JP5418393B2 - 車両の駆動装置およびそれを備える車両 - Google Patents

車両の駆動装置およびそれを備える車両 Download PDF

Info

Publication number
JP5418393B2
JP5418393B2 JP2010103471A JP2010103471A JP5418393B2 JP 5418393 B2 JP5418393 B2 JP 5418393B2 JP 2010103471 A JP2010103471 A JP 2010103471A JP 2010103471 A JP2010103471 A JP 2010103471A JP 5418393 B2 JP5418393 B2 JP 5418393B2
Authority
JP
Japan
Prior art keywords
leakage
voltage
converter
vehicle
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010103471A
Other languages
English (en)
Other versions
JP2011234538A (ja
Inventor
務 松木
征司 吉田
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010103471A priority Critical patent/JP5418393B2/ja
Publication of JP2011234538A publication Critical patent/JP2011234538A/ja
Application granted granted Critical
Publication of JP5418393B2 publication Critical patent/JP5418393B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

この発明は、車両の駆動装置およびそれを備える車両に関し、特に、車両の電気負荷の漏電検出時の制御に関する。
環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流電圧に変換し、その変換した交流電圧によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
特開2003−116280号公報(特許文献1)は、バッテリを昇圧する昇圧回路と三相交流モータを制御するインバータとを備えた車両を開示する。
特開2003−116280号公報 特開2005−12858号公報 特開2005−57918号公報
このようなハイブリッド自動車および電気自動車は、車輪を駆動するための電気系統を搭載しており、この電気系統において漏電が発生したか否かを検出することが考えられている。
この電気系統は高圧バッテリや昇圧回路の出力など100V以上の高圧電圧系統を含む。高圧電圧系統から漏電が発生すると、漏電電流によりシャーシグラウンドの電位が変動する。このシャーシグラウンドの電位の変動によって、例えばDC/DCコンバータが誤作動により停止するおそれがある。
この発明の目的は、漏電発生時に漏電電流を低減させることができる車両の駆動装置およびそれを備える車両を提供することである。
この発明は、要約すると、車両の駆動装置であって、正極母線と負極母線との間に接続され、スイッチング動作によりモータを駆動するインバータと、インバータまたはモータの漏電を検出する漏電検出装置と、インバータを制御する制御装置とを備える。制御装置は、漏電検出装置により漏電が検出された場合には、漏電検出装置により漏電が検出されていない場合に比べて、インバータのキャリア周波数を低くしてインバータを制御する。
好ましくは、車両は、蓄電装置と、蓄電装置の電圧を変換して正極母線と負極母線との間に出力する電圧コンバータとを含む。制御装置は、漏電検出装置により漏電が検出された場合には、電圧コンバータによる電圧変換動作を中止させ、電圧コンバータに蓄電装置の電圧をそのまま正極母線と負極母線との間に出力させる。
より好ましくは、車両は、補機負荷に電力を供給するための補機バッテリと、蓄電装置の電圧を変換して補機バッテリおよび補機負荷に供給するDC/DCコンバータとをさらに含む。制御装置は、漏電検出装置に漏電が検出されている漏電期間を計測し、漏電期間が第1しきい値を超えた場合には、DC/DCコンバータの動作を停止させる。
さらに好ましくは、制御装置は、漏電検出装置に漏電が検出されている漏電期間を計測し、漏電期間が第1しきい値よりも大きい第2しきい値を超えた場合には、漏電故障を示す診断情報を記録する。
