件4之方式將混合物50配置於透光性片材60上。其後,加熱混合物50而形成光反射性被覆構件5。該步驟與第1製造方法及第2製造方法之加熱混合物而形成光反射性被覆構件之步驟(加熱步驟)同樣地實施。 其次,如圖8C所示,使電極3之下表面3a露出,沿著特定之切斷位置CL實施單片化。藉此,可製作發光裝置100。 再者,本實施方式中,可於露出之一對電極3之下表面3a分別配置金屬膜。此時,較理想為金屬膜以除覆蓋該電極3之下表面3a外,亦覆蓋該下表面3a周邊之被覆構件5之下表面之方式配置。亦即,較理想為,金屬膜以如下方式設置,即,該金屬膜下表面之面積相較露出之電極3下表面3a之面積大。藉此,發光裝置1與配線基板之電性連接良好。進而,於為電極3包含Cu且Cu露出之構成之情形時,當安裝於配線基板時,有因Cu氧化而引起安裝不良之虞,但藉由以相較Cu不易氧化之金屬膜被覆電極3則不會產生此種擔憂。作為此種金屬膜,可使用自電極3側依序積層有Ni、Ru、Au者。當最表面為Au時,相較Cu不易氧化,故可抑制金屬膜氧化。又,於金屬膜中,藉由將與電極3接合之金屬設為Ni,而可使電極3與金屬膜之密接性良好。金屬膜例如可以如下方式形成。於電極3之下表面3a及被覆構件之下表面濺鍍金屬膜,藉由雷射剝蝕以將一對電極3電性分斷之方式去除金屬膜。
實施例及參考例 以下,對實施例及參考例進行說明。 參考例1、參考例2、實施例1~實施例9中,製作被覆構件,使該被覆構件於1000℃下加熱1小時,測定此時之收縮維持率。又,鹼性溶液之添加量以成為適宜成形之黏度之方式進行適當調整。
以如下方式製作參考例1之被覆構件5。 首先,將平均粒徑為1 μm且平均縱橫比為4.6之光反射材11之粉末、與平均粒徑以中值粒徑計為0.4 μm之氧化矽之粉末混合而準備混合粉。光反射材11之粉末為氮化硼粉末。氧化矽粉末與氮化硼粉末以重量比4:5混合。 將該混合粉與濃度3 mol/L之鹼性溶液混合而準備混合物。鹼性溶液為氫氧化鉀溶液。鹼性溶液與混合粉以重量比5.8:9混合。 其次,將混合物50於第1溫度90℃、1 MPa之壓力下加熱1小時,使其暫時硬化。 其次,將混合物50於第2溫度200℃、1 MPa之壓力下加熱2小時,使其正式硬化,製作被覆構件5。
參考例2、實施例1~實施例9之被覆構件5中,將光反射材之材料、光反射材之平均粒徑、光反射材之縱橫比、及氧化矽粉末與光反射材之重量比如表1所示進行變更,除表1所記載之條件外,以與參考例1之製作方法相同之方法製作。
將參考例1、參考例2、實施例1~實施例9之被覆構件5自直徑約3 cm、厚度約1 mm大小之板狀分割成2個部分,將分割成2個部分之其中一個被覆構件於1000℃下加熱1小時。其後,算出分割成2個部分之被覆構件中經加熱之被覆構件之分割剖面之一邊之長度相對於未經加熱之被覆構件之分割剖面之一邊之長度之比率(收縮維持率)。將其結果示於表1。
[表1]
   光反射材 平均粒徑(μm) 平均縱橫比 光反射材之重量:氧化矽之重量 收縮維持率(%)
參考例1 氮化硼 1 4.6 5:4 98.33
參考例2 氮化硼 2 7.7 5:4 98.41
實施例1 氮化硼 6 17.1 1:1 99.74
實施例2 氮化硼 12 16.5 5:3 99.75
實施例3 氮化硼 30 19.2 5:3 99.82
實施例4 氮化硼 43 18 5:3 99.61
實施例5 氧化鋁 0.6 10 2:1 99.70
