JP5464190B2 - 電力制御方法、電力制御装置および画像形成装置 - Google Patents

電力制御方法、電力制御装置および画像形成装置 Download PDF

Info

Publication number
JP5464190B2
JP5464190B2 JP2011204231A JP2011204231A JP5464190B2 JP 5464190 B2 JP5464190 B2 JP 5464190B2 JP 2011204231 A JP2011204231 A JP 2011204231A JP 2011204231 A JP2011204231 A JP 2011204231A JP 5464190 B2 JP5464190 B2 JP 5464190B2
Authority
JP
Japan
Prior art keywords
load
power
heater
supplied
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011204231A
Other languages
English (en)
Other versions
JP2013064913A (ja
Inventor
義彦 光
宗祐 夏目
輝彦 豊泉
光栄 張
健一 林
信宏 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011204231A priority Critical patent/JP5464190B2/ja
Priority to CN201210341869.3A priority patent/CN103019075B/zh
Priority to US13/617,848 priority patent/US8761630B2/en
Publication of JP2013064913A publication Critical patent/JP2013064913A/ja
Application granted granted Critical
Publication of JP5464190B2 publication Critical patent/JP5464190B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • G03G15/2042Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature specially for the axial heat partition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Of Electrical Variables (AREA)

Description

本発明は、複写機、プリンタ、ファクシミリ装置、およびこれらの複合機などの電子写真方式を利用した画像形成装置に関する。
電子写真方式を用いた画像形成装置は、用紙上に形成された未定着トナー像を熱で溶融して定着させることから、熱源としてヒーターを有している。ヒーターへの電力供給において、突入電流による一時的な電源電圧の降下などを抑制するため、スルーアップ制御およびスルーダウン制御が用いられる。スルーアップ制御は、ヒーターの通電初期において供給電力を時間の経過とともに徐々に増加させていく制御方式である。また、スルーダウン制御は、ヒーターの通電終期において供給電力を時間の経過とともに徐々に減少させる制御方式である。
スルーアップ制御およびスルーダウン制御などの電力制御方法としては、位相制御および波数制御などの制御方法が用いられている。図11は位相制御について説明するための電圧の波形を示す図であり、図12は波数制御について説明するための電圧の波形を示す図である。
位相制御は、負荷に対して、交流電源からの交流電力を半サイクル内の任意の位相角からゼロクロス点まで電力を供給し、この任意の位相角を変化させることで供給電力を可変にする制御方法である。例えば、負荷であるヒーターには図11に示す波形の電圧が加えられることになる。図11において、半サイクルが1制御周期である。図11に示すように、1制御周期あたりの電圧の供給量が時間の経過とともに大きくなっていくと、ヒーターに供給される電力も徐々に増加していく。
また、波数制御は、交流電力の半サイクルを1つの単位として、半サイクルごとにONまたはOFFすることで、負荷に対する供給電力を可変にする制御方法である。例えば、負荷であるヒーターには図12に示す波形の電圧が加えられることになる。図12において、4サイクルが1制御周期である。図12に示すように、1制御周期あたりの電圧供給量は50%である。
従来から、電力を制御するには位相制御または波数制御が用いられている。また、位相制御と波数制御とを組み合わせた制御方法も用いられている。例えば、特許文献1に開示されている。しかし、位相制御および波数制御は以下に示す問題点を有していた。位相制御は、交流の半サイクル内でヒーターをオンまたはオフするため、オンする際に生じる急激な電流変動により高調波電流歪やスイッチングノイズが発生するという問題があった。また、波数制御は、高調波電流歪やスイッチングノイズを抑制できるが、位相制御と比較して交流電源の電圧変動が大きくなる可能性があり、フリッカが発生しやすいという問題があった。
また、昇圧チョッパなどを用いた電力制御装置もあるが、コストが高くなるという問題がある。
そこで、より好ましい電力制御装置が求められており、いくつか提案もされている。例えば、特許文献2には、交流電力により駆動する2つのヒーターおよび直流電力により駆動するモーターなどの二次側電気部材を有し、いずれか1つのヒーターにしか電力が供給されず、両方のヒーターに電力が供給されない場合には二次側電気部材に電力を供給する電力制御装置が開示されている。
この電力制御装置によれば、交流電源から供給される電力を2つのヒーターのそれぞれと二次側電気部材とに振り分けでき、力率の改善が可能であることから、電力を有効利用できる。
特開2010−286649号公報 特開2010−186218号公報
しかし、特許文献2に開示された画像形成装置は、2つのモーターのそれぞれと、二次側電気部材とに重複して電力を供給することができないため、例えば、1つのヒーターに電力を供給する期間には、残りのヒーターおよび二次側電気部材に電力を供給することができない。したがって、各負荷に対する電力の供給量の自由度が低く、各負荷にバランスよく電力を供給することが困難であるという問題があった。
本発明は、上述の事情に鑑みてなされた発明であり、その目的は、力率を低下させることなく、各負荷に対して好ましい量の電力を供給することである。
本発明に係る電力制御方法は、第1負荷および第2負荷にそれぞれ交流電力を供給するための電力制御方法であって、前記第1負荷に、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を供給し、前記第2負荷に、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を供給し、ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、前記第1負荷の温度および前記第2負荷の温度を検出し、前記第1負荷の目標温度と検出した前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出した前記第2負荷の前記温度との差、および、前記第1負荷と前記第2負荷とに供給される電力に基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する、ことを特徴とする。
また、本発明に係る他の電力制御方法は、第1負荷、第2負荷および第3負荷にそれぞれ交流電力を供給するための電力制御方法であって、前記第1負荷に、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を供給し、前記第2負荷に、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を供給し、前記第3負荷に、各半サイクルにおける位相角φ3〜位相角φ4の範囲の交流電力を供給し、ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ3は0以上であってφ1よりも小さく、φ4はπ以下であってφ2よりも大きく、前記第1負荷の温度、前記第2負荷および前記第3負荷の温度を検出し、前記第1負荷の目標温度と検出した前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出した前記第2負荷の前記温度との差、前記第3負荷の目標温度と検出した前記第3負荷の前記温度との差、および、前記第1負荷と前記第2負荷と前記第3負荷とに供給される電力に基づいて、前記第1負荷、前記第2負荷および第3負荷に供給する電力を決定する、ことを特徴とする。
