JP5515431B2 - 半導体発光素子、その電極並びに製造方法及びランプ - Google Patents

半導体発光素子、その電極並びに製造方法及びランプ Download PDF

Info

Publication number
JP5515431B2
JP5515431B2 JP2009133177A JP2009133177A JP5515431B2 JP 5515431 B2 JP5515431 B2 JP 5515431B2 JP 2009133177 A JP2009133177 A JP 2009133177A JP 2009133177 A JP2009133177 A JP 2009133177A JP 5515431 B2 JP5515431 B2 JP 5515431B2
Authority
JP
Japan
Prior art keywords
layer
electrode
bonding
light emitting
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009133177A
Other languages
English (en)
Other versions
JP2010028100A (ja
Inventor
大介 平岩
健彦 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2009133177A priority Critical patent/JP5515431B2/ja
Priority to PCT/JP2009/060926 priority patent/WO2009154191A1/ja
Priority to US12/999,530 priority patent/US8569735B2/en
Priority to TW098120108A priority patent/TWI412159B/zh
Priority to CN200980131958.1A priority patent/CN102124574B/zh
Publication of JP2010028100A publication Critical patent/JP2010028100A/ja
Application granted granted Critical
Publication of JP5515431B2 publication Critical patent/JP5515431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体発光素子、その電極並びに製造方法及びランプに関するものであり、特に、接合性および耐食性を向上させた電極を備えた半導体発光素子、その電極並びに製造方法及びランプに関するものである。
近年、短波長光発光素子用の半導体材料として、GaN系化合物半導体が注目を集めている。GaN系化合物半導体は、サファイア単結晶を始めとして、種々の酸化物やIII−V族化合物を基板として、その上に有機金属気相化学反応法(MOCVD法)や分子線エピタキシー法(MBE法)等の薄膜形成手段によって形成される。
GaN系化合物半導体からなる薄膜は、薄膜の面内方向への電流拡散が小さいという特性がある。さらに、p型のGaN系化合物半導体は、n型のGaN系化合物半導体に比べて抵抗率が高いという特性がある。そのため、p型の半導体層の表面に、金属からなるp型電極を積層しただけではp型半導体層の面内方向への電流の広がりがほとんど無い。
このようなGaN系化合物半導体を用いた半導体発光素子では、n型半導体層、発光層、p型半導体層からなるLED構造を有する積層半導体層を形成し、最上部のp型半導体層にp型電極を形成した場合、発光層のうちp型電極の直下に位置する部分しか発光しない。そのため、p型電極の直下で発生した発光を半導体発光素子の外部に取り出すためには、p型電極に透光性を持たせることにより、p型電極に対して発光を透過させて取り出す必要がある。
p型電極に透光性を持たせる方法としては、透光性を有するITO等の導電性の金属酸化物を用いるか、数10nm程度の金属薄膜を用いる方法が知られている。
たとえば、特許文献1には、数10nm程度の金属薄膜を用いる方法が開示されており、p型電極としてp型半導体層上にNiとAuを各々数10nm程度積層させた後、酸素雰囲気下で加熱して合金化処理を行い、p型半導体層の低抵抗化の促進および透光性とオーミック性を有したp型電極の形成を同時に行なうことが提案されている。
しかし、ITO等の金属酸化物からなる透光性電極や、数10nm程度の金属薄膜からなるオーミック電極は、電極自体の強度が低いため、これら電極自体をボンディングパッド電極として用いることが難しいという問題があった。
電極自体の強度を向上させるために、ITO等の金属酸化物からなる透光性電極や、数10nm程度の金属薄膜からなるオーミック電極などのp型電極上に、ある程度の厚みを持ったボンディング用のパッド電極を配置したものが用いられてきた。
しかし、このボンディングパッド電極はある程度の厚みを持った金属材料であるために透光性がなく、透光性のp型電極を透過した発光を遮り、結果的に発光の一部を発光素子の外部に取り出せないという問題が発生している。
この問題を解消するために、たとえば、特許文献2には、Ag、Al等の反射膜からなるボンディングパッド電極をp型電極上に積層する方法が開示されている。これにより、p型電極を透過した発光がボンディングパッド電極によって発光素子内に反射させ、この反射光をボンディングパッド電極の形成領域以外の箇所から発光素子の外部に取り出すことが可能となった。
しかし、p型電極としてITO等の金属酸化物等を用い、ボンディングパッド電極としてAg、Al等の反射膜を用いた場合には、ボンディングパッド電極に対してボンディングワイヤ等を接合しようとすると、ボンディングワイヤ接合時の引張応力にボンディングパッド電極が耐えられず、パッド電極が剥がれてしまう場合があった。
特許第2803742号公報 特開2006−66903号公報
本発明は、上記事情を鑑みてなされたもので、接合性および耐食性を向上させた電極を備えた半導体発光素子、その製造方法およびランプを提供することを目的とする。
上記の目的を達成するために、本発明は以下の構成を採用した。すなわち、
(1) 基板と、前記基板上に形成されてなる発光層を含む積層半導体層と、前記積層半導体層の上面に形成された一方の電極と、前記積層半導体層の一部が切り欠けられてなる半導体層露出面上に形成された他方の電極と、を具備する半導体発光素子であって、前記一方の電極または前記他方の電極の少なくともいずれか一方が、接合層と前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されたボンディングパッド電極とからなり、前記ボンディングパッド電極の最大厚みが、前記接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、前記接合層および前記ボンディングパッド電極の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面が形成されていることを特徴とする半導体発光素子。
(2) 前記接合層が、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが10Å以上1000Å以下の範囲の薄膜であることを特徴とする(1)に記載の半導体発光素子。
(3) 前記ボンディングパッド電極が、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜であることを特徴とする(1)または(2)に記載の半導体発光素子。
(4) 前記ボンディングパッド電極が、前記接合層を覆うように形成された金属反射層と、前記金属反射層を覆うように形成されたボンディング層とからなり、前記金属反射層が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜であることを特徴とする(1)〜(3)のいずれかに記載の半導体発光素子。
(5) 前記一方の電極と前記積層半導体層の上面との間または前記他方の電極と前記半導体層露出面との間に透光性電極が形成されており、前記透光性電極が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成されることを特徴とする(1)〜(4)のいずれかに記載の半導体発光素子。
(6) 前記積層半導体層が、前記基板側からn型半導体層、発光層、p型半導体層の順に積層されてなり、前記発光層が多重量子井戸構造であることを特徴とする(1)〜(5)のいずれかに記載の半導体発光素子。
(7) 前記積層半導体層が、窒化ガリウム系半導体を主体として構成されていることを特徴とする(1)〜(6)のいずれかに記載の半導体発光素子。
(8) (1)〜(7)のいずれかに記載の半導体発光素子と、前記半導体発光素子が配置されるとともに前記半導体発光素子の一方の電極とワイヤボンディングされる第1フレームと、前記半導体発光素子の他方の電極とワイヤボンディングされる第2フレームと、前記半導体発光素子を取り囲んで形成されるモールドと、を備えたことを特徴とするランプ。
(9) 基板と、前記基板上に形成されてなる発光層を含む積層半導体層と、前記積層半導体層の上面に形成された一方の電極と、前記積層半導体層の一部が切り欠けられてなる半導体層露出面上に形成された他方の電極と、を具備する半導体発光素子用の電極であって、前記一方の電極または前記他方の電極の少なくともいずれか一方が、接合層と前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されたボンディングパッド電極とからなり、前記ボンディングパッド電極の最大厚みが、前記接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、前記接合層および前記ボンディングパッド電極の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面が形成されていることを特徴とする半導体発光素子用の電極。
(10) 前記接合層が、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが10Å以上1000Å以下の範囲の薄膜であることを特徴とする(9)に記載の半導体発光素子用の電極。
(11) 前記ボンディングパッド電極が、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜であることを特徴とする(9)または(10)に記載の半導体発光素子用の電極。
(12) 前記ボンディングパッド電極が、前記接合層を覆うように形成された金属反射層と、前記金属反射層を覆うように形成されたボンディング層とからなり、前記金属反射層が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜であることを特徴とする(9)〜(11)のいずれか1項に記載の半導体発光素子用の電極。
(13) 前記一方の電極と前記積層半導体層の上面との間または前記他方の電極と前記半導体層露出面との間に透光性電極が形成されており、前記透光性電極が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成されることを特徴とする(9)〜(12)のいずれか1項に記載の半導体発光素子用の電極。
(14) 基板上に、発光層を含む積層半導体層を形成する工程と、前記積層半導体層の一部を切り欠けて半導体層露出面を形成する工程と、前記積層半導体層の上面および前記半導体層露出面に一方の電極および他方の電極を形成する電極形成工程と、を有する半導体発光素子の製造方法であって、前記電極形成工程が、前記積層半導体層の上面または前記半導体層露出面の少なくともいずれか一方の面上に逆テーパー型マスクを形成するマスク形成工程の後、前記積層半導体層の上面または前記半導体層露出面上に接合層を形成し、その後、前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように前記接合層の最大厚みに比べて最大厚みの厚いボンディングパッド電極を形成して、一方の電極または他方の電極を形成する工程であり、前記接合層および前記ボンディングパッド電極を形成する際、それぞれの外周部に、外周側に向けて膜厚が漸次薄くなるような傾斜面を形成することを特徴とする半導体発光素子の製造方法。
(15) 前記電極形成工程の前に前記積層半導体層の上面または前記半導体層露出面に透光性電極を形成する工程を有することを特徴とする(14)に記載の半導体発光素子の製造方法。
(16) 前記電極形成工程が、前記逆テーパー型マスクおよび前記接合層を形成した後、前記接合層を覆うように前記接合層の最大厚みに比べて最大厚みの厚い金属反射層を形成し、その後、前記金属反射層を覆うように前記金属反射層の最大厚みに比べて最大厚みの厚いボンディング層を形成して、一方の電極または他方の電極を形成する工程であることを特徴とする(14)または(15)に記載の半導体発光素子の製造方法。
(17) 前記電極形成工程における前記接合層、前記金属反射層および前記ボンディング層の形成が、スパッタ法により行われることを特徴とする(16)に記載の半導体発光素子の製造方法。
(18) 前記マスク形成工程の前に、前記透光性電極の上面および前記積層半導体層の上面または前記半導体層露出面上に保護膜を形成する工程を備えたことを特徴とする(14)〜(17)のいずれかに記載の半導体発光素子の製造方法
上記の構成によれば、接合性および耐食性を向上させた電極を備えた半導体発光素子、その製造方法およびランプを提供することができる。
本発明の半導体発光素子は、一方の電極が、接合層と接合層を覆うように形成されたボンディングパッド電極とからなり、ボンディングパッド電極の最大厚みが、接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、接合層およびボンディングパッド電極の外周側にそれぞれ外周側が漸次薄くなるような傾斜面が形成されている構成なので、外部の空気または水分の接合層への侵入を防止することができ、接合層の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の半導体発光素子は、接合層が、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが10Å以上1000Å以下の範囲の薄膜である構成なので、透光性電極とボンディングパッド電極との間の接合性を向上させて、ボンディングワイヤ接合時の引張応力によっても剥がれることのない電極とすることができる。
本発明の半導体発光素子は、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜である構成なので、ボンディングパッド電極へのワイヤボンディングの接合性を向上させて、ボンディングワイヤ接合時の引張応力によっても剥がれることのない電極とすることができる。
本発明の半導体発光素子は、ボンディングパッド電極が、接合層を覆うように形成された金属反射層と、金属反射層を覆うように形成されたボンディング層とからなり、金属反射層117が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜である構成なので、電極の接合性および耐食性を向上させ、半導体発光素子の発光特性を向上させることができる。
本発明の半導体発光素子用の電極は、一方の電極または他方の電極の少なくともいずれか一方が、接合層と接合層を覆うように形成されたボンディングパッド電極とからなり、ボンディングパッド電極の最大厚みが、接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、接合層およびボンディングパッド電極の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面が形成されている構成なので、接合性および耐食性を向上させた電極とすることができる。本発明の半導体発光素子用の電極は、発光素子以外の用途にも使用することができる。
