JP5442384B2 - 結晶性樹脂粒子 - Google Patents

結晶性樹脂粒子 Download PDF

Info

Publication number
JP5442384B2
JP5442384B2 JP2009233355A JP2009233355A JP5442384B2 JP 5442384 B2 JP5442384 B2 JP 5442384B2 JP 2009233355 A JP2009233355 A JP 2009233355A JP 2009233355 A JP2009233355 A JP 2009233355A JP 5442384 B2 JP5442384 B2 JP 5442384B2
Authority
JP
Japan
Prior art keywords
resin
crystalline
crystalline resin
parts
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009233355A
Other languages
English (en)
Other versions
JP2011079962A (ja
Inventor
貴司 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2009233355A priority Critical patent/JP5442384B2/ja
Publication of JP2011079962A publication Critical patent/JP2011079962A/ja
Application granted granted Critical
Publication of JP5442384B2 publication Critical patent/JP5442384B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、結晶性樹脂粒子に関する。
従来より低エネルギーで樹脂粒子を定着する技術が望まれている。そのため、より低温で定着し得る樹脂粒子の要求が強い。
樹脂粒子の定着温度を低くする手段として、樹脂のガラス転移点を低くする技術が一般的に行われている。しかし、ガラス転移点をあまりに低くし過ぎると、粉体の凝集(ブロッキング)が起り易く、また、定着画像表面の樹脂粒子の保存性が悪くなるため、実用上50℃が下限である。樹脂をバインダーとして用いる場合、このガラス転移点は樹脂の設計ポイントであり、ガラス転移点を下げる方法では、今以上に低温定着可能な樹脂粒子を得ることはできなかった。
ブロッキング防止、低温定着性の両立の手段として、結晶性樹脂を樹脂として用いる方法が古くから知られている。しかし、溶融時の弾性不足により定着悪化が起こる問題があった。
また、ブロッキング防止、低温定着性の両立の手段として、溶融懸濁法等を用い、シェルをもつ樹脂粒子が提案されている(例えば、特許文献1参照)。しかしながら、低温定着を維持しながら、良好な耐ブロッキング性を得るためには、以上の技術ではまだ不十分である。
特開2007−70621号公報
本発明は、上記従来技術の問題点を解決することを目的とする。すなわち、本発明は、低温定着性及び耐ブロッキング性に優れた樹脂粒子を提供することを目的とする。
上記課題は、以下の本発明により達成される。
本発明は、少なくとも結晶性樹脂(A)とワックスとを含む混合物が、溶融混練および粉砕されて作製され、融解熱の最大ピーク温度(Ta)が40〜100℃、軟化点とTaの比(軟化点/Ta)が0.8〜1.55であり、かつ以下の条件を満たすことを特徴とする結晶性樹脂粒子である。
〔条件1〕 G’(Ta+20)=1×102〜5×105[Pa]
〔条件2〕 G”(Ta+20)=1×102〜5×105[Pa]
[G’:貯蔵弾性率、G”:損失弾性率]
本発明により、低温定着性及び耐ブロッキング性に優れた結晶性樹脂粒子を提供することができる。また、帯電特性も良好である。
以下、本発明の結晶性樹脂粒子を詳細に説明する。
本発明において「結晶性」とは、軟化点と融解熱の最大ピーク温度との比(軟化点/融解熱の最大ピーク温度)が0.8〜1.55であり、示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有することを指す。また、「非結晶性」とは、(軟化点/融解熱の最大ピーク温度)が1.55より大きいことを指す。
本発明の結晶性樹脂粒子(P)は、耐熱保存性の観点から、その融解熱の最大ピーク温度(Ta)が40〜100℃の範囲である必要があり、好ましくは45〜80℃、さらに好ましくは50〜70℃である。
結晶性樹脂粒子(P)の軟化点と融解熱の最大ピーク温度(Ta)との比(軟化点/Ta)は、前記のように0.8〜1.55であり、好ましくは0.85〜1.25、より好ましくは0.9〜1.2、とくに好ましくは0.9〜1.19である。この範囲以外であると、トナー粒子として用いた場合に、画像劣化しやすくなる。
本発明において、軟化点および融解熱の最大ピーク温度は、次のように測定される値である。
<軟化点>
降下式フローテスター{たとえば、(株)島津製作所製、CFT−500D}を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点とする。
<融解熱の最大ピーク温度>
示差走査熱量計(DSC){たとえば、セイコー電子工業社製、DSC210}を用いて、測定する。
融解熱の最大ピーク温度の測定に供する試料は、前処理として、130℃で溶融した後、130℃から70℃まで1.0℃/分の速度で降温し、次に70℃から10℃まで0.5℃/分の速度で降温する。ここで、一度DSCにより、昇温速度20℃/分で昇温して吸発熱変化を測定して、「吸発熱量」と「温度」とのグラフを描き、このとき観測される20℃〜100℃にある吸熱ピーク温度を「Ta*」とする。複数ある場合は最も吸熱量が大きいピークの温度をTa*とする。最後に試料を(Ta*−10)℃で6時間保管した後、(Ta*−15)℃で6時間保管する。
次いで、上記試料を、DSCにより、降温速度10℃/分で0℃まで冷却した後、昇温速度20℃/分で昇温して吸発熱変化を測定して、同様のグラフを描き、吸発熱量の最大ピークに対応する温度を、融解熱の最大ピーク温度とする。
結晶性樹脂粒子(P)の粘弾性特性において、(Ta+20)℃(Taは融解熱の最大ピーク温度)の貯蔵弾性率G’は、1×102〜5×105[Pa]の範囲〔条件1〕であり、好ましくは2×102〜3×105[Pa]である。
(Ta+20)℃におけるG’が1×102Pa未満であると、弾性不足によるオフセットが起きやすく、定着温度領域が狭くなる。また5×105[Pa]を超えると低温側で定着可能な粘性になりにくく、低温での定着性が悪化する。
〔条件1〕を満たす結晶性樹脂粒子(P)は、樹脂粒子を構成する樹脂中の結晶性成分の比率を調整することや樹脂分子量を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、G’(Ta+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。また樹脂分子量を低下させることでもG’(Ta+20)の値は小さくなる。
本発明において、動的粘弾性測定値(貯蔵弾性率G’、損失弾性率G”)は、Rheometric Scientific社製 動的粘弾性測定装置 RDS−2を用い周波数1Hz条件下で測定される。
測定試料は、測定装置の冶具にセットした後、(Ta+30)℃まで昇温して冶具に密着させてから、(Ta+30)℃から(Ta−30)℃まで0.5℃/分の速度で降温し、(Ta−30)℃で1時間静置し、次いで(Ta−10)℃まで0.5℃/分の速度で降温し、さらに(Ta−10)℃で1時間静置し、十分に結晶化を進行させたのち、これを用いて測定を行う。測定温度範囲は30℃〜200℃で、この温度間の溶融粘弾性を測定することによって、温度−G’、温度−G”の曲線として得ることができる。
なお、結晶性樹脂(A)を測定する場合、上記の結晶性樹脂粒子(P)の融解熱の最大ピーク温度(Ta)を、結晶性樹脂(A)の融解熱の最大ピーク温度(Ta’)に読み替えて行う。
また、結晶性樹脂粒子(P)の粘弾性特性において、(Ta+20)℃(Taは融解熱の最大ピーク温度)の損失弾性率G”は、1×102〜5×105[Pa]の範囲〔条件2〕であり、好ましくは5×102〜3×105[Pa]である。
(Ta+20)℃におけるG”が5×105Paを超えると、低温定着時でコールドオフセットが起きやすくなり、低温定着性が悪化する。また1×102[Pa]未満であると高温定着時に粘性不足となり、定着させたい領域の制御が困難になる。
〔条件2〕を満たす結晶性樹脂粒子(P)は、樹脂粒子を構成する樹脂中の結晶性成分の比率を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、G”(Ta+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
また、結晶性樹脂粒子(P)の粘弾性特性において、(Ta+30)℃における損失弾性率G”と(Ta+70)℃における損失弾性率G”の比〔G”(Ta+30)/G”(Ta+70)〕が、0.05〜50であることが好ましく、0.1〜40がさらに好ましく、0.5〜30が特に好ましい〔Taは(P)の融解熱の最大ピーク温度〕。
結晶性樹脂粒子(P)の〔G”(Ta+30)/G”(Ta+70)〕が0.05〜50であるとき、(P)の弾性が維持され、定着温度領域の低温側、高温側で同等の定着性を得ることができる。
上記のG”の比の条件を満たす結晶性樹脂粒子(P)は、樹脂粒子を構成する樹脂中の結晶性成分の比率や結晶性部(b)の分子量を調整すること等により得ることができる例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。また結晶性部(b)の分子量を増加させると〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
本発明の結晶性樹脂粒子(P)は、結晶性樹脂(A)とワックスを含有する。
尚、樹脂が結晶性樹脂と非結晶性樹脂のブロック体であっても、示差走査熱量測定(DSC)において、明確な吸熱ピークを有し、(軟化点/融解熱の最大ピーク温度)が0.8〜1.55である場合は、これも結晶性樹脂とする。
結晶性樹脂(A)は、耐熱保存性の観点から、その融解熱の最大ピーク温度(Ta’)が40〜100℃の範囲であるのが好ましく、さらに好ましくは45〜80℃、特に好ましくは50〜70℃である。
結晶性樹脂(A)の軟化点と融解熱の最大ピーク温度(Ta’)との比(軟化点/Ta’)は、0.8〜1.55が好ましく、さらに好ましくは0.85〜1.25、とくに好ましくは0.9〜1.2、最も好ましくは0.9〜1.19である。この範囲内であると、耐熱保存性と低温定着性の両立が容易になる。
結晶性樹脂(A)の粘弾性特性において、(Ta’+20)℃〔Ta’は(A)の融解熱の最大ピーク温度〕の貯蔵弾性率G’は、50〜1×106[Pa]の範囲〔条件3〕であることが好ましく、さらに好ましくは100〜5×105[Pa]である。
(Ta’+20)℃におけるG’が50Pa以上であると、弾性不足により定着悪化が起きにくく、定着温度領域が広くなる。
〔条件3〕を満たす結晶性樹脂(A)は、(A)を構成する組成中の結晶性成分の比率を調整すること等により得ることができる。例えば結晶性部(b)の比率や結晶性成分の比率を増加させると、G’(Ta’+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
結晶性樹脂(A)の溶融開始温度(X)は、(Ta’±30)℃の温度範囲内であり、好ましくは(Ta’±20)℃の温度範囲内、さらに好ましくは(Ta’±15)℃の温度範囲内である。
(X)は、具体的には30〜100℃が好ましく、さらに好ましくは40〜80℃である。
溶融開始温度(X)は、次のようにして測定される値である。
<溶融開始温度>
降下式フローテスター{たとえば、(株)島津製作所製、CFT−500D}を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、試料の熱膨張によるピストンのわずかな上昇が行われた後、再びピストンが明らかに下降し始める点の温度をグラフから読み取り、この値を溶融開始温度とする。