また、本発明に係る電力制御装置は、交流電源から第1負荷および第2負荷のそれぞれに交流電力を供給するための電力制御装置であって、前記交流電源と前記第1負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給する第1スイッチ手段と、前記交流電源と前記第2負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給する第2スイッチ手段と、を備え、ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、前記第1負荷の温度および前記第2負荷の温度の検出値が外部から入力される演算手段を備え、前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、および、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差を算出し、算出した2つの当該差と、前記第1負荷および前記第2負荷に供給される電力とに基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する、ことを特徴とする。
また、本発明に係る画像形成装置は、交流電源から交流電力がそれぞれ供給される第1負荷および第2負荷とを有した画像形成装置であって、前記第1負荷に供給される第1入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第1スイッチ手段と、前記第2負荷に供給される第2入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第2スイッチ手段と、を備え、前記第1スイッチ手段は、前記第1入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第1入力電力の各半サイクルにおいて位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給し、前記第2スイッチ手段は、前記第2入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第2入力電力の各半サイクルにおいて位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給し、ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、前記第1負荷に設置された前記第1負荷の温度を検出する第1温度センサーと、前記第2負荷に設置された前記第2負荷の温度を検出する第2温度センサーと、前記第1温度センサーおよび前記第2温度センサーの検出値が入力される演算手段とを備え、前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、および、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差を算出し、算出した2つの当該差と、前記第1負荷および前記第2負荷に供給される電力とに基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する、ことを特徴とする。
本発明は、力率を低下させることなく、各負荷に対して好ましい量の電力を供給することができるという効果を奏する。
本発明の一実施形態に係る画像形成装置の概略の内部構成を示す図である。 本実施形態に係る画像形成装置の加熱ローラーの内部を示す透視図である。 本実施の形態に係る画像形成装置の電力制御装置に関する部分についての機能ブロック図である。 画像形成装置の電力制御方法の一例を示すためのタイミングチャートである。 二次側負荷を考慮した電力制御方法の一例を示すフローチャートである。 二次側負荷を考慮した電力制御方法の一例を示すためのタイミングチャートである。 二次側負荷を考慮した電力制御方法の他の例を示すためのタイミングチャートである。 本実施形態に係る変形例における画像形成装置の電力制御装置に関する部分についての機能ブロック図である。 本実施形態に係る変形例の画像形成装置1における加熱ローラーの内部を示す透視図である。 変形例の画像形成装置における電力制御方法の一例を示すためのタイミングチャートである。 位相制御について説明するための電圧の波形を示す図である。 波数制御について説明するための電圧の波形を示す図である。
本発明の一実施形態に係る画像形成装置1の概要について説明する。
図1は本発明の一実施形態に係る画像形成装置1の概略の内部構成を示す図である。図1に示すように、画像形成装置1は、タンデム型のプリントエンジンを内蔵した電子写真方式のフルカラー画像形成装置である。画像形成装置1は、一般に複合機またはMFP(Multi Function Peripherals)と呼ばれる装置であって、コピー、ネットワークプリンティング(PCプリント)、ファックス、およびスキャナなどの機能を集約した装置である。
画像形成装置1は、画像形成部20および給紙部60などを備えている。給紙部60は、各サイズの用紙YSを収納するための給紙カセット61と、給紙カセット61に貯留されている用紙YSを1枚ずつ取り出して搬送路HRへと送るローラー群62〜66とを備えている。搬送路HRへと送られた用紙YSは矢印M1方向に進む。
ローラー群62〜66は、具体的には、ピックアップローラー62、給紙ローラー63、分離ローラー64、搬送ローラー対65およびレジストローラー対66である。ピックアップローラー62は、給紙カセット61から用紙YSを取り出す。給紙ローラー63は、取り出された用紙YSを搬送路HRへと送る。分離ローラー64は、給紙ローラー63に対して用紙YSを挟んで対向する位置に設置されている。分離ローラー64は、複数枚重なったままの用紙YSが搬送路HRに送られることがないように、複数枚重なったままの用紙YSを一枚ずつに分離する。搬送ローラー対65は、一枚ずつ送られてくる用紙YSを搬送路HRに沿って送る。レジストローラー対66は、用紙YSを一時待機させた後、所定のタイミングで中間転写部40に供給する。
画像形成部20は、電子写真方式によって用紙上に画像を形成するものであって、イメージングユニットU、中間転写部40および定着部50を備えている。
イメージングユニットUは、Y(イエロー)、M(マジェンダ)、C(シアン)、K(ブラック)の4色にそれぞれ対応するイメージングユニットUY、UM、UC、UKから構成されている。各イメージングユニットUY、UM、UC、UKはこの順で中間転写ベルト41に沿って配置されている。各イメージングユニットUY、UM、UC、UKは、それぞれ、感光体ドラム21、帯電チャージャー22、感光体ドラム21の表面を露光して静電潜像を形成する露光部23、静電潜像を各色のトナーで現像してトナー像を形成する現像部24、トナー像を中間転写ベルト41に転写(一次転写)するための転写チャージャー25、感光体ドラム21の表面をクリーニングするクリーナー26、および、図示しない転写ローラーなどを備えている。イメージングユニットUにより、矢印M2方向に走行している中間転写ベルト41上に各色のトナー像(トナー画像)が、順次、転写位置が合うように重ねて転写される。
中間転写部40には、トナー像が転写される中間転写ベルト41と、複数のローラー42、43、44と、二次転写ローラー45とが設けられている。中間転写ベルト41は、ローラー42〜44により支持されていて、これらが回転駆動することにより矢印M2方向に走行する。二次転写ローラー45は、中間転写ベルト41を介してローラー44に対向するように設置されている。二次転写ローラー45は、中間転写ベルト41に対して接離可能であり、二次転写ローラー45が中間転写ベルト41に圧接されることで二次転写ローラー45とローラー44との間に転写ニップ部が形成される。
用紙YSは中間転写ベルト41の走行と同期して搬送され、転写ニップ部においてトナー像が形成された中間転写ベルト41と接する。二次転写ローラー45にバイアス電圧が加えられることで、中間転写ベルト41上に形成されたトナー像が用紙YS上に転写(二次転写)される。二次転写によってトナー像が転写された用紙YSは定着部50に搬送される。
定着部50には、内部に熱源を有する加熱ローラー51、加熱ローラー51との間にニップ部を形成する加圧ローラー52および用紙搬送ガイド53が設けられる。トナー像が形成された用紙YSは定着部50に搬送される。用紙YSは、用紙搬送ガイド53に案内されて搬送路HR上を搬送されて、加熱ローラー51と加圧ローラー52とにより形成されたニップル部において加熱される。加熱によりトナーが溶融し、トナー像が用紙YSに定着する。
トナー像が定着された用紙YSは、搬送路HR上を搬送されてトレイ70上に排出される。
加熱ローラー51は、その内部にハロゲンヒーターである第1ヒーター81および第2ヒーター82を有している。図2は本実施形態に係る画像形成装置1の加熱ローラー51の内部を示す透視図である。