この発明は、他の局面では、上記いずれかに記載の車両の駆動装置を備えた車両である。
本発明によれば、漏電電流が低減するのでDC/DCコンバータなどの車載機器の誤動作を防止することができる。
本実施の形態による車両の構成を示す回路図である。 図1のDC/DCコンバータ13の構成の一例を示したブロック図である。 図1の制御装置30が実行する制御を説明するためのフローチャートである。 モータに地絡故障が発生したときのキャリア周波数および昇圧電圧VHを変化させた場合の漏電電流の実測値の変化を示した図である。 図2のDC−DCコンバータ制御回路136の制御を説明するためのフローチャートである。 本実施の形態の動作の一例を説明するための図である。 本実施の形態の動作の他の一例を説明するための図である。
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、本実施の形態による車両の構成を示す回路図である。
図1を参照して、車両100は、共に直流電源の一種である高圧バッテリB1および補機バッテリB2と、システムリレーSR1,SR2と、電圧センサー10,16と、電圧コンバータ11と、正極母線PLと、負極母線NLと、コンデンサ12と、DC/DCコンバータ13と、エアコン14と、電流センサー17,24と、インバータ20と、制御装置30と、漏電検出器70とを備える。
電圧コンバータ11は、リアクトルL1と、IGBT素子Q1,Q2と、ダイオードD1,D2とを含む。リアクトルL1は、その一方端が高圧バッテリB1の正極に接続され、他方端がIGBT素子Q1のエミッタとIGBT素子Q2のコレクタの接続ノードに接続される。
IGBT素子Q1,Q2は、正極母線PLと負極母線NLとの間に直列に接続される。IGBT素子Q1は、コレクタが正極母線PLに接続され、エミッタがIGBT素子Q2のコレクタに接続される。IGBT素子Q2は、エミッタが負極母線NLに接続される。
また、各IGBT素子Q1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2がそれぞれ接続されている。
インバータ20は、U相アーム21と、V相アーム22と、W相アーム23とを含む。U相アーム21、V相アーム22、およびW相アーム23は、正極母線PLと負極母線NLとの間に並列に設けられる。
U相アーム21は、正極母線PLと負極母線NLとの間に直列に接続されたIGBT素子Q3,Q4を含む。V相アーム22は、正極母線PLと負極母線NLとの間に直列に接続されたIGBT素子Q5,Q6を含む。W相アーム23は、正極母線PLと負極母線NLとの間に直列に接続されたIGBT素子Q7,Q8を含む。また、各IGBT素子Q3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
交流モータM1は、3相の永久磁石モータであり、U,V,W相コイルを含む。U,V,W相アームの中間点は、それぞれ、交流モータM1のU,V,W相コイルの一方端に接続されている。U相コイルの他端はIGBT素子Q3,Q4の中間点に接続される。V相コイルの他端はIGBT素子Q5,Q6の中間点に接続される。W相コイルの他端はIGBT素子Q7,Q8の中間点に接続される。U,V,W相の3つのコイルの各他方端は中性点に共通接続される。
漏電検出器70は、カップリングコンデンサ15と、発振回路40と、抵抗50と、インピーダンス判定回路60とを含む。カップリングコンデンサ15は、高圧バッテリB1のマイナス側(すなわち、負極母線NL)とノードN1との間に接続される。抵抗50は、ノードN1と発振回路40との間に接続される。
DC/DCコンバータ13およびエアコン14は、システムリレーSR1,SR2と電圧コンバータ11との間のノードN2,N3に並列に接続される。補機バッテリB2は、DC/DCコンバータ13に接続される。補機バッテリB2の負極はシャーシグラウンドGNDに結合されている。なお、補機バッテリB2は、図示しない補機負荷にも電力を供給している。補機バッテリB2は、鉛蓄電池等の二次電池または電気二重層コンデンサ等の蓄電素子を含んで構成することができる。
高圧バッテリB1は、ニッケル水素あるいはリチウムイオン等の二次電池または電気二重層コンデンサ等の蓄電素子を含んで構成することができる。そして、高圧バッテリB1は、直流電圧VBをシステムリレーSR1,SR2を介して電圧コンバータ11、DC/DCコンバータ13およびエアコン14へ供給する。
システムリレーSR1,SR2は、制御装置30からの信号SEによってオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。