實施例6 氧化鋁 2 25 2:1 99.40
實施例7 氧化鋁 5 25 2:1 99.00
實施例8 氧化鋁 7 70 2:1 99.20
實施例9 氧化鋁 10 30 2:1 99.40
根據參考例1、參考例2、實施例1~實施例9之結果,實施例1~實施例9之收縮維持率為99.00%以上,與參考例1、參考例2之收縮維持率相比較大。由此明確,包含氧化矽、鹼金屬、及平均粒徑為0.6 μm以上43 μm以下且縱橫比為10以上之光反射材之實施例1~實施例9之被覆構件5之耐熱性較高。
實施例10~實施例13中,製作具備被覆構件5之發光裝置,評估各自之光束、發光面亮度、分隔性、及可靠性。又,關於實施例10,觀測對塗佈於發光元件4之被覆構件5按壓時之剖面。關於實施例11,以SEM觀測所製作之發光裝置之剖面。
實施例10 以如下方式製作實施例10之發光裝置。 將接合有包含YAG之板狀之透光性構件6之發光元件以透光性構件6側面向黏著性片材之狀態配置於黏著性片材上。發光元件4於俯視下之形狀為1 mm×1 mm之矩形,峰值波長為450 nm~455 nm。發光元件4以在X、Y方向(寬度方向、深度方向)上均為1.8 mm之間距配置於黏著性片材上。作為黏著片材,使用以聚醯亞胺為基材之耐熱片材,但只要為具有暫時硬化溫度以上之耐熱性之黏著性片材,則亦可為其他素材。透光性構件6於俯視下之形狀為1.1 mm×1.1 mm之矩形,厚度為180 um。發光元件4之厚度為200 um。發光元件4之電極3包含高度約50 um之Cu。 製作將平均粒徑為10 um且平均縱橫比為17左右之氮化硼、與平均粒徑為0.4 um之氧化矽以重量比1:1混合而成之混合粉。其後,對所製作之混合粉10 g添加3 mol/L之氫氧化鉀溶液3.4 g,使用攪拌棒混合之後,藉由可減壓攪拌之攪拌消泡機進行消泡及攪拌,藉此獲得白色且均勻黏度狀之混合物50。 以覆蓋發光元件4與透光性構件6之方式塗佈所獲得之混合物50。其後,使用玻璃板按壓混合物50,將混合物50成形為約1 mm厚度之平坦形狀。 將通過此時之透光性構件6之上表面6a之中心、且與該上表面6a大致正交之剖面示於圖9。如圖9所示,混合物50所包含之光反射材11中靠近發光元件4及透光性構件6之位置之光反射材11具有如下配置傾向,即,光反射材11之長邊方向以與發光元件4及透光性構件6之邊呈0°以上45°以下之角度配置。認為此種配置傾向可藉由以下方法實現,即,提高板狀之光反射材11之縱橫比,並且於將混合物50塗佈於發光元件4時,減慢流動於發光元件4或透光性構件6附近之混合物50之流速。 其次,藉由加熱混合物50而使其硬化,獲得光反射性被覆構件5。作為硬化條件,使用加壓烘箱,於1 MPa之加壓氮氣氛圍中進行60分鐘之暫時硬化。於片材剝離後,再次利用加壓烘箱,於1 MPa之加壓氮氣氛圍中進行40分鐘之正式硬化。正式硬化時之溫度為200℃。 其次,研削被覆構件5,使電極3露出。 最後,使用厚度100 um之刀片實施單片化。於單片化後,獲得俯視下之形狀為1.7 mm×1.7 mm之矩形且厚度約0.4 mm之出射白色光之發光裝置。