本発明の半導体発光素子の製造方法は、電極形成工程が、積層半導体層の上面に逆テーパー型マスクを形成した後、積層半導体層の上面上に接合層を形成し、その後、接合層を覆うように接合層の最大厚みに比べて最大厚みの厚いボンディングパッド電極を形成して、一方の電極を形成する工程である構成なので、接合層およびボンディングパッド電極の外周側にそれぞれ外周側が漸次薄くなるような傾斜面を形成することができ、外部の空気または水分の接合層への侵入を防止することができ、接合層の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の半導体発光素子を示す断面模式図である。 本発明の半導体発光素子を示す平面模式図である。 本発明の半導体発光素子の積層半導体層を示す断面模式図である。 本発明の半導体発光素子のp型電極の拡大断面図である。 本発明の半導体発光素子のp型電極の工程断面図である。 本発明の半導体発光素子のp型電極のマスク形成工程断面図である。 本発明の半導体発光素子を示す断面模式図である。 本発明の半導体発光素子のp型電極の拡大断面図である。 本発明のランプを示す断面模式図である。 本発明の半導体発光素子のp型電極の拡大断面図である。 本発明の半導体発光素子のp型電極の拡大断面図である。 比較例の半導体発光素子を示す断面模式図である。 比較例の半導体発光素子のp型電極の工程断面図である。
以下、本発明を実施するための形態について説明する。
(実施形態1)
図1〜図3は、本発明の実施形態である半導体発光素子の一例を示す図であって、図1は本発明の実施形態である半導体発光素子の断面模式図であり、図2は平面模式図であり、図3は半導体発光素子を構成する積層半導体層の断面模式図である。
(半導体発光素子)
図1に示すように、本発明の実施形態である半導体発光素子1は、基板101上に、バッファ層102、下地層103、発光層105を含む積層半導体層20が順次積層されるとともに、積層半導体層20の上面106cに透光性電極109が積層され、透光性電極109の上面109cの一部に一方の(一の伝導型の)電極111が形成され、また、積層半導体層20の一部が切り欠けられて形成された半導体層露出面104c上に他方の(他の伝導型の)電極108が形成されて概略構成されている。
積層半導体層20は、基板101側から、n型半導体層104、発光層105、p型半導体層106がこの順に積層されて構成されている。透光性電極109の上面109cで、一の伝導型の電極111が形成されていない部分は、保護膜10によって覆われている。また、一の伝導型の電極111は、接合層110と、金属反射層117とボンディング層119とからなるボンディングパッド電極120と、が積層されて構成されている。
なお、一方の電極111はp型電極、他方の電極108はn型電極として以下の説明を行う。
本発明の実施形態である半導体発光素子1は、p型電極(一の伝導型の電極)111とn型電極(他の伝導型の電極)108との間に電圧を印加して電流を通じることで、発光層105から発光が得られる構成とされており、発光層105からの光を反射する機能を有するボンディングパッド電極120(反射性ボンディングパッド電極)が形成された側から取り出すフェイスアップマウント型の発光素子である。
発光層105からの発光の一部は、透光性電極109及び接合層110を透過し、接合層110とボンディングパッド電極120との界面においてボンディングパッド電極120によって反射され、再度、積層半導体層20の内部に導入される。そして、積層半導体層20に再導入された光は、更に透過と反射を繰り返した後に、ボンディングパッド電極120の形成領域以外の箇所から半導体発光素子1の外部に取り出される。
<基板>
本発明の実施形態である半導体発光素子1の基板101としては、III族窒化物半導体結晶が表面にエピタキシャル成長される基板であれば、特に限定されず、各種の基板を選択して用いることができる。例えば、サファイア、SiC、シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン等からなる基板を用いることができる。
また、上記基板の中でも、特に、c面を主面とするサファイア基板を用いることが好ましい。サファイア基板を用いる場合は、サファイアのc面上にバッファ層102を形成するとよい。
なお、上記基板の内、高温でアンモニアに接触することで化学的な変性を引き起こすことが知られている酸化物基板や金属基板等を用いることができ、アンモニアを使用せずに中間層102を成膜することもでき、またアンモニアを使用する方法では、後述のn型半導体層104を構成するために下地層103を成膜した場合には、バッファ層102がコート層としても作用するので、これらの方法は基板101の化学的な変質を防ぐ点で効果的である。
また、バッファ層102をスパッタ法により形成した場合、基板101の温度を低く抑えることが可能なので、高温で分解してしまう性質を持つ材料からなる基板101を用いた場合でも、基板101にダメージを与えることなく基板上への各層の成膜が可能である。
<積層半導体層>
本発明の実施形態である半導体発光素子1の積層半導体層20は、例えば、III族窒化物半導体からなる層であって、図1に示すように、基板101上に、n型半導体層104、発光層105及びp型半導体層106の各層がこの順で積層されてなる。
また、図3に示すように、n型半導体層104、発光層105及びp型半導体層106の各層は、それぞれ、複数の半導体層から構成してもよい。さらにまた、積層半導体層20は、さらに下地層103、バッファ層102を含めて呼んでもよい。
なお、積層半導体層20は、MOCVD法で形成すると結晶性の良いものが得られるが、スパッタ法によっても条件を最適化することで、MOCVD法よりも優れた結晶性を有する半導体層を形成できる。以下、順次説明する。
<バッファ層>
バッファ層102は、多結晶のAlGa1−xN(0≦x≦1)からなるものが好ましく、単結晶のAlGa1−xN(0≦x≦1)のものがより好ましい。
バッファ層102は、上述のように、例えば、多結晶のAlGa1−xN(0≦x≦1)からなる厚さ0.01〜0.5μmのものとすることができる。バッファ層102の厚みが0.01μm未満であると、バッファ層102により基板101と下地層103との格子定数の違い緩和する効果が十分に得られない場合がある。また、バッファ層102の厚みが0.5μmを超えると、バッファ層102としての機能には変化が無いのにも関わらず、バッファ層102の成膜処理時間が長くなり、生産性が低下する虞がある。
バッファ層102は、基板101と下地層103との格子定数の違いを緩和し、基板101の(0001)C面上にC軸配向した単結晶層の形成を容易にする働きがある。したがって、バッファ層102の上に単結晶の下地層103を積層すると、より一層結晶性の良い下地層103が積層できる。なお、本発明においては、バッファ層形成工程を行なうことが好ましいが、行なわなくても良い。
バッファ層102は、III族窒化物半導体からなる六方晶系の結晶構造を持つものであってもよい。また、バッファ層102をなすIII族窒化物半導体の結晶は、単結晶構造を有するものであってもよく、単結晶構造を有するものが好ましく用いられる。III族窒化物半導体の結晶は、成長条件を制御することにより、上方向だけでなく、面内方向にも成長して単結晶構造を形成する。このため、バッファ層102の成膜条件を制御することにより、単結晶構造のIII族窒化物半導体の結晶からなるバッファ層102とすることができる。このような単結晶構造を有するバッファ層102を基板101上に成膜した場合、バッファ層102のバッファ機能が有効に作用するため、その上に成膜されたIII族窒化物半導体は良好な配向性及び結晶性を有する結晶膜となる。
また、バッファ層102をなすIII族窒化物半導体の結晶は、成膜条件をコントロールすることにより、六角柱を基本とした集合組織からなる柱状結晶(多結晶)とすることも可能である。なお、ここでの集合組織からなる柱状結晶とは、隣接する結晶粒との間に結晶粒界を形成して隔てられており、それ自体は縦断面形状として柱状になっている結晶のことをいう。
<下地層>
下地層103としては、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)が挙げられるが、AlGa1−xN(0≦x<1)を用いると結晶性の良い下地層103を形成できるため好ましい。
下地層103の膜厚は0.1μm以上が好ましく、より好ましくは0.5μm以上であり、1μm以上が最も好ましい。この膜厚以上にした方が結晶性の良好なAlGa1−xN層が得られやすい。
下地層103の結晶性を良くするためには、下地層103は不純物をドーピングしない方が望ましい。しかし、p型あるいはn型の導電性が必要な場合は、アクセプター不純物あるいはドナー不純物を添加することが出来る。
<n型半導体層>
図3に示すように、n型半導体層104は、通常nコンタクト層104aとnクラッド層104bとから構成されるのが好ましい。なお、nコンタクト層104aはnクラッド層104bを兼ねることも可能である。また、前述の下地層をn型半導体層104に含めてもよい。
nコンタクト層104aは、n型電極を設けるための層である。nコンタクト層104aとしては、AlGa1−xN層(0≦x<1、好ましくは0≦x≦0.5、さらに好ましくは0≦x≦0.1)から構成されることが好ましい。
また、nコンタクト層104aにはn型不純物がドープされていることが好ましく、n型不純物を1×1017〜1×1020/cm、好ましくは1×1018〜1×1019/cmの濃度で含有すると、n型電極との良好なオーミック接触の維持の点で好ましい。n型不純物としては、特に限定されないが、例えば、Si、GeおよびSn等が挙げられ、好ましくはSiおよびGeが挙げられる。
nコンタクト層104aの膜厚は、0.5〜5μmとされることが好ましく、1〜3μmの範囲に設定することがより好ましい。nコンタクト層104aの膜厚が上記範囲にあると、半導体の結晶性が良好に維持される。
nコンタクト層104aと発光層105との間には、nクラッド層104bを設けることが好ましい。nクラッド層104bは、発光層105へのキャリアの注入とキャリアの閉じ込めを行なう層である。nクラッド層104bはAlGaN、GaN、GaInNなどで形成することが可能である。また、これらの構造のヘテロ接合や複数回積層した超格子構造としてもよい。nクラッド層104bをGaInNで形成する場合には、発光層105のGaInNのバンドギャップよりも大きくすることが望ましいことは言うまでもない。
nクラッド層104bの膜厚は、特に限定されないが、好ましくは0.005〜0.5μmであり、より好ましくは0.005〜0.1μmである。nクラッド層104bのn型ドープ濃度は1×1017〜1×1020/cmが好ましく、より好ましくは1×1018〜1×1019/cmである。ドープ濃度がこの範囲であると、良好な結晶性の維持および素子の動作電圧低減の点で好ましい。
なお、nクラッド層104bを、超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第1層と、該n側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるn側第2層とが積層された構造を含むものであっても良い。
また、nクラッド層104bは、n側第1層とn側第2層とが交互に繰返し積層された構造を含んだものであってもよい。また、好ましくは、前記n側第1層又はn側第2層の何れかが、活性層(発光層105)に接する構成とすれば良い。
上述のようなn側第1層及びn側第2層は、例えばAlを含むAlGaN系(単にAlGaNと記載することがある)、Inを含むGaInN系(単にGaInNと記載することがある)、GaNの組成とすることができる。
また、n側第1層及びn側第2層は、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、GaInN/AlGaNの交互構造、組成の異なるGaInN/GaInNの交互構造(本発明における“組成の異なる”との説明は、各元素組成比が異なることを指し、以下同様である)、組成の異なるAlGaN/AlGaNの交互構造であってもよい。
本発明においては、n側第1層及びn側第2層は、GaInN/GaNの交互構造又は組成の異なるGaInN/GaInNであることが好ましい。
上記n側第1層及びn側第2層の超格子層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オンストローム〜40オングストロームの範囲であることが最も好ましい。超格子層を形成するn側第1層とn側第2層の膜厚が100オングストローム超だと、結晶欠陥が入りやすく好ましくない。
上記n側第1層及びn側第2層は、それぞれドープした構造であってもよく、また、ドープ構造/未ドープ構造の組み合わせであってもよい。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、nクラッド層として、GaInN/GaNの交互構造又は組成の異なるGaInN/GaInNの交互構造のものを用いた場合には、不純物としてSiが好適である。
また、上述のようなn側超格子多層膜は、GaInNやAlGaN、GaNで代表される組成が同じであっても、ドーピングを適宜ON、OFFしながら作製してもよい。
<発光層>
n型半導体層104の上に積層される発光層105としては、単一量子井戸構造あるいは多重量子井戸構造などの発光層105がある。
図3に示すような、量子井戸構造の井戸層105bとしては、Ga1−yInN(0<y<0.4)からなるIII族窒化物半導体層が通常用いられる。井戸層105bの膜厚としては、量子効果の得られる程度の膜厚、例えば1〜10nmとすることができ、好ましくは2〜6nmとすると発光出力の点で好ましい。
また、多重量子井戸構造の発光層105の場合は、上記Ga1−yInNを井戸層105bとし、井戸層105bよりバンドギャップエネルギーが大きいAlGa1−zN(0≦z<0.3)を障壁層105aとする。井戸層105bおよび障壁層105aには、設計により不純物をドープしてもしなくてもよい。
<p型半導体層>
図3に示すように、p型半導体層106は、通常、pクラッド層106aおよびpコンタクト層106bから構成される。また、pコンタクト層106bがpクラッド層106aを兼ねることも可能である。
pクラッド層106aは、発光層105へのキャリアの閉じ込めとキャリアの注入を行なう層である。pクラッド層106aとしては、発光層105のバンドギャップエネルギーより大きくなる組成であり、発光層105へのキャリアの閉じ込めができるものであれば特に限定されないが、好ましくは、AlGa1−xN(0<x≦0.4)のものが挙げられる。
pクラッド層106aが、このようなAlGaNからなると、発光層へのキャリアの閉じ込めの点で好ましい。pクラッド層106aの膜厚は、特に限定されないが、好ましくは1〜400nmであり、より好ましくは5〜100nmである。
pクラッド層106aのp型ドープ濃度は、1×1018〜1×1021/cmが好ましく、より好ましくは1×1019〜1×1020/cmである。p型ドープ濃度が上記範囲であると、結晶性を低下させることなく良好なp型結晶が得られる。
また、pクラッド層106aは、複数回積層した超格子構造としてもよい。
なお、pクラッド層106aを、超格子構造を含む層とする場合には、詳細な図示を省略するが、100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第1層と、該p側第1層と組成が異なるとともに100オングストローム以下の膜厚を有したIII族窒化物半導体からなるp側第2層とが積層された構造を含むものであっても良い。また、p側第1層とp側第2層とが交互に繰返し積層された構造を含んだものであっても良い。
上述のようなp側第1層及びp側第2層は、それぞれ異なる組成、例えば、AlGaN、GaInN又はGaNの内の何れの組成であっても良い、また、GaInN/GaNの交互構造、AlGaN/GaNの交互構造、又はGaInN/AlGaNの交互構造であっても良い。
本発明においては、p側第1層及びp側第2層は、AlGaN/AlGaN又はAlGaN/GaNの交互構造であることが好ましい。
上記p側第1層及びp側第2層の超格子層は、それぞれ60オングストローム以下であることが好ましく、それぞれ40オングストローム以下であることがより好ましく、それぞれ10オングストローム〜40オングストロームの範囲であることが最も好ましい。超格子層を形成するp側第1層とp側第2層の膜厚が100オングストローム超だと、結晶欠陥等を多く含む層となり、好ましくない。
上記p側第1層及びp側第2層は、それぞれドープした構造であっても良く、また、ドープ構造/未ドープ構造の組み合わせであっても良い。ドープされる不純物としては、上記材料組成に対して従来公知のものを、何ら制限無く適用できる。例えば、pクラッド層として、AlGaN/GaNの交互構造又は組成の異なるAlGaN/AlGaNの交互構造のものを用いた場合には、不純物としてMgが好適である。また、上述のようなp側超格子多層膜は、GaInNやAlGaN、GaNで代表される組成が同じであっても、ドーピングを適宜ON、OFFしながら作製してもよい。