電圧センサー10は、高圧バッテリB1から出力される直流電圧VBを検出し、直流電圧VBの検出値を制御装置30へ出力する。
電流センサー17は、高圧バッテリB1に入出力する直流電流BCRTを検出し、直流電流BCRTの検出値を制御装置30へ出力する。
電圧コンバータ11は、制御装置30からの信号PWMUに基づいて、高圧バッテリB1からの直流電圧VHを昇圧してコンデンサ12に供給する。また、電圧コンバータ11は、制御装置30からの信号PWMDまたはPWMLに基づいて、インバータ20から供給された直流電圧を降圧して高圧バッテリB1またはDC/DCコンバータ13およびエアコン14へ供給する。
コンデンサ12は、電圧コンバータ11から供給された直流電圧を平滑化してインバータ20に供給する。
DC/DCコンバータ13は、高圧バッテリB1または電圧コンバータ11から受けた直流電圧の電圧レベルを変換して補機バッテリB2に供給する。エアコン14は、高圧バッテリB1または電圧コンバータ11から受ける直流電圧により駆動される。
電圧センサー16は、コンデンサ12の両端の電圧VHを検出し、その検出した電圧VHを制御装置30へ出力する。
インバータ20は、制御装置30からの信号PWMIに基づいて、コンデンサ12を介して電圧コンバータ11から供給された直流電圧を交流電圧に変換して交流モータM1を駆動する。また、インバータ20は、制御装置30からの信号PWMCに基づいて、交流モータM1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧をコンデンサ12を介して電圧コンバータ11へ供給する。
電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
制御装置30は、電圧センサー10からの直流電圧VB、電圧センサー16からの電圧VH、車両100の外部に設けられたECU(Electrical Control Unit)からのモータ回転数MRNおよびトルク指令値TRに基づいて、信号PWMUまたは信号PWMDを生成し、その生成した信号PWMUまたは信号PWMDを電圧コンバータ11へ出力する。
さらに、制御装置30は、電圧センサー16からの電圧VH、電流センサー24からのモータ電流MCRTおよび外部ECUからのトルク指令値TRに基づいて、信号PWMIまたは信号PWMCを生成し、その生成した信号PWMIまたは信号PWMCをインバータ20へ出力する。
発振回路40は、交流信号Eoを発振し、その発振した交流信号Eoを抵抗50を介してノードN1へ出力する。発振回路40は、所定周波数の交流信号Eoを出力する。
インピーダンス判定回路60は、ノードN1から交流信号Eを受け、その受けた交流信号Eの波高値を検出する。
高圧システムからの漏電経路は、抵抗成分27で示すような直流部からシャーシグラウンドGNDへの漏電経路と、抵抗成分25およびキャパシタンス成分26で示すような交流部からシャーシグラウンドGNDへの漏電経路とが考えられる。ここでは、交流部における漏電の有無の判定方法について説明する。
インバータ20および交流モータM1の交流部において漏電が発生した場合、漏電インピーダンスは抵抗成分25とキャパシタンス成分26とが並列に接続されたインピーダンスに相当する。そして、交流部において漏電が発生した場合、発振回路40から出力された交流信号Eoは、抵抗50、カップリングコンデンサ15、抵抗成分25とキャパシタンス成分26との並列接続によるインピーダンス(漏電インピーダンス)、およびシャーシグラウンドGNDの経路を伝達される。
そうすると、経路の全インピーダンスZ0は、抵抗50、カップリングコンデンサ15の容量および漏電インピーダンスZを直列に接続したものであるが、ノードN1における電圧Eは、漏電が発生するか否か、つまり、漏電インピーダンスZに大きく影響される。
つまり、電圧Eは、漏電の発生の有無に伴って波高値(振幅)が変化する。インピーダンス判定回路60は、電圧Eの波高値を漏電波高値DELとして出力する。制御装置30は漏電波高値DELがしきい値よりも小さくなった場合には交流部に漏電が発生していると判断する。
また、交流部において漏電が発生していなければ、電圧Eは電圧Eoに比べて振幅の低下はあまり生じない。この場合、漏電波高値はしきい値よりも大きくなり、交流部において漏電が発生していないと判定される。
制御装置30は、車両100の交流部において漏電が発生したことを示す漏電波高値DELを漏電検出器70から受けると、後述する図3に示すように、昇圧動作を停止させるように電圧コンバータ11を制御するための信号PWMLを生成し、その生成した信号PWMLを電圧コンバータ11へ出力する。すなわち、制御装置30は、車両100の交流部において漏電が発生した場合、昇圧動作を停止させるように電圧コンバータ11を制御する。