図2に示すように、加熱ローラー51の内部には、第1ヒーター81および第2ヒーター82が配置されている。第1ヒーター81は、加熱ローラー51の中央部付近に配置され、加熱ローラー51の軸方向に沿って伸びる棒状の形状であり、加熱ローラー51の中央部付近を加熱する。第2ヒーター82は、加熱ローラー51の両端部付近にそれぞれ配置された2つの加熱部82a、82bを有し、これら2つの加熱部82a、82bは互いに離間して設置されている。これらはリード線で電気的に直列接続されることとしてもよい。さらに、第1ヒーター81および第2ヒーター82のそれぞれには、電力が供給されるリード線L1およびL2が接続されている。リード線L1およびL2から供給される電力量を制御することにより、第1ヒーター81および第2ヒーター82の温度を制御することが可能である。
また、第1ヒーター81および第2ヒーター82のそれぞれには、これらの温度を測定するための第1温度センサー11および第2温度センサー12が設置されている。
図1には示されていないが、画像形成装置1は交流電源35に接続され、交流電力を供給されている。また、画像形成装置1は、上述した部材以外に電力制御装置30などを備えている。以下に、加熱ローラー51の温度制御につて説明するが、その際にこれらの部材についても説明する。
図3は、本実施の形態に係る画像形成装置1の電力制御装置30に関する部分についての機能ブロック図である。図3に示すように、画像形成装置1は、電力制御装置30と、加熱ローラー51、二次側負荷37とを備えている。
交流電源35は商用電源からの交流電力を画像形成装置1に供給する。電力制御装置30は交流電源35から交流電力を供給され、交流電力の一部が加熱ローラー51の第1ヒーター81および第2ヒーター82に供給される。そして、交流電力の一部は、加熱ローラー51を加熱する以外の負荷である二次側負荷37に供給される。
二次側負荷37は、主に各ローラーを回転駆動させるために用いられる負荷である。その他にも、ディスプレイを表示させるための負荷なども含まれる。
電力制御装置30は、制御部34と、第1スイッチ部31と、第2スイッチ部32と、ゼロクロス検出回路36とを備えている。
制御部34は、例えばCPU、不揮発性メモリなどを用いて構成されていて、画像形成装置1の各部の動作を制御する。各部は制御部34からの指示を受けて動作し、制御部34は各部の動作状態を各部からの信号などにより把握し、各部の動作を管理している。
ゼロクロス検出回路36は、交流電源35から加えられる電圧のゼロクロス点を検出して、検出した結果を制御部34に送る。制御部34はその検出結果に基づいて、オンまたはオフのタイミングを決定して第1スイッチ部31および第2スイッチ部32に指示する。
第1スイッチ部31は制御部34の指示によりオンまたはオフに切換り、交流電源35と第1ヒーター81との間のオンまたはオフを制御する。これにより、第1スイッチ部31は第1ヒーター81への交流電力の供給量を制御する。
また、第2スイッチ部32は制御部34の指示によりオンまたはオフに切換り、交流電源35と第2ヒーター82との間のオンまたはオフを制御する。これにより、第2スイッチ部32は第2ヒーター82への交流電力の供給量を制御する。
なお、第1スイッチ部31および第2スイッチ部32は、例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの自己消弧能力のある素子により構成されている。これにより、交流電力のオンまたはオフの制御を所定の位相角で行うことができる。
加熱ローラー51の構成は上述したとおりである。なお、第1ヒーター81は第1スイッチ部31を介して交流電源35に接続されていて、第2ヒーター82は第2スイッチ部32を介して交流電源35に接続されている。
第1ヒーター81の温度を検出する第1温度センサー11は検出結果を制御部34に送っている。第2ヒーター82の温度を検出する第2温度センサー12は検出結果を制御部34に送っている。これらの検出結果が入力された制御部34は、それら検出結果に基づいてオンまたはオフのタイミングを決定し、第1スイッチ部31および第2スイッチ部32に指示する。
第1温度センサー11および第2温度センサー12は、例えば熱電対により構成される。
第1スイッチ部31がオンまたはオフすることにより、第1ヒーター81には各半サイクルにおける位相角0〜位相角φ1(ラジアン)の範囲の交流電力が供給される。そして、第2スイッチ部32がオンまたはオフすることにより、第2ヒーター82には各半サイクルにおける位相角φ2〜位相角π(ラジアン)の範囲の交流電力が供給される。ここで、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きい。これにより、第1ヒーター81および第2ヒーター82のいずれにも交流電力が供給されない期間が生じない。そして、第1ヒーター81および第2ヒーター82の両方に交流電力が供給される期間が存在することとすればよい。それにより、加熱ローラー51のヒーター全体において電力の欠損が生じることがないため、ヒーターに供給される電力においての力率が高く、本実施形態に係る画像形成装置1は高効率である。
制御部34は、画像形成装置1の現在の動作状態に応じて、加熱ローラー51が好ましい温度となるように第1スイッチ部31および第2スイッチ部32に指示を送る。第1スイッチ部31および第2スイッチ部32が制御部34の指示にしたがって、第1ヒーター81および第2ヒーター82への電力の供給量を調整する。
例えば、画像形成装置1の起動時には、スルーアップ制御により第1ヒーター81および第2ヒーター82に電力を供給し、加熱ローラー51の発熱量が時間の経過ともに高くなっていくように第1スイッチ部31および第2スイッチ部32がオンまたはオフの動作を行う。また、画像形成装置1の電源は入っているが、使用されなかった時間が所定時間を経過すると、省エネルギーの観点などから画像形成装置1はスタンバイモードとなり、加熱ローラー51の温度が大幅に下がる。このような場合や、電源が切られた場合などには、スルーダウン制御により加熱ローラー51の発熱量が時間の経過ともに低くなっていくように第1スイッチ部31および第2スイッチ部32がオンまたはオフの動作を行う。
加熱ローラー51の発熱量を制御するためには、第1スイッチ部31および第2スイッチ部32が、位相角φ1およびφ2の値を変化させればよい。位相角φ1およびφ2の値を変化させることにより、第1ヒーター81および第2ヒーター82のいずれにも電力が供給される期間(以下、オーバーラップ期間という)を調整することができる。オーバーラップ期間を調整することにより、第1ヒーター81への電力供給量および第2ヒーター82への電力供給量の和を調整することができる。つまり、加熱ローラー51の発熱量を調整することができる。上述したように、第1スイッチ部31および第2スイッチ部32は自己消弧能力のある素子により構成されていることから、第1ヒーター81および第2ヒーター82への電力供給量をそれぞれ連続的に変化させることが可能である。それにより、加熱ローラー51の発熱量を広い範囲において、高精度に調整することができる。
次に、画像形成装置1の電力制御方法の一例についてタイミングチャートを参照しながら説明する。図4は、画像形成装置1の電力制御方法の一例を示すためのタイミングチャートである。図4の各段に示された図は、最上段から順に、ヒーター全体に供給される電力、第1ヒーター81の電圧、第2ヒーター82の電圧およびヒーター全体の電流を示した図であり、それぞれの時間経過に対する変化を示している。ただし、ヒーター全体の電力は、第1ヒーター81に供給される電力および第2ヒーター82に供給される電力の和である。また、ヒーター全体の電流は、第1ヒーター81に流れる電流および第2ヒーター82に流れる電流の和である。
図4は、2サイクルの波形が示されている。つまり、半サイクルが4つ示されている。以下では、これら半サイクルごとに順番を付して示すこととする。図4に示すように、第1期間(時間0〜t1b)、第2期間(時間t1b〜t1e)、第3期間(時間t1e〜t1h)および第4期間(時間t1h〜t1i)として示す。各期間は半サイクルであり、位相角で示すとそれぞれ0〜πの期間である。
第1ヒーター81および第2ヒーター82はそれぞれ500Wのハロゲンヒーターである。また、スルーアップ制御を用いて、時間の経過とともにヒーター全体の電力が大きくなっていくように制御する。
まず、第1期間における各波形について説明する。第1ヒーター81には、時間0〜t1aの期間において電圧が加えられている。第2ヒーター82には、時間t1a〜t1bにおいて電圧が加えられている。このとき、オーバーラップ期間は存在しない。ヒーター全体に流れる電流は図4に示す正弦波となり、第1期間におけるヒーター全体の電力は500Wである。
次に、第2期間における各波形について説明する。第1ヒーター81には、時間t1b〜t1dの期間において電圧が加えられている。第2ヒーター82には、時間t1c〜t1eにおいて電圧が加えられている。このとき、時間t1c〜t1dがオーバーラップ期間である。第2期間におけるヒーター全体の電力は、このオーバーラップ期間の分だけ、第1期間におけるヒーター全体の電力よりも多い。ヒーター全体に流れる電流は図4に示すような波形となる。