pコンタクト層106bは、正極を設けるための層である。pコンタクト層106bは、AlGa1−xN(0≦x≦0.4)が好ましい。Al組成が上記範囲であると、良好な結晶性の維持およびpオーミック電極との良好なオーミック接触の点で好ましい。
p型不純物(ドーパント)を1×1018〜1×1021/cmの濃度、好ましくは5×1019〜5×1020/cmの濃度で含有していると、良好なオーミック接触の維持、クラック発生の防止、良好な結晶性の維持の点で好ましい。p型不純物としては、特に限定されないが、例えば好ましくはMgが挙げられる。
pコンタクト層106bの膜厚は、特に限定されないが、0.01〜0.5μmが好ましく、より好ましくは0.05〜0.2μmである。pコンタクト層106bの膜厚がこの範囲であると、発光出力の点で好ましい。
<n型電極>
図1に示すように、n型半導体層104の露出面104cにn型電極108が形成されている。このように、n型電極108を形成する際には、エッチング等の手段によって発光層105およびp半導体層106の一部を切り欠け除去してn型半導体層104のnコンタクト層を露出させ、この露出面104c上にn型電極108を形成する。
図2に示すように、平面視したときに、n型電極108は円形状とされているが、このような形状に限定されるわけでなく、多角形状など任意の形状とすることができる。また、n型電極108はボンディングパットを兼ねており、ボンディングワイヤを接続することができる構成とされている。なお、n型電極108としては、周知の各種組成や構造を、この技術分野でよく知られた慣用の手段で設けることができる。
また、n型電極108も、p型電極111と同様に、外周側に向けて膜厚が漸次薄くなるような傾斜面を備えた接合層を形成するとともに、これを覆うようにボンディングパッド電極を形成してもよい。また、この際、透過性電極や保護膜を形成しても良い。これにより、外部の空気または水分がn型電極108の接合層へ侵入することを防止することができ、接合層の耐食性を向上して、半導体発光素子寿命を長くすることができる。
<透光性電極>
図1に示すように、p型半導体層106の上に透光性電極109が積層されている。
図2に示すように、平面視したときに、透光性電極109は、n型電極108を形成するために、エッチング等の手段によって一部が除去されたp型半導体層106の上面106cのほぼ全面を覆うように形成されているが、このような形状に限定されるわけでなく、隙間を開けて格子状や樹形状に形成してもよい。なお、透光性電極109の構造も、従来公知の構造を含めて如何なる構造のものも何ら制限なく用いることができる。
透光性電極109は、p型半導体層106との接触抵抗が小さいものが好ましい。また、発光層105からの光をボンディングパッド電極107が形成された側に取り出すことから、透光性電極109は光透過性に優れたものが好ましい。さらにまた、p型半導体層106の全面に渡って均一に電流を拡散させるために、透光性電極109は優れた導電性を有していることが好ましい。
以上のことから、透光性電極109の構成材料としては、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料が好ましい。
また、導電性の酸化物としては、ITO(酸化インジウム錫(In−SnO))、IZO(酸化インジウム亜鉛(In−ZnO))、AZO(酸化アルミニウム亜鉛(ZnO−Al))、GZO(酸化ガリウム亜鉛(ZnO−Ga))、フッ素ドープ酸化錫、酸化チタン等が好ましい。
これらの材料を、この技術分野でよく知られた慣用の手段で設けることによって、透光性電極109を形成できる。また、透光性電極109を形成した後に、合金化や透明化を目的とした熱アニールを施す場合もあるが、施さなくても構わない。
透光性電極109は、結晶化された構造のものを使用してよく、特に六方晶構造又はビックスバイト構造を有するIn結晶を含む透光性電極(例えば、ITOやIZO等)を好ましく使用することができる。
例えば、六方晶構造のIn結晶を含むIZOを透光性電極109として使用する場合、エッチング性に優れたアモルファスのIZO膜を用いて特定形状に加工することができ、さらにその後、熱処理等によりアモルファス状態から当該結晶を含む構造に転移させることで、アモルファスのIZO膜よりも透光性の優れた電極に加工することができる。
また、IZO膜としては、比抵抗が最も低くなる組成を使用することが好ましい。
例えば、IZO中のZnO濃度は1〜20質量%であることが好ましく、5〜15質量%の範囲であることが更に好ましい。10質量%であると特に好ましい。また、IZO膜の膜厚は、低比抵抗、高光透過率を得ることができる35nm〜10000nm(10μm)の範囲であることが好ましい。さらに、生産コストの観点から、IZO膜の膜厚は1000nm(1μm)以下であることが好ましい。
IZO膜のパターニングは、後述の熱処理工程を行なう前に行なうことが望ましい。熱処理により、アモルファス状態のIZO膜は結晶化されたIZO膜となるため、アモルファス状態のIZO膜と比較してエッチングが難しくなる。これに対し、熱処理前のIZO膜は、アモルファス状態であるため、周知のエッチング液(ITO−07Nエッチング液(関東化学社製))を用いて容易に精度良くエッチングすることが可能である。
アモルファス状態のIZO膜のエッチングは、ドライエッチング装置を用いて行なっても良い。このとき、エッチングガスにはCl、SiCl、BCl等を用いることができる。アモルファス状態のIZO膜は、例えば500℃〜1000℃の熱処理を行ない、条件を制御することで六方晶構造のIn結晶を含むIZO膜や、ビックスバイト構造のIn結晶を含むIZO膜にすることができる。六方晶構造のIn結晶を含むIZO膜は前述したようにエッチングし難いので、上述のエッチング処理の後に熱処理することが好ましい。
IZO膜の熱処理は、Oを含まない雰囲気で行なうことが望ましく、Oを含まない雰囲気としては、N雰囲気などの不活性ガス雰囲気や、またはNなどの不活性ガスとHの混合ガス雰囲気などを挙げることができ、N雰囲気、またはNとHの混合ガス雰囲気とすることが望ましい。なお、IZO膜の熱処理をN雰囲気、またはNとHの混合ガス雰囲気中で行なうと、例えば、IZO膜を六方晶構造のIn結晶を含む膜に結晶化させるとともに、IZO膜のシート抵抗を効果的に減少させることが可能である。
また、IZO膜の熱処理温度は、500℃〜1000℃が好ましい。500℃未満の温度で熱処理を行なった場合、IZO膜を十分に結晶化できない恐れが生じ、IZO膜の光透過率が十分に高いものとならない場合がある。1000℃を超える温度で熱処理を行なった場合には、IZO膜は結晶化されているが、IZO膜の光透過率が十分に高いものとならない場合がある。また、1000℃を超える温度で熱処理を行なった場合、IZO膜の下にある半導体層を劣化させる恐れもある。
アモルファス状態のIZO膜を結晶化させる場合、成膜条件や熱処理条件などが異なるとIZO膜中の結晶構造が異なる。しかし、本発明の実施形態においては、接着層との接着性の点において、透光性電極は材料に限定されないが結晶性の材料の方が好ましく、特に結晶性IZOの場合にはビックスバイト結晶構造のIn結晶を含むIZOであってもよく、六方晶構造のIn結晶を含むIZOであってもよい。特に六方晶構造のIn結晶を含むIZOがよい。
特に、前述のように、熱処理によって結晶化したIZO膜は、アモルファス状態のIZO膜に比べて、接合層110やp型半導体層106との密着性が良いため、本発明の実施形態において大変有効である。
<p型電極>
図4は、図1に示す本発明の実施形態である半導体発光素子1のp型電極111の拡大断面図である。
図4に示すように、p型電極(一の伝導型の電極)111は、透光性電極109、接合層110とボンディングパッド電極120とからなり、p型半導体層106上に形成されて概略構成されている。
透光性電極109の上面109cはSiOからなる保護膜10によって覆われており、保護膜10の一部が開口されて開口部10dが形成され、開口部10dから透光性電極109の上面109cの一部が露出されている。
接合層110は、開口部10dから露出された透光性電極109の上面109cをほぼ均一の膜厚で覆うともに、開口部10dの外周側では膜厚が厚くされており、さらに、保護膜10の端部10cを覆うように形成されている。また、保護膜10の端部10cを覆う接合層110の外周部110dには、外周側に向けて膜厚が漸次薄くなるような傾斜面110cが形成されている。
ボンディングパッド電極120は、接合層110の最大厚みに比べて厚く形成された金属反射層117とボンディング層119とから構成されている。また、ボンディングパッド電極120の外周部120dには、外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。
金属反射層117の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面117cが形成されている。また、金属反射層117は接合層110を覆うように形成されている。すなわち、金属反射層117は、接合層110の傾斜面110cの先の最先端部、すなわち接合層110を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、金属反射層117は接合層110を覆って、更に接合層110の外周側にまで張り出すように形成される構成なので、接合層110のいかなる部分も金属反射層117の下から露出しないようにすることができる。
さらに、ボンディング層119の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。また、ボンディング層119は金属反射層117を覆うように形成されている。すなわち、ボンディング層119は、金属反射層117の傾斜面117cの先の最先端部、すなわち金属反射層117を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、ボンディング層119は金属反射層117を覆って、更に金属反射層117の外周側にまで張り出すように形成される構成なので、金属反射層117のいかなる部分もボンディング層119の下から露出しないようにすることができる。
以上の構成により、接合層110は外周部に外周側に向けて膜厚が漸次薄くなるような傾斜面110cが形成されているとともに、金属反射層117およびボンディング層119により外部から二重にシールドされる構成なので、保護膜10とボンディング層119との接合面および保護膜10と金属反射層117との接合面を通過しなければ、半導体発光素子1の外部の空気または水分が接合層110へ侵入することができず、外部の空気や水分が接合層110へ浸入するおそれを大幅に低減することができる。
これにより、接合層110が容易に分解されることはなく、接合層110の耐食性を向上させることにより、半導体発光素子の素子寿命を長くすることができる。
また、接合層110の形成の前に、透光性電極109の露出された上面109cはウェットエッチングされて、不純物や欠陥が取り除かれたフレッシュ面とされていることが好ましい。これにより、透光性電極109の上面109cと接合層110との密着性を向上させることができる。
<接合層>
図1に示す接合層110は、透光性電極109に対するボンディングパッド電極120の接合強度を高めるために、透光性電極109とボンディングパッド電極120との間に積層される。また、接合層110は、透光性電極109を透過してボンディングパッド電極120に照射される発光層105からの光を損失なく透過させるために、透光性を有していることが好ましい。
接合層110は、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものが好ましい。これにより、接合強度と透光性を同時に発揮させることができる。接合層110は、Cr、Ti、W、Mo、Zr、Hf、Co、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものがより好ましく、さらにCr、Ti、W、Mo、Rh、Co、Niからなる群より選ばれた少なくとも一種の元素からなるものがさらに好ましい。特に、Cr、Ti、Mo、Ni、Co等の金属を用いることによって、透光性電極109に対するボンディングパッド電極120の接合強度を格段に高めることができる。
また、接合層110は最大厚みが10Å以上400Å以下の範囲の薄膜であることが好ましい。これにより、発光層105からの光を遮ることなく効果的に透過させることができる。なお、最大厚みが10Å未満になると、接合層110の強度が低下し、これにより透光性電極109に対するボンディングパッド電極120の接合強度が低下するので好ましくない。
<ボンディングパッド電極>
図1に示すように、ボンディングパッド電極120は、透光性電極109側から順に、金属反射層117とボンディング層119とが積層された積層体からなる。
なお、ボンディングパッド電極120は、金属反射層117のみからなる単層構造であってもよく、金属反射層117とボンディング層119と間に、ボンディングパッド電極120全体の強度を強化するバリア層を挿入して、三層構造としてもよい。
<金属反射層>
図1に示す金属反射層117は、反射率の高い金属で構成することが好ましく、Ru、Rh、Pd、Os、Ir、Pt等の白金族金属、Al、Ag、Tiおよびこれらの金属の少なくも一種を含む合金で構成することがより好ましい。これにより、発光層105からの光を効果的に反射させることができる。
なかでも、Al、Ag、Ptおよびこれらの金属の少なくも一種を含む合金は、電極用の材料として一般的であり、入手のし易さ、取り扱いの容易さなどの点から優れている。
また、金属反射層117は、高い反射率を有する金属で形成した場合、最大厚さが20〜3000nmであることが望ましい。金属反射層117が薄すぎると充分な反射の効果が得られない。厚すぎると特に利点は生じず、工程時間の長時間化と材料の無駄を生じるのみである。更に望ましくは、50〜1000nmであり、最も望ましいのは100〜500nmである。
また、金属反射層117は、接合層110に密着していることが、発光層105からの光を効率良く反射するとともに、ボンディングパッド電極120の接合強度を高められる点で好ましい。このため、ボンディングパッド電極120が充分な強度を得るためには、金属反射層117が接合層110を介して透光性電極109に強固に接合されていることが必要である。最低限、一般的な方法でボンディングパッドに金線を接続する工程で剥離しない程度の強度が好ましい。特に、Rh、Pd、Ir、Ptおよびこれらの金属の少なくも一種を含む合金は、光の反射性などの点から金属反射層117として好適に使用される。
また、ボンディングパッド電極120の反射率は、金属反射層117の構成材料によって大きく変わるが、60%以上であることが望ましい。更には、80%以上であることが望ましく、90%以上であればなお良い。反射率は、分光光度計等で比較的容易に測定することが可能である。しかし、ボンディングパッド電極120そのものは面積が小さいために反射率を測定することは難しい。そこで、透明な例えばガラス製の、面積の大きい「ダミー基板」をボンディングパッド電極形成時にチャンバに入れて、同時にダミー基板上に同じボンディングパッド電極を作成して測定するなどの方法を用いて測定することができる。
ボンディングパッド電極120は、上述した反射率の高い金属のみで構成することもできる。即ち、ボンディングパッド電極120は金属反射層117のみから構成されていてもよい。しかし、ボンディングパッド電極120として各種の材料を用いた各種の構造のものが知られており、これら公知のものの半導体層側(透光性電極側)に上述の金属反射層を新たに設けてもよいし、また、これら公知のものの半導体層側の最下層を上述の金属反射層に置き換えてもよい。
<ボンディング層>
図1に示すボンディング層119は、Au、Alまたはこれらの金属の少なくも一種を含む合金からなることが好ましい。AuおよびAlはボンディングボールとして使用されることが多い金ボールとの密着性の良い金属なので、Au、Alまたはこれらの金属の少なくも一種を含む合金を用いることにより、ボンディングワイヤとの密着性に優れたものとすることができる。中でも、特に望ましいのはAuである。
