JP5525211B2 - シリカ複合再生粒子の製造方法 - Google Patents

シリカ複合再生粒子の製造方法 Download PDF

Info

Publication number
JP5525211B2
JP5525211B2 JP2009198817A JP2009198817A JP5525211B2 JP 5525211 B2 JP5525211 B2 JP 5525211B2 JP 2009198817 A JP2009198817 A JP 2009198817A JP 2009198817 A JP2009198817 A JP 2009198817A JP 5525211 B2 JP5525211 B2 JP 5525211B2
Authority
JP
Japan
Prior art keywords
combustion
regenerated particles
furnace
silica composite
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009198817A
Other languages
English (en)
Other versions
JP2011047090A (ja
Inventor
顕之 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2009198817A priority Critical patent/JP5525211B2/ja
Publication of JP2011047090A publication Critical patent/JP2011047090A/ja
Application granted granted Critical
Publication of JP5525211B2 publication Critical patent/JP5525211B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Paper (AREA)

Description

本発明は、シリカ複合再生粒子の製造方法に関するものである。
従来、内添紙、特に新聞用紙の印刷不透明度改善には、ホワイトカーボン(非晶質シリカ)を填料として添加することが一般的である。
しかし、ホワイトカーボンの添加に頼るのみでは印刷不透明度の向上に限界があり、また、過剰添加により紙力の低下を引き起こす問題があった。
他方、無機微粒子表面をシリカで被覆した複合粒子を填料として使用する研究及び試みがなされている(特許文献1〜特許文献4)。とりわけ、特許文献1のものは、再生粒子を原料とした複合粒子であるために、他の技術に比較して環境負荷などの点から、さらに改良を進めるべきものである。
特許4087431号公報 特許3898007号公報 特開2007−70164号公報 特開2009−40612号公報
特に、新聞用紙の印刷不透明度向上の観点から填料としての改良が要請されている。
そこで、本発明の主たる課題は、高い吸油量を示し、紙の不透明度を向上できるシリカ複合再生粒子の製造方法を提供することにある。
上記課題を解決した本発明は次記のとおりである。
<請求項1記載の発明>
製紙スラッジを主原料とし、これを脱水、乾燥、燃焼及び粉砕工程を経て得られた再生粒子を原料とし、シリカ複合工程を経て得られるシリカ複合再生粒子の製造方法であって、
得られるシリカ複合再生粒子の細孔容積が0.5〜1.5cc/g(細孔半径が10,000Å以下)、体積平均粒子径が1.7〜35.0μm、酸化物換算でのシリカ(珪素)の比率が10.0〜50.0質量%となるように、
前記シリカ複合工程が、粉砕工程を経て得られた再生粒子を珪酸アルカリ水溶液に添加・分散しスラリーとするとともに、撹拌しながら50〜100℃の温度範囲で、鉱酸を少なくとも2段階に分けて添加するものであり、
第1段階目の鉱酸添加時のスラリー温度を50〜75℃とし、第2段階目以降の鉱酸添加時のスラリー温度を少なくとも第1段階目よりも10℃以上昇温し、前記第1段階目の鉱酸添加後に5分〜20分の保留時間をつくる、
ことを特徴とするシリカ複合再生粒子の製造方法。
なお、本発明における「体積平均粒子径」は、累積体積分布が50%になる体積平均粒子径d50をいう。そして、レーザー粒度分布測定装置(レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製)にて粒度分布を測定し、全粒子の体積に対する累積体積が50%になる時の粒子径(d50)として求められる。また、細孔容積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用い、試料を濾過した後、真空乾燥して測定したものである。なお、後記実施例の「比表面積」も同装置により測定したものである。
また、本発明の細孔容積とは、細孔半径が10,000Å以下の細孔の全容積をいうものである。
(作用効果)
先行の特許文献のように、微粒子(再生粒子)を珪酸アルカリ水溶液中に懸濁するとともに鉱酸を添加し、再生粒子の周囲をシリカで被覆してシリカ複合再生粒子を得ることができる。
しかし、これらの処理過程における条件によっては、再生粒子と結合せずシリカ単体の物質(ホワイトカーボン)が生成する問題が生じることが知見された。また、原料たる再生粒子の体積平均粒子径のほか、及び処理工程(特に鉱酸の添加条件)を工夫することにより、均一な反応を促し、再生粒子表面において均一なシリカ結合を達成するとともに、シリカ複合再生粒子同士をさらに凝集させることで、得られたシリカ複合再生粒子が、所定の体積平均粒子径を有し、かつ細孔容積が0.5〜1.5cc/g(細孔半径が10,000Å以下)を有するシリカ複合再生粒子が得られ、印刷不透明度の向上に大きく寄与することを確認し、本発明の完成に至ったものである。
鉱酸を少なくとも2段階に分けて添加すると、理由は定かではないが、均質なシリカ複合形態となる。
<請求項2記載の発明>
前記シリカ複合工程における最終反応液のpHを8〜11の範囲とする、
請求項1のシリカ複合再生粒子の製造方法。
(作用効果)
後述するように、かかる処理条件は最適なシリカ複合再生粒子の製造条件となる。
以上のとおり、本発明によれば、高い吸油量を示し、紙の不透明度を向上できる等の利点がもたらされる。そして、内添紙として新聞用紙の場合、軽量でありながら印刷不透明度の高い新聞用紙となる。
製造設備の概要図である。 第2燃焼炉の概要図で、(a)は縦断面図、(b)は内面の展開図である。
次に、本発明の実施の形態を説明する。
〔原料〕
原料として製紙スラッジを、好ましくは脱墨フロスを主成分に用いる。製紙スラッジは、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿あるいは浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程で除去されたもの等の各種スラッジが混在したものである。
〔脱水工程〕
製紙スラッジの脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、製紙スラッジは、脱水手段たる例えばロータリースクリーンによって、製紙スラッジから水を分離して脱水する。ロータリースクリーンにおいて、水分95〜98%に脱水した製紙スラッジは、好適には例えばスクリュープレスに送り、さらに40%〜70%に脱水することができる。
以上のように、製紙スラッジの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき製紙スラッジのフロックが硬くなりすぎるおそれがない。脱水処理においては、製紙スラッジを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子凝集体の白色度を下げる問題を引き起こす。
製紙スラッジの脱水工程は、本発明における再生粒子製造工程に隣接することが、生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行ったものを搬送することも可能である。
かかる脱水後の原料は、望ましくは、粉砕機(または解砕機)により平均粒子径40mm以下の粒子径に揃えることが好ましく、より好ましくは平均粒子径が3mm〜30mm、さらに好ましくは平均粒子径が3mm〜10mmの範囲になるように調整することが好ましく、好適には粒子径が50mm以下の割合が、70質量%以上になるように粉砕しておくことがより好ましい。
<再生粒子の製造形態>
再生粒子の製造形態としては、特許文献1の段落番号[0014]〜[0020]の内容を引用することができるが、本発明者が見出したさらに好適な形態例を説明すると次のとおりである。
製紙スラッジを脱水して得た脱水物は、燃焼工程に送られるが、より好適には、燃焼工程の前段で、有機成分の熱処理工程を経ることが好ましい。
例えば、製紙用スラッジを燃焼する場合、当該製紙用スラッジに含有される有機成分は、その出所の違いや製紙工場内での抄造品種、定期修理や生産変動などにより多様に変化し、その品質変動が製紙スラッジの熱量変動をまねき、燃焼温度の変動、燃焼時間の変動をきたし、最終的に得られる燃焼物(再生粒子)の品質、特に性状が一定でなく、燃焼物の白色度もバラツキが生じる問題が知見された。
そこで、本発明者らは、製紙スラッジの熱量変動を所定の範囲に調整し、燃焼温度の変動、燃焼時間の変動を生じさせないで、品質の安定した再生粒子を得る手段について検討を重ね、燃焼工程の前段に、製紙スラッジ中の有機成分を熱処理(好ましくは、酸素濃度0.2〜20%雰囲気下、熱処理温度200℃〜300℃で熱処理)する有機成分の熱処理工程を設けるとともに、製紙スラッジを300℃〜550℃の燃焼温度で燃焼(好ましくは、酸素濃度0.2〜20%雰囲気下で燃焼)する第1燃焼工程と、この第1燃焼工程後の製紙スラッジを再燃焼する第2燃焼工程と、を含む、少なくとも2段階の燃焼工程を設けることで、品質の安定した再生粒子(再生粒子は、凝集体を形成している。)を製造できることを見出している。
(有機成分の熱処理工程)
製紙スラッジは、各種有機成分(有機物)を含有し、この有機物の中には、紙由来の、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)が含まれ、出発原料の種類や量により変動幅が大きいものの、およそ1000〜2000cal/gの発熱量を有する。従来の再生粒子の製造方法においては、これら有機分を、燃焼工程(酸化工程)において、他の有機分と一緒に燃焼(酸化)させて除去する方策が取られていた。
本発明者らは、以上の各有機物が上記温度の近傍で発熱量のピークをもつ発熱量が高い物質であること、200℃〜300℃で熱分解される有機分を燃焼させる際に発火・過剰燃焼が生じ、燃焼制御に困難をともない、白色度の低下のみならず、Ca2Al2SiO7(ゲーレナイト)及びCaAl2Si28(アノーサイト)からなる硬質物質の生成をまねくことを見出し、燃焼工程の前段で、所定の高発熱量成分を製紙スラッジ中から、熱処理により予め除去することが製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子を、安定して製造することができることを見出した。