また、結晶性樹脂(A)の損失弾性率G”と溶融開始温度(X)に関して、以下の〔条件4〕を満たすことが好ましく、〔条件4−2〕を満たすことがさらに好ましく、〔条件4−3〕を満たすことがとくに好ましい。
〔条件4〕|LogG”(X+20)−LogG”(X)|>2.0
[G”:損失弾性率[Pa]]
〔条件4−2〕|LogG”(X+20)−LogG”(X)|>2.5
〔条件4−3〕|LogG”(X+15)−LogG”(X)|>2.5
(A)の溶融開始温度(X)が上記範囲内であり、かつ〔条件4〕を満たすと、樹脂の低粘性化速度が速く、トナー粒子としたとき、定着温度領域の低温側、高温側で同等の画質を得ることができる。また、溶融開始から定着可能粘性に至るまでが速く、優れた低温定着性を得るのに有利である。〔条件4〕は、どれだけ早く、少ない熱で定着できるかという、樹脂のシャープメルト性の指標であり、実験的に求めたものである。
溶融開始温度(X)の範囲、および〔条件4〕を満たす結晶性樹脂(A)は、(A)の構成成分中の結晶性成分の比率を調整すること等により得ることができる。例えば、結晶性成分の比率を大きくすると、(Ta’)と(X)の温度差が小さくなる。
また結晶性樹脂(A)の粘弾性特性において、(Ta’+30)℃の損失弾性率G”と(Ta’+70)℃の損失弾性率G”の比〔G”(Ta’+30)/G”(Ta’+70)〕が0.05〜50であることが好ましく、より好ましくは0.1〜10である〔Ta’:(A)の融解熱の最大ピーク温度〕。
損失弾性率の比が上記の範囲で維持されることによって、定着温度領域の低温側、高温側で同等の光沢性を得ることができる。
上記のG”の比の条件を満たす結晶性樹脂(A)は、(A)を構成する組成中の結晶性成分の比率や結晶性部(b)の分子量を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。また結晶性部(b)の分子量を増加させると〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
結晶性樹脂(A)は、結晶性部(b)のみで構成されても、結晶性部(b)と非結晶性部(c)とをもつブロック樹脂で構成されても、結晶性を有していれば構わないが、定着の観点から(b)と(c)とで構成されるブロック樹脂であることが好ましい。ブロック樹脂は、具体的には結晶性部(b)を構成する樹脂と非結晶性部(c)を構成する樹脂を結合することにより得られる。
また、ブロック樹脂であると耐久性に優れる。
結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、(c)のガラス転移温度(Tg)は、耐熱保存性の観点から、好ましくは40〜250℃、さらに好ましくは50〜240℃、とくに好ましくは60〜230℃、最も好ましくは65〜180℃である。また、(c)のフローテスター測定における軟化点は、好ましくは100〜300℃、さらに好ましくは110〜290℃、とくに好ましくは120〜280℃である。
ガラス転移温度(Tg)は、次のように測定される値である。
<ガラス転移温度>
ガラス転移温度は非結晶性樹脂に特有の物性であり、融解熱の最大ピーク温度とは区別される。そして、前記の融解熱の最大ピーク温度の測定において、「吸発熱量」と「温度」とのグラフの最大ピーク温度以下でのベースラインの延長線と、最大ピークの立ち上がり部分から最大ピークの頂点までの最大傾斜を示す接線との交点に対応する温度をガラス転移温度とする。
結晶性樹脂(A)の重量平均分子量(以下、Mwと記載)は、定着の観点から5000〜100000が好ましく、さらに好ましくは6000〜80000、特に好ましくは8000〜50000である。
(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、(b)のMwは、2000〜80000が好ましく、さらに好ましくは4000〜60000、特に好ましくは7000〜30000である。
(c)のMwは、500〜50000が好ましく、さらに好ましくは750〜20000であり、特に好ましくは1000〜10000である。
なお、本発明において、樹脂の分子量は、ゲルパーミエーションクロマトグラフイー(GPC)を用いて以下の条件で測定される。
装置(一例) :東ソー(株)製 HLC−8120
カラム(一例):TSK GEL GMH6 2本 〔東ソー(株)製〕
測定温度 :40℃
試料溶液 :0.25重量%のTHF溶液
溶液注入量 :100μL
検出装置 :屈折率検出器
基準物質 :東ソー製 標準ポリスチレン(TSKstandard POLY STYRENE)12点(分子量 500 1050 2800 5970 9100 18100 37900 96400
190000 355000 1090000 2890000)
結晶性樹脂(A)が、結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂である場合、結晶性部(b)が結晶性樹脂(A)中に占める割合は、50重量%以上が好ましく、より好ましくは60〜98重量%、さらに好ましくは70〜96重量%である。(b)の割合が50重量%以上であると、樹脂(A)の結晶性が損なわれず、低温定着性がより良好である。
結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂である場合、(b)と(c)とが下記の形式で線状に結合された両末端が(b)の樹脂であり、{−(c)−(b)}の単位の繰り返し数の平均値nが0.9〜3.5であることが好ましく、さらに好ましくはn=0.95〜2.0、とくに好ましくはn=1.0〜1.5である。
(b){−(c)−(b)}n
上記式は、具体的には、結晶性部(b)と非結晶性部(c)とが、(b)〔n=0〕、(b)−(c)−(b)〔n=1〕、(b)−(c)−(b)−(c)−(b)〔n=2〕、(b)−(c)−(b)−(c)−(b)−(c)−(b)〔n=3〕等の形式で線状に結合された樹脂、およびこれらの混合物〔n=0のみからなるものを除く〕を意味する。なお、nが0のものを含有するということは、(b)と(c)のブロック樹脂以外に結晶性部(b)を構成する樹脂を含有することを意味する。
nが3.5以下であると、結晶性樹脂(A)の結晶性が損なわれない。またnが0.9以上であると(A)の溶融後の弾性が良好であり、定着時にホットオフセットが発生しにくく、定着温度領域がより広くなる。なお、nは原料の使用量〔(b)と(c)のモル比〕から求めた計算値である。
また、結晶性樹脂(A)の結晶化度の観点から(A)の両末端は結晶性部(b)であることが好ましい。
なお、両末端が非結晶性部(c)である場合は、結晶化度が落ちるため、結晶性樹脂(A)に結晶性を持たせるために、(A)中の結晶性部(b)の比率を75重量%以上にするのが好ましい。
結晶性部(b)に用いられる樹脂について説明する。
結晶性部(b)に用いられる樹脂は、結晶性を有していれば特に制限はない。耐熱保存性の観点から融点が40〜100℃の範囲(より好ましくは50〜70℃の範囲)であることが好ましい。
本発明において、融点は融解熱の最大ピーク温度と同様、示差走査熱量計{たとえば、セイコー電子工業社製、DSC210}で測定される。
結晶性部(b)は結晶性を有していれば特に制限はなく、複合樹脂であってもかまわない。その中でもポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂およびそれらの複合樹脂が好ましく、特に直鎖ポリエステル樹脂およびそれを含む複合樹脂が好ましい。
(b)として用いるポリエステル樹脂は、アルコール(ジオール)成分と酸(ジカルボン酸)成分とから合成される重縮合ポリエステル樹脂であることが、結晶性の点から好ましい。ただし、必要に応じて3官能以上のアルコール成分や酸成分を用いてもよい。
なお、ポリエステル樹脂としては、重縮合ポリエステル樹脂以外に、ラクトン開環重合物およびポリヒドロキシカルボン酸も同様に好ましい。
また、ポリウレタン樹脂としては、アルコール(ジオール)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレタン樹脂等が挙げられる。ただし、必要に応じて3官能以上のアルコール成分やイソシアネート成分を用いてもよい。
ポリアミド樹脂としては、アミン(ジアミン)成分と酸(ジカルボン酸)成分とから合成されるポリアミド樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン成分や酸成分を用いてもよい。
ポリウレア樹脂としては、アミン(ジアミン)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレア樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン成分やイソシアネート成分を用いてもよい。
以降の説明において、まず、これら結晶性重縮合ポリエステル樹脂、結晶性ポリウレタン樹脂、結晶性ポリアミド樹脂、結晶性ポリウレア樹脂に用いられるジオール成分、ジカルボン酸成分、ジイソシアネート成分、およびジアミン成分(それぞれ3官能以上のものを含む)についてそれぞれ示す。
[ジオール成分]
ジオール成分としては、脂肪族ジオールが好ましく、炭素数が2〜36の範囲であることが好ましい。また直鎖型脂肪族ジオールがより好ましい。
脂肪族ジオールが分岐型では、ポリエステル樹脂の結晶性が低下し、融点が降下するため、耐ブロッキング性、及び低温定着性が悪化してしまう場合がある。また、炭素数が36を超えると、実用上の材料の入手が困難な場合がある。
ジオール成分は、直鎖型脂肪族ジオールの含有量が使用ジオール成分の80モル%以上であることが好ましく、より好ましくは90モル%以上である。80モル%以上では、ポリエステル樹脂の結晶性が低下し、融点が上昇するため、耐ブロッキング性、及び低温定着性がより良好となる。
直鎖型脂肪族ジオールとしては、具体的には、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオールなどが挙げられるが、これらに限定されるものではない。これらのうち、入手容易性を考慮するとエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオールが好ましい。
その他必要に応じて使用されるジオールとしては、炭素数2〜36の上記以外の脂肪族ジオール(1,2−プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2−ジエチル−1,3−プロパンジオールなど);炭素数4〜36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);炭素数4〜36の脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);上記脂環式ジオールのアルキレンオキサイド(以下AOと略記する)〔エチレンオキサイド(以下EOと略記する)、プロピレンオキサイド(以下POと略記する)、ブチレンオキサイド(以下BOと略記する)など〕付加物(付加モル数1〜30);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど)のAO(EO、PO、BOなど)付加物(付加モル数2〜30);ポリラクトンジオール(ポリε−カプロラクトンジオールなど);およびポリブタジエンジオールなどが挙げられる。
さらにその他必要に応じて使用されるジオールとしては、他の官能基を有するジオールを用いてもよい。官能基を有するジオールとしては、カルボキシル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、およびこれらの塩等が挙げられる。
カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸[C6〜24のもの、例えば2,2−ジメチロールプロピオン酸(DMPA)、2,2−ジメチロールブタン酸、2,2−ジメチロールヘプタン酸、2,2−ジメチロールオクタン酸など]が挙げられる。