また、ボンディング層119の最大厚みは、50nm以上2000nm以下の範囲のであることが好ましく、更に望ましくは100nm以上1500nm以下である。
薄すぎるとボンディングボールとの密着性が悪くなり、厚すぎても特に利点は生ぜず、コスト増大を招くのみである。
ボンディングパッド電極120に向かった光は、ボンディングパッド電極120の最下面(透光性電極側の面)の金属反射層117で反射され、一部は散乱されて横方向あるいは斜め方向に進み、一部はボンディングパッド電極120の直下に進む。散乱されて横方向や斜め方向に進んだ光は、半導体発光素子1の側面から外部に取り出される。一方、ボンディングパッド電極120の直下の方向に進んだ光は、半導体発光素子1の下面でさらに散乱や反射されて、側面や透光性電極109(上にボンディングパッド電極が存在しない部分)を通じて外部へ取り出される。
ボンディングパッド電極120は、透光性電極109の上であれば、どこへでも形成することができる。例えばn型電極108から最も遠い位置に形成してもよいし、半導体発光素子1の中心などに形成してもよい。しかし、あまりにもn型電極108に近接した位置に形成すると、ボンディングした際にワイヤ間、ボール間のショートを生じてしまうため好ましくない。
また、ボンディングパッド電極120の電極面積としては、できるだけ大きいほうがボンディング作業はしやすいものの、発光の取り出しの妨げになる。例えば、チップ面の面積の半分を超えるような面積を覆っては、発光の取り出しの妨げとなり、出力が著しく低下する。逆に小さすぎるとボンディング作業がしにくくなり、製品の収率を低下させる。
具体的には、ボンディングボールの直径よりもわずかに大きい程度が好ましく、直径100μmの円形程度であることが一般的である。
前述の接合層、金属反射層、ボンディング層等の金属元素において、同一の金属元素を組み込んだ場合でもよく、また異なる金属元素の組み合わせによる構成であってもよい。
<バリア層>
なお、ボンディングパッド電極120を、金属反射層117とボンディング層119の間にバリア層を挿入して三層構造としても良い。
バリア層は、ボンディングパッド電極120全体の強度を強化する役割を有し、例えば、ボンディングパッド電極120の金属反射層の上に形成する。このため、比較的強固な金属材料を使用するか、充分に膜厚を厚くする必要がある。材料として望ましいのは、Ti、CrまたはAlである。中でも、Tiは材料の強度の点で望ましい。
バリア層は金属反射層117が兼ねても良い。良好な反射率を持ち、機械的にも強固な金属材料を厚く形成した場合には、敢えてバリア層を形成する必要はない。例えば、AlまたはPtを金属反射層117として使用した場合には、バリア層は必ずしも必要ではない。バリア層の最大厚さは20〜3000nmであることが望ましい。バリア層が薄すぎると充分な強度強化の効果が得られず、厚すぎても特に利点は生ぜず、コスト増大を招くのみである。更に望ましくは、50〜1000nmであり、最も望ましいのは100〜500nmである。
(半導体発光素子の製造方法)
次に、本発明の実施形態である半導体発光素子の製造方法の一例について説明する。
本発明の実施形態である半導体発光素子の製造方法は、基板上に、発光層を含む積層半導体層を形成する工程と、前記積層半導体層の一部を切り欠けて半導体層露出面を形成する工程と、前記積層半導体層の上面および前記半導体層露出面に一方の(一の伝導型の)電極および他方の(他の伝導型の)電極を形成する電極形成工程と、を有する。
発光層を含む積層半導体層を形成する工程は、バッファ層形成工程、下地層形成工程、n型半導体層形成工程、発光層形成工程、p型半導体層形成工程とからなる。さらに、n型電極形成工程で、n型電極を形成する。さらに、p型電極形成工程で、マスク形成工程とボンディング電極形成工程を用いて、p型電極を形成する。なお、本実施形態では、p型半導体層形成工程の後、p型電極形成工程で透光性電極形成工程を行う。
<バッファ層形成工程>
先ず、サファイア基板等の基板101を用意し、前処理を施す。前処理としては、例えば、スパッタ装置のチャンバ内に基板101を配置し、バッファ層102を形成する前にスパッタするなどの方法によって行うことができる。具体的には、チャンバ内において、基板101をArやNのプラズマ中に曝す事によって上面を洗浄する前処理を行なってもよい。ArガスやNガスなどのプラズマを基板101に作用させることで、基板101の上面に付着した有機物や酸化物を除去することができる。
次に、基板101の上面に、スパッタ法によって、バッファ層102を積層する。
スパッタ法によって、単結晶構造を有するバッファ層102を形成する場合、チャンバ内の窒素原料と不活性ガスの流量に対する窒素流量の比を、窒素原料が50%〜100%、望ましくは75%となるようにすることが望ましい。
また、スパッタ法によって、柱状結晶(多結晶)有するバッファ層102を形成する場合、チャンバ内の窒素原料と不活性ガスの流量に対する窒素流量の比を、窒素原料が1%〜50%、望ましくは25%となるようにすることが望ましい。なお、バッファ層102は、上述したスパッタ法だけでなく、MOCVD法で形成することもできる。
<下地層形成工程>
次に、バッファ層を形成した後、バッファ層102の形成された基板101の上面に、単結晶の下地層103を形成する。下地層103は、スパッタ法又はMOCVD法を用いて成膜することが望ましい。スパッタ法を用いる場合には、MOCVD法やMBE法等と比較して、装置を簡便な構成とすることが可能となる。下地層103をスパッタ法で成膜する際、窒素等のV族原料をリアクタ内に流通させるリアクティブスパッタ法によって成膜する方法とすることが好ましい。
一般に、スパッタ法においては、ターゲット材料の純度が高い程、成膜後の薄膜の結晶性等の膜質が良好となる。下地層103をスパッタ法によって成膜する場合、原料となるターゲット材料としてIII族窒化物半導体を用い、Arガス等の不活性ガスのプラズマによるスパッタを行なうことも可能であるが、リアクティブスパッタ法においてターゲット材料に用いるIII族金属単体並びにその混合物は、III族窒化物半導体と比較して高純度化が可能である。このため、リアクティブスパッタ法では、成膜される下地層103の結晶性をより向上させることが可能となる。
下地層103を成膜する際の基板101の温度、つまり、下地層103の成長温度は、800℃以上とすることが好ましく、より好ましくは900℃以上の温度であり、1000℃以上の温度とすることが最も好ましい。これは、下地層103を成膜する際の基板101の温度を高くすることによって原子のマイグレーションが生じやすくなり、転位のループ化が容易に進行するからである。また、下地層103を成膜する際の基板101の温度は、結晶の分解する温度よりも低温である必要があるため、1200℃未満とすることが好ましい。下地層103を成膜する際の基板101の温度が上記温度範囲内であれば、結晶性の良い下地層103が得られる。
<n型半導体層形成工程>
下地層103の形成後、nコンタクト層104a及びnクラッド層104bを積層してn型半導体層104を形成する。nコンタクト層104a及びnクラッド層104bは、スパッタ法で形成してもよく、MOCVD法で形成してもよい。
<発光層形成工程>
発光層105の形成は、スパッタ法、MOCVD法のいずれの方法でもよいが、特にMOCVD法が好ましい。具体的には、障壁層105aと井戸層105bとを交互に繰り返して積層し、且つ、n型半導体層104側及びp型半導体層106側に障壁層105aが配される順で積層すればよい。
<p型半導体層形成工程>
また、p型半導体層106の形成は、スパッタ法、MOCVD法のいずれの方法でもよい。具体的には、pクラッド層106aと、pコンタクト層106bとを順次積層すればよい。
<n型電極形成工程>
公知のフォトリソグラフィーの手法によってパターニングして、所定の領域の積層半導体層20の一部をエッチングしてnコンタクト層104aの一部を露出させる。次に、nコンタクト層104aの露出面104cにスパッタ法などによりn型電極108を形成する。
<p型電極形成工程>
p型電極形成工程は、透光性電極形成工程と電極形成工程とからなる。
<透光性電極形成工程>
マスクでn型電極をカバーして、エッチング除去せずに残したp型半導体層106上に、スパッタ法などの公知の方法を用いて、透光性電極109を形成する。
なお、n型電極形成工程の前に、透光性電極を形成した後、透光性電極を形成した状態で、所定の領域の積層半導体層20の一部をエッチングしてnコンタクト層104aを形成して、n型電極108を形成してもよい。
<電極形成工程>
図5は、電極形成工程を説明する工程断面図である。
電極形成工程は、接合層を形成した後、接合層を覆うように金属反射層を形成し、更に金属反射層を覆うようにボンディング層を形成するとともに、接合層、金属反射層およびボンディング層の側面を中心側よりも外周側が薄くなるように傾斜させて形成する工程である。
まず、透光性電極109の上面109c上にSiOからなる保護膜10を形成した後、図5(a)に示すように、保護膜10上にレジスト21を塗布する。
次に、図5(b)に示すように、ボンディングパッド電極を形成する部分に対応する部分のレジスト21を除去することによって、逆テーパー型の架橋高分子からなる硬化部(逆テーパー型マスク)23を形成する。逆テーパー型マスク23を形成する方法としては、n型フォトレジストを用いる方法またはイメージ反転型フォトレジストを用いる方法などの公知の方法があるが、本実施形態では、イメージ反転型フォトレジストを用いる方法について説明する。
図6は、図5(b)に示す逆テーパー型マスク形成工程を説明する断面工程図である。
<マスク形成工程>
マスク形成工程は、透光性電極上に不溶性レジストを塗布してレジスト部を形成するレジスト塗布工程と、レジスト部の一部をマスクして露光することにより、露光により形成された可溶部と露光されずに残された不溶部とを形成する一部露光工程と、加熱により前記可溶部を硬化部とする硬化工程と、レジスト部を全面露光して、前記不溶部を可溶部とする全面露光工程と、レジスト剥離液に浸漬することにより前記可溶部を剥離する剥離工程と、を有する。
<レジスト塗布工程>
まず、透光性電極109上の保護膜10上に不溶性レジストを塗布して、これを乾燥してレジスト部21とする。イメージ反転型フォトレジストとしては、たとえば、AZ5200NJ(製品名:AZエレクトロニックマテリアルズ株式会社製)などを用いる。
<一部露光工程>
次に、図6(a)に示すように、レジスト部21の上面に電極を形成する位置をカバーするようにマスク25を配置して、マスク25側から基板1側へ矢印に示すように所定強さ及び波長の光を照射することにより、光が照射された部分のレジスト部21を光反応させて、可溶性のレジスト部(可溶部)22とする。
この光反応は光の強さに応じて進行するので、光照射面側では光反応の進行が早く、透光性電極109側では光反応の進行が遅くなる。そのため、可溶性のレジスト部(可溶部)22は、断面視したときに、図6(a)に示すように、マスク25でカバーされた部分(電極を形成する位置)向けて、その側面が下方に向かうほど内側に後退した逆テーパー形状(逆傾斜形状)となるように形成される。
なお、マスクされた部分のレジスト部21は、不溶性のレジスト部(不溶部)21として残され、断面視したときに側面が上方に向かうほど内側に後退したテーパー形状(傾斜形状)となるように形成される。
<硬化工程>
次に、たとえば、ホットプレートまたはオーブンなどを用いて、この基板1を加熱することにより、図6(b)に示すように、溶解性のレジスト部22を熱反応により架橋させて、架橋高分子からなる硬化部23とする。
<全面露光工程>
次に、図6(c)に示すように、マスクを用いず、不溶性のレジスト部(不溶部)21および架橋高分子からなる硬化部23の表面側に光を照射することにより、図6(a)で溶解性のレジスト22に変換されなかった不溶性のレジスト部(不溶部)21を光反応させて、溶解性のレジスト部(可溶部)22とする。
<剥離工程>
最後に、所定の現像液を用いて、溶解性のレジスト部(可溶部)22を溶解除去することにより、図6(d)に示すように、側面が下方に向かうほど内側に後退した逆テーパー形状(逆傾斜形状)、つまり、逆テーパー型の架橋高分子からなる硬化部(逆テーパー型マスク)23を形成することができる。
再び、図5に戻り、図5(c)に示すように、透光性電極109の上面109cに垂直な方向からSiOからなる保護膜10のRIE(反応性イオンエッチング)を行い、ボンディングパッド電極を形成する部分に対応する部分の保護膜10を除去して、透光性電極109の上面109cを露出させる。
RIE(反応性イオンエッチング)は、直進性が高く、回り込みが少ないエッチング方法であるので、エッチング方向から影となる保護膜10はほとんどエッチング除去されず、図5(c)に示すように保護膜10の端部10cが残される。
この後、透光性電極109の露出された上面109cをウェットエッチングすることが好ましい。これにより、上面109cを不純物や欠陥が取り除かれたフレッシュ面とすることができ、上面109cに接合する接合層110との密着性を向上させることができる。
次に、スパッタ法により、透光性電極109の上面109cおよび架橋高分子からなる硬化部(逆テーパー型マスク)23の上に接合層110を形成する。このとき、スパッタ条件を制御したスパッタ法を用いることにより、スパッタ材料によらず、カバレッジ性を高くして接合層110を成膜することができる。これにより、接合層110は、透光性電極109の上面109c全面にほぼ均一に形成されるとともに、保護膜10の端部10cを一部わずかに覆うように形成される。
次に、金属反射層117を形成する。このとき、接合層110の形成の場合と同様に、スパッタ条件を制御したスパッタ法を用いることにより、スパッタ材料によらず、カバレッジ性を高くして、金属反射層117を成膜することができる。また、接合層110よりも膜厚が厚くなるように金属反射層117を形成することにより、金属反射層117は、接合層110を完全に覆うように形成される。
次に、ボンディング層119を形成する。このとき、スパッタ条件を制御したスパッタ法を用いることにより、スパッタ材料によらず、カバレッジ性を高くして、ボンディング層119を成膜することができる。また、ボンディング層119は、接合層110および金属反射層117に比較して非常に厚くなるように形成するので、図5(d)に示すように、金属反射層117を完全に覆うように形成される。
最後に、レジスト剥離液に浸漬することにより、架橋高分子からなる硬化部(逆テーパー型マスク)23を剥離する。これにより、図5(e)に示すように、金属反射層117とボンディング層119とからなるボンディングパッド電極120を有するp型電極111を形成する。
このように、ボンディング電極形成工程における接合層110、金属反射層117およびボンディング層119の形成がスパッタ法により行われる構成なので、逆テーパー型マスク23のスパッタ方向から影となる部分では、膜厚に応じて傾斜角度の異なる層を形成することができる。これにより、接合層110およびボンディングパッド電極120の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面110c、117c、119cを形成することができる。
なお、接合層110を形成する前に、接合層110を形成する領域の透光性電極109の表面を洗浄する前処理を施しても良い。洗浄の方法としてはプラズマなどに曝すドライプロセスによるものと薬液に接触させるウェットプロセスによるものがあるが、工程の簡便さの観点より、ドライプロセスが望ましい。
このようにして、図1〜図3に示す半導体発光素子1を製造する。
本発明の実施形態である半導体発光素子1は、一方の電極111が、接合層110と接合層110を覆うように形成されたボンディングパッド電極120とからなり、ボンディングパッド電極120の最大厚みが、接合層110の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、接合層110およびボンディングパッド電極120の外周部110d、120dにそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面110c、117c、119cが形成されている構成なので、外部の空気または水分の接合層110への侵入を防止することができ、接合層110の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の実施形態である半導体発光素子1は、接合層110が、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが10Å以上1000Å以下の範囲の薄膜である構成なので、透光性電極109とボンディングパッド電極120との間の接合性を向上させて、ボンディングワイヤ接合時の引張応力によっても剥がれることのない電極とすることができる。