具体的には、上アームオン状態に電圧コンバータ11を制御する。上アームオン状態では、IGBT素子Q2をオフ状態に固定し、IGBT素子Q1をオン状態に固定するように制御される。そうすれば、高圧バッテリB1からリアクトルL1およびIGBT素子Q1を介して電圧VBが略そのままインバータ20に供給される。なお、IGBT素子Q1をオフ状態にしてもよい。ダイオードD1によって高圧バッテリB1からインバータ20へ電流を流すことができる。
図2は、図1のDC/DCコンバータ13の構成の一例を示したブロック図である。
図2に示すように、DC/DCコンバータ13は、図1の高圧バッテリB1からノードN2,N3の間の直流電圧を受けて平滑化するフィルタ131と、フィルタ131から与えられる直流電圧を交流電圧に変換するDC/AC変換部132と、DC/AC変換部132によって変換された後の交流電圧を一次側コイルに受けて、降圧する降圧トランス133とを含む。
フィルタ131は、ノードN2とノードN3との間に直列に接続されたコンデンサ142,144と、コンデンサ142,144の接続ノードとシャーシグラウンドとの間に接続された抵抗146とを含む。
DC/DCコンバータ13は、さらに、降圧トランス133の二次側コイルに誘起される交流電圧を直流に整流する整流回路134と、整流回路134の出力を平滑化する平滑回路とを含む。平滑回路135を介して電圧が補機バッテリB2に与えられ、補機バッテリB2は充電される。
DC/DCコンバータ13は、さらに、過電流および過電圧を検出する過電流・過電圧検出部137と、DC−DCコンバータ制御回路136とを含む。過電流・過電圧検出部137の検出結果はDC−DCコンバータ制御回路136に与えられる。DC−DCコンバータ制御回路136は、これに応じてDC/AC変換部132の変換動作を停止させたり開始させたりする。
DC−DCコンバータ制御回路136は、電源端子の負極がシャーシグラウンドGNDを経由して補機バッテリB2の負極に接続され、電源端子の正極は補機バッテリB2に接続される。シャーシグラウンドGNDの電位が漏電などで変動すると、DC−DCコンバータ制御回路136はリセットされて動作を停止する。
図3は、図1の制御装置30が実行する制御を説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
図1、図3を参照して、制御装置30は、ステップS1において、漏電波高値DELをインピーダンス判定回路60から取得する。続いてステップS2において、制御装置は、漏電波高値DELがしきい値βよりも小さいか否かを判断する。漏電波高値DELは漏電が発生するとしきい値βよりも低下する。
ステップS2において、漏電波高値がしきい値βより小さくない場合には、ステップS9に処理が進む。ステップS9では漏電有フラグFLがオフに設定される。そしてステップS10において漏電発生検出時間を計測するタイマーがリセットされる。その後ステップS11において処理はメインルーチンに戻される。
ステップS2において、漏電波高値がしきい値βより小さい場合には、ステップS3に処理が進む。ステップS3では漏電有フラグFLがオンに設定される。そしてステップS4において漏電発生検出時間を計測するタイマーがインクリメントされる。
ステップS5では、制御装置30は、電圧コンバータ11による昇圧が禁止されるように制御信号PWMU,PWMD,PWMLを出力する。さらに制御装置30は、インバータ20のキャリア周波数fcを低下させる。たとえば、キャリア周波数fcは、モータ回転速度に応じて、10kHz、5kHz、2.5kHzから選択されているが、ステップS5では最低周波数である2.5kHzに低下させる。なお、キャリア周波数は、上記の周波数に限定されるものではなく、通常のキャリア周波数に比べて漏電発生時には低いキャリア周波数を使用すれば、以下に説明するように漏電電流を低下させることができる。
図4は、モータに地絡故障が発生したときのキャリア周波数および昇圧電圧VHを変化させた場合の漏電電流の実測値の変化を示した図である。
図4を参照して、インバータのキャリア周波数が5kHzの時に電圧VHを350Vから650Vまで変化させた場合、電圧VHが低いほど漏電電流の実効値(Arms)は小さい値を示している。また電圧VHが650Vの時にインバータのキャリア周波数を10kHz、5kHz、2.5kHzに変化させると、キャリア周波数が低いほど漏電電流の実効値(Arms)は小さい値を示している。したがって、図3のステップS5では、電圧コンバータの昇圧動作を停止させて電圧VHを低くすると共に、インバータ20のキャリア周波数fcを低下させることで漏電電流を下げるようにしている。