更なる好適な熱処理条件として、製紙スラッジの発熱量の減少率が20〜70%になる様に熱処理除去することで過剰燃焼を抑え、第1燃焼工程や第2燃焼工程での過燃焼による、いわゆる硬質物質であるCa2Al2SiO7(ゲーレナイト)及びCaAl2Si28(アノーサイト)の生成を2.0質量%以下にでき、特に製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子を、安定して製造することができることを見出している。
有機成分の熱処理工程において用いることができる装置には、特に限定がなく、例えば、直接加熱型ロータリーキルン、間接加熱型ロータリーキルン、気流乾燥機、流動層乾燥機、振動流動乾燥機、回転・通気回転乾燥機(サイクロン)などを用いることができる。これら装置の熱源として、燃焼工程の排熱を使用し、エネルギーコストを低減することが可能である。ただし、熱効率や操業の容易性の点で、直接加熱型ロータリーキルンが好適に採用される。より詳細には、本体が横置きで中心軸周りに回転する内熱キルン炉が好適に用いられる。
また、第1燃焼炉と同様の、本体が横置きで中心軸周りに回転する内熱キルン炉を用い、原料排出口側から200〜300℃の熱風を吹き込むこと(向流方式)もできるが、当該内熱キルン炉一端の原料供給口から原料を供給するとともに、同原料供給口側から200〜300℃の熱風を吹き込む(並流方式)のが好ましい。並流方式によると、水分を多く含む原料中の乾燥を促進するとともに、他端に向けて低温化する温度勾配を設けることが可能になり、過剰な熱処理を来たすことなく、原料中の200℃〜300℃で熱分解・揮発蒸散する有機成分をガス化し、このガスを原料排出口側に設けた排気手段で排出し、もって高発熱量成分を製紙スラッジから分離・除去できる。
熱処理温度は、気流乾燥機や回転・通気回転乾燥機のような熱風を利用して熱処理させる装置においては、製紙スラッジ中に含まれる、例えば、およそ1000〜2000cal/gの発熱量を有するアクリル系化合物を、効率よく熱処理除去するために、熱風温度を200〜300℃とすることが好ましく、220〜280℃とすることが、第1燃焼工程や第2燃焼工程での過燃焼によるCa2Al2SiO7及びCaAl2Si28からなる硬質物質の生成を2.0質量%以下に抑えることができ、特に製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子を、安定して製造することができるためより好ましい。熱風温度が300℃を超えると、スチレン成分の熱処理が生じ熱処理工程での発火問題や、次工程である第1燃焼工程での燃焼エネルギーが増加する問題、過燃焼の問題、カーボン等の難燃焼物の生成をまねく問題が生じる。
有機成分の熱処理工程においては、次工程である第1燃焼工程での緩慢な低温燃焼及び燃焼効率を向上させるために、熱処理前の製紙スラッジを細かく解すことが好ましく、好適には、熱処理工程の前段で、撹拌機や機械式ロール等により強制的に有機成分熱処理前の製紙スラッジを解し、好適には数ミリから40mmを超える不揃いな脱水後の原料を40mm以下、好適には3〜10mmとして有機成分の熱処理工程、さらには第1燃焼工程に供給することが好ましい。さらには、有機成分の熱処理工程後に撹拌機や機械式ロール等により強制的に原料を3〜10mmに揃えることが好ましい。
有機成分の熱処理工程における熱処理は、製紙スラッジの発熱量が、有機成分の熱処理工程入口におけるのと比べて20%以上低減するように行うのが好ましく、20〜70%低減するように行うのがより好ましい。20%未満の低減では、製紙スラッジ中に高発熱量成分であるアクリル系化合物が残留し、次工程である第1燃焼工程で燃焼温度の変動をきたすおそれがある。他方、70%を超えて低減させることは、製紙スラッジ中のスチレン成分の熱分解をきたし、熱処理工程にて発火、過燃焼を引き起こすおそれがある。
(燃焼工程)
以下では、第1燃焼工程において内熱キルン炉を、第2燃焼工程において外熱キルン炉を選択した場合を説明するが、燃焼工程においては、これらキルン炉以外の公知の燃焼装置を使用することができる。例えば、流動床炉、ストーカー炉、サイクロン炉、半乾留・負圧燃焼式炉等の公知の装置を用いることができる。ただし、本発明においては、先の第1燃焼を内熱で行い、後の第2燃焼を外熱で行う2段階以上の燃焼を行うことが可能な公知の燃焼炉を使用するのが好適である。また、外熱第2燃焼炉としては、重油等を熱源にした間接加熱方式燃焼炉等の公知の燃焼装置を採用すると好適である。
第1燃焼工程において好適に用いることができる内熱キルン炉によれば、緩慢な低温燃焼を行うことができ、供給口から排出口に至るまで、緩やかかつ安定的に燃焼が進行し、燃焼物(被処理物)の過燃焼や微粉化が抑制される。
従来の第1燃焼工程においては、前述した特許文献等にも記載されているように、原料中の微細繊維や塗工紙に多用される有機高分子であるラテックス、印刷により付与されたインキ成分等を効率よく燃焼させるために、水分率を40%未満に脱水乾燥させ、高温で燃焼させる方法を採用していた。しかしながら、本発明者等は、第1燃焼工程においては300℃〜550℃の従来に比して低温で原料に含有されるセルロース等の有機物を燃焼することにより、得られる再生粒子の品質安定化、白色度向上に対する寄与が大きいことを見出した。つまり、少なくとも2段階の燃焼を行い、第1燃焼工程は従来に比して低温で燃焼処理することで、均一かつ安定的に再生粒子を得ることができる。
第2燃焼工程において好適に用いることができる外熱キルン炉によれば、その端部から燃焼物を所定の滞留時間をもって、他端部の排出口から排出でき、また、外熱により燃焼物に均一な熱が加わるので、燃焼のバラツキが生じない。さらに、キルン炉内壁の回転による摩擦によって燃焼物が緩やかに撹拌されるため、微粉化を生じにくい。その結果、最終的な燃焼物の品質及び性状が安定したものとなる。
なお、内熱キルン炉を第2燃焼工程において使用した場合は、残カーボンを燃焼するにおいて、炉内温度の調整に多量の希釈空気が必要であり、また、多量の空気を投入しないと燃焼熱を内熱キルン炉内に均一に伝えることが難しく、さらに炉内温度の変動を抑えることが難しいため、燃焼物の過燃焼や燃焼ムラが生じる場合がある。また、通常加熱に使用される重油バーナーからの重油燃焼残カーボンやイオウ酸化物等による汚染が発生し、白色度の低下やバラツキが生じ、得られる燃焼物の品質を均一にすることが難しくなりやすい。
第1燃焼工程や第2燃焼工程において、好適な燃焼炉として用いられる内熱または外熱キルン炉は、内部耐火物を円周状(円筒状)ではなく、六角形状や八角形状とすること、原料の供給口や排出口を軸方向端縁部側が先細となる円錐台形状とすることもでき、これらの形状によると燃焼物を滑らすことなく持ち上げて撹拌することができる。
この点、簡便にこの撹拌を実現するためには、内部耐火物等を円筒状とし、燃焼物撹拌用のリフターを設けることによってもよい。ただし、内部耐火物等の(内)表面積が広がって熱効率が向上すること、燃焼温度の勾配を設けやすいことから、前述供給口及び排出口が異形、すなわち円錐台状とされたキルン炉を直列的に組み合わせて構成するのが好ましい。この形態によると、原料の均一な燃焼と、品質の均一化を図るうえで好適である。なお、キルン炉を直列的に組み合わせる場合、各キルン炉が同一のものであってもよいが、例えば、軸方向の長さが異なる複数のキルン炉を組み合わせて用いることもできる。このようにキルン炉を適宜組み合わせることにより、原料をより均一に燃焼することができるようになり、結果、燃焼物をより均質化することができるようになる。以上のことは、本形態においては、第1燃焼工程にて、温度勾配を設けながら、低温でじっくりと原料全体を燃焼することとも関係すると考えられる。
ここで、本発明者らが好適な再生粒子を得るにあたり、注力した燃焼炉の選択について説明する。
従来から慣用的に用いられてきた燃焼炉は、ストーカー炉(固定床)、流動床炉、サイクロン炉、キルン炉の4種に大別でき、本発明者らは、それぞれの燃焼炉で再生粒子の製造の検討を重ねたところ、次記の事項が明らかとなった。
ストーカー炉(固定床)は、製紙スラッジの燃焼度合いの調整が困難であり、燃焼物が不均一となるうえに、灰分の多い製紙スラッジの燃焼では、火格子間のクリアランスから落塵を生じる。火格子を通し燃焼物の下から空気を吹上げ燃焼させるため、炭酸カルシウムなどが飛灰となり排ガスとともに排ガス設備へ送られ、歩留りの低下が問題となる。ストーカー(階段状)を、所定幅で燃焼物を通過させながら燃焼するため、撹拌が不十分で幅方向で燃焼にバラツキが発生する。
流動床炉は、炉内において珪砂等の粒子状の流動媒体を使用するため、珪砂等が燃焼物中に混入し、品質の低下をまねく問題や。均一な撹拌ができないとの問題を有する。硅砂等を流動層に混合して燃焼させた後、硅砂等と燃焼物とを分離し、硅砂等は燃焼炉へ戻し燃焼物のみを取り出すが、燃焼物も硅砂等と同程度の粒径であるため分離が困難である。燃焼物を硅砂等と浮遊した状態で燃焼させるため、燃焼の度合い調整が困難であり、品質のばらつきが発生する。硬度の高い珪砂等との摩擦、衝突により燃焼物が微粉化され飛灰となって系外へ排出され歩留りが低下する。
サイクロン炉は、炉内を一瞬で通過するため燃焼物中の固定炭素を十分に燃焼できず白色度の低下につながる。また、風送により細かい粒子はサイクロンで分離されず排ガスと一緒に排ガス処理工程に回るため歩留りが低下する。
以上の諸問題について鋭意検討を重ねた結果、有機成分の熱処理工程においては、原料の供給方向と同じ方向に熱風を供給する(並流方式)キルン炉が、燃焼工程においては、原料排出口側から熱風を供給する(向流方式)キルン炉が好適な熱処理手段、燃焼手段として選択され、さらに後述するように、先の第1燃焼工程において内熱キルンが、後の第2燃焼工程において外熱キルンが好適な燃焼手段として選択される。
〔好適な形態例の概要〕
次に、本発明の実施の形態の一例を、図面を参照しながら説明する。なお、以下では、被処理物の主原料(50質量%以上)として製紙スラッジを用いた。
本形態の再生粒子の製造設備フローは、脱水工程、有機成分の熱処理工程、燃焼工程、粉砕工程を有するが、さらに、被処理物(原料)の凝集工程、造粒工程や、各工程間に分級工程等を設けてもよい。
図1に、再生粒子の製造設備フローの一部構成例(有機成分の熱処理工程、第1の燃焼工程及び第2の燃焼工程を含む設備例)を示した。本設備には、各種センサーが備わっており、被処理物や設備の状態、処理速度のコントロール等を行っている。本形態に用いる被処理物(原料10)は、スクリーンにおいて、水分率を95〜98%に脱水した後、例えばスクリュープレスに送り、さらに40〜70%の水分率に脱水することが好適である。
かかる脱水後の原料10は、望ましくは、粉砕機(または解砕機)により40mm以下、より好ましくは平均粒子径が3mm〜30mm、さらに好ましくは3mm〜10mmの粒子径に粉砕しておく。かかる原料10が貯槽12から切り出されて、熱処理炉たる本体が横置きで中心軸周りに回転する内熱キルン炉42に装入機41により装入される。内熱キルン炉42の出口(排出口)側には排ガスチャンバーと排出チャンバーとを兼ねるチャンバー42Cが設けられている。原料供給口側に設けられた、熱風発生炉43からの熱風が内熱キルン炉42の供給口側から吹き込まれ、装入機41によって装入され、内熱キルン炉42の回転にともなって排出口側に順次移送される原料10の熱処理を行うようになっている(並流方式)。