本発明の実施形態である半導体発光素子1は、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜である構成なので、ボンディングパッド電極120へのワイヤボンディングの接合性を向上させて、ボンディングワイヤ接合時の引張応力によっても剥がれることのない電極とすることができる。
本発明の実施形態である半導体発光素子1は、ボンディングパッド電極120が、接合層110を覆うように形成された金属反射層117と、金属反射層117を覆うように形成されたボンディング層120とからなり、金属反射層117が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜である構成なので、電極の接合性および耐食性を向上させ、半導体発光素子の発光特性を向上させることができる。
本発明の実施形態である半導体発光素子1は、一の伝導型の電極111と積層半導体層20の上面106cとの間に透光性電極109が形成されており、透光性電極109が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成される構成なので、電極の接合性および耐食性を向上させ、半導体発光素子の発光特性を向上させることができる。
本発明の実施形態である半導体発光素子1用の電極は、一方の電極111または他方の電極108の少なくともいずれか一方が、接合層110と接合層110を覆うように形成されたボンディングパッド電極120とからなり、ボンディングパッド電極120の最大厚みが、接合層110の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、接合層110およびボンディングパッド電極120の外周部110d、120dにそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面110c、117c、119cが形成されている構成なので、接合性および耐食性を向上させた電極とすることができる。
本発明の実施形態である半導体発光素子1用の電極は、接合層110が、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが10Å以上1000Å以下の範囲の薄膜である構成なので、接合性および耐食性を向上させた電極とすることができる。
本発明の実施形態である半導体発光素子1用の電極は、ボンディングパッド電極120が、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層119からなり、ボンディング層119の最大厚みが50nm以上2000nm以下の範囲の薄膜である構成なので、金ワイヤーとのボンディング性および耐食性を向上させた電極とすることができる。
本発明の実施形態である半導体発光素子1用の電極は、ボンディングパッド電極120が、接合層110を覆うように形成された金属反射層117と、金属反射層117を覆うように形成されたボンディング層119とからなり、金属反射層117が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜である構成なので、接合性および耐食性を向上させた電極とすることができる。
本発明の実施形態である半導体発光素子1用の電極は、一方の電極111と積層半導体層20の上面106cとの間または他方の電極108と半導体層露出面104cとの間に透光性電極109が形成されており、透光性電極109が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成される構成なので、光の取り出し効率を向上させた電極とすることができる。
本発明の実施形態である半導体発光素子の製造方法は、電極形成工程が、積層半導体層20の上面106cに逆テーパー型マスク23を形成した後、積層半導体層20の上面106c上に接合層110を形成し、その後、接合層110を覆うように接合層110の最大厚みに比べて最大厚みの厚いボンディングパッド電極120を形成して、一方の電極111を形成する工程である構成なので、接合層110およびボンディングパッド電極120の外周部110d、120dにそれぞれ外周側が漸次薄くなるような傾斜面110c、117c、119cを形成することができ、外部の空気または水分の接合層110への侵入を防止することができ、接合層110の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の実施形態である半導体発光素子の製造方法は、前記電極形成工程の前に積層半導体層20の上面106cまたは半導体層露出面104cに透光性電極109を形成する工程を有する構成なので、電極の接合性および耐食性を向上させ、半導体発光素子の発光特性を向上させることができる。
本発明の実施形態である半導体発光素子の製造方法は、電極形成工程が、逆テーパー型マスク23および接合層110を形成した後、接合層110を覆うように接合層110の最大厚みに比べて最大厚みの厚い金属反射層117を形成し、その後、金属反射層117を覆うように金属反射層117の最大厚みに比べて最大厚みの厚いボンディング層120を形成して、一方の電極111を形成する工程である構成なので、接合層110およびボンディングパッド電極120の外周部110d、120dにそれぞれ外周側が漸次薄くなるような傾斜面110c、117c、119cを形成することができ、外部の空気または水分の接合層110への侵入を防止することができ、接合層110の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の実施形態である半導体発光素子の製造方法は、ボンディング電極形成工程における接合層110、金属反射層117およびボンディング層119の形成が、スパッタ法により行われる構成なので、逆テーパー型マスク23のスパッタ方向から影となる部分では、膜厚に応じて傾斜角度の異なる層を形成することができる。これにより、接合層110およびボンディングパッド電極120の外周部110d、120dにそれぞれ外周側が漸次薄くなるような傾斜面110c、117c、119cを形成することができ、外部の空気または水分の接合層110への侵入を防止することができ、接合層110の耐食性を向上して、半導体発光素子寿命を長くすることができる。
本発明の実施形態である半導体発光素子の製造方法は、マスク形成工程の前に、透光性電極109の上面109cに保護膜10を形成する工程を備えた構成なので、透光性電極109の上面を保護することができる。
(実施形態2)
図7は、本発明の実施形態である半導体発光素子の別の一例を示す断面模式図である。
図7に示すように、本発明の実施形態である半導体発光素子2は、n型半導体層104上に形成された保護膜10に開口された露出面104c上に別の接合層130が形成され、別の接合層130を覆うようにn型電極108が形成されているほかは実施形態1と同様の構成とされている。なお、実施形態1と同じ部材には同じ符号付して示している。
接合層130の外周部130dに、外周側に向けて膜厚が漸次薄くなるような傾斜面130cが形成されている。
ボンディングパッド電極を兼ねるn型電極108の最大厚みは、接合層130の最大厚みに比べて厚く形成され、かつ、1層で形成されている。ボンディングパッド電極を兼ねるn型電極108の外周部108dに、外周側に向けて膜厚が漸次薄くなるような傾斜面108cが形成されている。これにより、外部の空気または水分の接合層130への侵入を防止することができ、接合層130の耐食性を向上して、半導体発光素子寿命を長くすることができる。
このように、n型電極108とn型半導体層104との間に、n型電極用の接合層130を形成してもよい。
接合層130は、p型電極111の接合層110と同様の材料からなることが好ましく、また、最大厚みも同様の範囲、10Å以上1000Å以下の範囲であることが好ましい。これにより、n型半導体層104に対するn型電極108の接合強度を格段に高めることができる。
更に、接合層130として、上記の透光性の導電性材料からなる層と、Al、Ti、V、Cr、Mn、Co、Zn、Ge、Zr、Nb、Mo、Ru、Hf、Ta、W、Re、Rh、Ir、Niからなる群より選ばれた少なくとも一種の元素からなる金属膜との積層構造を採用してもよい。この場合、n型半導体層104上に、透光性の導電性材料からなる層と、Cr等の金属膜とを順次積層すればよい。
なお、接合層130を形成する場合は、n型電極108として、ボンディングパッド電極120と同一構成の電極を用いることがより望ましい。すなわち、ボンディングパッド電極120が金属反射層117とボンディング層119との二層構造である場合には、n型電極108が、Ag、Al、Pt属元素のうちの何れかまたはこれら金属の何れかを含む合金からなる金属反射層と、ボンディング層とを少なくとも含む積層構造であることが好ましい。
この際、n型電極108とn型半導体層104との間に接合層130を形成する場合は、p型電極111の透光性電極109を形成した後、p型電極111の接合層110を形成するのと同時にn型電極108用の接合層130を形成し、その後、p型電極111のボンディングパッド電極120を形成するのと同時にn型電極108を形成すればよい。
なお、n型電極108は、n型半導体層104側から順に、金属反射層、バリア層、ボンディング層が順次積層された積層体からなる三層構造であってもよい。
また、n型電極108は、金属反射層を兼ねるボンディング層のみからなる単層構造であってもよい。
本発明の実施形態である半導体発光素子は、他方の電極108が、接合層130と接合層130を覆うように形成された他方の電極を兼ねるボンディングパッド電極108とからなり、ボンディングパッド電極108の最大厚みが、接合層110の最大厚みに比べて厚く形成され、かつ、1層からなり、接合層130およびボンディングパッド電極108の外周部130d、108dに、それぞれ外周側に向けて膜厚が漸次薄くなるような傾斜面130c、108cが形成されている構成なので、外部の空気または水分の接合層130への侵入を防止することができ、接合層130の耐食性を向上して、半導体発光素子寿命を長くすることができる。
(実施形態3)
図8は、本発明の実施形態である半導体発光素子のさらに別の一例を示す断面模式図であって、p型電極の拡大断面図である。
図8に示すように、本発明の実施形態である半導体発光素子は、図では省略しているが、p型電極112の透光性電極109上に保護膜を形成しないほかは実施形態1と同様の構成とされている。なお、実施形態1と同じ部材には同じ符号付して示している。
このように、保護膜を設けない場合でも、接合層110を覆うように金属反射層117が形成されており、金属反射層117を覆うようにボンディング層119が形成されている。また、接合層110、金属反射層117およびボンディング層119の外周部110d、120dは、外周側に向けて膜厚が漸次薄くなるように形成された傾斜面110c、117cおよび119cとされているので、外部の空気または水分は、透光性電極109とボンディング層119との接合面および透光性電極109と金属反射層117との接合面を通過しなければ接合層110へ侵入することができず、外部の空気または水分の接合層110への侵入は困難となる。これにより、接合層110が容易に分解されることはなく、半導体発光素子の素子寿命を長くすることができる。
本発明の実施形態である半導体発光素子1は、ボンディングパッド電極120が、接合層110を覆うように形成された金属反射層117と、金属反射層117を覆うように形成されたボンディング層119とからなり、接合層110、金属反射層117およびボンディング層119の外周部110d、120dが、それぞれ外周側に向けて膜厚が漸次薄くなるように形成された傾斜面110c、117cおよび119cとされている構成なので、外部の空気または水分の接合層110への侵入を防止することができ、半導体発光素子の耐食性を向上して、素子寿命を長くすることができる。
(実施形態4:ランプ)
図9は、本発明の実施形態であるランプの一例を示す断面概略図である。尚、以下の説明において参照する図面で、図示される各部の大きさや厚さや寸法等は、実際の半導体発光素子等の寸法関係とは異なっている。
図9に示すように、本発明の実施形態であるランプ3は、砲弾型であり、本発明の実施形態である半導体発光素子1が用いられている。
なお、本発明の実施形態であるランプ3は、例えば、半導体発光素子1と蛍光体とを組み合わせてなるものであって、当業者周知の手段によって当業者周知の構成とすることができる。また、半導体発光素子1と蛍光体と組み合わせることによって発光色を変えることができることが知られているが、このような技術を本発明の実施形態であるランプにおいても何ら制限されることなく採用することが可能である。
図9に示すように、半導体発光素子1のp型電極111のボンディングパッド電極120がワイヤ33でフレーム31に接合され、半導体発光素子1のn型電極108(ボンディングパッド)がワイヤ34で他方のフレーム32に接合されて、実装されている。また、半導体発光素子1の周辺は、透明な樹脂からなるモールド35で封止されている。
本発明の実施形態であるランプ3は、先に記載の半導体発光素子1と、半導体発光素子1が配置されるとともに半導体発光素子1の一の伝導型の電極(p型電極)111のボンディングパッド電極120とワイヤボンディングされる第1フレーム31と、半導体発光素子1の他の伝導型の電極(n型電極)108とワイヤボンディングされる第2フレーム32と、半導体発光素子1を取り囲んで形成されるモールド35と、を備えた構成なので、優れた発光特性を備えるとともに、外部の空気または水分の接合層110への侵入を防止することができ、接合層110の耐食性を向上して、半導体発光素子の素子寿命を長くしたランプとすることができる。
本発明の実施形態であるランプ3は、一般用途の砲弾型、携帯のバックライト用途のサイドビュー型、表示器に用いられるトップビュー型等いかなる用途にも用いることができる。
(実施形態5)
図10は、本発明の実施形態である半導体発光素子のさらに別の一例を示す断面模式図であって、p型電極の拡大断面図である。
図10に示すように、本発明の実施形態である半導体発光素子は、p型電極111の外周部、すなわち、p型電極111を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように別の保護膜11が形成されているほかは実施形態1と同様の構成とされている。なお、実施形態1と同じ部材には同じ符号を付して示している。
図10に示すように、p型電極111は、透光性電極109、接合層110とボンディングパッド電極120とからなり、p型半導体層106上に形成されて概略構成されている。
透光性電極109の上面109cはSiOからなる保護膜10によって覆われており、保護膜10の一部が開口されて開口部10dが形成され、開口部10dから透光性電極109の上面109cの一部が露出されている。
接合層110は、開口部10dから露出された透光性電極109の上面109cをほぼ均一の膜厚で覆うともに、開口部10dの外周側では膜厚が厚くされており、さらに、保護膜10の端部10cを覆うように形成されている。また、保護膜10の端部10cを覆う接合層110の外周部110dには、外周側に向けて膜厚が漸次薄くなるような傾斜面110cが形成されている。
ボンディングパッド電極120は、接合層110の最大厚みに比べて厚く形成された金属反射層117とボンディング層119とから構成されている。また、ボンディングパッド電極120の外周部120dには、外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。
金属反射層117の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面117cが形成されている。また、金属反射層117は接合層110を覆うように形成されている。すなわち、金属反射層117は、接合層110の傾斜面110cの先の最先端部、すなわち接合層110を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、金属反射層117は接合層110を覆って、更に接合層110の外周側にまで張り出すように形成される構成なので、接合層110のいかなる部分も金属反射層117の下から露出しないようにすることができる。