實施例11 以如下方式製作實施例11之發光裝置。 對平均粒徑為10 um且平均縱橫比為17左右之氮化硼、平均粒徑為0.4 um之氧化矽、及平均粒徑為0.25 um之氧化鈦以重量比5:5:3混合而成之13 g粉體材料添加3 mol/L之氫氧化鉀溶液4 g,除此之外,以與實施例10相同之方式獲得發光裝置。 利用SEM觀察該發光裝置之剖面。圖10中示出通過透光性構件6之上表面6a之中心、且與該上表面6a大致正交之剖面之被覆構件5之一部分。根據圖10明確,被覆構件5中存在空隙13,空隙13之一部分與光反射材11相接。如此,藉由局部地產生空隙13而有抑制被覆構件5於加熱硬化時收縮之效果。 又,本實施例之發光裝置添加氧化鈦作為散射材14,藉此與未添加氧化鈦之情形相比,可實現反射率與遮光性之提高。
實施例12 以如下方式製作實施例12之發光裝置。 對平均粒徑為10 um且平均縱橫比為17左右之氮化硼、平均粒徑為0.4 μm之氧化矽、及氧化鋯以重量比5:5:4混合而成之14 g粉體材料添加3 mol/L之氫氧化鉀溶液4.8 g,除此之外,以與實施例10相同之方式獲得發光裝置。 本實施例之發光裝置藉由添加氧化鋯作為散射材,與未添加氧化鋯之情形相比,可實現反射率與遮光性之提高。尤其氧化鋯於出射紫外光之發光元件之波長區域即250 nm~420 nm之波長區域之吸收較少,反射特性良好,故對於出射紫外光之發光裝置而言,可獲得特性之提高。
將以如上方式製作之實施例10~實施例12之發光裝置之光束、發光面亮度、分隔性、及可靠性加以比較、評估。 <光束> 對實施例10~實施例12之發光裝置,使用積分球進行各發光裝置之光束之評估。實施例10之發光裝置之光束為161[lm]。實施例11之發光裝置之光束為162[lm]。實施例12之發光裝置之光束為162[lm]。供給至實施例10~實施例12之發光裝置之順向電流為350[mA]。
<發光面亮度> 於將發光裝置與透鏡等光學系統組合使用之情形時,重要的是特定之發光區域(本發明之情形時為透光性構件之光出射面)之亮度。關於實施例10~實施例12之發光裝置,使用Radiant Vision Systems公司製造之二維色彩亮度計進行透光性構件6之出射面(露出面)之亮度評估。實施例10之發光裝置之亮度為33.7[cd/cm 2]。實施例11之發光裝置之亮度為37.3[cd/cm 2]。實施例12之發光裝置之亮度為35.8[cd/cm 2]。供給至實施例10~實施例12之發光裝置之順向電流為350[mA]。
<分隔性> 關於汽車之頭燈等,為了使漏出至發光區域外之光成分達到安全標準,要求減少發光區域外之光成分(分隔性)。將自透光性構件被覆構件漏出之光之亮度除以自透光性構件6出射之光之平均亮度所得之值作為分隔性之指標之情形時,實施例10中獲得7.2%之值,實施例11中獲得2.2%之值,實施例12中獲得3.6%之值。再者,自被覆構件漏出之光係於在俯視下自透光性構件與被覆構件之邊界地點朝外側離開125 um之地點測定之光。 <可靠性> 對實施例11及實施例12之發光裝置,於85℃之高溫環境下施加1.5 A之電流,實施1000小時之壽命試驗。動作時之接面溫度為約175℃。再者,所謂「接面溫度」係發光元件發出光之區域即活性層之溫度。 施加700 mA電流時1000小時後之輸出維持率相對於初始值,實施例11之發光裝置之輸出維持率為102%,實施例12之發光裝置之輸出維持率為101%。 又,關於實施例11之發光裝置及實施例12之發光裝置,未確認到試驗中裂縫之產生及進展。