ここで内熱キルン炉42内に吹き込む熱風は、酸素濃度が0.2〜20%、好適には5〜17%となるようにするのが望ましい。また、炉内温度は、200℃〜300℃、より望ましくは220℃〜280℃未満が望ましい。熱風は、バーナー43Aが備わる熱風発生炉43から吹き込まれる。
チャンバー42Cからは、熱処理に供した排ガスとともに、熱処理により生じた揮発ガスが排出され、これらのガスは、好適には後述する第1燃焼炉14のバーナー20Aの助燃ガスとして用いられる。
内熱キルン炉42内において熱処理した原料は、本体が横置きで中心軸周りに回転する内熱キルン炉である第1燃焼炉14に装入される。この第1燃焼炉14に装入される燃焼物の粒径は、直径または長径において3〜10mmが好適である。 熱処理された原料10は、第1燃焼炉14の一方側から装入機15により装入される。第1燃焼炉14の一方側には排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風発生炉20からの熱風が第1燃焼炉14の他方側から吹き込まれ、前記一方側から装入され、第1燃焼炉14の回転にともなって前記他方側に順次移送される原料10の燃焼を行うようになっている。
ここで、第1燃焼炉14内に吹き込む熱風は、酸素濃度が0.2%〜20%となるようにするのが望ましい。また、炉内温度は、300℃〜550℃、より望ましくは400℃〜510℃が望ましい。熱風は、バーナー20Aが備わる熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、燃焼に供した排ガスが再燃焼室22に送り込まれる。排ガス中に含まれる燃焼物の微粉末は、排ガスチャンバー16の下部から排出され、再利用される。排ガスは、再燃焼室22でバーナーにより再燃焼が行われ、予冷器24により予冷された後、熱交換器26を通し、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温し、この昇温された外気は、熱風発生炉20に送られ、第1燃焼炉14に吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。排ガスの処理は、排ガス中に含まれる有害物質の除去に有効である。
第1燃焼炉14において燃焼された燃焼物は、本体が横置きで中心軸周りに回転する外熱キルン炉である第2燃焼炉32に装入される。この装入される燃焼物の粒径としては、3〜10mmが好適である。第2燃焼炉32の熱源としては、第2燃焼炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気による調整が好適であり、したがって、電気ヒーターにより間接的に第1燃焼炉14から得られる燃焼物を再び燃焼させる外熱式の第2燃焼炉32であることが望ましい。
第2燃焼炉32においては、酸素濃度を調整する空気あるいは酸素の供給機構(図示せず)にて酸素濃度が5%〜20%、望ましくは10%〜20%となるように再燃焼するのが望ましい。燃焼温度は、550℃〜800℃、望ましくは600℃〜750℃である。また、第2燃焼炉32内での滞留時間(燃焼時間)は60分以上、より好適には60分〜240分、特には90分〜150分、最適には120分〜150分が、残カーボンを効率的に燃焼させるに望ましい。
燃焼が終了した燃焼物は、冷却機34により冷却された後、振動篩機などの粒径選別機36により選別され、湿式粉砕機等を用いた粉砕工程で目的の粒子径に調整された燃焼物(再生粒子)が燃焼品サイロ38に一時貯留され、顔料や本発明の填料の用途先に仕向けられる。
なお、以上では、製紙スラッジを例示したが、比較的品質が安定している脱墨フロスなど、出所が明確な製紙スラッジを原料として用いる場合も、本発明を効果的に採用できる。
本発明者らが見出したシリカ複合再生粒子は、従来から填料や顔料として用いられてきた天然鉱物由来のものや化学反応により合成された、炭酸カルシウムやクレー、タルク、ホワイトカーボン、合成ポリマー等の微粒子と全く異なる、製紙スラッジを原料とした再生粒子を基に、さらにその性状を製紙用の填料、顔料として好適な組成、品質になる様にシリカを複合させた特徴を有する、全く新規な製紙用の填料、顔料として用いられる微粒子である。
〔本形態の詳細・応用例等〕
以上、本形態の概要を説明したが、その詳細及び応用例などを以下に説明する。
(原料)
本形態においては、製紙スラッジを主成分とする被処理物を原料とするところ、当該製紙スラッジは、パルプの如き繊維成分、澱粉や合成樹脂接着剤を主とする有機物、塗工紙用顔料の如き無機物などが利用されずに廃水中へ移行したものと、パルプ化工程などで発生するリグニンや微細繊維、古紙由来の製紙用填料や印刷インキ、生物廃水処理工程から生じる余剰汚泥などからなり、古紙パルプ製造工程において印刷インキなどを除去する脱墨工程や製紙用材料を回収して洗浄する洗浄工程に由来する固形成分等を含有していてもよい。
なお、古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、再生粒子の製造方法において未燃物の変動要因となるビニールやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。したがって、脱墨フロスは、工場排水工程や製紙原料調成工程等、他の工程で発生する製紙スラッジと比べ、極めて安定した品質の再生粒子を製造するため、より好適な原料となる。
(脱水工程)
被処理物(原料)の脱水においては、公知の脱水手段を適宜使用できる。本形態における一例では、被処理物は、脱水手段たる例えばスクリーンによって、当該被処理物から水を分離して脱水する。ただし、スクリーンにおいて、被処理物を水分率が95〜98%となるまで脱水し、この脱水物を、例えばスクリュープレスに送り、このスクリュープレスにおいてさらに40〜70%の水分率となるまで脱水することが好適である。スクリュープレス後の原料の水分率が70%を超えると、熱処理工程での熱処理温度の低下をまねき、加熱のためのエネルギーロスが多大になるとともに、原料の熱処理ムラが生じやすくなり均一な熱処理を進めがたくなる。さらに、排出される排ガス中の水分が多くなり、当該熱処理により生成する220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)等を、キルンの助燃に利用する等の有効利用が図れなくなる問題を有する。他方、脱水後の原料の水分率が40%未満と低いと、製紙スラッジの熱処理が過剰に促進しやすく、発火による過剰燃焼の原因となる。
このように原料の脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき原料のフロックが硬くなりすぎるおそれがない。本脱水工程においては、原料を凝集させる凝集剤等の脱水効率を向上させる助剤を添加してもよいが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子の白色度を下げる問題を引き起こす。
かかる脱水後の原料10は、熱処理炉42に供給する操作において、望ましくは、粉砕機(または解砕機)により平均粒子径40mm以下の粒子径に揃えることが好ましく、より好ましくは平均粒子径が3mm〜30mm、さらに好ましくは平均粒子径が3mm〜10mmの範囲になるように調整することが好ましく、好適には粒子径が50mm以下の割合が、70質量%以上になるように粉砕しておくことがより好ましい。原料の粒子径は均一であることが好ましいところ、平均粒子径が3mm未満では過燃焼になりやすく、他方、40mmを超える平均粒子径では、原料芯部まで均一に熱処理し難い場合がある。
なお、平均粒子径と粒子径の割合は、JIS Z 8801‐2:2000に基づき、金属製の板ふるいを用いて測定した値である。
(有機成分の熱処理工程)
原料10が貯槽12から切り出されて、有機成分の熱処理工程に供給され、乾燥や熱分解等の熱処理をされる。有機成分の熱処理工程では、本体が横置きで中心軸周りに回転する内熱キルン炉方式が好適に採用され、原料10が内熱キルン炉42の一方側から装入機43により装入される。内熱キルン炉42での加熱は、熱風発生炉43にて生成された熱風を内熱キルン炉42の供給口側から、原料10の流れに沿うように送り込むことにより行っているが(並流方式)、熱風を内熱キルン炉42の排出口側から、原料10の流れに反するように送り込むことにより行うこと(向流方式)もできる。
本形態において、内熱キルン炉42の他方側には排ガスチャンバーと排出チャンバーとを兼ねるチャンバー42Cが設けられている。熱風は、内熱キルン炉42の一方側から吹き込まれ、当該一方側から装入されて内熱キルン炉42の回転にともなって前記他方側に順次移送される原料10の熱処理を行うようになっている。
有機成分の熱処理工程においては、脱水物10を、本体が横置きで中心軸周りに回転する内熱キルン炉42によって熱処理することにより、供給口から排出口に至るまでに、脱水物10に含まれる紙等に由来する、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)等を熱分解、揮発させ原料10から除去する役割を有し、原料10中から除去することで、次工程である第1燃焼工程での燃焼制御を容易にし、白色度低下の原因になる炭化物や過焼によるCa2Al2SiO7及びCaAl2Si28からなる硬質物質の生成を抑制することができる。
内熱キルン炉42に吹き込む熱風は、酸素濃度0.2%〜20%が好ましく、より好ましくは1%〜17%、最も好ましくは7%〜15%となるようにする。酸素濃度は、原料中に含まれる紙等に由来する、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)等の熱処理に際して消費されるため、熱処理の状況により酸素濃度に変動を生じる。酸素濃度が過度に低いと、十分な熱処理を図ることが難しくなる。
熱処理炉42内の酸素濃度は、原料10の熱処理に際して消費され低下するが、熱処理させるための熱風発生炉43により、空気などの酸素含有ガスを送風し、あるいは排気することで、酸素濃度を維持、調節可能であり、さらに酸素含有ガスを送風し、あるいは排気することで、熱分解した有機物からなるガスの排出と、熱処理炉42内の温度とを細かく調節可能になり、原料10をムラなく万遍に熱処理することができる。
内熱キルン炉42の炉内温度としては、200℃〜300℃、特に220℃〜280℃未満が望ましい。
内熱キルン炉42の炉内温度が300℃を超えると、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の有機物の熱分解が生じるため、過燃焼を引き起こす問題が生じる。