さらに、ボンディング層119の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。また、ボンディング層119は金属反射層117を覆うように形成されている。すなわち、ボンディング層119は、金属反射層117の傾斜面117cの先の最先端部、すなわち金属反射層117を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、ボンディング層119は金属反射層117を覆って、更に金属反射層117の外周側にまで張り出すように形成される構成なので、金属反射層117のいかなる部分もボンディング層119の下から露出しないようにすることができる。
別の保護膜11は、ボンディングパッド電極120を平面視したときの輪郭線を形づくる境界部を覆うように形成されている。すなわち、別の保護膜11は、保護膜10上に積層され、その端部11cがボンディング層119の傾斜面(テーパー面)119cを完全に覆うように傾斜面119c上に乗り上げられ、さらに、ボンディング層119の上面119dまで一部を覆うように形成されている。
ボンディング層119と保護膜10との境界が別の保護膜11で覆われるので、ボンディング層119と保護膜10との境界からの水分の浸入を防止できるので、外部の空気または水分が接合層110へ侵入することは容易ではない。そのため、接合層110が容易に分解されることはなく、半導体発光素子の素子寿命をより長くすることができる。
なお、別の保護膜11は、ボンディングパッド電極120を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されていれば良く、p型電極111をほとんど覆い、コンタクトを取れる露出領域を一部に設けるように形成していてもよい。
別の保護膜11の材料としては、接合層110を外部の空気または水分から保護できる材料であれば良い。たとえば、別の保護膜11の材料としてSiOを用いることが好ましい。これにより、別の保護膜11を密着性を高く形成することができ、別の保護膜11が容易に剥がれることはないようにすることができる。これにより、p型電極111を強固に固定することができる。
保護膜11の材料としては、保護膜10と同種の材料を用いることが好ましい。たとえば、保護膜10の材料としてもSiOを用いた場合には、保護膜11の材料としてもSiOを用いることが好ましい。これにより、別の保護膜11と保護膜10の間の密着性を高くすることができ、別の保護膜11と保護膜10とが容易に剥がれることはないようにすることができる。これにより、p型電極111を強固に固定することができる。
(実施形態6)
図11は、本発明の実施形態である半導体発光素子のさらに別の一例を示す断面模式図であって、p型電極の拡大断面図である。
図11に示すように、本発明の実施形態である半導体発光素子は、ボンディングパッド電極120を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように別の保護膜11が形成されているほかは実施形態3と同様の構成とされている。なお、実施形態3と同じ部材には同じ符号を付して示している。
図11に示すように、p型電極112は、透光性電極109、接合層110とボンディングパッド電極120とからなり、p型半導体層106上に形成されて概略構成されている。
p型電極112に対応する位置と大きさで形成された接合層110は、透光性電極109の上面109cをほぼ均一の膜厚で覆うともに、接合層110の外周部110dには、外周側に向けて膜厚が漸次薄くなるような傾斜面110cが形成されている。
ボンディングパッド電極120は、接合層110の最大厚みに比べて厚く形成された金属反射層117とボンディング層119とから構成されている。また、ボンディングパッド電極120の外周部120dには、外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。
金属反射層117の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面117cが形成されている。また、金属反射層117は接合層110を覆うように形成されている。すなわち、金属反射層117は、接合層110の傾斜面110cの先の最先端部、すなわち接合層110を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、金属反射層117は接合層110を覆って、更に接合層110の外周側にまで張り出すように形成される構成なので、接合層110のいかなる部分も金属反射層117の下から露出しないようにすることができる。
さらに、ボンディング層119の外周部には、前記外周側に向けて膜厚が漸次薄くなるような傾斜面119cが形成されている。また、ボンディング層119は金属反射層117を覆うように形成されている。すなわち、ボンディング層119は、金属反射層117の傾斜面117cの先の最先端部、すなわち金属反射層117を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されている。つまり、平面視したときに、ボンディング層119は金属反射層117を覆って、更に金属反射層117の外周側にまで張り出すように形成される構成なので、金属反射層117のいかなる部分もボンディング層119の下から露出しないようにすることができる。
別の保護膜11は、ボンディングパッド電極120を平面視したときの輪郭線を形づくる境界部を覆うように形成されている。すなわち、別の保護膜11は、透光性電極109上に積層され、その端部11cがボンディング層119の傾斜面(テーパー面)119cを完全に覆うように傾斜面119c上に乗り上げられ、さらに、ボンディング層119の上面119dの一部まで覆うように形成されている。
ボンディング層119と透光性電極109との境界が別の保護膜11で覆われるので、ボンディング層119と透光性電極109との境界からの水分の浸入を防止できるので、外部の空気または水分が接合層110へ侵入することは容易ではない。そのため、接合層110が容易に分解されることはなく、半導体発光素子の素子寿命をより長くすることができる。
なお、別の保護膜11は、ボンディングパッド電極120を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されていれば良く、p型電極112をほとんど覆い、コンタクトを取れる露出領域を一部に設けるように形成していてもよい。
別の保護膜11の材料としては、接合層110を外部の空気または水分から保護できる材料であれば良い。たとえば、別の保護膜11の材料としてSiOを用いることが好ましい。これにより、別の保護膜11を密着性を高く形成することができ、別の保護膜11が容易に剥がれることはないようにすることができる。これにより、p型電極112を強固に固定することができる。
以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例にのみ限定されるものではない。
(実施例1)
<半導体発光素子の作製>
窒化ガリウム系化合物半導体からなる半導体発光素子(以下、実施例1の半導体発光素子)を次にようにして製造した。
まず、サファイアからなる基板上に、AlNからなるバッファ層を介して、厚さ8μmのアンドープGaNからなる下地層を形成した。次に、厚さ2μmのSiドープn型GaNコンタクト層、厚さ250nmのn型In0.1Ga0.9Nクラッド層を形成した後、厚さ16nmのSiドープGaN障壁層および厚さ2.5nmのIn0.2Ga0.8N井戸層を5回積層し、最後に障壁層を設けた多重量子井戸構造の発光層を形成した。さらに、厚さ10nmのMgドープp型Al0.07Ga0.93Nクラッド層、厚さ150nmのMgドープp型GaNコンタクト層を順に形成した。
なお、窒化ガリウム系化合物半導体層の積層は、MOCVD法により、当該技術分野においてよく知られた通常の条件で行なった。
次に、p型GaNコンタクト層上に、厚さ200nmのITOからなる透光性電極を形成した後、SiOからなる保護膜を形成した。
さらに、実施形態1で示したマスク形成工程にしたがって、逆テーパー型マスクを形成した。レジストとしては、AZ5200NJ(製品名:AZエレクトロニックマテリアルズ株式会社製)を用いた。
この逆テーパー型マスクを具備した状態で、SiOからなる保護膜をエッチングして、透光性電極の上面の一部とn型コンタクト層を露出させた後、スパッタ法により、20ÅのCrからなる接合層を形成した。さらに、接合層の上に、100nmのRhからなる金属反射層、80nmのTiからなるバリア層、200nmのAuからなるボンディング層の3層構造のボンディングパッド電極を形成した。その後、レジスト剥離液を用いて、逆テーパー型マスクを除去した。n側電極も、前記p側電極と同じ電極積層構造とした。
<半導体発光素子の評価>
実施例1の半導体発光素子について、順方向電圧を測定したところ、プローブ針による通電で電流印加値20mAにおける順方向電圧が3.0Vであった。その後、TO−18缶パッケージに実装してテスターによって発光出力を計測したところ印加電流20mAにおける発光出力は19.5mWを示した。またその発光面の発光分布は正極下の全面で発光しているのが確認できた。
更に、本実施例で作製したボンディングパッド電極の反射率は460nmの波長領域で70%であった。この値は、ボンディングパッド電極形成時に同じチャンバに入れたガラス製のダミー基板を用いて、分光光度計で測定した。
また、ボンディングテストを100,000チップについて実施したが(ボンディング不良数)、パッド剥れは1チップもなかった。
<高温高湿度試験>
常法に従って、チップの高温高湿度試験を実施した。試験方法としては、チップを高温高湿器(いすゞ製作所、μーSERIES)内に入れ、温度85℃、相対湿度85RH%の環境下でそれぞれ100個のチップ数の発光試験(チップへの通電量は5mA、2000時間)をしたところ、不良数は0個であった。
<耐食性試験>
電流印加値20mA、順方向電圧が3.0V、発光出力は19.5mWの発光させた状態で、実施例1の半導体発光素子を水槽の水中に沈めた。その状態のまま、10分間保持した後、水中から引き上げて、再び発光特性を測定した。水中に沈める前と発光特性はほとんど変わらなかった。
(実施例2〜20)
表1に示す材料及び厚さでp型電極を形成した他は実施例1と同様にして、実施例2〜20の半導体発光素子を製造した。
実施例1と同様に評価を行い、表2に示す評価結果が得られた。
Figure 0005515431
Figure 0005515431
(比較例1)
図12は、比較例1の半導体発光素子のp型電極を示す拡大断面図である。図12に示すように、この半導体発光素子のp型電極201は、ITOからなる透光性電極109、Crからなる接合層210及びボンディングパッド電極220によって構成されている。
透光性電極109の上面109cはSiOからなる保護膜10によって覆われており、保護膜10の一部が開口されて露出された透光性電極109の上面109cに接合層210が均一な厚さで形成されている。接合層210の上にはAlからなる金属反射層217が形成され、金属反射層217の上にはTiからなるバリア層、Auからなるボンディング層219がこの順序で形成されている。また、接合層210、金属反射層217、バリア層(図示略)およびボンディング層219各層の側面はそれぞれ透光性電極109の上面109cに対してほぼ垂直に形成されている。
比較例1の半導体発光素子は、以下のようにして形成した。
まず、実施例1と同様にして、MOCVD法により、当該技術分野においてよく知られた通常の条件で、窒化ガリウム系化合物半導体層の積層を行なった。
次に、p型GaNコンタクト層上に厚さ200nmのITOからなる透光性電極109を形成した。
次に、図13(a)に示すように、透光性電極109の上面109c上にSiOからなる保護膜10を形成した後、保護膜10上にレジストを塗布乾燥してレジスト部21を形成した。
次に、図13(b)に示すように、通常のフォトリソグラフィー法を用いて、ボンディングパッド電極を形成する部分に対応する部分のレジスト部21を露光して可溶性のレジストとした後、これを所定の現像液で除去して、保護膜10の上面に対して垂直な端面を有するレジスト部21を形成した。
次に、図13(c)に示すように、残されたレジスト部21をマスクとして、保護膜10のエッチングを行い、ボンディングパッド電極を形成する部分に対応する部分の保護膜10を除去して、透光性電極109の上面109cとn型コンタクト層を露出させた。
次に、スパッタ法により、露出された透光性電極109の上面109cおよびレジスト部21の上面21aを覆うように、20ÅのCrからなる接合層210を形成した。さらに、接合層210を覆うように200nmのAlからなる金属反射層217を形成した。さらにまた、図13(d)に示すように、金属反射層217を覆うように80nmのTiからなるバリア層(図示略)を形成し、前記バリア層を覆うように200nmのAuからなるボンディング層219を形成した。
最後に、レジスト剥離液によりレジスト部21を剥離することにより、図13(e)に示すように、接合層210上に金属反射層217とバリア層とボンディング層219とからなる3層構造のボンディングパッド電極220が積層されたp型電極201を形成した。
この工程により、図12に示す構造のp型電極201を形成した。なお、n側電極も、前記p側電極と同じ電極積層構造とした。
<半導体発光素子の評価>
比較例1の半導体発光素子について、順方向電圧を測定したところ、プローブ針による通電で電流印加値20mAにおける順方向電圧が3.0Vであった。その後、TO−18缶パッケージに実装してテスターによって発光出力を計測したところ印加電流20mAにおける発光出力は20mWを示した。またその発光面の発光分布は正極下の全面で発光しているのが確認できた。このように、発光特性は実施例1と同様であった。
更に、比較例1のボンディングパッド電極の反射率は460nmの波長領域で90%であった。この値は、ボンディングパッド電極形成時に同じチャンバに入れたガラス製のダミー基板を用いて、分光光度計で測定した。
また、ボンディングテストを100,000チップについて実施したが(ボンディング不良数)、パッド剥れは50チップであった。
<高温高湿度試験>
実施例1と同様にして、チップの高温高湿度試験を実施した。温度85℃、相対湿度85RH%の環境下でそれぞれ100個のチップ数の発光試験(チップへの通電量は5mA、2000時間)をしたところ、不良数は65個であった。
<耐食性試験>
実施例1と同様にして、耐食性試験を行った。電流印加値20mA、順方向電圧が3.0V、発光出力は20mWの発光させた状態で、比較例1の半導体発光素子を水槽の水中に沈めた。その状態のまま数秒間保持しただけで光らなくなった。
(比較例2及び比較例3)
表1に示す材料及び厚さでp型電極を形成した他は比較例1と同様にして、比較例2及び比較例3の半導体発光素子を製造した。
比較例1と同様に評価を行い、表2に示す評価結果が得られた。
本発明は、半導体発光素子、その電極並びに製造方法及びランプに関するものであって、特に、接合性及び耐食性を向上させた電極を備えた半導体発光素子、その電極並びに製造方法及びランプを製造・利用する産業において利用可能性がある。
1、2…半導体発光素子、3…ランプ、10…保護膜、10c…端部、10d…開口部、11…保護膜、20…積層半導体層、21…不溶性レジスト部(レジスト部)、22…可溶性レジスト部、23…架橋高分子からなる硬化部、25…マスク、31、32…フレーム、33、34…ボンディングワイヤ、35…モールド、101…基板、102…バッファ層、103…下地層、104…n型半導体層、104a…nコンタクト層、104b…nクラッド層、104c…露出面、105…発光層、105a…障壁層、105b…井戸層、106…p型半導体層、106c…pクラッド層、106b…pコンタクト層、106c…上面、108…n型電極、108c…傾斜面、108d…外周部、109…透光性電極、109c…上面、110…接合層、110c…傾斜面、110d…外周部、111、112…p型電極(一方の電極)、117…金属反射層、117c…傾斜面、119…ボンディング層、119c…傾斜面、120…ボンディングパッド電極、120d…外周部、130…接合層、130c…傾斜面、130d…外周部、201…p型電極、217…金属反射層、219…ボンディング層、220…ボンディングパッド電極。