次に、第3期間における各波形について説明する。第1ヒーター81には、時間t1e〜t1gの期間において電圧が加えられている。第2ヒーター82には、時間t1f〜t1hにおいて電圧が加えられている。このとき、時間t1f〜t1gがオーバーラップ期間である。第3期間におけるヒーター全体の電力は、第2期間におけるヒーター全体の電力よりも多い。ヒーター全体に流れる電流は図4に示すような波形となる。
次に、第4期間における各波形について説明する。第1ヒーター81には、時間t1h〜t1iの期間において電圧が加えられている。第2ヒーター82には、時間t1h〜t1iにおいて電圧が加えられている。このとき、時間t1h〜t1i、すなわち、第4期間の全範囲がオーバーラップ期間である。ヒーター全体に流れる電流は図4に示す正弦波となり、第4期間におけるヒーター全体の電力は、第3期間におけるヒーター全体の電力よりも多く、1000Wである。ヒーター全体に流れる電流は図4に示すような波形となる。
画像形成装置1の起動時などのようにスルーアップ制御を行う際に、第1ヒーター81および第2ヒーター82が上述のように制御されることとすればよい。このときに制御部34は、第1温度センサー11および第2温度センサー12により検出された第1ヒーター81および第2ヒーター82の温度に応じてオーバーラップ期間を決めればよい。そして、必要なオーバーラップ期間に応じて、第1ヒーター81および第2ヒーター82それぞれがオンする位相角の範囲を求めればよい。
制御部34は、ゼロクロス検出回路36からのゼロクロス信号から、上記求めた各位相角の範囲において、第1ヒーター81および第2ヒーター82に電流が流れるように、第1スイッチ部31および第2スイッチ部32に指示を送る。
第1スイッチ部31および第2スイッチ部32は制御部34からの指示にしたがってオンまたはオフを制御する。
上述したように、第1ヒーター81および第2ヒーター82におけるオーバーラップ期間を、画像形成装置1の状態に応じて調整することにより、加熱ローラー51の発熱量を調整することができる。また、第1ヒーター81および第2ヒーター82の両方がオフとなった状態がないため、電力の欠落がなく、力率の低下を抑制することができる。なお、スルーアップ制御について説明したが、それ以外の制御であっても同様に行うことができる。
ここまで、加熱ローラー51のヒーターについての電力制御について説明した。画像形成装置1は、第1ヒーター81および第2ヒーター82以外に二次側負荷37も有している。したがって、二次側負荷37に供給する電力を考慮して、第1ヒーター81および第2ヒーター82に供給する電力を決定することが好ましい。以下において、二次側負荷37に供給する電力を考慮した電力制御方法について説明する。
図5は、二次側負荷37を考慮した電力制御方法の一例を示すフローチャートである。図5を参照して、二次側負荷37に供給する二次側電力(二次側負荷37により消費される電力)を考慮した電力制御方法について説明する。
制御部34により、画像形成装置1の各部の動作状態に基づいて、二次側負荷37に供給される電力が検出される(#101)。
検出された電力に基づいて、制御部34によりヒーターへの供給可能電力であるヒーター供給可能電力が算出される(#102)。具体的には、ヒーター供給可能電力および二次側負荷37に供給され得る最大電力と、検出された二次側負荷37に供給される二次側電力との差が、ヒーター供給可能電力である。この最大電力は予め決まる値であり、制御部34が予めこの最大電力を記憶しておけばよい。
第1温度センサー11および第2温度センサー12により、第1ヒーター81および第2ヒーター82の温度が検出される(#103)。
検出された温度に基づいて、第1ヒーター81および第2ヒーター82のそれぞれが目標温度に到達するために必要な必要温度が、制御部34により算出される(#104)。目標温度は、画像形成装置1の状態に応じて加熱ローラー51が必要とする温度を得るために必要な、第1ヒーター81および第2ヒーター82の温度である。目標温度と検出された温度との差が必要温度である。
算出された、第1ヒーター81および第2ヒーター82の必要温度に基づいて、第1ヒーター81に供給する電力と第2ヒーター82に供給する電力との比であるヒーター電力比を、制御部34が算出する(#105)。第1ヒーター81に供給する電力は、第1ヒーター81の温度を必要温度分だけ上昇させるために必要な電力である。同様に、第2ヒーター82に供給する電力は、第2ヒーター82の温度を必要温度分だけ上昇させるために必要な電力である。
算出されたヒーター電力比などに基づいて、制御部34により第1スイッチ部31および第2スイッチ部32のオンまたはオフのタイミングが決定される(#106)。算出されたヒーター電力比と、#102の工程で算出されたヒーター供給可能電力とから、第1ヒーター81および第2ヒーター82のそれぞれが好ましい温度となるような供給電力を算出することができる。それにより、好ましい位相角φ1および位相角φ2を決定できる。位相角φ1および位相角φ2が決まれば、第1スイッチ部31および第2スイッチ部32のオンまたはオフのタイミングが決定できる。
上述の方法により、第1スイッチ部31および第2スイッチ部32のオンまたはオフのタイミングを決定する制御方法について、タイミングチャートを参照して説明する。
図6は、二次側負荷37を考慮した電力制御方法の一例を示すためのタイミングチャートである。
図6は、4サイクルの波形が示されている。つまり、半サイクルが8つ示されている。以下では、これら半サイクルごとに順番を付して示すこととする。図6に示すように、第1期間(時間0〜t2a)、第2期間(時間t2a〜t2b)、第3期間(時間t2b〜t2c)、第4期間(時間t2c〜t2d)、第5期間(時間t2d〜t2g)、第6期間(時間t2g〜t2j)、第7期間(時間t2j〜t2m)および第8期間(時間t2m〜t2n)として示す。各期間は半サイクルであり、位相角で示すとそれぞれ0〜πの期間である。
図6の最上段は、画像形成装置1において二次側負荷37により消費される電力(二次側電力)と、第1ヒーター81および第2ヒーター82に供給可能な電力(ヒーター供給可能電力)との関係を示す図である。画像形成装置1が使用できる最大電力のうち、二次側負荷37により消費される電力と、第1ヒーター81および第2ヒーター82に供給可能な電力とのそれぞれが占める割合を示している。
図6の上から2段目および3段目は、それぞれ、第1温度センサー11および第2温度センサー12で測定した第1ヒーター81および第2ヒーター82の温度の変化を示す図である。各図においてヒーターの目標温度が示されている。目標温度と測定された温度との差が、現状で加熱が必要な温度(必要温度)である。
図6の上から4段目は、第1ヒーター81および第2ヒーター82のそれぞれを目標温度に到達させるために、第1ヒーター81および第2ヒーター82のそれぞれに供給することが必要とされる電力の比(ヒーター電力比)を示す図である。
図6の上から5段目および6段目は、それぞれ、図6の4段目に示された電力比を実現するために必要である第1スイッチ部31および第2スイッチ部32の制御信号を示す図である。
図6の上から7段目、8段目および9段目第1ヒーター81の電圧、第2ヒーター82の電圧およびヒーター全体の電流を示した図であり、それぞれの時間経過に対する変化を示している。
第1期間および第2期間では、二次側負荷37に電力を供給する必要がないことから、画像形成装置1で使用できる電力のすべてを第1ヒーター81および第2ヒーター82に供給できる。また、第1ヒーター81および第2ヒーター82はともに目標温度まで到達していないことから、ヒーター電力比は1:1となる。したがって、第1ヒーター81および第2ヒーター82のいずれにおいても位相角が0〜πの範囲で電圧が加えられる。つまり、時間0〜t2bの範囲において、第1スイッチ部31および第2スイッチ部32がともにオンとなる。第1期間と第2期間とのそれぞれについて、時間0〜t2aと、時間t2a〜t2bとがオーバーラップ期間である。
第3期間では、二次側負荷37に供給する電力が増大している。画像形成装置1で使用できる電力のうち、第1ヒーター81および第2ヒーター82に供給できるのは、半分程度である。また、第3期間の始点である時間t2bにおいて、第1ヒーター81は目標温度に到達しているが、第2ヒーター82は目標温度に到達していない。したがって、第1ヒーター81には電力を供給する必要なく、ヒーター電力比は0:1となる。
そこで、第1スイッチ部31は時間t2b〜t2cの期間においてオフとなる。第2スイッチ部32は時間t2b〜t2cの期間においてオンとなる。それにより、第1ヒーター81には、時間t2b〜t2cの期間においては電圧が加えられない。第2ヒーター82には、時間t2b〜t2cの期間においては電圧が加えられる。オーバーラップ期間は存在しない。
第4期間でも第1ヒーター81および第2ヒーター82に供給できるのは、全体の半分程度の電力である。また、第4期間の始点である時間t2cにおいて、第1ヒーター81は目標温度に到達していないが、第2ヒーター82は目標温度に到達している。したがって、第1ヒーター82には電力を供給する必要なく、ヒーター電力比は1:0となる。