スルホン酸基もしくはスルファミン酸基を有するジオールとしては、スルファミン酸ジオール[N,N−ビス(2−ヒドロキシアルキル)スルファミン酸(アルキル基のC1〜6)またはそのAO付加物(AOとしてはEOまたはPOなど、AOの付加モル数1〜6):例えばN,N−ビス(2−ヒドロキシエチル)スルファミン酸およびN,N−ビス(2−ヒドロキシエチル)スルファミン酸PO2モル付加物など];ビス(2−ヒドロキシエチル)ホスフェートなどが挙げられる。
これらの中和塩基を有するジオールの中和塩基としては、例えば前記炭素数3〜30の3級アミン(トリエチルアミンなど)および/またはアルカリ金属(ナトリウム塩など)が挙げられる。
これらのうち好ましいものは、炭素数2〜12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、およびこれらの併用である。
必要により用いられる3〜8価またはそれ以上のポリオールとしては、炭素数3〜36の3〜8価またはそれ以上の多価脂肪族アルコール(アルカンポリオールおよびその分子内もしくは分子間脱水物、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、およびポリグリセリン;糖類およびその誘導体、例えばショ糖、およびメチルグルコシド);トリスフェノール類(トリスフェノールPAなど)のAO付加物(付加モル数2〜30);ノボラック樹脂(フェノールノボラック、クレゾールノボラックなど)のAO付加物(付加モル数2〜30);アクリルポリオール[ヒドロキシエチル(メタ)アクリレートと他のビニル系モノマーの共重合物など];などが挙げられる。
これらのうち好ましいものは、3〜8価またはそれ以上の多価脂肪族アルコールおよびノボラック樹脂のAO付加物であり、さらに好ましいものはノボラック樹脂のAO付加物である。
[ジカルボン酸成分]
ジカルボン酸成分としては、種々のジカルボン酸が挙げられるが、脂肪族ジカルボン酸及び芳香族ジカルボン酸が好ましく、脂肪族ジカルボン酸は直鎖型のカルボン酸がより好ましい。
ジカルボン酸としては、炭素数4〜36のアルカンジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸など);炭素数6〜40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)など〕、炭素数4〜36のアルケンジカルボン酸(ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸などのアルケニルコハク酸、マレイン酸、フマール酸、シトラコン酸など);炭素数8〜36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、t−ブチルイソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸など)などが挙げられる。
また、必要により用いられる3〜6価またはそれ以上のポリカルボン酸としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。
なお、ジカルボン酸または3〜6価またはそれ以上のポリカルボン酸としては、上述のものの酸無水物または炭素数1〜4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてもよい。
これらジカルボン酸の中では、脂肪族ジカルボン酸(特に直鎖型のカルボン酸)を単独で用いるのが特に好ましいが、脂肪族ジカルボン酸と共に芳香族ジカルボン酸(テレフタル酸、イソフタル酸、t−ブチルイソフタル酸、および、これらの低級アルキルエステル類が好ましい。)を共重合したものも同様に好ましい。芳香族ジカルボン酸の共重合量としては20モル%以下が好ましい。
ジカルボン酸成分としては、主には上記のカルボン酸が挙げられるが、この限りではない。これらのうち、結晶性や入手容易性を考慮すると、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、およびイソフタル酸が好ましい。
[ジイソシアネート成分]
ジイソシアネートとしては、炭素数(NCO基中の炭素を除く、以下同様)6〜20の芳香族ジイソシアネート、炭素数2〜18の脂肪族ジイソシアネート、炭素数4〜15の脂環式ジイソシアネート、炭素数8〜15の芳香脂肪族ジイソシアネートおよびこれらのジイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物など)およびこれらの2種以上の混合物が挙げられる。また、必要により、3価以上のポリイソシアネートを併用してもよい。
上記芳香族ジイソシアネートの具体例(3価以上のポリイソシアネートを含む)としては、1,3−および/または1,4−フェニレンジイソシアネート、2,4−および/または2,6−トリレンジイソシアネート(TDI)、粗製TDI、2,4’−および/または4,4’−ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)またはその混合物との縮合生成物;ジアミノジフェニルメタンと少量(たとえば5〜20重量%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5−ナフチレンジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート、m−およびp−イソシアナトフェニルスルホニルイソシアネートなどが挙げられる。
上記脂肪族ジイソシアネートの具体例(3価以上のポリイソシアネートを含む)としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11−ウンデカントリイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6−ジイソシアナトメチルカプロエート、ビス(2−イソシアナトエチル)フマレート、ビス(2−イソシアナトエチル)カーボネート、2−イソシアナトエチル−2,6−ジイソシアナトヘキサノエートなどが挙げられる。
上記脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン−4,4’−ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2−イソシアナトエチル)−4−シクロヘキセン−1,2−ジカルボキシレート、2,5−および/または2,6−ノルボルナンジイソシアネートなどが挙げられる。
上記芳香脂肪族ジイソシアネートの具体例としては、m−および/またはp−キシリレンジイソシアネート(XDI)、α,α,α’,α’−テトラメチルキシリレンジイソシアネート(TMXDI)などが挙げられる。
また、上記ジイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物などが挙げられる。
具体的には、変性MDI(ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDIなど)、ウレタン変性TDIなどのジイソシアネートの変性物およびこれらの2種以上の混合物[たとえば変性MDIとウレタン変性TDI(イソシアネート含有プレポリマー)との併用]が含まれる。
これらのうちで好ましいものは6〜15の芳香族ジイソシアネート、炭素数4〜12の脂肪族ジイソシアネート、および炭素数4〜15の脂環式ジイソシアネートであり、とくに好ましいものはTDI、MDI、HDI、水添MDI、およびIPDIである。
[ジアミン成分]
ジアミン(必要により用いられる3価以上のポリアミンを含む)の例として、脂肪族ジアミン類(C2〜C18)としては、〔1〕脂肪族ジアミン{C2〜C6 アルキレンジアミン(エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)、ポリアルキレン(C2〜C6)ジアミン〔ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなど〕};〔2〕これらのアルキル(C1〜C4)またはヒドロキシアルキル(C2〜C4)置換体〔ジアルキル(C1〜C3)アミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5−ジメチル−2,5−ヘキサメチレンジアミン、メチルイミノビスプロピルアミンなど〕;〔3〕脂環または複素環含有脂肪族ジアミン{脂環式ジアミン(C4〜C15)〔1,3−ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4´−メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)など〕、複素環式ジアミン(C4〜C15)〔ピペラジン、N−アミノエチルピペラジン、1,4−ジアミノエチルピペラジン、1,4ビス(2−アミノ−2−メチルプロピル)ピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなど〕;〔4〕芳香環含有脂肪族アミン類(C8〜C15)(キシリレンジアミン、テトラクロル−p−キシリレンジアミンなど)、等が挙げられる。
芳香族ジアミン類(C6〜C20)としては、〔1〕非置換芳香族ジアミン〔1,2−、1,3−および1,4−フェニレンジアミン、2,4´−および4,4´−ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4−ジアミノフェニル)スルホン、2,6−ジアミノピリジン、m−アミノベンジルアミン、トリフェニルメタン−4,4´,4”−トリアミン、ナフチレンジアミンなど;〔2〕核置換アルキル基〔メチル,エチル,n−およびi−プロピル、ブチルなどのC1〜C4アルキル基)を有する芳香族ジアミン、たとえば2,4−および2,6−トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、4,4´−ビス(o−トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3−ジメチル−2,4−ジアミノベンゼン、1,3−ジメチル−2,6−ジアミノベンゼン、1,4−ジイソプロピル−2,5−ジアミノベンゼン、2,4−ジアミノメシチレン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、2,3−ジメチル−1,4−ジアミノナフタレン、2,6−ジメチル−1,5−ジアミノナフタレン、3,3´,5,5´−テトラメチルベンジジン、3,3´,5,5´−テトラメチル−4,4´−ジアミノジフェニルメタン、3,5−ジエチル−3´−メチル−2´,4−ジアミノジフェニルメタン、3,3´−ジエチル−2,2´−ジアミノジフェニルメタン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、3,3´,5,5´−テトラエチル−4,4´−ジアミノベンゾフェノン、3,3´,5,5´−テトラエチル−4,4´−ジアミノジフェニルエーテル、3,3´,5,5´−テトライソプロピル−4,4´−ジアミノジフェニルスルホンなど〕、およびこれらの異性体の種々の割合の混合物;〔3〕核置換電子吸引基(Cl,Br,I,Fなどのハロゲン;メトキシ、エトキシなどのアルコキシ基;ニトロ基など)を有する芳香族ジアミン〔メチレンビス−o−クロロアニリン、4−クロロ−o−フェニレンジアミン、2−クロル−1,4−フェニレンジアミン、3−アミノ−4−クロロアニリン、4−ブロモ−1,3−フェニレンジアミン、2,5−ジクロル−1,4−フェニレンジアミン、5−ニトロ−1,3−フェニレンジアミン、3−ジメトキシ−4−アミノアニリン;4,4´−ジアミノ−3,3´−ジメチル−5,5´−ジブロモ−ジフェニルメタン、3,3´−ジクロロベンジジン、3,3´−ジメトキシベンジジン、ビス(4−アミノ−3−クロロフェニル)オキシド、ビス(4−アミノ−2−クロロフェニル)プロパン、ビス(4−アミノ−2−クロロフェニル)スルホン、ビス(4−アミノ−3−メトキシフェニル)デカン、ビス(4−アミノフェニル)スルフイド、ビス(4−アミノフェニル)テルリド、ビス(4−アミノフェニル)セレニド、ビス(4−アミノ−3−メトキシフェニル)ジスルフイド、4,4´−メチレンビス(2−ヨードアニリン)、4,4´−メチレンビス(2−ブロモアニリン)、4,4´−メチレンビス(2−フルオロアニリン)、4−アミノフェニル−2−クロロアニリンなど〕;〔4〕2級アミノ基を有する芳香族ジアミン〔上記〔1〕〜〔3〕の芳香族ジアミンの−NH2の一部または全部が−NH−R´(R´はアルキル基たとえばメチル,エチルなどの低級アルキル基)で置き換ったもの〕〔4,4´−ジ(メチルアミノ)ジフェニルメタン、1−メチル−2−メチルアミノ−4−アミノベンゼンなど〕が挙げられる。