Claims (16)

  1. 基板と、前記基板上に形成されてなる発光層を含む積層半導体層と、前記積層半導体層の上面に形成された一方の電極と、前記積層半導体層の一部が切り欠けられてなる半導体層露出面上に形成された他方の電極と、を具備する半導体発光素子であって、
    前記一方の電極または前記他方の電極の少なくともいずれか一方が、接合層と前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されたボンディングパッド電極とからなり、
    前記接合層のうちp型半導体層上に形成された接合層が、Ti、Cr、Co、Ta、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが20Å以上400Å以下の範囲の薄膜であり、
    前記ボンディングパッド電極の最大厚みが、前記接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、
    前記接合層および前記ボンディングパッド電極の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面が形成されていることを特徴とする半導体発光素子。
  2. 前記ボンディングパッド電極が、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜であることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記ボンディングパッド電極が、前記接合層を覆うように形成された金属反射層と、前記金属反射層を覆うように形成されたボンディング層とからなり、
    前記金属反射層が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜であることを特徴とする請求項1または請求項のいずれかに記載の半導体発光素子。
  4. 前記一方の電極と前記積層半導体層の上面との間または前記他方の電極と前記半導体層露出面との間に透光性電極が形成されており、
    前記透光性電極が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成されることを特徴とする請求項1〜請求項のいずれか1項に記載の半導体発光素子。
  5. 前記積層半導体層が、前記基板側からn型半導体層、発光層、p型半導体層の順に積層されてなり、前記発光層が多重量子井戸構造であることを特徴とする請求項1〜請求項のいずれか1項に記載の半導体発光素子。
  6. 前記積層半導体層が、窒化ガリウム系半導体を主体として構成されていることを特徴とする請求項1〜請求項のいずれか1項に記載の半導体発光素子。
  7. 請求項1〜のいずれか1項に記載の半導体発光素子と、前記半導体発光素子が配置されるとともに前記半導体発光素子の一方の電極とワイヤボンディングされる第1フレームと、前記半導体発光素子の他方の電極とワイヤボンディングされる第2フレームと、前記半導体発光素子を取り囲んで形成されるモールドと、を備えたことを特徴とするランプ。
  8. 基板と、前記基板上に形成されてなる発光層を含む積層半導体層と、前記積層半導体層の上面に形成された一方の電極と、前記積層半導体層の一部が切り欠けられてなる半導体層露出面上に形成された他方の電極と、を具備する半導体発光素子用の電極であって、
    前記一方の電極または前記他方の電極の少なくともいずれか一方が、接合層と前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように形成されたボンディングパッド電極とからなり、
    前記接合層のうちp型半導体層上に形成された接合層が、Ti、Cr、Co、Ta、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが20Å以上400Å以下の範囲の薄膜であり、
    前記ボンディングパッド電極の最大厚みが、前記接合層の最大厚みに比べて厚く形成され、かつ、1または2以上の層からなり、
    前記接合層および前記ボンディングパッド電極の外周部にそれぞれ、外周側に向けて膜厚が漸次薄くなるような傾斜面が形成されていることを特徴とする半導体発光素子用の電極。
  9. 前記ボンディングパッド電極が、Au、Alまたはこれらの金属の何れかを含む合金からなるボンディング層からなり、前記ボンディング層の最大厚みが50nm以上2000nm以下の範囲の薄膜であることを特徴とする請求項8に記載の半導体発光素子用の電極。
  10. 前記ボンディングパッド電極が、前記接合層を覆うように形成された金属反射層と、前記金属反射層を覆うように形成されたボンディング層とからなり、
    前記金属反射層が、Ag、Al、Ru、Rh、Pd、Os、Ir、Pt、Tiのうちの何れかまたはこれら金属の何れかを含む合金からなるものであり、最大厚みが20nm以上3000nm以下の範囲の薄膜であることを特徴とする請求項8または請求項のいずれかに記載の半導体発光素子用の電極。
  11. 前記一方の電極と前記積層半導体層の上面との間または前記他方の電極と前記半導体層露出面との間に透光性電極が形成されており、
    前記透光性電極が、In、Zn、Al、Ga、Ti、Bi、Mg、W、Ce、Sn、Niのいずれか一種を含む導電性の酸化物、硫化亜鉛または硫化クロムのうちいずれか一種からなる群より選ばれる透光性の導電性材料から構成されることを特徴とする請求項
    請求項1のいずれか1項に記載の半導体発光素子用の電極。
  12. 基板上に、発光層を含む積層半導体層を形成する工程と、
    前記積層半導体層の一部を切り欠けて半導体層露出面を形成する工程と、
    前記積層半導体層の上面および前記半導体層露出面に一方の電極および他方の電極を形成する電極形成工程と、を有する半導体発光素子の製造方法であって、
    前記電極形成工程が、前記積層半導体層の上面または前記半導体層露出面の少なくともいずれか一方の面上に逆テーパー型マスクを形成するマスク形成工程の後、前記積層半導体層の上面または前記半導体層露出面上に接合層を形成し、その後、前記接合層を平面視したときの輪郭線を形づくる境界部の上を完全に覆うように前記接合層の最大厚みに比べて最大厚みの厚いボンディングパッド電極を形成して、一方の電極または他方の電極を形成する工程であり、
    前記接合層および前記ボンディングパッド電極を形成する際、それぞれの外周部に、外周側に向けて膜厚が漸次薄くなるような傾斜面を形成し、
    前記接合層のうちp型半導体層上に形成された接合層が、Ti、Cr、Co、Ta、Niからなる群より選ばれた少なくとも一種の元素からなるものであり、最大厚みが20Å以上400Å以下の範囲の薄膜とすることを特徴とする半導体発光素子の製造方法。
  13. 前記電極形成工程の前に前記積層半導体層の上面または前記半導体層露出面に透光性電極を形成する工程を有することを特徴とする請求項1に記載の半導体発光素子の製造方法。
  14. 前記電極形成工程が、前記逆テーパー型マスクおよび前記接合層を形成した後、前記接合層を覆うように前記接合層の最大厚みに比べて最大厚みの厚い金属反射層を形成し、その後、前記金属反射層を覆うように前記金属反射層の最大厚みに比べて最大厚みの厚いボンディング層を形成して、一方の電極または他方の電極を形成する工程であることを特徴とする請求項1または請求項1に記載の半導体発光素子の製造方法。
  15. 前記電極形成工程における前記接合層、前記金属反射層および前記ボンディング層の形成が、スパッタ法により行われることを特徴とする請求項1に記載の半導体発光素子の製造方法。
  16. 前記マスク形成工程の前に、前記透光性電極の上面および前記積層半導体層の上面または前記半導体層露出面上に保護膜を形成する工程を備えたことを特徴とする請求項1〜請求項1のいずれか1項に記載の半導体発光素子の製造方法。
JP2009133177A 2008-06-16 2009-06-02 半導体発光素子、その電極並びに製造方法及びランプ Active JP5515431B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009133177A JP5515431B2 (ja) 2008-06-16 2009-06-02 半導体発光素子、その電極並びに製造方法及びランプ
PCT/JP2009/060926 WO2009154191A1 (ja) 2008-06-16 2009-06-16 半導体発光素子、その電極並びに製造方法及びランプ
US12/999,530 US8569735B2 (en) 2008-06-16 2009-06-16 Semiconductor light-emitting element, electrode and manufacturing method for the element, and lamp
TW098120108A TWI412159B (zh) 2008-06-16 2009-06-16 半導體發光元件、其電極以及製造方法、及燈
CN200980131958.1A CN102124574B (zh) 2008-06-16 2009-06-16 半导体发光元件、其电极及制造方法以及灯