再び図3を参照して、ステップS5の処理が終了すると、ステップS6において漏電有フラグFLがオンの期間が期間T1継続したか否かが判断される。これにより、一時的なノイズ成分による電圧変動か否かを検出する。ステップS6においてフラグFLオン期間がまだ期間T1継続していない場合には、ステップS11において制御はメインルーチンに移される。ステップS6においてフラグFLオン期間が期間T1継続した場合には、ステップS7に処理が進む。
ステップS7では、ノイズではなく高圧電圧系のシャーシグラウンドへの絶縁抵抗が低下したと判定される。この判定に基づいて、後に説明する図4においてDC/DCコンバータの動作停止制御が行なわれる。そしてステップS8において、漏電有フラグFLがオンの期間が期間T2継続したか否かが判断される。なおT2>T1とする。
ステップS8において漏電有フラグFLがオンの期間がまだ期間T2継続していなければ、ステップS11において制御はメインルーチンに移される。
ステップS8において、漏電有フラグFLがオンの期間が期間T2継続したことが確認された場合には、ステップS12に処理が進み漏電故障と判定する診断が確定され記憶されたのち、ステップS13において処理が終了する。
図5は、図2のDC−DCコンバータ制御回路136の制御を説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定時間ごとまたは所定の条件が成立するごとに呼び出されて実行される。
図2、図5を参照して、まず処理が開始されるとステップS50において、過電流異常の検出が有るか否かが判断される。さらにステップS51において過電圧異常の検出があるか否かが判断される。ステップS50、S51の異常検出は、過電流・過電圧検出部137の出力に基づいて判断される。さらにステップS52においてその他の異常検出の有無が判断される。ステップS50〜S52においていずれかに異常が検出されていた場合にはステップS55に処理が進み、いずれも異常が検出されていなかった場合にはステップS53に処理が進む。
ステップS53では、DC/DCコンバータ13の作動が継続されるか、またはDC/DCコンバータ13が停止していた場合にはDC/AC変換部132の動作復帰が行なわれ、動作が再開される。ステップS53の処理が終了すると、ステップS54において制御はメインルーチンに戻される。
ステップS55では、絶縁抵抗の低下(グラウンドの変動)が検出されたか否かが判断される。この判断は、図3のステップS7における判定に基づいて判断される。したがって、漏電有フラグFLがオンである状態継続した期間が期間T1未満であればステップS9でフラグFLがリセットされるので、ステップS7の絶縁抵抗の低下したという判定は行なわれない。フラグFLがオンである状態が期間T1以上継続した場合にステップS55において絶縁抵抗の低下有りと判断されステップS56に処理が進む。
ステップS56では、図1のインバータ20のキャリア周波数の変更が実行されるとともに、電圧コンバータ11の昇圧が停止され電圧VHを低下させる。そして再びステップS50の判断が実行される。
一方ステップS55において絶縁抵抗の低下が検出されなかった場合には、ステップS57に処理が進みDC/DCコンバータ13が停止される。このとき、DC−DCコンバータ制御回路136は、DC/AC変換部132の動作を停止させる。
図6は、本実施の形態の動作の一例を説明するための図である。
図7は、本実施の形態の動作の他の一例を説明するための図である。
図6を参照して、時刻t0までは、DC/DCコンバータ13は作動中であり、かつ制御装置30は、通常動作の指令を出力している。このとき時刻t0において実際の漏電が発生したとする。すると時刻t0〜t1の間はDC/DCコンバータ13は動作を停止する。
時刻t1において漏電検出器70からの波高値がしきい値より小さくなり漏電検出有りという判定を制御装置30が行なう。すると、制御装置30は、図3のステップS3で漏電有フラグFLをオン状態に設定し、ステップS4でタイマーのインクリメントを開始しステップS5で電圧コンバータ11による昇圧の禁止とインバータ20のキャリア周波数の低下が実行されるように制御を行なう。
すると、図4で説明したようにキャリア周波数が低下したことに伴い漏電電流が減少する。これに応じて、DC/DCコンバータ13は動作を再開し時刻t1以降再び動作中となる。
時刻t1よりも期間T1より小さい期間Tが経過した時刻t2において、制御装置30は、再び漏電検出器70からの波高値に基づいて漏電の有無の判定を行なう。時刻t2では、漏電検出器70からの波高値がしきい値より大きくなり漏電検出無しという判定を制御装置30が行なう。その結果、ステップS9でフラグFLがリセットされ、ステップS10でタイマーもリセットされる。また、制御装置30は昇圧電圧指令値を元に戻すと共にインバータキャリア周波数も元に戻した通常動作が行なわれるように指令を出力する。