ジアミン成分としては、これらの他、ポリアミドポリアミン〔ジカルボン酸(ダイマー酸など)と過剰の(酸1モル当り2モル以上の)ポリアミン類(上記アルキレンジアミン,ポリアルキレンポリアミンなど)との縮合により得られる低分子量ポリアミドポリアミンなど〕、ポリエーテルポリアミン〔ポリエーテルポリオール(ポリアルキレングリコールなど)のシアノエチル化物の水素化物など〕等が挙げられる。
結晶性ポリエステル樹脂のうち、ラクトン開環重合物は、例えば、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトンなどの炭素数3〜12のモノラクトン(環中のエステル基数1個)等のラクトン類を金属酸化物、有機金属化合物などの触媒を用いて、開環重合させることにより得ることができる。これらのうち、好ましいラクトンは、結晶性の観点からε−カプロラクトンである。
開始剤として、グリコールを用いると、末端にヒドロキシル基を有するラクトン開環重合物が得られる。例えば、上記ラクトン類とエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、0.1〜5000ppm程度の割合で添加して、100〜230℃で、好ましくは不活性雰囲気下に重合させることによって、ラクトン開環重合物を得ることができる。ラクトン開環重合物は、その末端を例えばカルボキシル基になるように変性したものであってもよい。ラクトン開環重合物は、結晶性の高い熱可塑性脂肪族ポリエステル樹脂である。ラクトン開環重合物は、市販品を用いてもよく、例えば、ダイセル株式会社製のPLACCELシリーズのH1P、H4、H5、H7など(いずれも、融点=約60℃、Tg=約−60℃の高結晶性ポリカプロラクトン)が挙げられる。
結晶性ポリエステル樹脂のうち、ポリヒドロキシカルボン酸は、グリコール酸、乳酸(L体、D体、ラセミ体)等のヒドロキシカルボン酸を直接脱水縮合することで得られるが、グリコリド、ラクチド(L体、D体、ラセミ体)などのヒドロキシカルボン酸の2分子間もしくは3分子間脱水縮合物に相当する炭素数4〜12の環状エステル(環中のエステル基数2〜3個)を金属酸化物、有機金属化合物などの触媒を用いて、開環重合する方が分子量の調整の観点から好ましい。これらのうち、好ましい環状エステルは、結晶性の観点からL−ラクチド、およびD−ラクチドである。
開始剤として、グリコールを用いると、末端にヒドロキシル基を有するポリヒドロキシカルボン酸骨格が得られる。例えば、上記環状エステルとエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、0.1〜5000ppm程度の割合で添加して、100〜230℃で、好ましくは不活性雰囲気下に重合させることによって、ポリヒドロキシカルボン酸を得ることができる。ポリヒドロキシカルボン酸は、その末端を例えばカルボキシル基になるように変性したものであってもよい。
ポリエーテル樹脂としては、結晶性ポリオキシアルキレンポリオール等が挙げられる。
結晶性ポリオキシアルキレンポリオールの製造方法としては特に限定されず、従来より公知のいずれの方法でもよい。
例えば、キラル体のAOを、通常AOの重合で使用される触媒で開環重合させる方法(例えば、Journal of the American Chemical Society、1956年、第78巻、第18号、p.4787−4792 に記載)や、安価なラセミ体のAOを立体的に嵩高い特殊な化学構造の錯体を触媒として用いて、開環重合させる方法が知られている。
特殊な錯体を用いる方法としては、ランタノイド錯体と有機アルミニウムを接触させた化合物を触媒として用いる方法(例えば、特開平11−12353号公報に記載)やバイメタルμ−オキソアルコキサイドとヒドロキシル化合物をあらかじめ反応させる方法(例えば、特表2001−521957号公報に記載)等が知られている。
また、非常にアイソタクティシティーの高いポリオキシアルキレンポリオールを得る方法として、サレン錯体を触媒として用いる方法(例えば、Journal of the American Chemical Society、2005年、第127巻、第33号、p.11566−11567 に記載)が知られている。
例えば、キラル体のAOを用い、その開環重合時に、開始剤として、グリコールまたは水を用いると、末端にヒドロキシル基を有するアイソタクティシティが50%以上であるポリオキシアルキレングリコールが得られる。アイソタクティシティが50%以上であるポリオキシアルキレングリコールは、その末端を例えば、カルボキシル基になるように変性したものであってもよい。なお、アイソタクティシティが50%以上であると、通常結晶性となる。
上記グリコールとしては、前記ジオール成分等が挙げられ、カルボキシ変性するのに用いるカルボン酸としては、前記ジカルボン酸成分等が挙げられる
結晶性ポリオキシアルキレンポリオールの製造に用いるAOとしては、炭素数3〜9のものが挙げられ、例えば以下の化合物が挙げられる。
炭素数3のAO[PO、1−クロロオキセタン、2−クロロオキセタン、1,2−ジクロロオキセタン、エピクロルヒドリン、エピブロモヒドリン];炭素数4のAO[1,2−BO、メチルグリシジルエーテル];炭素数5のAO[1,2−ペンチレンオキサイド、2,3−ペンチレンオキサイド、3−メチル−1,2−ブチレンオキサイド];炭素数6のAO[シクロヘキセンオキサイド、1,2−へキシレンオキサイド、3−メチル−1,2−ペンチレンオキサイド、2,3−ヘキシレンオキサイド、4−メチル−2,3−ペンチレンオキサイド、アリルグリシジルエーテル];炭素数7のAO[1,2−へプチレンオキサイド];炭素数8のAO[スチレンオキサイド];炭素数9のAO[フェニルグリシジルエーテル]等である。
これらのAOのうち、PO、1,2−BO、スチレンオキサイドおよびシクロへキセンオキサイドが好ましい。さらに好ましくはPO、1,2−BOおよびシクロへキセンオキサイドである。重合速度の観点から、最も好ましくはPOである。
これらのAOは、単独で、または、2種類以上を使用することができる。
結晶性ポリオキシアルキレンポリオールのアイソタクティシティは、得られる結晶性ポリエーテル樹脂の高シャープメルト性と耐ブロッキング性の観点から70%以上が好ましく、さらに好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上である。
アイソタクティシティーは、Macromolecules、vol.35、No.6、2389−2392頁(2002年)に記載の方法で算出することができ、以下のようにして求める。
測定試料約30mgを直径5mmの13C−NMR用試料管に秤量し、約0.5mlの重水素化溶剤を加えて溶解させ、分析用試料とする。ここで重水素化溶剤は、重水素化クロロホルム、重水素化トルエン、重水素化ジメチルスルホキシド、重水素化ジメチルホルムアミド等であり、試料を溶解させることのできる溶剤を適宜選択する。
13C−NMRの3種類のメチン基由来の信号は、それぞれシンジオタクチック値(S)75.1ppm付近とヘテロタクチック値(H)75.3ppm付近とアイソタクチック値(I)75.5ppm付近に観測される。アイソタクティシティーを次の計算式(1)により算出する。
アイソタクティシティー(%)=[I/(I+S+H)]×100 (1)
但し、式中、Iはアイソタクチック信号の積分値;Sはシンジオタクチック信号の積分値;Hはヘテロタクチック信号の積分値である。
結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、非結晶性部(c)の形成に用いられる樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、ビニル樹脂、エポキシ樹脂等が挙げられるが、その限りではない。
ただし、前記結晶性部(b)の形成に用いられる樹脂が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂であることが好ましいので、加熱時に相溶することを考慮すると、非結晶性部(c)の形成に用いられる樹脂もポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂であることが好ましい。さらに好ましくはポリウレタン樹脂およびポリエステル樹脂である。
これらの非結晶性樹脂の組成は、前記結晶性部(b)と同様のものが挙げられ、使用するモノマーも、前記ジオール成分、前記ジカルボン酸成分、前記ジイソシアネート成分、前記ジアミン成分、および前記AOが具体例として挙げられ、非結晶性樹脂となるものであれば、いかなる組合せでも構わない。
[ブロックポリマーの製法]
結晶性部(b)と非結晶性部(c)とで構成されるブロックポリマーは、それぞれの末端官能基の反応性を考慮して結合剤の使用、非使用を選択し、また使用の際は末端官能基にあった結合剤種を選択し、(b)と(c)を結合させ、ブロックポリマーとすることが出来る。
結合剤を使わない場合、必要により加熱減圧しつつ、(b)を形成する樹脂の末端官能基と(c)を形成する樹脂の末端官能基の反応を進める。特に酸とアルコールとの反応や酸とアミンとの反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃〜230℃で行うのが好ましい。
結合剤を使う場合は、種々の結合剤が使用できる。多価カルボン酸、多価アルコール、多価イソシアネート、多官能エポキシ、酸無水物等を用いて、脱水反応や、付加反応を行うことで得られる。
多価カルボン酸および酸無水物としては、前記ジカルボン酸成分と同様のものが挙げられる。多価アルコールとしては、前記ジオール成分と同様のものが挙げられる。多価イソシアネートとしては、前記ジイソシアネート成分と同様のものが挙げられる。多官能エポキシとしては、ビスフェノールA型および−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、ビスフェノールAまたは−FのAO付加体のジグリシジルエーテル、水添ビスフェノールAのAO付加体のジグリシジルエーテル、ジオール(エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコール等)のジグリシジルエーテル、トリメチロールプロパンジおよび/またはトリグリシジルエーテル、ペンタエリスリトールトリおよび/またはテトラグリシジルエーテル、ソルビトールヘプタおよび/またはヘキサグリシジルエーテル、レゾルシンジグリシジルエーテル、ジシクロペンタジエン・フェノール付加型グリシジルエーテル、メチレンビス(2,7−ジヒドロキシナフタレン)テトラグリシジルエーテル、1,6−ジヒドロキシナフタレンジグリシジルエーテル、ポリブタジエンジグリシジルエーテルなどが挙げられる。
(b)と(c)を結合させる方法のうち、脱水反応の例としては、結晶性部(b)、非結晶性部(c)とも両末端アルコール樹脂で、これらを結合剤(例えば多価カルボン酸)で結合する反応が挙げられる。この場合、例えば、無溶剤下、反応温度180℃〜230℃で反応し、ブロックポリマーが得られる。
付加反応の例としては、結晶性部(b)、非結晶性部(c)とも末端に水酸基を有する樹脂であり、これらを結合剤(例えば多価イソシアネート)で結合する反応や、また結晶性部(b)、非結晶性部(c)の片方が末端に水酸基を有する樹脂で、もう一方が末端にイソシアネート基を有する樹脂の場合、結合剤を用いずにこれらを結合する反応が挙げられる。この場合、例えば、結晶性部(b)、非結晶性部(c)ともに溶解可能な溶剤に溶解させ、これに必要であるなら結合剤を投入し、反応温度80℃〜150℃で反応し、ブロックポリマーが得られる。
結晶性樹脂(A)としては、上記のブロックポリマーが好ましいが、非結晶性部(c)を有さず、結晶性部(b)のみからなる樹脂を用いることもできる。
結晶性部のみからなる(A)の組成としては、前記の結晶性部(b)と同様のもの、および結晶性ビニル樹脂が挙げられる。
結晶性ビニル樹脂としては、結晶性基を有するビニルモノマー(m)と、必要により結晶性基を有しないビニルモノマー(n)を構成単位として有するものが好ましい。