そこで、第1スイッチ部31は時間t2c〜t2dの期間においてオンとなる。第2スイッチ部32は時間t2c〜t2dの期間においてオフとなる。それにより、第1ヒーター81には、時間t2c〜t2dの期間においては電圧が加えられる。第2ヒーター82には、時間t2c〜t2dの期間においては電圧が加えられない。オーバーラップ期間は存在しない。
第5期間でも第1ヒーター81および第2ヒーター82に供給できるのは、全体の半分程度の電力である。また、第5期間の始点である時間t2dにおいて、第1ヒーター81および第2ヒーター82はともに目標温度に到達していない。さらに、第2ヒーター82の方が第1ヒーター81よりも温度が低く、ヒーター電力比は1:2となる。
そこで、第1スイッチ部31は時間t2d〜t2fの期間においてオンとなる。第2スイッチ部32は時間t2e〜t2gの期間においてオンとなる。それにより、第1ヒーター81には、時間t2d〜t2fの期間において電圧が加えられる。第2ヒーター82には、時間t2e〜t2gの期間において電圧が加えられる。時間t2e〜t2fがオーバーラップ期間である。
第6期間でも第1ヒーター81および第2ヒーター82に供給できるのは、全体の半分程度の電力である。また、第6期間の始点である時間t2gにおいて、第1ヒーター81および第2ヒーター82はともに目標温度に到達しておらず、これらの温度は同一であることから、ヒーター電力比は1:1となる。
そこで、第1スイッチ部31は時間t2g〜t2iの期間においてオンとなる。第2スイッチ部32は時間t2h〜t2jの期間においてオンとなる。それにより、第1ヒーター81には、時間t2g〜t2iの期間において電圧が加えられる。第2ヒーター82には、時間t2h〜t2jの期間において電圧が加えられる。時間t2h〜t2iがオーバーラップ期間である。
第7期間では、二次側負荷37に供給する電力が減少している。画像形成装置1で使用できる電力のうち、第1ヒーター81および第2ヒーター82に供給できるのは、8割程度である。また、第7期間の始点である時間t2jにおいて、第1ヒーター81および第2ヒーター82はともに目標温度に到達しておらず、これらの温度は同一であることから、ヒーター電力比は1:1となる。
そこで、第1スイッチ部31は時間t2j〜t2lの期間においてオンとなる。第2スイッチ部32は時間t2k〜t2mの期間においてオンとなる。それにより、第1ヒーター81には、時間t2j〜t2lの期間において電圧が加えられる。第2ヒーター82には、時間t2k〜t2mの期間において電圧が加えられる。時間t2k〜t2lがオーバーラップ期間である。
第8期間でも第1ヒーター81および第2ヒーター82に供給できるのは、全体の8割程度の電力である。また、第3期間の始点である時間t2bにおいて、第1ヒーター81は目標温度に到達しているが、第2ヒーター82は目標温度に到達していない。したがって、第1ヒーター81には電力を供給する必要なく、ヒーター電力比は0:1となる。
そこで、第1スイッチ部31は時間t2m〜t2nの期間においてオフとなる。第2スイッチ部32は時間t2m〜t2nの期間においてオンとなる。それにより、第1ヒーター81には、時間t2m〜t2nの期間においては電圧が加えられない。第2ヒーター82には、時間t2m〜t2nの期間においては電圧が加えられる。オーバーラップ期間は存在しない。
上述の制御方法では、図6の最上段の図で示したように、画像形成装置1が使用できる最大電力から、二次側負荷37に供給される電力(二次側電力)を減じることにより、ヒーターに供給が可能な電力(ヒーター供給可能電力)を算出している(図5の#101および#102参照)。しかし、画像形成装置1の駆動状態に応じてヒーターに供給が可能な電力はほぼ決まることから、このような演算を行わなくても、ヒーターに供給が可能な電力を予想することは可能である。つまり、画像形成装置1の駆動状態に応じて、ヒーターに供給が可能な電力を予め求めておけば、駆動状態によりヒーターに供給が可能な電力を求めることができる。
図7は、二次側負荷を考慮した電力制御方法の他の例を示すためのタイミングチャートである。図7において、最上段の図以外は図6と同一であることから、これらについては説明を省略する。駆動状態は、モード1〜3の3つの異なる状態があることとした。
図7の最上段の図は、画像形成装置1の駆動状態を示す各モード1〜3の状態における、第1ヒーター81および第2ヒーター82に供給可能な電力を示す図である。モード1の駆動状態は、二次側負荷を使用していない状態であり、例えば画像形成装置1のウォームアップ状態である。また、モード2の駆動状態は、例えばコピーと合わせてフィニッシャー機能が稼働している状態である。また、モード3の駆動状態は、例えば、コピーのみを行っている状態である。
制御部34が、あらかじめ各モードにおけるヒーター供給可能電力を記憶しておけばよい。第1〜8期間におけるヒーター供給可能電力は、現在の画像形成装置1の駆動状態がいずれのモードであるかの信号が制御部34に入力することにより容易に求められる。
次に、画像形成装置1の変形例について説明する。上述の説明では、加熱ローラー51の内部のヒーターは2つであったが、ヒーターを3つとしてもよい。図8は、本実施形態に係る変形例における画像形成装置1Bの電力制御装置30Bに関する部分についての機能ブロック図である。図9は、本実施形態に係る変形例の画像形成装置1Bにおける加熱ローラー51Bの内部を示す透視図である。図10は、変形例の画像形成装置1Bにおける電力制御方法の一例を示すためのタイミングチャートである。
図8に示すように、変形例に係る加熱ローラー51Bは、図3の加熱ローラー51に、さらにハロゲンヒーターである第3ヒーター83と、第3ヒーター83の温度を測定するための第3温度センサー13とが追加された構成である。また、変形例に係る電力制御装置30Bは、図3の電力制御装置30に、さらに第3スイッチ部33が追加された構成である。
第3ヒーター83の温度を検出する第3温度センサー13は検出結果を制御部34に送る。図9に示すように、加熱ローラー51Bの内部には、第1ヒーター81、第2ヒーター82および第3ヒーター83が配置されている。第1ヒーター81は、加熱ローラー51Bの両端部間にわたって、加熱ローラー51Bの軸方向に沿って伸びる棒状の形状であり、加熱ローラー51Bの全体を加熱する。第3ヒーター83には、電力が供給されるリード線L3が接続されている。リード線L3から供給される電力量を制御することにより、第3ヒーター83の温度を制御することが可能である。また、第3ヒーター83には、温度を測定するための第3温度センサー13が設置されている。第3温度センサー13は、例えば熱電対とすればよい。
第3スイッチ部33は電力制御装置30Bに備えられていて、制御部34の指示によりオンまたはオフに切換り、交流電源35と第3ヒーター83との間のオンまたはオフを制御する。第3スイッチ部33は、例えばIGBTやMOSFETなどの自己消弧能力のある素子により構成されている。これにより、第3スイッチ部33は第3ヒーター83への交流電力の供給量を制御する。
変形例の画像形成装置1Bにおいて、第1スイッチ部31がオンまたはオフすることにより、第1ヒーター81には各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力が供給される。そして、第2スイッチ部32がオンまたはオフすることにより、第2ヒーター82には各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力が供給される。そして、第3スイッチ部33がオンまたはオフすることにより、第3ヒーター83には各半サイクルにおける位相角φ3〜位相角φ4の範囲の交流電力が供給される。
ここで、φ1は0よりも大きくπ以下であり、φ2は以上であってπよりも小さく、φ3は0以上であってφ1よりも小さく、φ4はπ以下であってφ2よりも大きい。これにより、第1ヒーター81、第2ヒーター82および第3ヒーター83のいずれにも交流電力が供給されない期間が生じない。そして、第1ヒーター81、第2ヒーター82および第3ヒーター83のうち少なくともいずれか2つに交流電力が供給される期間が存在することとすればよい。それにより、加熱ローラー51Bのヒーター全体において電力の欠損が生じることがないため、ヒーターに供給される電力においての力率が高く、変形例に係る画像形成装置1Bは高効率である。
加熱ローラー51Bの発熱量を制御するためには、第1スイッチ部31、第2スイッチ部32および第3スイッチ部33が、位相角φ1、φ2、φ3およびφ4の値を変化させればよい。これらの値を変化させることにより、第1ヒーター81、第2ヒーター82および第3ヒーター83のうち少なくともいずれか2つに交流電力が供給される期間(以下、オーバーラップ期間という)を調整することができる。オーバーラップ期間を調整することにより、第1ヒーター81への電力供給量、第2ヒーター82への電力供給量および第3ヒーター83への電力供給量の和を調整して、加熱ローラー51Bの発熱量を調整することができる。