内熱キルン炉42においては、原料10に含まれる紙等に由来する、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)等を低温で熱処理し、原料10から除去させるため、次工程である第1燃焼炉14や第2燃焼炉32において、有機成分の熱処理工程において残留する、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の有機物を緩やかに燃焼させる役割を持たせることが可能になり、燃焼しがたい残カーボンの生成を抑えることができる。200℃未満と過度に温度が低いと、紙等に由来する上記各有機物の熱処理が不十分であり、他方、過度に温度が高いと、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の有機物の燃焼(酸化)が生じ、燃焼除去困難なカーボンが生成しやすくなる。熱風は、バーナー43Aが備わる熱風発生炉43から吹き込まれる。
チャンバー42Cからは、乾燥に供した排ガスが排出され、含有する熱処理ガスの有効利用として、次工程である第1燃焼工程にて用いられるバーナー20Aの助燃料として供される。
前述したように製紙スラッジは、各種有機成分(有機物)を含有し、この有機物のなかには、紙由来の、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等が含まれ、出発原料の種類や量により変動幅が大きいものの、およそ1000〜2000cal/gの発熱量を有する。
従来の再生粒子の製造方法においては、これら有機分を、燃焼工程(酸化工程)において、他の有機分と一緒に燃焼(酸化)させて除去する方策が取られていたため、前記各種有機成分に起因する過燃焼により、安定した燃焼処理が困難になりCa2Al2SiO7及びCaAl2Si28からなる硬質物質の発生や、白色度低下をまねく問題が生じる。
本発明者らの知見では、有機成分の熱処理工程にておよそ1000〜2000cal/gの発熱量を有する製紙スラッジを、熱処理により20〜70%の減少率になるように、より好適には発熱量が1000cal/g未満になるように熱処理することにより、Ca2Al2SiO7及びCaAl2Si28の合計含有量を2.0質量%以下とすることができる。
(第1燃焼工程)
熱処理された被処理物は、第1燃焼炉14に供給される。第1燃焼炉14は本体が横置きで中心軸周りに回転する内熱キルン炉方式からなり、被処理物が内熱キルン炉14の一方側から装入機15により装入される。内熱キルン炉14の加熱は、熱風発生炉20にて生成された熱風を内熱キルン炉14の排出口側から、被処理物の流れと向流するように送り込まれることにより行われる。
内熱キルン炉14の一方側には、排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風が内熱キルン炉14の他方側から吹き込まれ、前記一方側から装入され、内熱キルン炉14の回転にともなって前記他方側に順次移送される被処理物の燃焼を行うようになっている。
本工程においては、被処理物を、本体が横置きで中心軸周りに回転する内熱キルン炉14によって燃焼することにより、供給口から排出口に至るまでに、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の燃焼が緩慢に行われ、燃焼物の微粉化が抑制され、凝集体の形成、硬い・柔らかい等さまざまな性質を有する被処理物の燃焼度合いの制御と粒揃えを安定的に行うことができる。
ここで、内熱キルン炉14内に吹き込む熱風は、酸素濃度0.2%〜20%が好ましく、より好ましくは1%〜17%である。
内熱キルン炉14内の酸素は、被処理物の燃焼(酸化)により消費されるため、燃焼の状況により酸素濃度に変動を生じる。酸素濃度が過度に低いと、十分な燃焼を図ることが困難である。内熱キルン炉14内の酸素は、被処理物の燃焼等によって消費され低下するが、被処理物を燃焼させるための熱風発生炉20より、空気などの酸素含有ガスを送風し、あるいは排気することで、酸素濃度を維持、調節可能であり、さらに酸素含有ガスを送風し、あるいは排気することで、第1燃焼炉14内の温度を細かく調節可能であり、被処理物をムラなく万遍に燃焼することができる。
第1燃焼炉14の炉内温度は、300℃〜550℃、特に400℃〜510℃が望ましい。第1燃焼炉14においては、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の熱分解と、燃焼しがたい残カーボンの生成を抑える目的から燃焼温度300℃〜550℃の温度範囲で燃焼することが好ましい。
本形態においては、前記有機成分の熱処理工程を経ることで、第1燃焼炉14内の過燃焼原因となる各種有機成分(有機物)、例えば、紙由来の、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)を予め除去し、被処理物の発熱量が熱処理により20〜70%減少されるよう、より好適には発熱量が1000cal/g未満になるように熱処理することにより、Ca2Al2SiO7及びCaAl2Si28の合計含有量を2.0質量%以下とすることが可能になる。
第1燃焼炉14の燃焼温度が過度に低いと、420℃近傍で発熱量のピークをもつ有機分(スチレン系物質)等の燃焼が不十分であり、過度に燃焼温度が高いと過燃焼が生じ、難燃性のカーボンが生成しやすくなる。特に、熱風の温度が550℃を超える場合は、硬い・柔らかい等さまざまな性質を有する燃焼物の粒揃えが進行するよりも早く燃焼が局部的に進むため、粒子表面と内部の未燃率の差を少なく均一にすることが困難になる。熱風は、バーナー20Aが備わる熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、燃焼に供した排ガスが再燃焼室22に送り込まれる。微粉末は、排ガスチャンバー16の下部から排出され、再び原料に配合され再利用される。排ガスは、再燃焼室22でバーナーにより再燃焼され、予冷器24により予冷された後、熱交換器26を通り、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温し、この昇温した外気は熱風発生炉20に送られ、内熱キルン炉14に吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。
第1燃焼炉14は、被処理物に含有される燃焼容易な有機物を緩慢に燃焼させ、残カーボンの生成を抑制するため、好適には前記条件で30〜90分の滞留時間(燃焼時間)で燃焼させることが好ましい。より好ましくは40〜80分が有機物の燃焼と生産効率の面で好ましい。最も好ましくは、50分〜70分の範囲が恒常的な品質を確保するために好ましい。燃焼時間が30分未満では、十分な燃焼が行われず残カーボンの割合が多くなる。燃焼時間が90分を超えると、原料の過燃焼による難燃性のカーボンが生じ、得られる再生粒子の白色度低下や硬質物質の増加が問題となる。
特に、次工程の第2燃焼工程内に供給する燃焼物の未燃率を2〜20質量%に燃焼することが好ましく、より好ましくは未燃率を5〜17質量%、特に好ましくは未燃率を7〜12質量%にすることが望ましい。未燃率を2〜20質量%にすることで、第2燃焼工程での燃焼を短時間に効率よく行うことができるとともに、外熱炉における安定した加熱により、硬度が低く白色度が80%以上、少なくとも70%以上の高白色度の燃焼物を得ることができる。未燃率が2質量%未満では、第1燃焼炉14におけるエネルギーコストが高いものとなるとともに、燃焼物の硬度が比較的高くなっている場合があり、第2燃焼炉32出口における白色度の低下等の品質低下をきたす場合がある。
第1燃焼工程においては、前段工程の有機成分熱処理において、第1燃焼炉14内の過燃焼原因となる各種有機成分(有機物)を、例えば、紙由来の、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)を、予め除去しており、原料の発熱量が当該熱処理により20〜70%減少するように、より好適には発熱量が1000cal/g未満になるように熱処理していることから、第1燃焼炉14出口近傍の燃焼温度変動が10℃から40℃の変動幅となるように運転することができ、得られる再生粒子の品質の均一化に寄与することができる。当該変動幅が40℃を超えると、硬い・柔らかい等のばらつきや、見た目の白色度のばらつきが大きく、填料、顔料として使用し難いものとなる場合がある。他方、燃焼温度幅を10℃未満に抑えることは、設備規模に依存する面があるものの、操業上困難であり、現実的ではない。
(第2燃焼工程)
内熱キルン炉14において燃焼した燃焼物は、移送流路を通して、本体が横置きで中心軸周りに回転する外熱ジャケット31を有する第2燃焼炉にあたる外熱キルン炉32に装入される。
この第2燃焼炉32では、燃焼物を外熱で加温しながらキルン炉内壁に設けたリフターにより、燃焼物の燃焼炉内での搬送を制御し、緩慢に燃焼させることで、さらに均一に未燃分を燃焼する。
第2燃焼炉32における燃焼においては、残カーボンや、第1燃焼炉14で燃焼しきれなかった残留有機物、例えば、スチレン‐アクリル、スチレンを燃焼させるため、第1燃焼炉14において供給される原料の粒子径よりも小さい粒子径に調整された燃焼物を用いることが好ましい。第1燃焼工程後の燃焼物の粒揃えは、平均粒子径が3〜10mmとなるように調整するのが好ましく、平均粒子径が1mm〜8mmとなるように調整するのがより好ましく、平均粒子径が1mm〜5mmとなるように調整するのが特に好ましい。第2燃焼炉32入口での平均粒子径が3mm未満では、過燃焼の危惧があり、他方、平均粒子径が10mmを超えると、残カーボンの燃焼が困難であり、芯部まで燃焼が進まず得られる再生粒子の白色度が低下する問題を引き起こす場合がある。
第2燃焼炉32での安定生産を確保するためには、粒子径が1mm〜8mmの燃焼物が70%以上になるように粒子径を調整することが好ましい。この範囲であると、得られる再生粒子の品質を均一にするという観点における実用化可能性に有益である。さらに、分級をこの時点、すなわち乾燥後に行うと、小径な粒子の燃焼物を確実に除去することができ、また、処理効率も向上する。
外熱キルン炉32での外熱源としては、外熱キルン炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気加熱方式の電気炉が好適であり、したがって、電気ヒーターによる外熱キルン炉32であることが望ましい。外熱に電気を使用することにより、温度の調整を細かくかつ内部の温度が均一となるようにコントロールすることができ、凝集体の形成、硬い・柔らかい等さまざまな性質を有する被処理物の燃焼度合いの制御や粒揃えを安定的に行うことができる。
さらに電気炉は、電気ヒーターを炉の流れ方向に複数設けることで、任意に温度勾配を設けることが可能であるとともに、燃焼物の温度を一定時間、一定温度に保持することが可能であり、第1燃焼炉14を経た燃焼物中の残留有機分、特に残カーボンを第2燃焼炉32で限りなくゼロに近づけることができ、低いワイヤー磨耗度で、高白色度の再生粒子を得ることができる。
外熱キルン炉32においては、酸素濃度が5%〜20%、より好ましくは10%〜20%となるようにする。外熱キルン炉32内の酸素濃度が5%未満では、燃焼困難な残カーボンの燃焼が進まない問題を生じやすい。
酸素濃度は、第2燃焼炉32に、適宜の手段により酸素または空気を投入するに際して、この投入量をコントロールによって調節することができる。