ビニルモノマー(m)としては、アルキル基の炭素数が12〜50の直鎖アルキル(メタ)アクリレート(m1)(炭素数12〜50の直鎖アルキル基が結晶性基である)、および前記結晶性部(b)の単位を有するビニルモノマー(m2)等が挙げられる。
結晶性ビニル樹脂としては、ビニルモノマー(m)として、アルキル基の炭素数が12〜50(好ましくは16〜30)の直鎖アルキル(メタ)アクリレート(m1)を含有するものがさらに好ましい。
(m1)としては、各アルキル基がいずれも直鎖状の、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、およびベヘニル(メタ)アクリレート等が挙げられる。
なお、本発明において、アルキル(メタ)アクリレートとは、アルキルアクリレートおよび/またはアルキルメタアクリレートを意味し、以下同様の記載法を用いる。
結晶性部(b)の単位を有するビニルモノマー(m2)において、結晶性部(b)の単位をビニルモノマーに導入する方法は、それぞれの末端官能基の反応性を考慮して、結合剤(カップリング剤)を使用するかしないかを選択し、また使用する場合は、末端官能基にあった結合剤を選択し、結晶性部(b)とビニルモノマーを結合させ、結晶性部(b)の単位を有するビニルモノマー(m2)とすることができる。
結晶性部(b)の単位を有するビニルモノマー(m2)の作成時に結合剤を使わない場合、必要により加熱減圧しつつ、結晶性部(b)の末端官能基とビニルモノマーの末端官能基の反応を進める。特に末端の官能基がカルボキシル基と水酸基との反応や、カルボキシル基とアミノ基との反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃〜230℃で行うのが好ましい。
結合剤を使う場合は、末端の官能基の種類に合わせて、種々の結合剤が使用できる。
結合剤の具体例、および結合剤を用いたビニルモノマー(m2)の作製法としては、前記のブロックポリマーの製法と同様の方法が挙げられる。
結晶性基を有しないビニルモノマー(n)としては、特に限定されず、結晶性基を有するビニルモノマー(m)以外のビニル樹脂の製造に通常用いられる分子量が1000以下のビニルモノマー(n1)、および前記非結晶性部(c)の単位を有するビニルモノマー(n2)等が挙げられる。
上記ビニルモノマー(n1)としては、スチレン類、(メタ)アクリルモノマー、カルボキシル基含有ビニルモノマー、他のビニルエステルモノマー、および脂肪族炭化水素系ビニルモノマー等が挙げられ、2種以上を併用してもよい。
スチレン類としては、スチレン、アルキル基の炭素数が1〜3のアルキルスチレン〔例えば、α−メチルスチレン、p−メチルスチレン〕などが挙げられ、好ましくはスチレンである。
(メタ)アクリルモノマーとしては、アルキル基の炭素数が1〜11のアルキル(メタ)アクリレートおよびアルキル基の炭素数が12〜18の分岐アルキル(メタ)アクリレート〔例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート〕、アルキル基の炭素数1〜11のヒドロキシルアルキル(メタ)アクリレート〔例えば、ヒドロキシルエチル(メタ)アクリレート〕、アルキル基の炭素数が1〜11のアルキルアミノ基含有(メタ)アクリレート〔例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート〕、およびニトリル基含有ビニルモノマー〔例えば、アクリロニトリル、メタアクリロニトリル〕などが挙げられる。
カルボキシル基含有ビニルモノマーとしては、モノカルボン酸〔炭素数3〜15、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸〕、ジカルボン酸〔炭素数4〜15、例えば、(無水)マレイン酸、フマル酸、イタコン酸、シトラコン酸〕、ジカルボン酸モノエステル〔上記ジカルボン酸のモノアルキル(炭素数1〜18)エステル、例えば、マレイン酸モノアルキルエステル、フマル酸モノアルキルエステル、イタコン酸モノアルキルエステル、シトラコン酸モノアルキルエステル〕などが挙げられる。
他のビニルエステルモノマーとしては、脂肪族ビニルエステル〔炭素数4〜15、たとえば酢酸ビニル、プロピオン酸ビニル、イソプロペニルアセテート〕、不飽和カルボン酸多価(2〜3価またはそれ以上)アルコールエステル〔炭素数8〜50、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6ヘキサンジオールジアクリレート、ポリエチレングリコールジ(メタ)アクリレート〕、芳香族ビニルエステル〔炭素数9〜15、例えば、メチル−4−ビニルベンゾエート〕などが挙げられる。
脂肪族炭化水素系ビニルモノマーとしてはオレフィン〔炭素数2〜10、例えば、エチレン、プロピレン、ブテン、オクテン〕、ジエン(炭素数4〜10、例えば、ブタジエン、イソプレン、1,6−ヘキサジエン〕などが挙げられる。
これら(b1)の中で好ましくは、(メタ)アクリルモノマー、およびカルボキシル基含有ビニルモノマーである。
非結晶性部(c)の単位を有するビニルモノマー(n2)において、非結晶性部(c)の単位をビニルモノマーに導入する方法は、前記の結晶性部(b)の単位を有するビニルモノマー(m2)において、結晶性部(b)の単位をビニルモノマーに導入する方法と同様の方法が挙げられる。
結晶性基を有するビニルモノマー(m)の構成単位が結晶性ビニル樹脂中に占める割合は、30重量%以上が好ましく、さらに好ましくは35〜95重量%であり、特に好ましくは40〜90重量%である。この範囲であるとビニル樹脂の結晶性が損なわれず、耐熱保存安定性が良好である。また(m)中のアルキル基の炭素数が12〜50の直鎖アルキル(メタ)アクリレート(m1)の含有量は、好ましくは30〜100重量%、さらに好ましくは40〜80重量%である。
これらのビニルモノマーを公知の方法で重合させることにより、結晶性ビニル樹脂が得られる。
結晶性樹脂(A)は、本発明の結晶性樹脂粒子(P)中の樹脂として単独で用いられても構わないが、非結晶性樹脂と共に用いられてもよい。
非結晶性樹脂としては、例えば、数平均分子量(以下、Mnと記載)が1000〜100万のポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ビニル樹脂、およびそれらの併用が挙げられる。好ましいものは、ポリエステル樹脂、およびビニル樹脂であり、さらに好ましくはポリエステル樹脂である。ただし低温定着性、および光沢性の観点から、樹脂中の結晶性樹脂(A)の割合は、50重量%以上が好ましく、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。
ワックスとしては、軟化点が50〜170℃のものが好ましく、ポリオレフィンワックス、天然ワックス(例えばカルナウバワックス、モンタンワックス、パラフィンワックスおよびライスワックスなど)、炭素数30〜50の脂肪族アルコール(例えばトリアコンタノールなど)、炭素数30〜50の脂肪酸(例えばトリアコンタンカルボン酸など)およびこれらの混合物等が挙げられる。
ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1−ブテン、イソブチレン、1−ヘキセン、1−ドデセン、1−オクタデセンおよびこれらの混合物等)の(共)重合体[(共)重合により得られるものおよび熱減成型ポリオレフィンを含む]、オレフィンの(共)重合体の酸素および/またはオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸およびその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチルおよびマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸および無水マレイン酸等]および/または不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1〜18)エステルおよびマレイン酸アルキル(アルキルの炭素数1〜18)エステル等]等との共重合体、およびポリメチレン(例えばサゾールワックス等のフィシャートロプシュワックスなど)、脂肪酸金属塩(ステアリン酸カルシウムなど)、脂肪酸エステル(ベヘニン酸ベヘニルなど)が挙げられる。
本発明の結晶性樹脂粒子(P)は、少なくとも結晶性樹脂(A)とワックスとを含有する混合物を、溶融混練し、その固化物を粉砕し、必要により分級して作製される。
結晶性樹脂(A)とワックスの混合比は、(A)に対するワックスの量が、好ましくは1〜15重量%、さらに好ましくは2〜12重量%である。
結晶性樹脂(A)とワックスとの混合は、せん断力を付与して混合しても、溶融して混合しても構わない。せん断力を付与して混合する場合は、結晶性樹脂(A)はワックス等を均一に混合・分散する観点から、予め粉砕した樹脂を用いることが好ましい。予め粉砕した(A)の粉体を用いる際は、その体積平均粒径が、100〜5000μm(とくに500〜2000μm)となるように、篩等を用いて粒径を揃えておくことが好ましい。
混合工程で原料にせん断力を付与することのできる混合機を用いる場合、混合時の混合原料の発熱割合が3℃/分〜20℃/分であり、混合前後の体積平均粒径の差が300〜800μmとなるような条件下で行うことが望ましい。発熱の割合が高すぎると蓄熱により原料が凝集し、発熱の割合が低い場合は、混合・分散が不十分である。また、混合前後の粒径の差があまり大きくなり過ぎる条件下で行うと、混合機の発熱量が大きくなる。その差があまり小さくなり過ぎる条件下で行うと、効率よい分散が難しく、さらに食い込み不良(原料が混練機のスクリューに十分入って行かないこと)が生じ、生産効率に悪影響を与える。
上記工程で得られた混合物を溶融混練する工程で用いる混練機としては、例えば、二軸連続押出し混練機、加圧ニーダ、三本ロール等が挙げられる。これらは、上記混合工程に用いることもできる。
その際、溶融混練物の吐出温度(Ts)(℃)が、Ta’<Ts<Ta’+45[式中Ta’は、結晶性樹脂(A)の融解熱の最大ピーク温度(℃)]になるような条件下で行うことが好ましく、より好ましくはTa’+5<Ts<Ta’+40、さらに好ましくはTa’+10<Ts<Ta’+35である
上記吐出温度がTa’℃以上のときは、結晶性樹脂(A)とワックスを含む混練物が充分溶融され、混練機に負荷がかからず、混練が容易である。また、(A)が充分溶融するため、常時結着樹脂の融着機能が充分発揮され、後述する顔料などの添加剤が遊離せず、フィルミング発生が起こりにくくなる。
また、混練樹脂の吐出温度が(Ta’+45)℃以下であると、溶融混練時のせん断力が十分得られ、フィルミング、ブラックスポット、カブリ等の問題が生じにくい。
上記溶融混練工程で得られた混練物は、固化された後、粉砕され、必要により分級される。固化させる方法は、溶融混練工程で得られる吐出物をパッド等に受けて自然冷却してもよいし、または強制冷却、例えば吐出物をプレスローラー等に誘導し圧力をかけながら強制冷却してもよい。冷却する温度は(Ta’−15)℃以下が好ましい。強制冷却、特に圧力をかける場合にあっては、吐出した溶融混練物は(Ta’−15)℃の温度までは急冷したり延伸(押圧)せず、徐冷する[好ましくは、冷却開始から(Ta’−15)℃に達するまで、30分以上]ことが好ましい。急冷したり延伸(押圧)したりすると、樹脂の結晶配列が乱れ、シャープメルト性が著しく失われ、結晶性樹脂粒子の耐熱保存安定性が低下することがある。またワックスの不十分な分散、大きな粒径のワックス粒子、米粒状の分散あるいは木の葉状の分散等の問題が生じ、それに伴って画像形成時に感光体上へのブラックスポット、フィルミング等の現象が生じる場合がある。
最後に溶融混練物の固化物を通常の手段に従って粉砕し、必要により分級して、本発明の結晶性樹脂粒子(P)を得る。
上記工程で用いる粉砕機としては、超音速ジェット粉砕機ラボジェット等が、分級機としては、気流分級機、エルボジェット等が挙げられる。
本発明の結晶性樹脂粒子(P)中に、添加剤(顔料、充填剤、帯電防止剤、着色剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤、難燃剤など)を混合しても差し支えない。(P)中に添加剤を添加する方法としては、あらかじめ結晶性樹脂(A)と添加剤を混合した後にワックスと混合しても、樹脂とワックスを混合する際に混合しても構わない。