次に、変形例の画像形成装置1Bの電力制御方法の一例について図10を参照しながら説明する。図10の各段に示された図は、最上段から順に、ヒーター全体の電力、第1ヒーター81の電圧、第2ヒーター82の電圧、第3ヒーター83の電圧およびヒーター全体の電流を示した図であり、それぞれの時間経過に対する変化を示している。ただし、ヒーター全体の電力は、第1ヒーター81に供給される電力、第2ヒーター82に供給される電力および第3ヒーター83に供給される電力の和である。また、ヒーター全体の電流は、第1ヒーター81に流れる電流、第2ヒーター82に流れる電流および第3ヒーター83に流れる電流の和である。
図10は、2サイクルの波形が示されている。つまり、半サイクルが4つ示されている。以下では、これら半サイクルごとに順番を付して示すこととする。図10に示すように、第1期間(時間0〜t3c)、第2期間(時間t3c〜t3h)、第3期間(時間t3h〜t3m)および第4期間(時間t3m〜t3o)として示す。各期間は半サイクルであり、位相角で示すとそれぞれ0〜πの期間である。
第1ヒーター81、第2ヒーター82および第3ヒーター83はそれぞれ500Wのハロゲンヒーターである。また、スルーアップ制御を用いて制御する。
まず、第1期間における各波形について説明する。第1ヒーター81には、時間0〜t3aの期間において電圧が加えられている。第2ヒーター82には、時間t3b〜t3cにおいて電圧が加えられている。第3ヒーター83には、時間t3a〜t3bにおいて電圧が加えられている。このとき、オーバーラップ期間は存在しない。ヒーター全体に流れる電流は図10に示す正弦波となり、第1期間におけるヒーター全体の電力は500Wである。
次に、第2期間における各波形について説明する。第1ヒーター81には、時間t3c〜t3eの期間において電圧が加えられている。第2ヒーター82には、時間t3f〜t3hにおいて電圧が加えられている。第3ヒーター83には、時間t3d〜t3gにおいて電圧が加えられている。このとき、時間t3d〜t3eおよび時間t3f〜t3gがオーバーラップ期間である。第2期間におけるヒーター全体の電力は、このオーバーラップ期間の分だけ、第1期間におけるヒーター全体の電力よりも多い。ヒーター全体に流れる電流は図10に示すような波形となる。
次に、第3期間における各波形について説明する。第1ヒーター81には、時間t3h〜t3jの期間において電圧が加えられている。第2ヒーター82には、時間t3k〜t3mにおいて電圧が加えられている。第3ヒーター83には、時間t3i〜t3lにおいて電圧が加えられている。このとき、時間t3i〜t3jおよび時間t3k〜t3lがオーバーラップ期間である。第3期間におけるヒーター全体の電力は、第2期間におけるヒーター全体の電力よりも多い。ヒーター全体に流れる電流は図10に示すような波形となる。
次に、第4期間における各波形について説明する。第1ヒーター81には、時間t3m〜t3nの期間において電圧が加えられている。第2ヒーター82には、時間t3n〜t3oにおいて電圧が加えられている。第3ヒーター83には、時間t3m〜t3oにおいて電圧が加えられている。このとき、時間t3m〜t3o、すなわち、第4期間の全範囲がオーバーラップ期間である。ヒーター全体に流れる電流は図10に示す正弦波となり、第4期間におけるヒーター全体の電力は、第3期間におけるヒーター全体の電力よりも多く、1000Wである。ヒーター全体に流れる電流は図10に示すような波形となる。
第1ヒーター81、第2ヒーター82および第3ヒーター83が上述のように制御されることにより、スルーアップ制御が行われる。このときに制御部34は、第1温度センサー11、第2温度センサー12および第3温度センサー13により検出された第1ヒーター81、第2ヒーター82および第3ヒーター83の温度に応じてオーバーラップ期間を決めればよい。そして、必要なオーバーラップ期間に応じて、第1ヒーター81、第2ヒーター82および第3ヒーター83それぞれがオンする位相角の範囲を求めればよい。
制御部34は、ゼロクロス検出回路36からのゼロクロス信号から、上記求めた各位相角の範囲において、第1ヒーター81、第2ヒーター82および第3ヒーター83に電流が流れるように、第1スイッチ部31、第2スイッチ部32および第3スイッチ部33に指示を送る。
第1スイッチ部31、第2スイッチ部32および第3スイッチ部33は制御部34からの指示にしたがってオンまたはオフを制御する。
上述したように、第1ヒーター81、第2ヒーター82および第3ヒーター83におけるオーバーラップ期間を、画像形成装置1Bの状態に応じて調整することにより、加熱ローラー51Bの発熱量を調整することができる。また、第1ヒーター81、第2ヒーター82および第3ヒーター83のすべてがオフとなった状態が存在しないため、電力の欠落がなく、力率の低下を抑制することができる。なお、スルーアップ制御について説明したが、それ以外の制御であっても同様に行うことができる。
以上、本実施形態に係る画像形成装置1、1Bについて説明した。なお、第1ヒーター81、第2ヒーター82および第3ヒーター83としては、ハロゲンヒーターを用いた構成を例示した。しかし、ハロゲンヒーター以外に、カーボンヒーター、電熱線、セラミックヒーターまたは誘導加熱(IH:Induction Heating)コイルなどを用いて、第1ヒーター81、第2ヒーター82および第3ヒーター83を構成してもよい。
また、上述の説明では、第2ヒーター82は2つの加熱部82a、82bにより構成されることとしたが、加熱部は2つに限定されるわけではない。第2ヒーター82も、第1ヒーター81および第3ヒーター83のように1つの棒形状の加熱部により構成されることとしてもよいし、2つよりも大きな数の加熱部により構成されていてもよい。また、第1ヒーター81および第3ヒーター83は、第2ヒーター82のように、2つの加熱部により構成されていてもよいし、2つよりも大きな数の加熱部により構成されていてもよい。このように、ヒーターを複数の加熱部から構成することにより、加熱ローラー51、51B内におけるヒーターの配置の自由度が高まり、設計が容易になる。
また、本実施形態では、電力制御装置30、30Bが制御部34を備えていることとしたが、制御部34が電力制御装置30、30Bに備えられているのではなく、電力制御装置30、30Bとは別に設置されている構成としてもよい。
上に述べた実施形態において、画像形成装置1、1Bの全体または各部の構造、形状、寸法、個数、材質、組成などは、本発明の趣旨に沿って適宜変更することができる。
1、1B 画像形成装置
11 第1温度センサー
12 第2温度センサー
13 第3温度センサー
30、30B 電力制御装置
31 第1スイッチ部
32 第2スイッチ部
33 第3スイッチ部
34 制御部(演算手段)
35 交流電源
36 ゼロクロス検出回路
37 二次側負荷
51、51B 加熱ローラー
81 第1ヒーター(第1負荷)
82 第2ヒーター(第2負荷)
83 第3ヒーター(第3負荷)
82a、82b 加熱部(負荷)

Claims (10)

  1. 第1負荷および第2負荷にそれぞれ交流電力を供給するための電力制御方法であって、
    前記第1負荷に、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を供給し、
    前記第2負荷に、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を供給し、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、
    前記第1負荷の温度および前記第2負荷の温度を検出し、
    前記第1負荷の目標温度と検出した前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出した前記第2負荷の前記温度との差、および、前記第1負荷と前記第2負荷とに供給される電力に基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する
    ことを特徴とする電力制御方法。
  2. 第1負荷、第2負荷および第3負荷にそれぞれ交流電力を供給するための電力制御方法であって、
    前記第1負荷に、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を供給し、
    前記第2負荷に、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を供給し、
    前記第3負荷に、各半サイクルにおける位相角φ3〜位相角φ4の範囲の交流電力を供給し、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ3は0以上であってφ1よりも小さく、φ4はπ以下であってφ2よりも大きく、
    前記第1負荷の温度、前記第2負荷および前記第3負荷の温度を検出し、
    前記第1負荷の目標温度と検出した前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出した前記第2負荷の前記温度との差、前記第3負荷の目標温度と検出した前記第3負荷の前記温度との差、および、前記第1負荷と前記第2負荷と前記第3負荷とに供給される電力に基づいて、前記第1負荷、前記第2負荷および第3負荷に供給する電力を決定する
    ことを特徴とする電力制御方法。
  3. 交流電源から第1負荷および第2負荷のそれぞれに交流電力を供給するための電力制御装置であって、
    前記交流電源と前記第1負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給する第1スイッチ手段と、
    前記交流電源と前記第2負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給する第2スイッチ手段と、を備え、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、
    前記第1負荷の温度および前記第2負荷の温度の検出値が外部から入力される演算手段を備え、
    前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、および、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差を算出し、算出した2つの当該差と、前記第1負荷および前記第2負荷に供給される電力とに基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する
    ことを特徴とする電力制御装置。
  4. 交流電源から第1負荷、第2負荷および第3負荷にそれぞれ交流電力を供給するための電力制御装置であって、
    前記交流電源と前記第1負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給する前記第1スイッチ手段と、
    前記交流電源と前記第2負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給する前記第2スイッチ手段と、
    前記交流電源と前記第3負荷との間のオンまたはオフを制御して、前記交流電源からの交流電力のうち、各半サイクルにおける位相角φ3〜位相角φ4の範囲の交流電力を前記第3負荷に供給する第3スイッチ手段と、を備え、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ3は0以上であってφ1よりも小さく、φ4はπ以下であってφ2よりも大きく、
    前記第1負荷の温度、前記第2負荷の温度および前記第3負荷の温度の検出値が外部から入力される演算手段を備え、
    前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差、および、前記第3負荷の目標温度と検出された前記第3負荷の前記温度との差を算出し、算出した3つの当該差と、前記第1負荷、前記第2負荷および前記第3負荷に供給される電力とに基づいて、前記第1負荷、前記第2負荷および前記第3負荷に供給する電力を決定する
    ことを特徴とする電力制御装置。
  5. 交流電源から交流電力がそれぞれ供給される第1負荷および第2負荷とを有した画像形成装置であって、
    前記第1負荷に供給される第1入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第1スイッチ手段と、
    前記第2負荷に供給される第2入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第2スイッチ手段と、を備え、
    前記第1スイッチ手段は、前記第1入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第1入力電力の各半サイクルにおいて位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給し、
    前記第2スイッチ手段は、前記第2入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第2入力電力の各半サイクルにおいて位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給し、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ1はφ2よりも大きく、
    前記第1負荷に設置された前記第1負荷の温度を検出する第1温度センサーと、
    前記第2負荷に設置された前記第2負荷の温度を検出する第2温度センサーと、
    前記第1温度センサーおよび前記第2温度センサーの検出値が入力される演算手段とを備え、
    前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、および、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差を算出し、算出した2つの当該差と、前記第1負荷および前記第2負荷に供給される電力とに基づいて、前記第1負荷および前記第2負荷に供給する電力を決定する
    ことを特徴とする画像形成装置。
  6. 前記第1負荷および前記第2負荷以外に、前記交流電源から前記交流電力が供給される二次側負荷を備え、
    前記演算手段は、前記二次側負荷に供給されている二次側電力を検出し、
    前記第1負荷、前記第2負荷および前記二次側負荷に供給され得る最大電力を予め記憶しており、
    前記最大電力と検出された前記二次側電力との差を、前記第1負荷および前記第2負荷に供給される電力として算出する、
    請求項に記載の画像形成装置。
  7. 前記演算手段は、当該画像形成装置の駆動状態に応じて変化する、前記第1負荷および前記第2負荷に供給され得る電力を予め記憶しており、前記駆動状態を検知することにより、その駆動状態に応じた前記第1負荷および前記第2負荷に供給され得る電力を、前記第1負荷および前記第2負荷に供給される電力とする、
    請求項に記載の画像形成装置。
  8. 交流電源から交流電力がそれぞれ供給される第1負荷、第2負荷および第3負荷とを有した画像形成装置であって、
    前記第1負荷に供給される第1入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第1スイッチ手段と、
    前記第2負荷に供給される第2入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第2スイッチ手段と、
    前記第3負荷に供給される第3入力電力の各半サイクルにおけるオンまたはオフを位相角に応じて制御する第3スイッチ手段と、を備え、
    前記第1スイッチ手段は、前記第1入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第1入力電力の各半サイクルにおいて位相角0〜位相角φ1の範囲の交流電力を前記第1負荷に供給し、
    前記第2スイッチ手段は、前記第2入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第2入力電力の各半サイクルにおいて位相角φ2〜位相角πの範囲の交流電力を前記第2負荷に供給し、
    前記第3スイッチ手段は、前記第3入力電力の各半サイクルにおけるオンまたはオフを制御することにより、前記第3入力電力の各半サイクルにおいて位相角φ3〜位相角φ4の範囲の交流電力を前記第3負荷に供給し、
    ここにおいて、φ1は0よりも大きくπ以下であり、φ2は0以上であってπよりも小さく、φ3は0以上であってφ1よりも小さく、φ4はπ以下であってφ2よりも大きく、
    前記第1負荷に設置された前記第1負荷の温度を検出する第1温度センサーと、
    前記第2負荷に設置された前記第2負荷の温度を検出する第2温度センサーと、
    前記第3負荷に設置された前記第3負荷の温度を検出する第3温度センサーと、
    前記第1温度センサー、前記第2温度センサーおよび第3温度センサーの検出値が入力される演算手段とを備え、
    前記演算手段が、前記第1負荷の目標温度と検出された前記第1負荷の前記温度との差、前記第2負荷の目標温度と検出された前記第2負荷の前記温度との差、および、前記第3負荷の目標温度と検出された前記第3負荷の前記温度との差を算出し、算出した3つの当該差と、前記第1負荷、前記第2負荷および前記第3負荷に供給される電力とに基づいて、前記第1負荷、前記第2負荷および前記第3負荷に供給する電力を決定する
    ことを特徴とする画像形成装置。
  9. 前記第1負荷、前記第2負荷および前記第3負荷以外に、前記交流電源から前記交流電力が供給される二次側負荷を備え、
    前記演算手段は、前記二次側負荷に供給されている二次側電力を検出し、
    前記第1負荷、前記第2負荷、前記第3負荷および前記二次側負荷に供給され得る最大電力を予め記憶しており、
    前記最大電力と検出された前記二次側電力との差を、前記第1負荷、前記第2負荷および前記第3負荷に供給される電力として算出する、
    請求項に記載の画像形成装置。