第2燃焼工程においては、前記有機成分の熱処理工程を経ていることで、さらには被処理物の発熱量が20〜70%減少するように熱処理されていることで、特に第1燃焼炉14内での過燃焼原因となる各種有機成分(有機物)、例えば、紙由来の、220℃近傍で発熱量のピークをもつ有機分(アクリル系物質)、320℃近傍で発熱量のピークをもつ有機分(セルロース)が除去されているため、第1燃焼工程においては300℃〜550℃の低温燃焼が可能になっていることで、残存有機物の燃焼に高温、長時間を必要とせず、好ましくは550℃〜800℃、より好ましくは600℃〜750℃の燃焼により、残カーボンの発生、硬質物質の生成をまねくことなく、Ca2Al2SiO7及びCaAl2Si28の合計含有量を2.0質量%以下とすることができる。
第2燃焼炉32では先に述べたように第1燃焼炉14で燃焼しきれなかった残留有機物、特に残カーボンを燃焼させる必要があるため、第1燃焼炉14よりも高温で燃焼させることが好ましい。燃焼温度が550℃未満では、十分に残留有機物の燃焼を図ることが困難であり、燃焼温度が800℃を超える場合は、粒子が硬くなる問題が生じやすい。
また、滞留時間(燃焼時間)は60分以上、より好適には60分〜240分、特には90分〜150分、最適には120分〜150分が望ましい。特に残カーボンは、高温で、緩慢に燃焼させる必要があり、滞留時間が60分未満では、残カーボンの燃焼には短時間で不十分であり、240分を超えると、硬質物質が生成するおそれがある。さらに、燃焼物の安定生産を行うにおいて滞留時間を60分以上、過燃焼の防止、生産性の確保のため滞留時間を240分以下で燃焼させることが好適である。
外熱キルン炉32から排出される燃焼物の平均粒子径としては、10mm以下、より望ましくは平均粒子径1mm〜8mm、特に好ましくは平均粒子径1mm〜4mmに調整することが好適である。
燃焼が終了した再生粒子は好適には凝集体であり、冷却機34により冷却された後、振動篩機などの粒径選別機36により目的の粒子径のものが燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
なお、以上では、製紙スラッジ一般を被処理物の主原料として用いた場合を例示したが、比較的品質が安定している脱墨処理工程で発生する脱墨フロス等の出所が明確な製紙スラッジのみを被処理物とすることもできる。
(粉砕工程)
本形態の再生粒子の製造方法においては、必要に応じて、さらに公知の分散・粉砕工程を設けることができ、適宜必要な粒子径に微細粒化することで、塗工用の顔料、内添用の填料としてより好適に使用できる再生粒子とすることができる。一例では、燃焼後、得られた粒子は、ジェットミルや高速回転式ミル等の乾式粉砕機、あるいは、アトライター、サンドグラインダー、ボールミル等の湿式粉砕機を用いて粉砕する。
本形態の再生粒子の填料、顔料用途等への好適な粒子径は、体積平均粒子径1.0μm〜10μmである。粉砕工程後における再生粒子の体積粒子径も、レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製により測定した体積平均粒子径である。
また、得られる再生粒子は、燃焼手段や粉砕手段による調整にて、JIS K 5101に規定する吸油量として100ml/100g以下とされるが、好適には60〜75ml/100g程度のものが、後工程のシリカ複合再生粒子製造において均一な品質を得るうえで好ましく用いることができる。
(第2燃焼炉のリフター)
先に採用理由とともに述べたように、第2次燃焼炉32内の内壁に、その一端側から他端側に向けて、螺旋状リフター及び/または軸心と平行な平行リフターを配設することで、被処理物の均一な燃焼と、品質の均一化を図ることができる。
そして、特に、被処理物の装入側から排出側に向けて、螺旋状リフター、軸心と平行な平行リフターの順で配設するのが望ましい。この構成によると、装入側から投入された被処理物が、まず螺旋状リフターにて他端側に向けて適正量ずつ送り込まれながら持ち上げられて落下する間に、被処理物に起因する有機成分がガス化し発生する燃焼ガス(可燃焼ガス)と効率的に接触し、さらに引き続いて平行リフターにて持ち上げられて落下する動作を繰り返すことで燃焼ガス(可燃焼ガス)と効率的に接触するため、熱交換効率よく被処理物を燃焼させることができる。特に、螺旋状リフターにて平行リフターに送り込まれる被処理物の量がコントロールされることで、平行リフター部分における内容物の持ち上げ・落下が適正に行われ、被処理物の燃焼を均一かつ効率的に行うことができる。また、耐火物の損傷の恐れがないことから、燃焼物の純度の低下がなく、その生産能力も向上できる。また、螺旋状リフターと平行リフターとを、例えば耐熱性を有するステンレス鋼板などの金属製とすると、比較的温度が低いので高価な耐熱材料を用いなくても十分に耐久性と強度を確保できるとともに、耐火物製のリフターなどに比して伝熱効率が高いので、一層熱効率を向上することができる。
本形態例を図2によって説明すると、被燃焼物は、図2では、第2燃焼炉32の一端側(右側)から装入され、回転駆動手段(図示せず)にて回転駆動可能に構成され、他端側から排出される。
第2燃焼炉32は、円筒状の外筐32Aの内面に耐火キャスタブルや耐火レンガからなる耐火壁32Bを内張りして構成されている。第2燃焼炉32の耐火壁32Bの内面には、装入側において、第2燃焼炉32の軸心に対して45°〜70°の傾斜角で傾斜した複数条(図示例では8条)の螺旋状リフター4が等間隔に突設され、さらにこの螺旋条リフター4の配設領域の他端側に、第2燃焼炉32の軸心と平行な適宜の長さの平行リフター5Aが周方向に等間隔置きに複数(図示例では8つ)かつ軸心方向に複数列(図示例では8列)千鳥状に配列して突設されている。
また、平行リフター5Aは、図示の左側の排出部(図示せず)に向かって連続的に形成されている。この場合、装入側では低温であるので、ステンレス鋼板などの耐熱性と耐腐食性のある金属板にて形成するのが望ましく、排出部側では高温となるので、排出部側の平行リフター5Aは耐火物製とすることができる。
本形態では、螺旋状リフター4はその長手方向に適当間隔おきに配設した取付ブラケット6に固定されて配設されている。また、各平行リフター5Aは、それぞれの取付ブラケット5Bに固定されて配設されている。なお、必要ならば、螺旋状リフターまたは平行リフターの一方のみを設けることでもよい。
(付帯工程)
本製造設備において、より品質の安定化を求めるためには、再生粒子の粒子径を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
また、有機成分の熱処理工程の前段階において、脱水処理を行った被処理物を造粒することが好ましく、さらには、造粒物の粒子径を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、撹拌式、押出し式等の設備が好適である。
(その他)
本製造方法の原料としては、再生粒子の原料となり得るもの以外は予め除去しておくことが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計またはライニングし、摩滅等により鉄分が系内に混入することを防止するとともに、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。
〔再生粒子〕
本形態の再生粒子の製造方法による再生粒子は、X線マイクロアナライザーによる微細粒子の元素分析において、カルシウム、シリカ及びアルミニウムの比率が酸化物換算で30〜82:5〜40:13〜30の質量割合で含むことが好ましく、より好ましくは、40〜60:25〜40:18〜25の質量割合である。カルシウム、シリカ及びアルミニウムを酸化物換算で30〜82:5〜40:13〜30の質量割合で含ませることで、比重が軽く、過度の水溶液吸収が抑えられるため、脱水工程のおける脱水性が良好である。
この割合に調整するための方法としては、製紙スラッジにおける原料構成を調整することが本筋ではあるが、有機成分の熱処理工程、第1燃焼工程、第2燃焼工程において、出所が明確な塗工フロスや調成工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。例えば、製紙スラッジを主原料に、再生粒子中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、シリカの調整には、不透明度向上剤としてホワイトカーボンが多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、クレーの使用の多い上質紙抄造工程における排水スラッジを用いることができる。
また、本製造方法で得られる再生粒子は、本形態に基づいて製紙スラッジを、熱処理し、例えば第1燃焼工程、第2燃焼工程にて燃焼制御することで、より正確にカルシウム成分の酸化の進行を抑制し、Ca2Al2SiO7及びCaAl2Si28の合計含有量を2.0質量%以下とすることができる。
ところで、製紙スラッジ中には、製紙用に供される填料や顔料としての、炭酸カルシウム、カオリン、タルク、抄紙助剤として硫酸アルミニウム等の無機物を多く含み、示差熱熱重量分析(TG/DTA6200)とX線回折(RAD2X)による、燃焼後の再生粒子の分析から、被処理物を燃焼させる際に、例えば、炭酸カルシウム(CaCO3)は、600〜750℃にて重量減少し、硬質かつ水溶性の酸化カルシウム(CaO)に変化し、クレー(Al2Si25(OH)4)は、500℃前後で脱水により重量減少し、メタカオリンとなり、1000℃前後の高温では硬質なムライト(Al2Si213)に変化することが知見された。また、タルク(Mg3Si410(OH)2)は、900℃前後で重量減少し、エンスタタイト(MgSiO3)に変化することが知見された、
さらにX線回折(RAD2X)による燃焼後の再生粒子の分析から、再生粒子中にCa2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の存在が確認された。この点、製紙用に供される填料や顔料と比べ、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)は極めて硬質(硬質物質)であり、微量の生成で、製紙用具の磨耗・毀損や抄紙系内の汚れが生じ、塗工用顔料として使用した場合は、ドクター等の塗工設備の磨耗・毀損、ストリークの発生要因となる根源であることが知見された。
従来、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)は、900℃を超える高温において生成されるものと予想されていたが、本発明者等の検討において、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の生成は燃焼温度が500℃前後から生じ、温度の上昇に応じて生成量が増大することが見出された。さらに、製紙スラッジ中の酸化物換算におけるカルシウムの含有量が増えると、CaAl2Si28(アノーサイト)は減少し、Ca2Al2SiO7(ゲーレナイト)は増える傾向を示すことも知見した。