實施例13 以如下方式製作實施例13之發光裝置。 將具有280 nm之峰值波長且俯視下之形狀為1 mm×1 mm之矩形之發光元件4以藍寶石基板側為片材側之狀態排列於具有黏著性之聚醯亞胺片材上,發光元件4彼此之間距為2.2 mm。發光元件4之厚度為700 μm。發光元件4之電極3包含高度約30 um之Au凸塊。 對平均粒徑為10.5 μm且平均縱橫比為16.5之氮化硼與平均粒徑為0.4 μm之氧化矽以重量比1:1混合而成之10 g混合粉添加3 mol/L之氫氧化鉀溶液3 g,於容器內混合。其後,利用真空攪拌消泡機進一步混練,獲得混合物50。 以覆蓋發光元件4與透光性構件6之方式塗佈所獲得之混合物50。其後,使用玻璃板按壓混合物50,成形為約2 mm厚度之平坦形狀。 其次使用烘箱,於大氣中進行60分鐘之暫時硬化。暫時硬化時之溫度為95℃。其後,將保持有發光元件4之聚醯亞胺之黏著片材剝離。片材剝離後,使用加壓烘箱,於1 MPa之氮氣氛圍中進行40分鐘之正式硬化。正式硬化時之溫度為200℃。 其次,研削被覆構件5,使電極3露出。 最後,使用厚度100 um之刀片實施單片化。於單片化後,獲得俯視下之形狀為2.1 mm×2.1 mm之矩形且厚度約720 μm之出射紫外光之發光裝置。
<可靠性> 對以如上方式製作之發光裝置進行可靠性試驗。 於25℃之室溫環境下施加500 mA之電流,實施1000小時之壽命試驗。動作時之接面溫度為約100℃。 施加350 mA電流時1000小時後之輸出維持率相對於初始值為92%。試驗後之外觀亦未發現變色或裂縫等劣化。
以上,說明了本發明之實施方式、變化例、實施例及參考例,但揭示內容亦可於構成之細節部分進行變化,實施方式、變化例、實施例及參考例之要素之組合或順序之變化等可於不脫離本發明之申請專利範圍及思想之情況下實現。
1:發光裝置 1a:光出射面 2:半導體積層體 3:電極 3a:下表面 4:發光元件 4a:上表面 5:被覆構件 6:透光性構件 6a:上表面 7:生長用基板 11:光反射材 11a:主面 11b:主面 12:支持構件 13:空隙 14:散射材 20:安裝基板 50:混合物 60:透光性片材 90:槽 100:發光裝置 100a:光出射面 106:透光性構件 106a:上表面 106b:側面 CL:切斷位置 R1:附近區域
圖1係本發明之一實施方式之發光裝置之概略剖視圖。 圖2係將圖1所示之發光裝置具備之光反射性被覆構件之一部分放大之剖視圖。 圖3係形成圖1所示之發光裝置具備之光反射性被覆構件的光反射材之粉末之概略立體圖之一例。 圖4A係表示圖1所示之發光裝置之第1製造方法之一步驟之概略剖視圖。 圖4B係表示圖1所示之發光裝置之第1製造方法之一步驟之概略剖視圖。 圖4C係表示圖1所示之發光裝置之第1製造方法之一步驟之概略剖視圖。 圖5係表示第1製造方法之另一步驟之概略剖視圖。 圖6A係表示圖1所示之發光裝置之第2製造方法之一步驟之概略剖視圖。 圖6B係表示圖1所示之發光裝置之第2製造方法之一步驟之概略剖視圖。 圖6C係表示圖1所示之發光裝置之第2製造方法之一步驟之概略剖視圖。 圖6D係表示圖1所示之發光裝置之第2製造方法之一步驟之概略剖視圖。 圖7係本發明之另一實施方式之發光裝置之概略剖視圖。 圖8A係表示圖7所示之發光裝置之製造步驟之一例之概略剖視圖。 圖8B係表示圖7所示之發光裝置之製造步驟之一例之概略剖視圖。 圖8C係表示圖7所示之發光裝置之製造步驟之一例之概略剖視圖。 圖9係將製造過程中之實施例10之發光裝置之一部分放大之剖視圖。 圖10係將實施例11之發光裝置具備之被覆構件之一部分放大之剖視圖。
11:光反射材
12:支持構件