また、本発明においては、添加剤は、必ずしも、結晶性樹脂粒子(P)を形成させる時に混合しておく必要はなく、(P)を形成せしめた後、添加してもよい。たとえば、着色剤を含まない(P)を形成させた後、公知の染着の方法で着色剤を添加したり、有機溶剤および/または可塑剤とともに、上記添加剤を含浸させることもできる。
本発明の結晶性樹脂粒子(P)中の結晶性樹脂(A)の含有量は、低温定着性および光沢性の観点から、好ましくは60重量%以上、さらに好ましくは70重量%以上である。
粒径均一性から、結晶性樹脂粒子(P)の[体積平均粒径/個数平均粒径]の値は、1.0〜1.4であるのが好ましく、1.0〜1.2であるのがさらに好ましい。
(P)の体積平均粒径は、用途により異なるが、一般的には0.1〜300μmが好ましい。上限は、さらに好ましくは250μm、特に好ましくは200μmであり、下限は、さらに好ましくは0.5μm、特に好ましくは1μmである。
なお、体積平均粒径および個数平均粒径は、マルチサイザーIII(コールター社製)で同時に測定することができる。
本発明の結晶樹脂粒子(P)は、塗料用添加剤、接着剤用添加剤、化粧品用添加剤、紙塗工用添加剤、スラッシュ成形用樹脂、粉体塗料、電子部品製造用スペーサー、触媒用担体、電子写真トナー、静電記録トナー、静電印刷トナー、電子測定機器の標準粒子、電子ペーパー用粒子、医療診断用担体、クロマトグラフ充填剤、電気粘性流体用粒子等各種用途に使用できる。
例えば、結晶性樹脂(A)と着色剤とを混合させ、また必要により、荷電制御剤及び流動化剤等を含有させることでトナー用樹脂粒子として使用できる。
着色剤としては、トナー用着色剤として使用されている染料、顔料等のすべてを使用することができる。具体的には、カーボンブラック、鉄黒、スーダンブラックSM、ファーストイエローG、ベンジジンイエロー、ソルベントイエロー(21,77,114など)、ピグメントイエロー(12,14,17,83など)、インドファーストオレンジ、イルガシンレッド、パラニトアニリンレッド、トルイジンレッド、ソルベントレッド(17,49,128,5,13,22,48・2など)、ディスパースレッド、カーミンFB、ピグメントオレンジR、レーキレッド2G、ローダミンFB、ローダミンBレーキ、メチルバイオレットBレーキ、フタロシアニンブルー、ソルベントブルー(25,94,60,15・3など)、ピグメントブルー、ブリリアントグリーン、フタロシアニングリーン、オイルイエローGG、カヤセットYG、オラゾールブラウンBおよびオイルピンクOP等が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。また、必要により磁性粉(鉄、コバルト、ニッケル等の強磁性金属の粉末もしくはマグネタイト、ヘマタイト、フェライト等の化合物)を着色剤としての機能を兼ねて含有させることができる。 着色剤の含有量は、結晶性樹脂(A)を含有する樹脂100部に対して、好ましくは0.1〜40部、さらに好ましくは0.5〜10部である。なお、磁性粉を用いる場合は、好ましくは20〜150部、さらに好ましくは40〜120部である。上記および以下において、部は重量部を意味する。
荷電制御剤としては、ニグロシン染料、3級アミンを側鎖として含有するトリフェニルメタン系染料、4級アンモニウム塩、ポリアミン樹脂、イミダゾール誘導体、4級アンモニウム塩基含有ポリマー、含金属アゾ染料、銅フタロシアニン染料、サリチル酸金属塩、ベンジル酸のホウ素錯体、スルホン酸基含有ポリマー、含フッ素系ポリマー、ハロゲン置換芳香環含有ポリマー、サリチル酸のアルキル誘導体の金属錯体、セチルトリメチルアンモニウムブロミド等が挙げられる。
流動化剤としては、コロイダルシリカ、アルミナ粉末、酸化チタン粉末、炭酸カルシウム粉末、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム等が挙げられる。
粒子化するときの組成比は、粒子の重量に基づき(以下の本項の%は重量%である。)、結晶性樹脂(A)が、好ましくは30〜97%、さらに好ましくは40〜94%、とくに好ましくは45〜90%;ワックスが、好ましくは0.1〜30%、さらに好ましくは0.5〜20%、とくに好ましくは1〜10%、添加剤のうち、着色剤が、好ましくは0.05〜60%、さらに好ましくは0.1〜55%、とくに好ましくは0.5〜50%;荷電制御剤が、好ましくは0〜20%、さらに好ましくは0.1〜10%、とくに好ましくは0.5〜7.5%;流動化剤が、好ましくは0〜10%、さらに好ましくは0〜5%、とくに好ましくは0.1〜4%である。また、添加剤の合計含有量は、好ましくは3〜70%、さらに好ましくは4〜58%、とくに好ましくは5〜50%である。粒子の組成比が上記の範囲であることで帯電性が良好なものを容易に得ることができる。
トナーとして用いる場合、結晶性樹脂粒子(P)は、必要に応じて、キャリアー粒子{鉄粉、ガラスビーズ、ニッケル粉、フェライト、マグネタイト及び樹脂(アクリル樹脂及びシリコーン樹脂等)により表面をコーティングしたフェライト等}と混合して、電気的潜像の現像剤として用いることができる。また、キャリアー粒子のかわりに、帯電ブレード等と摩擦させて、電気的潜像を形成させることもできる。
そして、電気的潜像は、公知の熱ロール定着方法等によって、支持体(紙及びポリエステルフィルム等)に定着される。
以下実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。
製造例1(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸11部と1,4−ブタンジオール108部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.5部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b1]を得た。[結晶性部b1]の[結晶性樹脂b1]を得た。[結晶性樹脂b1]の融点は57℃、Mnは5000、Mwは11000、水酸基価は30であった。
製造例2(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ドデカン二酸286部と1,6−ヘキサンジオール190部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b2]を得た。[結晶性部b2]の融点は66℃、Mnは4900、Mwは10000、水酸基価は34であった。
製造例3(結晶性部bの製造)
攪拌棒および温度計をセットした反応容器に、1,4−ブタンジオール66部、1,6−ヘキサンジオール86部、およびメチルエチルケトン(以下、MEKと記載する。)40部を仕込んだ。この溶液にヘキサメチレンジイソシアネート(HDI)248部を仕込み80℃で5時間反応し、結晶性ポリウレタン樹脂[結晶性部b3]のMEK溶液を得た。溶剤を除いた後の[結晶性部b3]の融点は57℃、Mnは4500、Mwは9700、水酸基価は36であった。
製造例4(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸28部と1,4−ブタンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、を仕込み、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwが20000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b4]を得た。[結晶性部b4]の融点は55℃、Mnは8300、Mwは20000、水酸基価は19であった。
製造例5(結晶性樹脂bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸11部と1,4−ブタンジオール108部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.5部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに10〜25mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b5]を得た。[結晶性部b5]の融点は56℃、Mnは4100、Mwは9200、水酸基価は45であった。
製造例6(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸28部と1,4−ブタンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、を仕込み、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで210℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら2時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ5000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b6]を得た。[結晶性部b6]の融点は55℃、Mnは2300、Mwは5000、水酸基価は83であった。
製造例7(結晶性部bの製造)
(S)−PO・180部とKOH30部を1Lのオートクレーブに入れ、室温で48時間攪拌して重合させた。得られた重合物を70℃に昇温して溶融し、KOHを水洗するため、トルエンを100部、水を各100部加えて分液を3回繰り返した。そのトルエン相を、0.1mol/Lの塩酸で中和し、水を各100部加えてさらに分液を3回行い、そのトルエン相からトルエンを留去し、得られた樹脂を室温まで冷却後、粉砕し粒子化し、結晶性ポリエーテル樹脂[結晶性部b7]を得た。[結晶性部b7]の融点は55℃、Mwは9000、水酸基価は20、アイソタクティシティは99%であった。
製造例8(結晶性部bの製造)
攪拌装置および脱水装置のついた反応容器に、1,4−ブタンジオール2部、ε−カプロラクトン650部、ジブチルチンオキサイド2部を投入し、常圧、窒素雰囲気下、150℃で10時間反応を行った。さらに得られた樹脂を室温まで冷却後、粉砕し粒子化し、ラクトン開環重合物である結晶性ポリエステル樹脂[結晶性部b8]を得た。[結晶性部b8]の融点は60℃、Mwは9800、水酸基価は14であった。
製造例9(結晶性部bの製造)
攪拌装置および脱水装置のついた反応容器に、エチレングリコール2部、L−ラクチド400部、グリコリド150部、ジブチルチンオキサイド2部を投入し、常圧、窒素雰囲気下、150℃で10時間反応を行った。さらに得られた樹脂を室温まで冷却後、粉砕し粒子化し、ポリヒドロキシカルボン酸である結晶性ポリエステル樹脂[結晶性部b9]を得た。[結晶性部b9]の融点は60℃、Mwは11200、水酸基価は14であった。
製造例10(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸121部、ジメチルテレフタル酸118部と1,6−ヘキサンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,6−ヘキサンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwが8000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b10]を得た。[結晶性部b10]の融点は53℃、Mwは8000、水酸基価は46であった。
製造例11(非結晶性部cの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、1,2−プロピレングリコール(以下、プロピレングリコールと記載。)831部、テレフタル酸750部、および縮合触媒としてテトラブトキシチタネート0.5部を入れ、180℃で窒素気流下に、生成するメタノールを留去しながら8時間反応させた。次いで230℃まで徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、軟化点が87℃になった時点で180℃まで冷却し、さらに無水トリメリット酸24部、テトラブトキシチタネート0.5部を投入し90分反応させた後、取り出した。回収されたプロピレングリコールは442部であった。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、非結晶性重縮合ポリエステル樹脂[非結晶性部c1’]を得た。[非結晶性部c1’]のMwは8000、Tgは65℃、水酸基価は30であった。
製造例12(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート44部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール32部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液を、MEK140部に[結晶性部b1]140部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A1]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A1]のTa’は55℃、Mnは14000、Mwは28000であった。
製造例13(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート38部およびMEK100部を仕込んだ。この溶液に1,2−プロピレングリコール14部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c3]の溶液を、MEK130部に[結晶性樹脂b2]130部を溶解させた溶液へ投入し80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A2]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A2]のTa’は64℃、Mnは9000、Mwは34000であった。
製造例14(結晶性樹脂Aの製造)
製造例13と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c3]の溶液152部を、MEK130部に[結晶性部b3]130部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A3]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A3]のTa’は54℃、Mnは12000、Mwは37000であった。
製造例15(結晶性樹脂Aの製造)
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b4]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A4]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A4]のTa’は55℃、Mnは24000、Mwは45000であった。
製造例16(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、MEK190部に[結晶性部b1]190部を溶解させた溶液を入れ、次いでトリレンジイソシアネート9部を投入し、80℃で4時間反応して、結晶性ポリウレタン樹脂である[結晶性樹脂A5]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A5]のTa’は56℃、Mnは31000、Mwは72000であった。
製造例17(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート63部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール46部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c4]の溶液を、MEK210部に[結晶性部b5]210部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A6]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A6]のTa’は54℃、Mnは19000、Mwは30000であった。
製造例18〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b7]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A7]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A7]のTa’は64℃、Mnは15000、Mwは36000であった。
製造例19〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b8]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A8]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A8]のTa’は59℃、Mnは10000、Mwは22000であった。
製造例20〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b9]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A9]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A9]のTa’は60℃、Mnは9000、Mwは21000であった。
製造例21〔結晶性樹脂Aの製造〕
撹拌装置、加熱冷却装置、温度計、滴下ロート、および窒素吹き込み管を備えた反応容器に、トルエン500部を仕込み、別のガラス製ビーカーに、トルエン350部、ベヘニルアクリレート(炭素数22個の直鎖アルキル基を有するアルコールのアクリレート:プレンマーVA(日本油脂製))120部、2−エチルヘキシルアクリレート20部、メタクリル酸10部、アゾビスイソブチロニトリル(AIBN)7.5部を仕込み、20℃で撹拌、混合して単量体溶液を調製し、滴下ロートに仕込んだ。反応容器の気相部の窒素置換を行った後に密閉下80℃で2時間かけて単量体溶液を滴下し、滴下終了から2時間、85℃で熟成した後、トルエンを130℃で3時間減圧除去して、結晶性ビニル樹脂である[結晶性樹脂A10]を得た。[結晶性樹脂A10]のTa’は56℃、Mnは68000、Mwは89000であった。
製造例22〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート42部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール31部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c5]の溶液を、MEK140部に[結晶性部b10]126部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A11]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A11]のTa’は52℃、Mnは10000、Mwは22000であった。
製造例23〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、キシレンジイソシアネート32部およびMEK100部を仕込んだ。この溶液にビスフェノールA・EO2モル付加物47部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c6]の溶液を、MEK140部に[結晶性部b1]122部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A12]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A12]のTa’は55℃、Mnは14000、Mwは30000であった。
製造例24〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、キシレンジイソシアネート35部およびMEK100部を仕込んだ。この溶液にビスフェノールA・EO2モル付加物52部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c7]の溶液を、MEK140部に[結晶性部b1]111部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A13]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A13]のTa’は52℃、Mnは18000、Mwは38000であった。
製造例25〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、製造例11で得られた非結晶性重縮合ポリエステル樹脂[非結晶性部c1’]およびMEK100部を仕込んだ。この溶液にキシレンジイソシアネート7部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する[非結晶性部c1’]のウレタン変性物[非結晶性部c1]の溶液を、MEK140部に[結晶性樹脂b1]111部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A14]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A14]のTa’は55℃、Mnは25000、Mwは51000であった。
比較製造例1(比較用樹脂A’の製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物456部(9.0モル)、ビスフェノールA・EO2モル付加物321部(7.0モル)、テレフタル酸247部(10.0モル)、およびテトラブトキシチタネート3部を入れ、230℃で窒素気流下に、生成する水を留去しながら5時間反応させた。次いで5〜20mmHgの減圧下に反応させ、酸価が2になった時点で180℃に冷却し、無水トリメリット酸74部(2.6モル)を加え、常圧密閉下2時間反応後取り出し、非結晶性樹脂である[比較用樹脂A’1]を得た。[比較用樹脂A’1]のTgは55℃、Mnは3500、Mwは7500であった。
比較製造例2(比較用樹脂A’の製造)
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK110部に[結晶性部b6]110部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’2]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’2]のTa’は52℃、Mnは6000、Mwは13000であった。
比較製造例3(比較用樹脂A’の製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート59部およびMEK80部を仕込んだ。この溶液にシクロヘキサンジメタノール46部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c8]の溶液を、MEK17部に[結晶性部b1]17部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’3]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’3]のTa’は45℃、Mnは12000、Mwは26000であった。
比較製造例4(比較用樹脂A’の製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート9部およびMEK80部を仕込んだ。この溶液にビスフェノールA・PO2モル付加物とイソフタル酸とで形成されるMw2000のポリエステル樹脂48部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c9]の溶液を、MEK95部に[結晶性部b1]95部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’4]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’4]のTa’は55℃、Mnは4400、Mwは14000であった。