なお、時刻t2において漏電がまだ検出されていた場合には、時刻t1〜t2のサイクルをn回繰返し、n回漏電が繰返して検出されるか否かを確認する。漏電がn回連続して検出される場合には、電圧コンバータ11における昇圧が禁止され、インバータ20のキャリア周波数が通常よりも低下された状態に制御が固定される。
このようなケースでは、DC/DCコンバータ13は一瞬動作停止するが、直ぐに運転が継続される。
一方、図7に示したケースは、制御装置30が2段階に制御を行なう例である。
図7を参照して、時刻t10までは、DC/DCコンバータ13は作動中であり、かつ制御装置30は、通常動作の指令を出力している。このとき時刻t10において実際の漏電が発生したとする。すると時刻t10〜t12の間はDC/DCコンバータ13は動作を停止する。
時刻t11において漏電検出器70からの波高値がしきい値より小さくなり漏電検出有りという判定を制御装置30が行なう。すると、制御装置30は、漏電有フラグFLをオン状態に設定し、タイマーのインクリメントを開始し電圧コンバータ11による昇圧の禁止を第1段階の制御として行なう。
しかし、時刻t11よりも期間T1より大きな期間が経過した時刻t12においても、漏電の再確認の結果漏電有りという判定が行なわれたので、制御装置30は、昇圧禁止に加えて、インバータ20のキャリア周波数の低下が実行されるように第2段階の制御を行なう。すると、図4で説明したようにキャリア周波数が低下したことに伴い漏電電流が減少する。これに応じて、DC/DCコンバータ13は動作を再開し時刻t2以降再び動作中となる。
その後の時刻t11から期間T(ただし、図3のT1,T2においてT1<T<T2)が経過したt13で再び漏電の再確認の結果漏電なしという判定が行なわれたので、フラグFLがリセットされ、タイマーもリセットされる。また、制御装置30は昇圧電圧指令値を元に戻すと共にインバータキャリア周波数も元に戻した通常動作が行なわれるように指令を出力する。
なお、時刻t13において漏電がまだ検出されていた場合には、時刻t11〜t13のサイクルをn回繰返し、n回漏電が繰返して検出されるか否かを確認する。漏電がn回連続して検出される場合には、電圧コンバータ11における昇圧が禁止され、インバータ20のキャリア周波数が通常よりも低下された状態に制御が固定される。
最後に、再び図1等を参照して本実施の形態について総括する。本実施の形態の車両の駆動装置は、正極母線PLと負極母線NLとの間に接続され、スイッチング動作によりモータM1を駆動するインバータ20と、インバータ20またはモータM1の漏電を検出する漏電検出器70と、インバータ20を制御する制御装置30とを備える。制御装置30は、漏電検出器70により漏電が検出された場合には、漏電検出器70により漏電が検出されていない場合に比べて、インバータ20のキャリア周波数を低くしてインバータ20を制御する。たとえばキャリア周波数が10kHz、5kHz、2.5kHzに切換え可能である場合には、漏電検出時には2.5kHzの最低周波数がキャリア周波数として選択される。
好ましくは、車両100は、高圧バッテリB1と、高圧バッテリB1の電圧を変換して正極母線PLと負極母線NLとの間に出力する電圧コンバータ11とを含む。図3に示すように、制御装置30は、漏電検出器70により漏電が検出された場合には(ステップS2でYES)、電圧コンバータ11による電圧変換動作を中止させ(ステップS5)、電圧コンバータ11に高圧バッテリB1の電圧をそのまま正極母線PLと負極母線NLとの間に出力させる。
より好ましくは、車両100は、補機負荷に電力を供給するための補機バッテリB2と、高圧バッテリB1の電圧を変換して補機バッテリB2および補機負荷に供給するDC/DCコンバータとをさらに含む。図3に示すように、制御装置30は、漏電検出器70に漏電が検出されている漏電期間を計測し、漏電期間が第1しきい値T1を超えた場合には(ステップS6でYES→ステップS7でYES)、DC/DCコンバータ13の動作を停止させる。
本実施の形態では、制御装置30が図3のフローチャートのステップS6、S7により絶縁抵抗の低下を判定していたが、DC/DCコンバータ13の内部のDC−DCコンバータ制御回路136でこの判定を行なっても良い。また制御装置30とDC−DCコンバータ制御回路136の両方でこの判定を行なっても良い。なお、本実施の形態では制御装置30とDC/DCコンバータ13の内部のDC−DCコンバータ制御回路136を分けているが、1つの制御装置にまとめても良い。