Claims (22)

  1. 一種發光裝置,其具備: 發光元件;及 光反射性被覆構件,其包含板狀之光反射材、氧化矽、及鹼金屬,且被覆上述發光元件;且 上述光反射材之平均粒徑為0.6 μm以上43 μm以下, 上述光反射材之平均縱橫比為10以上。
  2. 如請求項1之發光裝置,其中上述光反射材為氮化硼, 上述光反射材之平均粒徑為6 μm以上43 μm以下。
  3. 如請求項1之發光裝置,其中上述光反射材為氧化鋁, 上述光反射材之平均粒徑為0.6 μm以上10 μm以下。
  4. 如請求項1至3中任一項之發光裝置,其中上述氧化矽與上述光反射材之含有比率以重量比計為1:4以上1:1以下。
  5. 如請求項1至4中任一項之發光裝置,其中上述鹼金屬為鉀或鈉。
  6. 如請求項1至5中任一項之發光裝置,其中上述被覆構件包含散射材。
  7. 如請求項6之發光裝置,其中上述散射材之平均粒徑小於上述光反射材之平均粒徑。
  8. 如請求項6或7之發光裝置,其中上述散射材主要為氧化鋯或氧化鈦。
  9. 如請求項1至8中任一項之發光裝置,其中於上述發光元件上配置有透光性構件,上述透光性構件之表面之一部分自上述被覆構件露出, 上述透光性構件之表面中自上述被覆構件露出之表面包含光出射面。
  10. 如請求項9之發光裝置,其中上述透光性構件為無機材料。
  11. 如請求項1至10中任一項之發光裝置,其中上述發光元件出射紫外光。
  12. 如請求項1至11中任一項之發光裝置,其中上述被覆構件於40℃~300℃之溫度範圍內,線性熱膨脹係數為0.5 ppm/℃以上5 ppm/℃以下。
  13. 一種發光裝置之製造方法,其包含如下步驟: 將氧化矽之粉末、平均粒徑為0.6 μm以上43 μm以下且平均縱橫比為10以上之板狀光反射材之粉末、及鹼性溶液混合而形成混合物; 將上述混合物塗佈於發光元件;及 藉由加熱上述混合物而使其硬化,形成光反射性被覆構件。
  14. 如請求項13之發光裝置之製造方法,其中形成上述光反射性被覆構件之步驟包含如下步驟: 暫時硬化步驟,其使上述混合物於第1溫度下硬化;及 正式硬化步驟,其使上述混合物於高於上述第1溫度之第2溫度下硬化。
  15. 如請求項13或14之發光裝置之製造方法,其中於形成上述混合物之步驟中,上述氧化矽之粉末與上述光反射材之粉末於重量比1:4以上1:1以下之範圍內混合。
  16. 如請求項13至15中任一項之發光裝置之製造方法,其中於形成上述混合物之步驟中,上述鹼性溶液、與上述氧化矽之粉末及上述光反射材之粉末之重量比為2:10以上8:10以下。
  17. 如請求項13至16中任一項之發光裝置之製造方法,其中於形成上述混合物之步驟中,使用濃度為1 mol/L以上5 mol/L之上述鹼性溶液。
  18. 如請求項13至17中任一項之發光裝置之製造方法,其中於形成上述混合物之步驟中,使用氮化硼或氧化鋁作為上述光反射材。
  19. 如請求項13至18中任一項之發光裝置之製造方法,其中於形成上述混合物之步驟中,使用氫氧化鉀溶液或氫氧化鈉溶液作為上述鹼性溶液。
  20. 如請求項13至19中任一項之發光裝置之製造方法,其包含使散射材混合於上述混合物之步驟。
  21. 如請求項20之發光裝置之製造方法,其中於使散射材混合於上述混合物之步驟中,使用平均粒徑小於上述光反射材粉末之平均粒徑之上述散射材。
  22. 如請求項20或21之發光裝置之製造方法,其中於使散射材混合於上述混合物之步驟中,主要使用氧化鋯或氧化鈦作為上述散射材。
TW110136138A 2020-09-30 2021-09-29 發光裝置及發光裝置之製造方法 TW202220236A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-165701 2020-09-30
JP2020165701 2020-09-30
JP2021-150877 2021-09-16
JP2021150877A JP7174290B2 (ja) 2020-09-30 2021-09-16 発光装置及び発光装置の製造方法