  10. 前記演算手段は、当該画像形成装置の駆動状態に応じて変化する、前記第1負荷、前記第2負荷および前記第3負荷に供給され得る電力を予め記憶しており、前記駆動状態を検知することにより、その駆動状態に応じた前記第1負荷、前記第2負荷および前記第3負荷に供給され得る電力を、前記第1負荷、前記第2負荷および前記第3負荷に供給される電力とする、
    請求項に記載の画像形成装置。
JP2011204231A 2011-09-20 2011-09-20 電力制御方法、電力制御装置および画像形成装置 Active JP5464190B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011204231A JP5464190B2 (ja) 2011-09-20 2011-09-20 電力制御方法、電力制御装置および画像形成装置
CN201210341869.3A CN103019075B (zh) 2011-09-20 2012-09-14 电力控制方法、电力控制装置以及图像形成装置
US13/617,848 US8761630B2 (en) 2011-09-20 2012-09-14 Power control method, power control device, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204231A JP5464190B2 (ja) 2011-09-20 2011-09-20 電力制御方法、電力制御装置および画像形成装置

Publications (2)

Publication Number Publication Date
JP2013064913A JP2013064913A (ja) 2013-04-11
JP5464190B2 true JP5464190B2 (ja) 2014-04-09

Family

ID=47880767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204231A Active JP5464190B2 (ja) 2011-09-20 2011-09-20 電力制御方法、電力制御装置および画像形成装置

Country Status (3)

Country Link
US (1) US8761630B2 (ja)
JP (1) JP5464190B2 (ja)
CN (1) CN103019075B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821869B2 (ja) * 2013-02-18 2015-11-24 コニカミノルタ株式会社 画像形成装置
JP2014199417A (ja) 2013-03-15 2014-10-23 株式会社リコー 定着装置及び画像形成装置
JP6347586B2 (ja) * 2013-10-02 2018-06-27 キヤノン株式会社 画像形成装置
JP2015175959A (ja) * 2014-03-14 2015-10-05 株式会社リコー 定着装置及び画像形成装置
KR20160028232A (ko) * 2014-09-03 2016-03-11 삼성전자주식회사 화상형성장치 및 위상 제어 방법
JP6321507B2 (ja) 2014-09-24 2018-05-09 東芝テック株式会社 定着装置および画像形成装置
JP6707904B2 (ja) * 2016-02-29 2020-06-10 ブラザー工業株式会社 画像形成装置およびその制御方法
CN107526269A (zh) * 2016-06-20 2017-12-29 株式会社东芝 加热器以及加热装置
US9874838B1 (en) * 2016-07-28 2018-01-23 Lexmark International, Inc. System and method for controlling a fuser assembly of an electrophotographic imaging device
JP7282525B2 (ja) * 2019-01-18 2023-05-29 キヤノン株式会社 加熱装置、定着装置及び画像形成装置
JP7272084B2 (ja) * 2019-04-23 2023-05-12 沖電気工業株式会社 画像形成装置およびヒータ制御方法
JP7309531B2 (ja) * 2019-09-06 2023-07-18 キヤノン株式会社 画像形成装置
JP7443861B2 (ja) * 2020-03-19 2024-03-06 株式会社リコー ヒータ制御装置、ヒータ制御方法、及び画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627536Y2 (ja) * 1976-04-07 1981-07-01
JPS5814223A (ja) * 1981-07-20 1983-01-27 Ricoh Co Ltd 交流安定化電源装置
JPS59194219A (ja) * 1983-04-18 1984-11-05 Ricoh Co Ltd 負荷電力制御装置
KR101309785B1 (ko) * 2006-07-28 2013-09-23 삼성전자주식회사 위상 제어 장치, 이를 구비한 정착기 제어 장치 및 위상제어 방법
JP2008191333A (ja) * 2007-02-02 2008-08-21 Kyocera Mita Corp 定着装置及び画像形成装置
JP5360377B2 (ja) * 2009-02-10 2013-12-04 コニカミノルタ株式会社 電力制御装置及び画像形成装置並びに電力制御装置の制御プログラム
JP5350087B2 (ja) 2009-06-11 2013-11-27 キヤノン株式会社 画像形成装置
US8331819B2 (en) * 2009-06-11 2012-12-11 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
CN103019075A (zh) 2013-04-03
CN103019075B (zh) 2015-07-15
JP2013064913A (ja) 2013-04-11
US20130071134A1 (en) 2013-03-21
US8761630B2 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
JP5464190B2 (ja) 電力制御方法、電力制御装置および画像形成装置
JP5089146B2 (ja) 画像加熱装置及び画像形成装置
JP6732414B2 (ja) ヒータ、及びこれを備えた画像加熱装置
JP2012145685A (ja) 電磁誘導加熱方式定着装置と画像形成装置
US10139759B2 (en) Image forming apparatus
JP2009139674A (ja) 定着装置、および画像形成装置
JP2007316627A (ja) 画像形成装置の定着装置及びその定着方法
JP2021043246A (ja) 加熱装置、定着装置、及び画像形成装置
KR20150136020A (ko) 히터 및 이를 포함하는 화상 가열 장치
JP5343137B2 (ja) 画像形成装置
JP4922842B2 (ja) 定着装置、画像形成装置、温度制御方法、プログラム及び記憶媒体
KR20210028692A (ko) 상 가열 장치 및 화상 형성 장치
JP5051154B2 (ja) 加熱装置、及び画像形成装置
JP5533848B2 (ja) 定着装置および画像形成装置
JP2014228668A (ja) 定着装置及び画像形成装置
JP2015197671A (ja) 定着装置および画像形成装置
US9342002B2 (en) Fixing device and image forming apparatus
US9316970B2 (en) Image forming apparatus and method for controlling power supply to heater of fixing unit based on resistance value of heater
JP2014164183A (ja) 定着装置、画像形成装置、定着制御方法及び定着制御プログラム
JP2016057377A (ja) 定着装置及び画像形成装置
KR20110073941A (ko) 정착장치와 이를 가지는 화상형성장치 및 그 제어방법
JP2013097602A (ja) 電力制御方法、電力制御装置および画像形成装置
JP7468147B2 (ja) 画像形成装置
JP4135637B2 (ja) 定着装置および画像形成装置
JP2013097027A (ja) 電力制御方法、電力制御装置および画像形成装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5464190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150