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008157248 2008-06-16
JP2008157248 2008-06-16
JP2009133177A JP5515431B2 (ja) 2008-06-16 2009-06-02 半導体発光素子、その電極並びに製造方法及びランプ

Publications (2)

Publication Number Publication Date
JP2010028100A JP2010028100A (ja) 2010-02-04
JP5515431B2 true JP5515431B2 (ja) 2014-06-11

Family

ID=41733593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133177A Active JP5515431B2 (ja) 2008-06-16 2009-06-02 半導体発光素子、その電極並びに製造方法及びランプ

Country Status (1)

Country Link
JP (1) JP5515431B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650933B1 (en) 2010-12-08 2020-06-17 Nichia Corporation Nitride semiconductor light-emitting element
JP5949294B2 (ja) * 2011-08-31 2016-07-06 日亜化学工業株式会社 半導体発光素子
JP5902957B2 (ja) * 2012-02-17 2016-04-13 スタンレー電気株式会社 光半導体素子、およびその製造方法
JP5949140B2 (ja) * 2012-05-21 2016-07-06 日亜化学工業株式会社 半導体発光素子
DE102015114590B4 (de) * 2015-09-01 2020-01-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauteils

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111422A (ja) * 1990-08-31 1992-04-13 Fujitsu Ltd 半導体装置の製造方法
JP3710573B2 (ja) * 1996-09-30 2005-10-26 シャープ株式会社 窒化ガリウム系化合物半導体発光素子の電極構造
JP3625377B2 (ja) * 1998-05-25 2005-03-02 ローム株式会社 半導体発光素子
JP2004006498A (ja) * 2002-05-31 2004-01-08 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
TWI243488B (en) * 2003-02-26 2005-11-11 Osram Opto Semiconductors Gmbh Electrical contact-area for optoelectronic semiconductor-chip and its production method
JP4889193B2 (ja) * 2003-07-23 2012-03-07 日亜化学工業株式会社 窒化物半導体発光素子
JP4438422B2 (ja) * 2004-01-20 2010-03-24 日亜化学工業株式会社 半導体発光素子
JP2006066903A (ja) * 2004-07-29 2006-03-09 Showa Denko Kk 半導体発光素子用正極
JP2008041866A (ja) * 2006-08-04 2008-02-21 Nichia Chem Ind Ltd 窒化物半導体素子

Also Published As

Publication number Publication date
JP2010028100A (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
TWI412159B (zh) 半導體發光元件、其電極以及製造方法、及燈
WO2010073539A1 (ja) 半導体発光素子及び半導体発光素子の製造方法、ランプ
JP5522032B2 (ja) 半導体発光素子及びその製造方法
JP5526712B2 (ja) 半導体発光素子
TWI429107B (zh) 半導體發光元件、其製造方法、燈、照明裝置、電子機器及機械裝置
KR100895452B1 (ko) 반도체 발광소자용 양전극
US9219198B2 (en) Method for forming metal electrode, method for manufacturing semiconductor light emitting elements and nitride based compound semiconductor light emitting elements
JP5276959B2 (ja) 発光ダイオード及びその製造方法、並びにランプ
US8093618B2 (en) Multi-layer ohmic electrode, semiconductor light emitting element having multi-layer ohmic electrode, and method of forming same
JP2010267797A (ja) 半導体発光素子、ランプ、照明装置、電子機器及び電極
TW201131815A (en) Semiconductor light emitting element and semiconductor light emitting device
KR101257572B1 (ko) 반도체 발광 소자
JP5178383B2 (ja) 半導体発光素子及び半導体発光素子の製造方法、ランプ
JP2011034989A (ja) 半導体発光素子、その製造方法、ランプ、電子機器及び機械装置
JP5515431B2 (ja) 半導体発光素子、その電極並びに製造方法及びランプ
JP2010062425A (ja) 半導体発光素子及び半導体発光素子の製造方法、ランプ
JP5323468B2 (ja) 半導体発光素子の製造方法、電極構造の製造方法、半導体発光素子、電極構造
WO2009154191A1 (ja) 半導体発光素子、その電極並びに製造方法及びランプ
JP5573138B2 (ja) 半導体発光素子の製造方法
JP2010147097A (ja) 半導体素子および半導体素子の製造方法
JP5246079B2 (ja) 半導体素子の製造方法
JP2011086855A (ja) 半導体発光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150