Publications (1)

Publication Number Publication Date
TW202220236A true TW202220236A (zh) 2022-05-16

Family

ID=80951645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136138A TW202220236A (zh) 2020-09-30 2021-09-29 發光裝置及發光裝置之製造方法

Country Status (6)

Country Link
US (1) US20230238492A1 (zh)
EP (1) EP4224539A1 (zh)
JP (2) JP7425354B2 (zh)
CN (1) CN116018692A (zh)
TW (1) TW202220236A (zh)
WO (1) WO2022071230A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160704A1 (en) * 2021-09-29 2023-04-05 Nichia Corporation Light emitting device and method of manufacturing light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853723B2 (en) * 2010-08-18 2014-10-07 E. I. Du Pont De Nemours And Company Light emitting diode assembly and thermal control blanket and methods relating thereto
JP5928468B2 (ja) * 2011-08-08 2016-06-01 旭硝子株式会社 ガラスセラミックス体、発光素子搭載用基板、および発光装置
JP2014216416A (ja) * 2013-04-24 2014-11-17 スタンレー電気株式会社 半導体発光装置およびその製造方法
JP2015144210A (ja) 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 発光素子搭載用基板及び発光デバイス

Also Published As

Publication number Publication date
JP2024028483A (ja) 2024-03-04
CN116018692A (zh) 2023-04-25
EP4224539A1 (en) 2023-08-09
WO2022071230A1 (ja) 2022-04-07
US20230238492A1 (en) 2023-07-27
JP2023001230A (ja) 2023-01-04
JP7425354B2 (ja) 2024-01-31

Similar Documents

Publication Publication Date Title
JP5572038B2 (ja) 半導体発光装置及びそれを用いた車両用灯具
CN107017241B (zh) 发光装置
RU2525325C2 (ru) Светоизлучающее устройство и способ изготовления светоизлучающего устройства
US9601670B2 (en) Method to form primary optic with variable shapes and/or geometries without a substrate
US9224925B2 (en) Semiconductor light-emitting device and manufacturing method
JP6387954B2 (ja) 波長変換部材を用いた発光装置の製造方法
JP2012134355A (ja) 発光装置およびその製造方法
KR20100066397A (ko) 반도체 발광장치 및 그 제조방법
JP2006100543A (ja) 半導体発光装置の製造方法
JP2018206819A (ja) 発光装置及びその製造方法
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP6142883B2 (ja) 発光装置
JP6444754B2 (ja) 発光装置
JP2018006562A (ja) 発光装置及びバックライト光源
TWI741339B (zh) 發光裝置及其製造方法
JP2024028483A (ja) 発光装置及び発光装置の製造方法
WO2012011528A1 (ja) 発光装置および照明装置
JP2024050890A (ja) 発光装置および発光装置の製造方法
JP7174290B2 (ja) 発光装置及び発光装置の製造方法
JP7401809B2 (ja) 発光装置及び発光装置の製造方法
JP7343763B2 (ja) 発光装置及びその製造方法
TW202413843A (zh) 具有單一透鏡結構的固態發光構件
US20240055570A1 (en) Light emitting device with light-altering material layer, and fabrication method utilizing sealing template
JP6327382B2 (ja) 発光装置及びその製造方法
JP2024015498A (ja) 発光装置及び発光装置の製造方法