本形態の原料となる古紙は、近年の中性抄紙化、ビジュアル化の進展にともない、印刷見栄えのよい塗工紙使用量の増加にともない、填料・顔料としての炭酸カルシウムの使用量増により、製紙スラッジ中の炭酸カルシウムの含有量増につながり、結果としてCa2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の生成量増につながるため、再生粒子に含有されるCa2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)、いわゆる硬質物質の含有量をできる限り減少させることが必要である。
硬質物質の生成を減少させるには、上述した形態に基づき、有機成分の熱処理工程では、本体が横置きで中心軸周りに回転するキルン炉を用いて、前記製紙スラッジを主成分とする被処理物の発熱量が20〜70%減少するように熱処理し、この熱処理後の被処理物を、300℃以上、550℃以下の燃焼温度で燃焼する第1燃焼工程と、この第1燃焼工程後の被処理物を再燃焼する第2燃焼工程と、を含む、少なくとも2段階の燃焼工程を経ることで、Ca2Al2SiO7及びCaAl2Si28の合計含有量を2.0質量%以下とすることができ、各工程の温度、酸素濃度、時間等を適宜調節することで硬質物質の生成をより減少させることができる。
特にCaAl2Si28(アノーサイト)は、酸化カルシウムとカオリンの混合燃焼により生じやすく、製紙スラッジ中に含有される炭酸カルシウムの過燃焼により生じる酸化カルシウムと同様に製紙スラッジ中に含有されるカオリンとの反応生成により容易にアノーサイト物質を生じるため、前述本形態の好適な燃焼手段により、再生粒子の、25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上となるように燃焼させることとし、酸化カルシウムの生成をできる限り抑えるのが好ましい。特に酸化カルシウムよりも水酸化カルシウムの方が、CaAl2Si28(アノーサイト)を生じさせやすいため、原料の脱水度合い(水分率)、燃焼炉中の酸素濃度を適切に調整するとよい。
また、製紙スラッジ中に含有されるシリカ分の存在が、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の生成を助長することを本発明者等は知見した。したがって、極力シリカ分含有量を低減させること、例えば新聞古紙や新聞抄紙系の白水使用を抑えることで、比較的低融点のCa2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の生成を抑えることができ、好適には、再生粒子を形成後にシリカ被覆を行うことが、効果的である。
本形態における好適な再生粒子の形成においては、再生粒子が凝集した凝集体の形成に低融点鉱物たるCa2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)が、明瞭ではないものの膠的な効果を有しているとも考えられる。
Ca2Al2SiO7及びCaAl2Si28の含有量は、X線回析分析(XRD)にて測定可能であり、硬質物質としてのCa2Al2SiO7(ゲーレナイト)及びCaAl2Si28(アノーサイト)の合計含有量が2.0質量%以下、より好ましくは1.0質量%以下、特に好ましくは0.5質量%以下の再生粒子の凝集体が好適である。Ca2Al2SiO7(ゲーレナイト)及びCaAl2Si28(アノーサイト)の合計含有量が2.0質量%を超えると、再生粒子の製造工程においては、設備の磨耗や粉砕効率・生産性を落とす原因になり、製紙用填料や塗工用の顔料として使用した場合、製紙用具の磨耗・毀損や、抄紙系内の汚れが生じ、塗工用顔料として使用した場合は、ドクター等の塗工設備の磨耗・毀損、ストリークの発生要因となる。
なお、Ca2Al2SiO7(ゲーレナイト)及びCaAl2Si28(アノーサイト)の合計含有量は、下記の方法によって測定した値である。
(測定方法)
X線回析法(理学電気製、RAD2X)によって測定する。測定条件は、Cu‐Kα‐湾曲モノクロメーター:40KV‐40mA、発散スリット:1mm、SS:1mm、RS:0.3mm、走査速度:0.8度/分、走査範囲:2シータ=7〜85度、サンプリング:0.02度とする。
<シリカ複合再生粒子>
次に本発明のシリカ複合再生粒子について製造方法も示しながらさらに詳説する。
(シリカ複合処理工程)
例えば上述のようにして、特に製紙スラッジを主原料とする再生粒子を珪酸アルカリ水溶液に添加・分散しスラリーとするとともに、撹拌しながら50℃〜100℃の温度範囲で、鉱酸を添加する、より望ましくは少なくとも2段階に分けて添加し、シリカ複合の反応を行うものである。
1.0〜10.0μmの再生粒子の体積平均粒子径が過度に小さいと、シリカ複合時に十分な粒度が得られないおそれがあるほか、吸油量及び比表面積向上ためにシリカを複合させる際にガラス状に目詰まりさせるおそれがあるが、本発明の範囲内であると、シリカ複合反応を十分に促進できる。他方、過度の体積平均粒子径は過大なシリカ複合再生粒子が生じやすい問題がある。
シリカ複合は、再生粒子表面に粒子径10〜20nm(走査型電子顕微鏡による実測の粒子径)のシリカゾル粒子を生成させる反応操作である。シリカゾル粒子の粒子径は、反応時の撹拌条件、鉱酸の添加条件などによりコントロール可能である。
本発明者等は、従来は内添する微細粒子の全細孔による細孔容積が吸油量や不透明度の指標とされていた知見を越えて、実質の吸油性は無機微粒子の細孔容積だけでなく、無機微粒子の粒子間に油を保持する能力の寄与が高いことを知見し、鋭意検討を重ね、本発明にて好適に用いることができるシリか複合再生粒子においては、細孔半径が10,000Å以下の細孔が前記の実質の吸油性に大きく寄与していることを見出している。
本発明において得られるシリカ複合再生粒子の細孔容積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用いた測定値で、10,000Å以下の領域の細孔容積が0.5〜1.5cc/gであり、好適には0.68〜1.45cc/g、より好ましくは0.70〜1.35cc/gである。
10,000Å以下の領域の細孔の細孔容積が0.5cc/g未満では、十分な吸油量の発現が得られず、1.5cc/gを超えると吸油量の向上を見られるものの、不透明度の低下が生じる問題が発現する。
本発明における好適な態様においては、得られるシリカ複合再生粒子の体積平均粒子径を1.7〜35.0μmの範囲とすること、さらにはシリカ複合再生粒子に含まれる酸化物換算でのシリカの比率を10.0〜50.0質量%とすることで、課題である高い吸油量と不透明度向上効果を得ることができる。
珪酸アルカリ水溶液に関しては特に限定されないが、珪酸ナトリウム溶液(3号水ガラス)が入手に容易である点で望ましい。珪酸アルカリ溶液の濃度は水溶液中の珪酸分(SiO2換算)で3〜10質量%が好適である。10質量%を超えると形成される再生粒子とシリカが被覆された複合体は無機微粒子・シリカ複合凝集体ではなく、再生粒子がホワイトカーボンで被覆されてしまい、芯部の再生粒子の、多孔性、光学的特性が発揮されなくなってしまう危険性がある。また、3質量%未満では複合粒子中のシリカ成分が低下するため、シリカが被覆された再生粒子粒子が形成しにくくなってしまう。
再生粒子を珪酸アルカリ水溶液に添加、分散しスラリーを調製する場合におけるスラリー濃度は、8〜14質量%が望ましい。スラリー濃度を調整することにより、形成される再生粒子のシリカ複合再生粒子の粒径がコントロールされると同時に再生粒子とシリカの組成比率が調整される。 本発明で使用される鉱酸としては希硫酸、希塩酸、希硝酸などの鉱酸の希釈液等が挙げられるが、価格、ハンドリングの点で希硫酸が最も望ましい。さらに、希硫酸を使用する場合の添加時の濃度は、生産性効率と複合シリカの均質性の面から4〜10N程度の濃度で鉱酸を添加することが好ましい。4N未満では反応が遅く、10Nを超えると局部的な反応が生じ、不定形や偏在するシリカ複合の問題が生じる場合がある。また、鉱酸添加量が多いほど短時間内にシリカが析出するので、それらの条件に合わせて添加速度を調整することが望ましい。5分以内の添加は、均一な反応系の構成が不十分になる。
本発明で用いる再生粒子は、カルシウム、アルミニウムを構成元素として含有しているために、過度の濃度の鉱酸添加は、再生粒子の変質を生じる恐れがある。
前述のように、本発明は、再生粒子を珪酸アルカリ水溶液に添加・分散しスラリーとするとともに、撹拌しながら50〜100℃の温度範囲で、好適には鉱酸を少なくとも2段階に分けて添加し、シリカ被覆の反応を行うものである。再生粒子を珪酸アルカリ水溶液に添加する段階において、珪酸アルカリ水溶液の温度を50℃以上の温度に加温することもでき、その後に加熱することもできる。予め、珪酸アルカリ水溶液の温度を50℃以上の温度に加温した状態で、多孔性の再生粒子を添加すると、加熱による流動性が向上するため、スラリーを均質化させることが容易になり、より均質な珪酸アルカリと再生粒子のスラリーを得ることができる。
他方で、均質な珪酸アルカリと再生粒子のスラリーを調製した後に、加熱撹拌することもできる。この場合の熱源としては、公知の熱源が利用できるが、例えば工場内の生蒸気(例として13kg/m2、120℃)を吹き込むことにより、昇温時間の短縮が図れるとともに、再生粒子スラリーを添加した際の温度低下を防ぎ、迅速に昇温と反応を進ませることが可能になり、生産効率向上が図れる。
本発明における再生粒子のシリカ複合再生粒子の製造時の反応温度に関しては、50〜100℃のスラリー温度範囲、特に50〜98℃のスラリー温度範囲が望ましい。本発明者らの鋭意検討の結果から、本発明に使用する再生粒子との反応温度はシリカの生成、結晶成長速度及び形成された再生粒子のシリカ複合再生粒子の力学的強度に影響を及ぼす。反応温度が50℃未満ではシリカの生成・成長速度が生じないまたは遅く、シリカ複合再生粒子のシリカ被覆性に劣り、被覆の剥落が生じやすく、填料内添紙の抄造時にかかる剪断力で被覆が壊れやすい。100℃を超えると、水系反応であるためオートクレーブを使用しなければならないため反応工程が複雑になってしまう。しかも、過度に反応が進み、緻密なシリカ複合再生粒子形態となり、得られるシリカ複合再生粒子の吸油量が低下し目的のものを得がたい問題が生じる。
本発明では、鉱酸の少なくとも2段の添加と、その際の温度管理を行うのが望ましい。すなわち、第1段階目の鉱酸添加時のスラリー温度が50〜75℃であり、第2段階目以降の鉱酸添加時のスラリー温度が少なくとも第1段階目よりも10℃以上昇温することが望ましい。具体的に望ましい温度条件としては、第1段階の液温を50〜75℃未満、第2段階を70以上〜100℃と鉱酸の添加段数に合わせて昇温させること、反応の最終段階で90℃以上で98℃以下の温度状態にすることであり、これらの温度条件によって、より均質なシリカ複合再生粒子を得ることができる。
最終反応液のpHは8.0〜11.0が好ましく、8.3〜10.0がより好ましく、8.5〜9.0が最も好ましい。
従来の珪酸アルカリと鉱酸を反応させて得られるシリカ粒子(ホワイトカーボン)の製造においては、珪酸アルカリと鉱酸の反応を完了させるため、pH5.5〜7.0になるまで硅酸アルカリ中に鉱酸を添加する方法が採用されているが、pHが7.0以下と酸性領域になるまで鉱酸を添加すると、再生粒子に含まれるカルシウム成分が水酸化カルシウムに化学反応しやすくなり、得られるシリカ複合再生粒子の体積平均粒子径が過度に低下したり、形状が不均質になり、紙への歩留り低下や紙粉の発生、十分な不透明性が得られにくくなるため好ましくない。pHが11.0を超えると、硅酸アルカリと鉱酸の反応が鈍り、再生粒子表面にシリカが複合しにくくなるため、十分な不透明性が得られにくい問題を生じる。
鉱酸の添加を1段階で行う場合、鉱酸の添加時間を、pHが1低下するのに40分以上添加時間がかかるように添加量を設定することが好ましい。
本発明において前述のように鉱酸は2段階以上で添加するのが望ましい。この場合、各段階における鉱酸の添加量を均等に添加することが均質なシリカ複合を得るうえで好ましい。また、1段階の添加(硅酸アルカリ水溶液に対して鉱酸が20〜50%の中和率となるまでの添加)後に、5分〜20分程度の保留時間を作ることで、シリカ複合反応に保留状態を設け、再生粒子表面に均質にシリカを複合させ、第2段階目の鉱酸添加により、さらにシリカの積層複合化を促進させることが可能になり、再生粒子の表面に、より均一にシリカを複合することができる。
1段階の鉱酸添加時間は、10分〜45分の時間がかかるように添加量を設定することが、再生粒子表面にシリカを均等に複合させるにおいて好ましい。 2段階以上で鉱酸を添加する場合も、鉱酸の添加時間をpHの変動においてpHが1低下するのに10〜120分程度の時間がかかるように添加量を設定することが、均質なシリカ複合に好ましい。
本反応工程における撹拌は、例えば未反応ゾーンを作らないため、撹拌羽根を逆転させるなどして乱流を生じさせ、あるいは邪魔板を撹拌槽内に設けるなどの撹拌手段を採用することが好ましい。
得られるシリカ複合再生粒子の体積平均粒子径は1.7〜35.0μm、シリカ複合再生粒子は、好ましくは、カルシウム、ケイ素及びアルミニウムを、酸化物換算で30〜80:10〜50:7〜20の質量%割合とする。この成分分析は、堀場製作所製のX線マイクロアナライザーを用い、加速電圧(15KV)にて元素分析を行い、構成成分より酸化物換算した。
得られるシリカ複合再生粒子のより好適な体積平均粒子径は1.7〜35.0μm、最も好適な範囲は5.5〜18.5μm、より好適には6.4〜11.0μm未満である。
シリカ複合再生粒子の体積平均粒子径が1.7μm未満では、シリカ複合の効果が十分に発現できず、吸油量及び不透明度の向上効果が見られない、シリカ複合再生粒子の体積平均粒子径が35.0μmを超えると、紙中に内添する填料としては過大となり、引張り、引裂き等の所謂紙質強度の低下や紙粉、抄紙設備の汚損をまねく問題が発現する。
粉砕工程後の再生粒子の体積平均粒子径と再生粒子そのものの元素構成に依存するが、シリカ成分を複合させた後における、酸化物換算でのシリカ(珪素)の比率を10.0〜50.0質量%とすることで、得られるシリカ複合再生粒子を用いた新聞用紙の印刷不透明度向上を得ることができる。
好適にはシリカ成分の割合を41.0〜49.0質量%、さらに好適には42.0〜48.0質量%とすることが好ましい。シリカ成分の比率が10.0質量%未満では、十分にシリカ被覆が行なえていないため、吸油量、不透明度の向上が得られず、シリカ成分の比率が50.0質量%を超えると微細なシリカ粒子の充填が過度となり吸油量、不透明度の低下をまねく問題が生じる場合がある。
シリカ複合による付随効果として、シリカ複合により、白色度が向上する。白色度向上により白紙不透明度は低下する傾向が生じるものの、高い吸油量を有するシリカ複合再生粒子を用いることで、新聞印刷用の吸収乾燥型印刷インクを用紙表面で保持乾燥できるため、軽量な新聞用紙の印刷不透明度をさらに向上させることができる。
シリカを再生粒子に複合させることで、再生粒子のもつカチオン性とシリカのアニオン性により繊維間結合を適度に阻害し、嵩高性を発揮する。
(用途または適用)
このような方法によって製造した本発明のシリカ複合再生粒子は、高い白色度を有し、しかも製紙スラッジ、特には脱墨フロスを主原料とする再生粒子であるために硬度が低く、これを製紙用の填料や顔料として使用した場合に抄紙機や塗工機等の磨耗性トラブルを回避できる。また本発明のシリカ複合再生粒子は、元来ポーラスな再生填料の表面をシリカで被覆したものであることから比表面積が大きく、これを内添用の填料や塗工用顔料として使用すると、白色度と不透明度が高い紙を得ることもできる。
なお、本発明のシリカ複合再生粒子は製紙用以外に、ゴム、プラスチック、塗料、インキ等のフィラーとして用いることができ、高い白色度と隠蔽性を付与することができる。
さらに、シリカ複合再生粒子の吸油量は、50〜180ml/100gの範囲が好ましい。これは、この範囲のシリカ複合再生粒子を内添填料として使用する場合、紙層中において、シリカ複合再生粒子が紙層中に含浸されるインクのビヒクル分や有機溶剤等を吸収し、用紙の印刷不透明度が低下するのを抑制し、また、インクのビヒクル分や有機溶剤等を吸収することで、インク乾燥性やニジミの防止効果が顕著になるためである。一方、吸油量が50ml/100g未満の場合には上記の効果が十分でなく、シリカ複合再生粒子がインクの吸収・乾燥性を阻害する傾向が生じる場合が有る。また吸油量が180ml/100gを超えると、インクの吸収性が高いためインクの沈みこみ、いわゆる発色性が劣る問題が生じる場合がある。
シリカ複合粒子の吸油量は、シリカ複合反応工程における反応温度、添加時間、保留時間、pH、粘度調整や、用いる再生粒子の燃焼手段、粒子径などにより調整可能であるが、シリカ複合反応において10,000Å以下の細孔の細孔容積が0.5〜1.5cc/gとなるように調整することが、本件発明の課題である、高い吸油量を示し、紙の不透明度を向上できるシリカ複合再生粒子、シリカ複合再生粒子の製造方法及びシリカ複合再生粒子内添紙を提供することにおいて好ましい。
次に本発明のシリカ複合再生粒子の内添用填料への適用について説明する。本発明のシリカ複合再生粒子は、単独でまたは通常の炭酸カルシウム、カオリンクレー、タルク、二酸化チタン、サチンホワイト、プラスチックピグメント等の通常の顔料と混合して用いることができる。
上記通常の内添用填料と混合して使用する場合、例えば、上記通常の内添用填料の合計量に対して、本発明のシリカ複合再生粒子を5〜100質量%、好適には10〜100質量%添加して使用することができる。
本発明のシリカ複合再生粒子を用いてシリカ複合再生粒子内添紙を製造する方法は、通常の填料内添紙の製造方法と同様であり、例えば本発明のシリカ複合再生粒子と上記比率でほかの填料と混合したスラリーをパルプ原料スラリーに添加し、さらに必要に応じて紙力増強剤、サイズ剤、歩留り向上剤等の添加剤を加えた紙料とし、これを抄紙することにより得られる。パルプ原料に対する填料添加は、得られるシリカ複合再生粒子内添紙の灰分が10.0〜15.0%となるように添加することが好ましい。
紙料スラリーに添加する添加剤としては公知のものを用いることができ、例えば紙力増強剤としては澱粉類、植物性ガム、水性セルロース誘導体、ポリアクリルアミド等が、サイズ剤としてはロジン、澱粉、CMC(カルボキシルメチルセルロース)、ポリビニルアルコール、アルキルケテンダイマー、ASA(アルケニル無水コハク酸)、中性ロジン等が、また歩留り向上剤としてポリアクリルアミド及び共重合体、第4級アンモニウム塩等が挙げられる。さらに必要に応じて染料、顔料等の色料を添加してもよい。
これら添加剤を添加、混合し紙料を公知の抄紙機で抄造することによりシリカ複合再生粒子内添紙を製造することができる。坪量は特に限定されないが、通常36〜200g/m2程度とする。
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例に示す部または%は、特に断らない限り、それぞれ有効成分の質量部または質量%を示す。実施例及び比較例において行った測定、分析、評価は次のとおりである。
[再生粒子の製造]
被処理物(原料)として、製紙スラッジまたは脱墨フロスを予め分別し用い、脱水工程を経て、図1及び図2の製造設備により、表1に示す条件にて有機成分の熱処理工程、第1燃焼工程及び第2燃焼工程を適宜用い順次経て、湿式粉砕処理を施し、再生粒子を得た。製造例2、3及び製造例6、7の有機成分の熱処理工程において用いた内熱キルンは、本体が横置きで中心軸周りに回転する内熱キルン炉であり、この内熱キルン炉一端の原料供給口から、製紙スラッジを供給するとともに熱風を吹き込む並流方式を採用した。
また、第1燃焼工程において用いた内熱キルンは、本体が横置きで中心軸周りに回転する内熱キルン炉である。さらに、第2燃焼工程において用いた外熱キルン炉は、本体が横置きで中心軸周りに回転する外熱キルン炉であり、この外熱キルン炉としては、特に内部に平行リフターを有する外熱電気方式のキルン炉を採用した。湿式粉砕処理は、セラミックボールミルを用いて行った。製造例4における脱墨フロスは、上級古紙脱墨フロスを製紙スラッジに混在する前に予め分別して用いた。
1次燃焼温度は、1次燃焼炉出口温度を測定した。2次燃焼温度は、2次燃焼炉出口温度を測定した。酸素濃度は、1次燃焼炉出口酸素濃度、2次燃焼炉出口酸素濃度を測定した。
[再生粒子及びシリカ複合再生粒子の測定]
再生粒子及びシリカ複合再生粒子の成分分析結果を表1及び表3に示す。各工程の無機構成成分は堀場製作所製のX線マイクロアナライザーを用い、加速電圧(15KV)にて元素分析を行い、構成成分より酸化物換算した。
細孔容積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用い、試料を濾過した後、真空乾燥して測定した。
吸油量はJIS K 5101−13−2記載の練り合わせ法によるものである。すなわち105℃〜110℃で2時間乾燥した試料2g〜5gをガラス板に取り、精製アマニ油(酸化4以下のもの)をビュレットから少量ずつ試料の中央に滴下しその都度ヘラで練り合わせる。滴下練り合わせの操作を繰り返し、全体が初めて1本の棒状にまとまったときを終点として、精製アマニ油の滴下量を求め、次の式によって吸油量を算出する。
吸油量= [アマニ油量(ml)×100]/試料(g)
体積平均粒子径は、レーザー粒度分布測定装置(レーザー解析式粒度分布測定装置「SALD−2200型」島津製作所社製)にて粒度分布を測定し、全粒子の体積に対する累積体積が50%になるときの粒子径(d50)として求められる。測定試料の調製は、0.1%ヘキサメタ燐酸ソーダ水溶液に、シリカ複合再生粒子を添加し、超音波で1分間分散した。
[シリカ複合再生粒子の製造]
表2に示す条件で、珪酸アルカリ水溶液として珪酸ナトリウム溶液(3号水ガラス)38%濃度、再生粒子スラリー20%濃度を混合し、希釈水を加え表2に示すとおり珪酸アルカリと再生粒子からなるスラリーを所定の反応開始濃度、反応開始pHに調整したのち、鉱酸として所定規定度の硫酸を添加、撹拌しシリカ複合再生粒子を製造した。スラリーの撹拌は公知のミキサーを使用し。スラリーのpHは、堀場製作所製のpH計にて、反応温度は公知の温度計にて測定した。1次反応工程では、珪酸アルカリ水溶液と鉱酸の中和率が表2に示す割合になるように鉱酸を添加した。