さらに好ましくは、図3に示すように、制御装置30は、漏電検出器70に漏電が検出されている漏電期間を計測し、漏電期間が第1しきい値T1よりも大きい第2しきい値T2を超えた場合には(ステップS8でYES)、漏電故障を示す診断情報を記録する(ステップS12)。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10,16 電圧センサー、11 電圧コンバータ、12,142,144 コンデンサ、13 DC/DCコンバータ、14 エアコン、15 カップリングコンデンサ、17,24 電流センサー、20 インバータ、21,22,23 アーム、30 制御装置、40 発振回路、50,146 抵抗、60 インピーダンス判定回路、70 漏電検出器、100 車両、131 フィルタ、132 変換部、133 降圧トランス、134 整流回路、135 平滑回路、136 DC−DCコンバータ制御回路、137 過電圧検出部、B1 高圧バッテリ、B2 補機バッテリ、BCRT 直流電流、D1〜D8 ダイオード、L1 リアクトル、M1 モータ、N1,N2,N3 ノード、NL,PL 母線、Q1〜Q8 IGBT素子、SR1,SR2 システムリレー。

Claims (3)

  1. 車両の駆動装置であって、
    正極母線と負極母線との間に接続され、スイッチング動作によりモータを駆動するインバータと、
    前記インバータまたは前記モータの漏電を検出する漏電検出装置と、
    前記インバータを制御する制御装置とを備え、
    前記制御装置は、前記漏電検出装置により漏電が検出された場合には、前記漏電検出装置により漏電が検出されていない場合に比べて、前記インバータのキャリア周波数を低くして前記インバータを制御し、
    前記車両は、
    蓄電装置と、
    前記蓄電装置の電圧を変換して前記正極母線と前記負極母線との間に出力する電圧コンバータとを含み、
    前記制御装置は、前記漏電検出装置により漏電が検出された場合には、前記電圧コンバータによる電圧変換動作を中止させ、前記電圧コンバータに前記蓄電装置の電圧をそのまま前記正極母線と前記負極母線との間に出力させ、
    前記車両は、
    補機負荷に電力を供給するための補機バッテリと、
    前記蓄電装置の電圧を変換して前記補機バッテリおよび前記補機負荷に供給するDC/DCコンバータとをさらに含み、
    前記制御装置は、前記漏電検出装置に漏電が検出されている漏電期間を計測し、前記漏電期間が第1しきい値を超えた場合には、前記DC/DCコンバータの動作を停止させる、車両の駆動装置。
  2. 前記制御装置は、前記漏電検出装置に漏電が検出されている漏電期間を計測し、前記漏電期間が前記第1しきい値よりも大きい第2しきい値を超えた場合には、漏電故障を示す診断情報を記録する、請求項に記載の車両の駆動装置。
  3. 請求項1または請求項2に記載の車両の駆動装置を備えた車両。
JP2010103471A 2010-04-28 2010-04-28 車両の駆動装置およびそれを備える車両 Expired - Fee Related JP5418393B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103471A JP5418393B2 (ja) 2010-04-28 2010-04-28 車両の駆動装置およびそれを備える車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103471A JP5418393B2 (ja) 2010-04-28 2010-04-28 車両の駆動装置およびそれを備える車両

Publications (2)

Publication Number Publication Date
JP2011234538A JP2011234538A (ja) 2011-11-17
JP5418393B2 true JP5418393B2 (ja) 2014-02-19

Family

ID=45323261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103471A Expired - Fee Related JP5418393B2 (ja) 2010-04-28 2010-04-28 車両の駆動装置およびそれを備える車両

Country Status (1)

Country Link