製造例26(結晶性樹脂粒子Pの製造)
混練前の結晶性樹脂90部の各々に、カルナバワックス10部もしくはパラフィンワックス6部を混合し、必要に応じて着色剤として銅フタロシアニン5部を混合し、二軸混練機[(株)池貝製 PCM−30]で混練し吐出させ、混練物を3時間(Ta’−5)℃〔Ta’は各々の結晶性樹脂(A)の融解熱の最大ピーク温度〕で温調した後、25℃まで冷却し、混練物(R−1)〜(R−17)、および比較用混練物(R’−1)〜(R’−4)を得た。ただし、比較用混練物(R’−1)に関しては、樹脂のTa’の代わりにTgの値を基準にした。
下記表1に成分表、および混練時の吐出温度を示す。
ついで超音速ジェット粉砕機ラボジェット[日本ニューマチック工業(株)製]を用いて微粉砕した後、気流分級機[日本ニューマチック工業(株)製 MDS−I]で分級し、体積平均粒径D50が8μmの、本発明の結晶性樹脂粒子(P−1)〜(P−17)、および比較の樹脂粒子(P’−1)〜(P’−4)を得た。
実施例1〜17、比較例1〜4)
上記本発明の結晶性樹脂粒子(P−1)〜(P−17)、および比較の樹脂粒子(P’−1)〜(P’−4)を用いて、それぞれの、定着性、耐熱保存安定性、および帯電特性を以下に記載の方法で評価試験した。その結果を表2および表3に示した。
また、実施例1〜17、および比較例1〜4で使用した、結晶性樹脂A、比較用樹脂A’、およびそれらを構成する結晶性部(b)と非結晶性部(c)をそれぞれ分析した結果を表2および表3に示した。
(A)または(A’)が非結晶性部(c)を持つ場合、非結晶性部の重量平均分子量、ガラス転移温度、および軟化点は、非結晶性部となる樹脂を作製した時点で一部を抜き取り、測定した。ただし非結晶性部がイソシアネート基を持つ場合は、これに当量のメタノールを加えイソシアネート含量を0にしてから測定した。
〔定着性〕
樹脂粒子にアエロジルR972(日本アエロジル社製)を1.0重量%添加し、よく混ぜて均一にした後、この粉体を紙面上に0.6mg/cm2となるよう均一に載せる(このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いる(上記の重量密度で粉体を均一に載せることができるのであれば他の方法を用いてもよい)。この紙を加圧ローラーに定着速度(加熱ローラ周速)213mm/sec、定着圧力(加圧ローラ圧)5kg/cm2の条件で通した時のMFT(最低定着温度)を測定した。
MFT欄が“×”は定着領域なしである。
〔耐熱保存安定性〕
50℃に温調された乾燥機に樹脂粒子を15時間静置し、ブロッキングの程度により下記の基準で評価した。
○ : ブロッキングが発生しない。
△ : ブロッキングが発生するが、力を加えると容易に分散する。
× : ブロッキングが発生し、力を加えても分散し難い乃至分散しない。
〔帯電特性〕
50ccの共栓付ガラス瓶に、樹脂粒子0.5g、鉄粉(日本鉄粉株式会社製「F−150」)10gを精秤し、共栓をして23℃、50%RHの雰囲気下でターブラシェーカミキサー(ウイリー・ア・バショッフェン社製)にセットし、回転数90rpmで2分攪拌する。攪拌後の混合粉体0.2gを目開き20μmステンレス金網がセットされたブローオフ粉体帯電量測定装置(京セラケミカル株式会社製TB−203)に装填し、ブロー圧10KPa,吸引圧5KPaの条件で、残存鉄粉の帯電量を測定し、定法により樹脂粒子の帯電量を算出する。なお、トナー用としてはマイナス帯電量が高いほど帯電特性が優れている。
表2および表3に示したように、本発明の結晶性樹脂粒子(実施例1〜17)は、比較例の樹脂粒子と比べて、特にMFTの点で、いずれも著しく良好な結果が得られた。
本発明の結晶性樹脂粒子(P)は、定着性に優れ、また粒度分布がシャープで、帯電性にも優れる。そのため用途としては、塗料用添加剤、接着剤用添加剤、化粧品用添加剤、紙塗工用添加剤、スラッシュ成形用樹脂、粉体塗料、電子部品製造用スペーサー、触媒用担体、電子写真トナー、静電記録トナー、静電印刷トナー、電子測定機器の標準粒子、電子ペーパー用粒子、医療診断用担体、クロマトグラフ充填剤、電気粘性流体用粒子等として有用である。

Claims (10)

  1. 少なくとも結晶性樹脂(A)とワックスとを含む混合物が、溶融混練および粉砕されて作製され、融解熱の最大ピーク温度(Ta)が45〜80℃、軟化点とTaの比(軟化点/Ta)が0.8〜1.55であり、かつ以下の条件を満たすことを特徴とする結晶性樹脂粒子。
    〔条件1〕 G’(Ta+20)=1×102〜5×105[Pa]
    〔条件2〕 G”(Ta+20)=1×102〜5×105[Pa]
    [G’:貯蔵弾性率、G”:損失弾性率]
  2. (Ta+30)℃における損失弾性率G”(Ta+30)と、(Ta+70)℃における損失弾性率G”(Ta+70)の比〔G”(Ta+30)/G”(Ta+70)〕が0.05〜50である請求項1記載の結晶性樹脂粒子。
  3. 結晶性樹脂(A)の融解熱の最大ピーク温度(Ta’)が40〜100℃、軟化点とTa’の比(軟化点/Ta’)が0.8〜1.55、溶融開始温度(X)が(Ta±30)℃の温度範囲内であり、かつ(A)が以下の条件を満たす請求項1または2記載の結晶性樹脂粒子。
    〔条件3〕 G’(Ta’+20)=50〜1×106[Pa]
    〔条件4〕 |LogG”(X+20)−LogG”(X)|>2.0
    [G’:貯蔵弾性率[Pa]、G”:損失弾性率[Pa]]
  4. 溶融混練する工程において、混練物の吐出温度(Ts)(℃)が、Ta’<Ts<Ta’+45[Ta’:結晶性樹脂(A)の融解熱の最大ピーク温度(℃)]の範囲である請求項1〜3のいずれか記載の結晶性樹脂粒子。
  5. 結晶性樹脂(A)の含有量が50重量%以上である請求項1〜4のいずれか記載の結晶性樹脂粒子。
  6. 結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂であり、(b)の重量平均分子量が2000〜80000であり、(A)中の(b)の割合が50重量%以上である請求項1〜5のいずれか記載の結晶性樹脂粒子。
  7. 結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とが下記の形式で線状に結合された樹脂であり、nが0.9〜3.5である請求項6記載の結晶性樹脂粒子。
    (b){−(c)−(b)}n
  8. 結晶性部(b)が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂から選ばれる樹脂である請求項6または7記載の結晶性樹脂粒子。
  9. 非結晶性部(c)が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂から選ばれる樹脂である請求項6〜8のいずれか記載の結晶性樹脂粒子。
  10. 結晶性樹脂(A)が、結晶性基を有するビニルモノマー(m) を構成単位として有する結晶性ビニル樹脂である請求項1〜5のいずれか記載の結晶性樹脂粒子。
JP2009233355A 2009-10-07 2009-10-07 結晶性樹脂粒子 Active JP5442384B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233355A JP5442384B2 (ja) 2009-10-07 2009-10-07 結晶性樹脂粒子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233355A JP5442384B2 (ja) 2009-10-07 2009-10-07 結晶性樹脂粒子

Publications (2)

Publication Number Publication Date
JP2011079962A JP2011079962A (ja) 2011-04-21
JP5442384B2 true JP5442384B2 (ja) 2014-03-12

Family

ID=44074342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233355A Active JP5442384B2 (ja) 2009-10-07 2009-10-07 結晶性樹脂粒子

Country Status (1)

Country Link
JP (1) JP5442384B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078352A (ja) * 2013-09-12 2015-04-23 三洋化成工業株式会社 樹脂粒子
JP2017165806A (ja) * 2016-03-14 2017-09-21 ジャパンコーティングレジン株式会社 ワックス含有ウレタン系複合粒子
JP7132994B2 (ja) * 2020-10-06 2022-09-07 ジャパンコーティングレジン株式会社 ワックス含有ウレタン系複合粒子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155351A (ja) * 1990-10-18 1992-05-28 Konica Corp 画像形成方法
JP3937886B2 (ja) * 2002-03-26 2007-06-27 キヤノン株式会社 トナー
JP5041716B2 (ja) * 2005-03-18 2012-10-03 株式会社リコー 定着方法及び画像形成方法
JP4468240B2 (ja) * 2005-05-26 2010-05-26 花王株式会社 電子写真用トナー
JP5084483B2 (ja) * 2007-12-13 2012-11-28 花王株式会社 電子写真用トナーの製造方法
GB2471247B (en) * 2008-03-31 2013-04-10 Sanyo Chemical Ind Ltd Toner binder and toner

Also Published As

Publication number Publication date
JP2011079962A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5027842B2 (ja) トナーバインダーおよびトナー
JP5763497B2 (ja) トナーバインダーおよびトナー組成物
JP5237902B2 (ja) 結晶性樹脂粒子
JP6081259B2 (ja) トナーバインダーおよびトナー組成物
JP5291649B2 (ja) 樹脂粒子
JP5742412B2 (ja) 静電画像形成用トナー及びトナー用樹脂
JP5301722B2 (ja) トナーバインダー及びトナー組成物
JP2013156475A (ja) 静電画像形成用トナーおよび現像剤
JP2011028170A (ja) トナーバインダー及びトナー組成物
JP6348361B2 (ja) トナーバインダーおよびトナー組成物
JP5698026B2 (ja) トナーバインダーおよびトナー組成物
JP5442384B2 (ja) 結晶性樹脂粒子
JP2012012481A (ja) 樹脂粒子の製造方法、樹脂粒子、および電子写真トナー
JP2011144358A (ja) 樹脂粒子
JP5723549B2 (ja) トナーバインダーおよびトナー組成物
JP6975052B2 (ja) トナーバインダー及びトナー
JP5554125B2 (ja) トナー用バインダー樹脂およびトナー組成物
JP2015078352A (ja) 樹脂粒子
JP6886353B2 (ja) トナー用樹脂及びトナー
JP6279895B2 (ja) トナーバインダー及びトナー組成物
JP7034787B2 (ja) トナーバインダー及びトナー
JP6211265B2 (ja) トナーバインダー
JP2012013772A (ja) トナーバインダー及びトナー組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150