保留時間は、1次反応工程で行なう鉱酸の添加を終え、2次反応工程で鉱酸を再び添加するまでの時間をいう。
2次反応工程においては、反応終了pHになるように、所定の時間をかけて1次反応工程と同じ鉱酸を添加した。表2に示す、完成原料の10%濃度スラリー粘度は、2次反応工程を経て反応を終えたシリカ複合再生粒子スラリーを脱水濾過し、固形分濃度を10%に調整したスラリーをB型粘度計により測定した値(測定温度25℃)である。
表3に示す比表面積は、水銀圧入式ポロシメーター(テルモ社製「PASCAL 140/240」)を用い、試料を濾過した後、真空乾燥して測定したものである。吸油量は、JIS K 5101−13−2記載の練り合わせ法によるものである。すなわち105℃〜110℃で2時間乾燥した試料2g〜5gをガラス板に取り、精製アマニ油(酸化4以下のもの)をビュレットから少量ずつ試料の中央に滴下しその都度ヘラで練り合わせる。滴下練り合わせの操作を繰り返し、全体が初めて1本の棒状にまとまったときを終点として、精製アマニ油の滴下量を求め、次の式によって吸油量を算出する。
吸油量= [アマニ油量(ml)×100]/試料(g)
硬質物質の測定には、X線回析装置(理学電気製、RAD2X)を用いた。測定条件:Cu−Kα−湾曲モノクロメーター 40KV−40mA、発散スリット・1mm SS・1mm RS・0.3mm、走査速度・0.8度/分、走査範囲・2シータ=7〜85度、サンプリング・0.02度である。
表3に示す生産性は、得られたシリカ複合再生粒子の濾液中に含まれる未反応薬品量から換算したシリカ複合反応の歩留りから、歩留り95%以上を◎、80%以上95%未満を○、70%以上80%未満を△、70%未満を×とした。
[シリカ複合再生粒子内添紙の製造]
表4に示す新聞用紙用原料パルプに、表4に記載の灰分になるようにシリカ複合再生粒子を添加し、硫酸バンドを0.5質量%、カチオン化澱粉0.7質量%、中性ロジンサイズ剤1.0質量%、歩留向上剤0.1質量%をそれぞれ添加し、固形分濃度0.9%の試料を調製した。この試料を用いて手抄き抄紙機でパルプシートを作成し、乾燥後、ラボカレンダーに通紙して、シリカ複合再生粒子内添紙を得た。得られたシリカ複合再生粒子内添紙の評価結果を表4に示す。
坪量はJIS P 8124に準拠して測定した。紙厚及び密度は、JIS P 8118に準拠して測定した。灰分はJIS P 8251に準拠して測定した。引張強度はJIS P 8113に準拠して測定した。白色度はJIS P 8148に準拠して測定した。印刷不透明度はJ.TAPPI No.70に準じて測定した。
ここで、参考例1の炭酸カルシウムは奥多摩工業社製 TP−NPF(体積平均粒子径:3.9μm)を用いた。参考例2〜4のホワイトカーボンは、エリエールペーパーケミカル社製(体積平均粒子径:19.5μm)を使用した。参考例1から4の炭酸カルシウム及びホワイトカーボンを、表4に示す灰分になるように添加し評価した。
Figure 0005525211
Figure 0005525211
Figure 0005525211
Figure 0005525211
<本発明のシリカ複合再生粒子について>
他の観点から本発明のシリカ複合再生粒子について実施の結果を示しながら説明する。(ワイヤー磨耗度)シリカを複合した粒子は、粒子表面がシリカで複合されているためワイヤー磨耗度を低くでき、粒子として好適に使用することができる。表1及び表3のワイヤー磨耗度は、日本フィルコン式ワイヤー磨耗度試験機を用い、、ワイヤー:日本フィルコンCOS−60ポリエステルワイヤー、スラリー濃度:2重量%、荷重:1250g、磨耗時間:90分間で測定した。紙に内添する無機粒子においては、粒子が硬いと抄紙機のワイヤー(網部)を傷つけやすくなり、ワイヤー寿命を縮めるだけでなく、抄紙機系内に異物が堆積しやすいため好ましくない。しかしながら本発明の特にシリカ複合再生粒子を用いることで、ワイヤーを傷つけにくい柔らかい無機粒子を得ることができる。
磨耗度が約80mgの再生粒子は、シリカを複合することにより磨耗度を約20〜70mgにまで低下させることができ、内添用の再生粒子として十分に使用可能な粒子とすることができる。なお、重質炭酸カルシウムのワイヤー磨耗度は100mg以上、軽質炭酸カルシウムは約50mg、ホワイトカーボンは約15mgであり、おおむね70mg以下であれば、内添用の再生粒子として使用できる。
本発明は、シリカ複合再生粒子の製造方法及びシリカ複合再生粒子内添紙として、適用可能である。
10…原料、12…貯槽、14…第1燃焼炉(内熱キルン炉)、20…熱風発生炉、22…再燃焼室、26…熱交換器、28…誘引ファン、30…煙突、31…外熱ジャケット、32…第2燃焼炉(外熱キルン炉)、34…冷却機、36…粒径選別機、42…熱処理炉(内熱キルン炉)、43…熱風発生炉。

Claims (2)

  1. 製紙スラッジを主原料とし、これを脱水、乾燥、燃焼及び粉砕工程を経て得られた再生粒子を原料とし、シリカ複合工程を経て得られるシリカ複合再生粒子の製造方法であって、
    得られるシリカ複合再生粒子の細孔容積が0.5〜1.5cc/g(細孔半径が10,000Å以下)、体積平均粒子径が1.7〜35.0μm、酸化物換算でのシリカ(珪素)の比率が10.0〜50.0質量%となるように、
    前記シリカ複合工程が、粉砕工程を経て得られた再生粒子を珪酸アルカリ水溶液に添加・分散しスラリーとするとともに、撹拌しながら50〜100℃の温度範囲で、鉱酸を少なくとも2段階に分けて添加するものであり、
    第1段階目の鉱酸添加時のスラリー温度を50〜75℃とし、第2段階目以降の鉱酸添加時のスラリー温度を少なくとも第1段階目よりも10℃以上昇温し、前記第1段階目の鉱酸添加後に5分〜20分の保留時間をつくる、
    ことを特徴とするシリカ複合再生粒子の製造方法。
  2. 前記シリカ複合工程における最終反応液のpHを8〜11の範囲とする、
    請求項1のシリカ複合再生粒子の製造方法。
JP2009198817A 2009-08-28 2009-08-28 シリカ複合再生粒子の製造方法 Active JP5525211B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198817A JP5525211B2 (ja) 2009-08-28 2009-08-28 シリカ複合再生粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198817A JP5525211B2 (ja) 2009-08-28 2009-08-28 シリカ複合再生粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2011047090A JP2011047090A (ja) 2011-03-10
JP5525211B2 true JP5525211B2 (ja) 2014-06-18

Family

ID=43833687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198817A Active JP5525211B2 (ja) 2009-08-28 2009-08-28 シリカ複合再生粒子の製造方法

Country Status (1)

Country Link
JP (1) JP5525211B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525212B2 (ja) * 2009-08-28 2014-06-18 大王製紙株式会社 シリカ複合再生粒子の製造方法
JP5623953B2 (ja) * 2011-03-25 2014-11-12 大王製紙株式会社 シリカ複合再生粒子の製造方法及びシリカ複合再生粒子
CN114735713B (zh) * 2022-03-02 2024-03-29 福建同晟新材料科技股份公司 一种造纸添加剂用合成二氧化硅的制备工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087431B2 (ja) * 2006-08-31 2008-05-21 大王製紙株式会社 シリカ被覆再生粒子の製造方法、シリカ被覆再生粒子、これを使用した内添紙及び塗工紙
JP4020947B1 (ja) * 2006-11-07 2007-12-12 大王製紙株式会社 再生粒子凝集体内添紙
JP2008280662A (ja) * 2007-04-12 2008-11-20 Oji Paper Co Ltd コールドオフセット印刷用新聞用紙
JP5243009B2 (ja) * 2007-12-10 2013-07-24 大王製紙株式会社 新聞用紙及びその製造方法
JP5525212B2 (ja) * 2009-08-28 2014-06-18 大王製紙株式会社 シリカ複合再生粒子の製造方法

Also Published As

Publication number Publication date
JP2011047090A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4850082B2 (ja) 再生粒子凝集体の製造方法
JP5446284B2 (ja) 無機粒子の製造方法
JP5525211B2 (ja) シリカ複合再生粒子の製造方法
JP5525212B2 (ja) シリカ複合再生粒子の製造方法
JP5468281B2 (ja) 再生粒子の製造方法
JP5615506B2 (ja) 新聞用紙
JP6173663B2 (ja) 無機粒子の製造方法
JP4329865B1 (ja) 無機粒子の製造方法
JP5508739B2 (ja) 製袋用クラフト紙
JP4329870B1 (ja) 無機粒子の製造方法
JP5596354B2 (ja) 再生粒子の製造方法及び再生粒子
JP4020955B2 (ja) 無機粒子の製造方法
JP2011098277A (ja) 再生粒子の製造方法及び再生粒子
JP5502556B2 (ja) シリカ複合粒子の製造方法
JP5483902B2 (ja) 書籍用紙及びその製造方法
JP5305775B2 (ja) 非塗工タイプのインクジェット記録用紙及びその製造方法
JP2011127256A (ja) 再生粒子の製造方法及び再生粒子
JP5483918B2 (ja) 書籍用紙及びその製造方法
JP4938743B2 (ja) 再生粒子の製造方法
JP4879213B2 (ja) 再生粒子の製造方法
JP5608380B2 (ja) 再生粒子の製造方法及び再生粒子
JP5486377B2 (ja) シリカ複合混合無機粒子の製造方法及びシリカ複合混合無機粒子
JP5317875B2 (ja) 再生粒子の製造方法
JP2010194486A (ja) 再生粒子の製造方法
JP5566739B2 (ja) 再生粒子の製造方法、再生粒子及び再生粒子の製造設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250