JP (1) JP5418393B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504565B (en) * 2013-04-12 2015-12-30 Baldwin & Francis Ltd Variable voltage drive controller, system and method
JP6740869B2 (ja) * 2016-11-15 2020-08-19 トヨタ自動車株式会社 地絡検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195393A (ja) * 1989-12-18 1991-08-26 Mitsubishi Electric Corp インバータ装置の漏電防止装置
JP4158253B2 (ja) * 1998-12-11 2008-10-01 松下電器産業株式会社 インバータ装置
JP3692993B2 (ja) * 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
JP4314896B2 (ja) * 2003-06-16 2009-08-19 トヨタ自動車株式会社 負荷駆動装置、それを搭載した自動車および負荷駆動装置における漏電発生時の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2005057918A (ja) * 2003-08-06 2005-03-03 Toyota Motor Corp 負荷駆動装置および負荷駆動装置における漏電発生時の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体

Also Published As

Publication number Publication date
JP2011234538A (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
US9350179B2 (en) Charging device
JP4840481B2 (ja) 二次電池の昇温制御装置およびそれを備える車両、ならびに二次電池の昇温制御方法
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
US7759817B2 (en) Power supply system for driving vehicle
JP4349447B2 (ja) インバータ制御装置および車両
JP5713030B2 (ja) 電動車両および電動車両の絶縁状態判定方法
WO2008111593A1 (ja) 二次電池の入出力制御装置および車両
JP4120310B2 (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2006246564A (ja) 故障診断装置および車両
JP2009171644A (ja) 車両の電源装置およびその制御方法
JP2009303338A (ja) モータ駆動装置と制御方法
JP2007185043A (ja) インバータ装置および車両
JP3879528B2 (ja) 電圧変換装置
JP5716601B2 (ja) 絶縁抵抗低下検出装置
JP2010166671A (ja) 車両の故障検出装置
JP2004088866A (ja) 電圧変換装置、判定方法、電圧変換における異常原因の判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP5418393B2 (ja) 車両の駆動装置およびそれを備える車両
JP5772650B2 (ja) 車両
JP4314896B2 (ja) 負荷駆動装置、それを搭載した自動車および負荷駆動装置における漏電発生時の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP3994883B2 (ja) 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4356476B2 (ja) 電圧変換装置、電圧変換装置の故障の判定方法、およびその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2013017321A (ja) 車両の電源装置
JP2013009490A (ja) 車両
JP2004201439A (ja) 電圧変換システム、残留電荷消費方法および残留電荷の消費をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2014059158A (ja) 絶縁抵抗低下検出装置およびそれを備える車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees