JP5412772B2 - 回転機の制御装置 - Google Patents

回転機の制御装置 Download PDF

Info

Publication number
JP5412772B2
JP5412772B2 JP2008229459A JP2008229459A JP5412772B2 JP 5412772 B2 JP5412772 B2 JP 5412772B2 JP 2008229459 A JP2008229459 A JP 2008229459A JP 2008229459 A JP2008229459 A JP 2008229459A JP 5412772 B2 JP5412772 B2 JP 5412772B2
Authority
JP
Japan
Prior art keywords
rotating machine
voltage
control
phase
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008229459A
Other languages
English (en)
Other versions
JP2010063335A (ja
Inventor
友哉 高橋
彰宏 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008229459A priority Critical patent/JP5412772B2/ja
Publication of JP2010063335A publication Critical patent/JP2010063335A/ja
Application granted granted Critical
Publication of JP5412772B2 publication Critical patent/JP5412772B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、回転機の端子を直流電源の正極及び負極のそれぞれに接続するスイッチング素子を備える電力変換回路を操作することで前記回転機の制御量を制御する回転機の制御装置に関する。
この種の制御装置としては、例えば下記特許文献1に見られるように、dq軸上の実電流を指令電流にフィードバック制御する電流ベクトル制御を行うものも提案されている。この制御に際しては、3相電動機を流れる電流の検出値が必要であるが、電流を検出する手段の検出値に誤差が生じる場合には、3相電動機の各相を流れる電流の振幅中心がゼロに対してずれる(オフセットする)現象が生じ得る。このため、上記特許文献1では、3相電動機の各相を流れる電流の積分演算に基づきオフセット量を算出し、これに基づき電流の検出値を補正することも提案されている。これにより、電流の検出値の誤差が補償されることから、上記振幅中心にずれが生じることを好適に解消することができる。
なお、こうした制御装置としては、他にも例えば下記特許文献2〜4がある。
特開2006−149045号公報 特開2001−298992号公報 特開2006−74951号公報 特開2004−56973号公報
ところで、電動機を流れる電流の振幅中心が相毎にばらつくこと等に起因した電動機の制御性の低下は、上記電流の検出誤差に起因したものに限らない。電流の検出誤差が無視し得る場合であっても、電動機の電圧利用率が大きくなるいわゆる過変調領域等において、電動機を流れる電流の振幅中心が相毎にばらつくこと等に起因した回転機の制御性の低下が特に顕著となり得ることが発明者らによって見出されている。そして、上記特許文献1に記載の技術によっては、こうした回転機の制御性の低下を抑制することが困難である。
本発明は、上記課題を解決するためになされたものであり、その目的は、回転機を流れる電流の振幅中心が相毎にばらつくこと等に起因した回転機の制御性の低下をより好適に抑制することのできる回転機の制御装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
第1の発明は、回転機の端子を直流電源の正極及び負極のそれぞれに接続するスイッチング素子を備える電力変換回路を操作することで前記回転機の制御量を制御する回転機の制御装置において、回転座標系における前記回転機を流れる電流の脈動成分を抽出する抽出手段と、前記脈動成分を抑制すべく前記電力変換回路の出力電圧を操作する操作手段とを備えることを特徴とする。
回転機を流れる電流の振幅中心が相毎にばらつく場合、回転座標系においては、電流に脈動が生じる。この点、上記発明では、この脈動成分を抑制するように出力電圧を操作することで、回転機を流れる電流の振幅中心が相毎にばらつくこと等に起因した回転機の制御性の低下を好適に抑制することができる。
第2の発明は、第1の発明において、前記回転機の制御量をその指令値に制御するための操作量としての前記回転機に対する指令電圧の基本値を設定する基本値設定手段と、前記脈動成分を抑制するための操作量として前記基本値を補正する補正量を算出する手段とを更に備え、前記操作手段は、前記補正量にて補正された前記基本値に基づき前記電力変換回路の出力電圧を操作することを特徴とする。
上記発明では、回転機の制御量を制御するための操作量と、脈動成分を抑制するための操作量とを各別に設定することができるため、操作手段を比較的簡易に構成することができる。
第3の発明は、第2の発明において、前記補正量は、前記基本値に応じた前記電力変換回路の出力電圧のベクトルノルムを補正可能な量であることを特徴とする。
脈動成分を抑制するうえでは、上記基本値に応じた出力電圧のベクトルノルムを補正可能とすることが効果的であることが発明者らによって見出されている。上記発明では、この点に鑑み、ベクトルノルムを補正可能とすることで、脈動成分を好適に抑制することができる。
第4の発明は、第2の発明において、前記補正量は、前記指令電圧の基本値の位相を補正するものであることを特徴とする。
第5の発明は、第1第4のいずれかの発明において、電圧利用率が所定以上の場合に前記回転機の制御量を制御する高電圧制御手段を備え、前記操作手段は、前記高電圧制御手段による制御がなされる際に前記操作を行うものであることを特徴とする。
上述したように、電圧利用率が大きくなる過変調領域等において回転機を流れる電流の振幅中心が相毎にばらつくこと等に起因した回転機の制御性の低下が特に顕著となる。このため、高電圧制御手段による制御がなされる場合には、上記回転機の制御性の低下が特に顕著となりやすい。上記発明では、この点に鑑み、高電圧制御手段による制御時において上記操作手段による出力電圧の操作によって脈動成分を抑制する制御を行う。
第6の発明は、第5の発明において、前記高電圧制御手段は、前記回転機に対する指令電圧に基づき前記電力変換回路を操作するものであって且つ、前記指令電圧の振幅は、前記電力変換回路の入力電圧の「1/2」以上となることを特徴とする。
上記発明では、電圧利用率が特に高くなる状況下において、上記操作手段による出力電圧の操作によって脈動成分を抑制する制御を行うことができる。
第7の発明は、第5又は第6の発明において、前記制御量は、前記回転機のトルクであり、前記高電圧制御手段は、前記トルクをその指令値に制御すべく前記電力変換回路の出力電圧の位相を操作することを特徴とする。
第8の発明は、第5第7のいずれかの発明において、前記高電圧制御手段は、前記回転機の磁極方向成分及びこれに直交する直交方向成分のいずれか一方の電流をその指令値に制御するための操作量として前記磁極方向成分の指令電圧を設定し、該磁極方向成分の指令電圧と前記電力変換回路の入力電圧とに基づき前記直交方向成分の指令電圧を設定する手段を備え、前記磁極方向成分の指令電圧及び前記直交方向成分の指令電圧に基づき前記電力変換回路の出力電圧を操作することを特徴とする。
第9の発明は、第1第8のいずれかの発明において、前記回転機に対する印加電圧と前記回転機を流れる電流とを関係付けるモデルを用いて前記回転機の回転角度を推定する推定手段を更に備え、前記回転機の制御量の制御に際して用いられる回転角度に関する情報は、前記推定手段の出力する回転角度であることを特徴とする。
推定手段を用いる場合には、回転角度を検出するハードウェア手段を用いる場合と比較して、電流の振幅中心がばらつく等に起因した回転機の制御性の低下が特に顕著となり易い。このため、上記発明では、操作手段の利用価値が特に大きい。
(第1の実施形態)
以下、本発明にかかる回転機の制御装置をハイブリッド車の制御装置に適用した第1の実施形態について、図面を参照しつつ説明する。
図1に、本実施形態にかかるモータジェネレータの制御システムの全体構成を示す。モータジェネレータ10は、3相の永久磁石同期モータである。また、モータジェネレータ10は、突極性を有する回転機(突極機)である。詳しくは、モータジェネレータ10は、埋め込み磁石同期モータ(IPMSM)である。
モータジェネレータ10は、インバータIVを介して高圧バッテリ12に接続されている。インバータIVは、スイッチング素子Sup,Sunの直列接続体と、スイッチング素子Svp,Svnの直列接続体と、スイッチング素子Swp,Swnの直列接続体とを備えており、これら各直列接続体の接続点がモータジェネレータ10のU,V,W相にそれぞれ接続されている。これらスイッチング素子Sup,Sun,Svp,Svn,Swp,Swnとして、本実施形態では、絶縁ゲートバイポーラトランジスタ(IGBT)が用いられている。そして、これらにはそれぞれ、ダイオードDup,Dun,Dvp,Dvn,Dwp,Dwnが逆並列に接続されている。
本実施形態では、モータジェネレータ10やインバータIVの状態を検出する検出手段として、以下のものを備えている。まずモータジェネレータ10の各相を流れる電流iu,iv,iwを検出する電流センサ16,17,18を備えている。更に、インバータIVの入力電圧(電源電圧VDC)を検出する電圧センサ19を備えている。
上記各種センサの検出値は、インターフェース13を介して低圧システムを構成する制御装置14に取り込まれる。制御装置14では、これら各種センサの検出値に基づき、インバータIVを操作する操作信号を生成して出力する。ここで、インバータIVのスイッチング素子Sup,Sun,Svp,Svn,Swp,Swnを操作する信号が、操作信号gup,gun,gvp,gvn,gwp,gwnである。
本実施形態では、上記操作信号を生成すべく、図2に示すように、電流ベクトル制御と弱め界磁制御とを行う。詳しくは、図示されるように、回転速度が大きい領域において、弱め界磁制御を行う。また、トルクの絶対値が大きいほどより低い回転速度においても弱め界磁制御を行う。
具体的には、変調率が所定値α(>1)以下の領域では電流ベクトル制御を行う。換言すれば、2次元座標系における指令電圧ベクトルのノルムが制限電圧VL以下の領域では電流ベクトル制御を行う。ここで、制限電圧VLは、電源電圧VDCに「3/8」の平方根と「1.2」とを乗算した値に設定される。ここで、電源電圧VDCに「3/8」の平方根を乗算した値は、変調率が「1」である場合に対応する。これに対し、「1.2」は、電流ベクトル制御の制御性を維持することのできる上限値に設定されている。
図3に、上記インバータIVの操作信号の生成に関する処理のうち、特に上記弱め界磁制御に関するブロック図を示す。
モータジェネレータ10の各相を流れる電流iu,iv,iwは、αβ変換部20において、固定2相座標系の実電流であるα軸上の実電流iαとβ軸上の実電流iβとに変換される。実電流iα、iβは、dq変換部22において、回転2相座標系の実電流であるd軸上の実電流idとq軸上の実電流iqとに変換される。トルク推定器24では、dq軸上の実電流id,iqと電気角速度ωとに基づき、モータジェネレータ10のトルクを推定する(推定トルクTeを算出する)。
一方、偏差算出部26では、推定トルクTeに対する要求トルクTrの差を算出する。偏差算出部26の出力は、トルク制御器28に取り込まれる。トルク制御器28では、推定トルクTeを要求トルクTrにフィードバック制御するための操作量として、q軸上の指令電流iqrを算出する。この処理は、具体的には、推定トルクTeに対する要求トルクTrの差の比例積分演算によって行われる。一方、偏差算出部30では、q軸上の実電流iqに対する指令電流iqrの差を算出する。そして、電流制御器32では、q軸上の実電流iqを上記指令電流iqrにフィードバック制御するための操作量として、d軸上の指令電圧vdrを設定する。詳しくは、電流制御器32では、積分演算によって指令電圧vdrを設定する。
そして、q軸電圧設定部34では、上記制限電圧VLと指令電圧vdrとに基づき、q軸の指令電圧vqrを設定する。詳しくは、制限電圧の2乗から指令電圧vdrの2乗を減算したものの平方根をq軸の指令電圧vqrとする。上記指令電圧vdr,vqrは、3相変換部36に出力される。3相変換部36では、dq軸上の指令電圧vdr、vqrを、3相の指令電圧vur,vvr,vwrに変換する。操作信号生成部38では、指令電圧vur,vvr,vwrを信号波とし、これとキャリアとの大小関係に基づき、操作信号を生成する。
なお、上記各処理には、適宜、回転角度θが用いられる。本実施形態では、センサレスシステムを採用しているため、モータジェネレータ10の電気的な状態量に基づき推定される回転角度θが用いられる。詳しくは、本実施形態では、拡張誘起電圧オブザーバ40を備えている。拡張誘起電圧オブザーバ40は、基本的には、「突極型ブラシレスDCモータのセンサレス制御のための拡張誘起電圧オブザーバ 平成11年電気学会全国大会 No.1026」に記載された処理を行うものである。すなわち、固定2相座標系の実電流iα、iβと、固定2相座標系での印加電圧(固定座標変換部42の出力)とに基づき、回転角度θと相関を有する角度相関量として固定2相座標系での拡張誘起電圧を推定し、これに基づき回転角度θを推定する。一方、速度算出部44では、回転角度θの時間微分演算に基づき電気角速度ωを算出する。ちなみに、拡張誘起電圧オブザーバ40に印加電圧情報を出力する固定座標変換部42は、指令電圧vdr,vqrをαβ軸上の指令電圧に変換する処理を行うものである。ただし、弱め界磁制御時には、3相変換部36の出力する指令電圧vur,vvr,vwrの変動幅が電源電圧VDCを上回ることに鑑み、インバータIVの出力電圧の実効値が指令電圧vdr,vqrと等しくなるようにαβ軸上の指令電圧を設定するなどすることが望ましい。
なお、上記制限電圧VLは、回転角度をレゾルバ等のハードウェア手段によって検出する場合よりもセンサレスシステムの方が電流ベクトル制御の制御性を維持できる電圧利用率が低下する傾向に鑑みて設定されている。
ところで、上記弱め界磁制御に際しては、モータジェネレータ10の各相を流れる電流iu,iv,iwの振幅中心がゼロに対してずれ、相毎にばらつく現象が生じ得る。この現象の要因については、特定できているわけではないが、モータジェネレータ10の偏心や回転角度の推定誤差等に起因するものであると推測される。すなわち、モータジェネレータ10の偏心によって、モータジェネレータ10が理想的な特性からずれたものとなるために、相電流の振幅中心がずれると推測される。また、回転角度に検出誤差が生じる場合にも、インバータIVの出力電圧に回転角度に依存した誤差が生じ、これにより相電流の振幅中心がずれると推測される。ここで、弱め界磁制御領域においてこうした現象が生じるのは、弱め界磁制御は、変調率が「1」よりも大きいいわゆる過変調領域において行われるものであり、制御器(トルク制御器28、電流制御器32)の応答性を高くすることが困難なためであると考えられる。すなわち、応答性を高めることが困難ために、モータジェネレータ10の制御量を制御するための制御器によっては上記ばらつきを抑制できないと考えられる。
そこで本実施形態では、上記制御量(トルク)を制御するための手段とは別に、上記ばらつきを抑制するための制御器を備える。詳しくは、図3に示すように、q軸の実電流iqの脈動成分を抽出するハイパスフィルタ50と、d軸の実電流idの脈動成分を抽出するハイパスフィルタ52とを備える。ここで、ハイパスフィルタ50、52の出力のうちの6次の脈動成分が、各相の相電流の振幅中心のばらつきに対応する。ハイパスフィルタ50,52の出力は、3相変換部54にて、U相、V相、及びW相の成分に変換される。そして、これら各成分は、それぞれ脈動抑制部56,57,58によってゼロに制御される。これら脈動抑制部56,57,58は、入力信号の比例積分演算を行うものである。ここで、比例演算に用いるゲインや積分演算に用いるゲインは、脈動抑制部56,57,58間で互いに同一とする。脈動抑制部56,57,58の出力は、脈動を抑制制御するための操作量である。これら操作量は、指令電圧vur,vvr,vwrの補正量である。そして、補正部60,62,64では、指令電圧vur,vvr,vwrのそれぞれを、脈動抑制部56,57,58の出力のそれぞれによって補正する。
これにより、dq軸上の実電流id,iqの脈動成分は、ゼロにフィードバック制御されることとなる。このため、各相の相電流の振幅中心のばらつきが抑制されることとなる。特に、本実施形態では、脈動成分をゼロにフィードバック制御するための操作量を、3相の指令電圧vur,vvr,vwrの絶対値を補正可能な補正量とした。これにより、図4に示されるように、制限電圧VLをノルムとする電圧ベクトルにて制御がなされる弱め界磁制御において、その電圧ベクトルノルムが制限電圧VLよりも小さい値に補正可能とされる。これは、上記トルク制御器28及び電流制御器32にて構成される弱め界磁制御によっては操作不可能な電圧ベクトルを実現することができることを意味する。そして、これにより、上記脈動成分を効果的に抑制制御可能なことが発明者らによって見出されている。
図5(a)に、上記脈動成分の抑制制御の効果を示す。図では、便宜上、U相及びV相のみを例示している。図示されるように、各相の振幅中心のばらつきを好適に解消することができている。これに対し、脈動成分の抑制制御のための上記手段を備えない状態で弱め界磁制御を実行した場合を、図5(b)に示す。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
(1)モータジェネレータ10を流れるdq軸上における電流の脈動成分を抽出し、これを抑制すべくインバータIVの出力電圧を操作した。これにより、モータジェネレータ10を流れる電流の振幅中心が相毎にばらつくこと等に起因したモータジェネレータ10の制御性の低下を好適に抑制することができる。更に、上記脈動成分は、電流の振幅中心のばらつき以外の誤差要因をも含むため、これらについても抑制することができる。
(2)脈動成分を抑制するための操作量として指令電圧vur,vvr,vwrを補正する補正量を算出した。これにより、モータジェネレータ10の制御量(トルク)を制御するための操作量と、脈動成分を抑制するための操作量とを各別に設定することができるため、制御装置14を比較的簡易に構成することができる。
(3)脈動成分を抑制するための操作量を、指令電圧vur,vvr,vwrに応じたインバータIVの出力電圧のベクトルノルムを補正可能な量とした。これにより、脈動成分を好適に抑制することができる。
(4)電圧利用率が所定以上の場合に弱め界磁制御を行い、この弱め界磁制御がなされる際に脈動成分の抑制制御を行った。これにより、電流の振幅中心が相毎にばらつくこと等に起因したモータジェネレータ10の制御性の低下が特に顕著となる際に、これを抑制することができる。
(5)弱め界磁制御に際しての指令電圧vur,vvr,vwrの振幅が、インバータIVの入力電圧の「1/2」以上となるようにした。これにより、電圧利用率が特に高くなることで制御量を制御する手段によっては振幅中心のばらつきを抑制することが特に困難な状況下において、これを抑制する制御を行うことができる。
(6)弱め界磁制御に際して利用する回転角度情報を、拡張誘起電圧オブザーバ40の出力とした。こうしたセンサレスシステムにおいては、電流の振幅中心のばらつきが特に顕著となり易い傾向があるため、上記脈動成分の抑制制御の適用価値が特に大きい。
(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
図6に、上記インバータIVの操作信号の生成に関する処理のうち、特に上記弱め界磁制御に関するブロック図を示す。なお、図6において、先の図3に示した処理に対応する処理については、便宜上同一の符号を付している。
本実施形態では、脈動抑制部56a,57a,58aを、入力信号の比例演算を行うものとして構成する。また、脈動成分を抑制するための操作量を、指令電圧vur,vvr,vwrの位相とする。すなわち、図示されるように、3相変換部70は、指令電圧vdrによる指令電圧vqrの除算値の逆正接関数の出力として、弱め界磁制御から要求される位相φを算出する。一方、脈動抑制部56a,57a,58aでは、ハイパスフィルタ50,52の出力をゼロに制御するための操作量として、上記位相の補正量Δφu、Δφv、Δφwを算出する。これにより、指令電圧vur,vvr,vwrの位相を、それぞれ「φ+Δφu、φ+Δφv、φ+Δφw」として算出する。こうして位相φが算出されると、これと、制限電圧VLに基づき算出される振幅Vm(=√(2/3)VL)と、回転角度θとに基づき、指令電圧vur,vvr,vwrを算出する。
以上説明した本実施形態によっても、先の第1の実施形態の上記(1)、(2)、(4)〜(6)の各効果が得られる。
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上記第1の実施形態では、脈動抑制部56,57,58を比例積分制御器としたが、これに限らない。例えば先の第2の実施形態によるように比例制御器としてもよい。また、比例積分微分制御器としてもよい。
・上記第2の実施形態では、脈動抑制部56a,57a,58aを比例制御器としたが、これに限らない。例えば比例積分制御器や、比例積分微分制御器としてもよい。
・上記第1の実施形態において、脈動抑制部56,57,58を備える代わりに、ハイパスフィルタ50,52の出力を入力して、これをゼロにフィードバック制御するためのdq軸上の操作量を算出する脈動抑制部を備えるようにしてもよい。この場合、dq軸上の各脈動抑制部の出力を、3相変換部54において3相変換したものを、指令電圧vur,vvr,vwrの補正量とすればよい。
同様に、上記第2の実施形態においても、脈動抑制部56a,57a,58aに代えて、dq軸上の脈動抑制部を備えるようにしてもよい。
・上記第1の実施形態において、脈動を抑制するための操作量を、指令電圧vdr、vqrの補正量としてもよい。
・回転座標系における回転機を流れる電流の脈動成分を抽出する抽出手段としては、上記ハイパスフィルタ50,52に限らない。例えば6次の成分を選択的に抽出するバンドパスフィルタであってもよい。
・トルク制御器28としては、比例積分制御器に限らない。例えば比例制御器や、積分制御器、比例積分微分制御器等であってもよい。
・電流制御器32としては、積分制御器に限らない。例えば比例積分制御器や、比例積分微分制御器等としてもよい。
・トルク推定器24としては、実電流id,iq及び回転速度を入力とするマップを備えるものに限らない。例えばこれに温度補正を加えるものや、実電流id,iq、回転速度及び温度を入力とする4次元マップを備えるものとしてもよい。また、マップに限らず、モデル式にてトルクを推定算出するものであってもよい。
・実際のトルクに関する情報を取得する手段としては、トルク推定器24に限らず、トルクセンサを備えるものにあっては、その検出値を取得する手段であってもよい。
・上記各実施形態では、指令電圧vdrを、トルクフィードバック制御のための最終的な操作量としたが、これに限らない。例えば「大井、戸張、岩路、「高応答を実現する電圧位相操作型の弱め界磁制御法」、平成19年電気学会産業応用部門大会」に記載されているように、要求トルクTrに制御するための開ループ操作量を指令電圧vdrとしてもよい。
・弱め界磁制御手段としては、q軸の実電流を指令電流にフィードバック制御するための操作量としてd軸の指令電圧を設定するものに限らない。例えばd軸の実電流を指令電流にフィードバック制御するための操作量としてd軸の指令電圧を設定するものであってもよい。この場合であっても、q軸の指令電圧については、制限電圧とd軸の指令電圧によって設定することができる。更に、弱め界磁制御手段としては、dq軸上のいずれか一方の指令電流のみを設定するものにも限らない。また、指令電流を設定することなく、トルクをフィードバック制御するための操作量として電圧利用率と位相とを設定する手段と、電圧利用率毎に定義されたスイッチングパターンの中から上記設定される電圧利用率を満足するスイッチングパターンを検索する手段とを備えるものであってもよい。
・モータジェネレータ10の制御量としては、トルクに限らず、例えば回転速度であってもよい。
・電圧利用率が所定以上の場合に回転機の制御量を制御する高電圧制御手段としては、多パルスを生成可能な弱め界磁制御に限らない。例えば、いわゆる1パルス制御を行う矩形波制御手段であってもよい。
・上記実施形態では、固定座標系での実電流iα、iβ及び印加電圧を入力とする拡張誘起電圧オブザーバを用いて回転角度θを推定したがこれに限らない。例えば回転座標系での実電流id,iq及び印加電圧を入力とする拡張誘起電圧オブザーバを用いて回転角度θを推定してもよい。
・回転角度θに関する情報を取得する手段としては、拡張誘起電圧に基づき推定される回転角度θを取得するものに限らない。例えばレゾルバを備えるシステムにあっては、その検出値を取得する手段であってもよい。この場合、センサレスとする場合と比較して、電流ベクトル制御の制御性が高い電圧利用率まで安定する傾向にあるため、この場合には、制限電圧VLを上記各実施形態よりも大きく設定してもよい。もっとも、制限電圧VLの値については、要求仕様に応じて例えば変調率「1」に対応する値とする等、適宜変更してよい。
・突極機としては、IPMSMに限らない。例えば、同期リラクタンスモータ(SynRM)であってもよい。
・回転機としては、ハイブリッド車に搭載されるものに限らず、例えば電気自動車に搭載されるものであってもよい。更に、回転機としては、車両の駆動系を構成するものにも限らない。
第1の実施形態にかかるシステム構成図。 同実施形態にかかる電流ベクトル制御と弱め界磁制御との切り替え態様を示す図。 同実施形態にかかる操作信号の生成処理に関するブロック図。 同実施形態にかかる指令電圧の補正態様を例示する図。 同実施形態の効果を示すタイムチャート。 第2の実施形態にかかる操作信号の生成処理に関するブロック図。
符号の説明
10…モータジェネレータ、14…制御装置、50、52…ハイパスフィルタ(抽出手段の一実施形態)、56,57,58…脈動抑制部、IV…インバータ。

Claims (8)

  1. 回転機の各相の端子を直流電源の正極及び負極のそれぞれに接続するスイッチング素子を備える電力変換回路を操作することで前記回転機の制御量を制御する回転機の制御装置において、
    前記各相の相電流の振幅中心のばらつきに起因する回転座標系における前記回転機を流れる電流の脈動成分を抽出する抽出手段と、
    前記回転機の電圧利用率が所定以上の場合に前記回転機の制御量をその指令値に制御するための操作量としての前記回転機に対する指令電圧の設定において、前記指令電圧の振幅を一定として、前記脈動成分を抑制するための前記指令電圧の位相の補正量を前記各相について算出して、前記各相の前記指令電圧を設定する操作手段とを備えることを特徴とする回転機の制御装置。
  2. 記指令電圧の基本値を設定する基本値設定手段と、
    前記脈動成分を抑制するための操作量として前記基本値を補正する補正量を算出する手段とを更に備え、
    前記操作手段は、前記補正量にて補正された前記基本値に基づき前記電力変換回路の出力電圧を操作することを特徴とする請求項1記載の回転機の制御装置。
  3. 前記補正量は、前記指令電圧の基本値の位相を補正するものであることを特徴とする請求項2記載の回転機の制御装置。
  4. 電圧利用率が所定以上の場合に前記回転機の制御量を制御する高電圧制御手段を備え、
    前記操作手段は、前記高電圧制御手段による制御がなされる際に前記操作を行うものであることを特徴とする請求項1〜のいずれか1項に記載の回転機の制御装置。
  5. 前記高電圧制御手段は、前記回転機に対する指令電圧に基づき前記電力変換回路を操作するものであって且つ、前記指令電圧の振幅は、前記電力変換回路の入力電圧の「1/2」以上となることを特徴とする請求項記載の回転機の制御装置。
  6. 前記制御量は、前記回転機のトルクであり、
    前記高電圧制御手段は、前記トルクをその指令値に制御すべく前記電力変換回路の出力電圧の位相を操作することを特徴とする請求項又は記載の回転機の制御装置。
  7. 前記高電圧制御手段は、前記回転機の磁極方向成分及びこれに直交する直交方向成分のいずれか一方の電流をその指令値に制御するための操作量として前記磁極方向成分の指令電圧を設定し、該磁極方向成分の指令電圧と前記電力変換回路の入力電圧とに基づき前記直交方向成分の指令電圧を設定する手段を備え、前記磁極方向成分の指令電圧及び前記直交方向成分の指令電圧に基づき前記電力変換回路の出力電圧を操作することを特徴とする請求項のいずれか1項に記載の回転機の制御装置。
  8. 前記回転機に対する印加電圧と前記回転機を流れる電流とを関係付けるモデルを用いて前記回転機の回転角度を推定する推定手段を更に備え、
    前記回転機の制御量の制御に際して用いられる回転角度に関する情報は、前記推定手段の出力する回転角度であることを特徴とする請求項1〜のいずれか1項に記載の回転機の制御装置。
JP2008229459A 2008-09-08 2008-09-08 回転機の制御装置 Expired - Fee Related JP5412772B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229459A JP5412772B2 (ja) 2008-09-08 2008-09-08 回転機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229459A JP5412772B2 (ja) 2008-09-08 2008-09-08 回転機の制御装置

Publications (2)

Publication Number Publication Date
JP2010063335A JP2010063335A (ja) 2010-03-18
JP5412772B2 true JP5412772B2 (ja) 2014-02-12

Family

ID=42189517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229459A Expired - Fee Related JP5412772B2 (ja) 2008-09-08 2008-09-08 回転機の制御装置

Country Status (1)

Country Link
JP (1) JP5412772B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095561B2 (ja) * 2013-12-24 2017-03-15 三菱電機株式会社 モータ駆動制御装置
US11664756B2 (en) 2019-04-23 2023-05-30 Hitachi Astemo, Ltd. Power conversion device and motor vehicle system including the same
JPWO2023067797A1 (ja) * 2021-10-22 2023-04-27

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440949B2 (ja) * 1997-10-31 2010-03-24 株式会社日立製作所 電気車の駆動装置
JP4575547B2 (ja) * 2000-04-18 2010-11-04 トヨタ自動車株式会社 モータの制御装置
JP3809783B2 (ja) * 2000-11-22 2006-08-16 日産自動車株式会社 モータ制御装置
JP3644391B2 (ja) * 2001-02-15 2005-04-27 三菱電機株式会社 インバータ装置、圧縮機制御装置、冷凍・空調装置の制御装置、モータの制御方法、圧縮機、冷凍・空調装置
JP2003033097A (ja) * 2001-07-17 2003-01-31 Sanken Electric Co Ltd 同期電動機の制御装置及び制御方法
JP4119996B2 (ja) * 2002-07-24 2008-07-16 株式会社安川電機 交流電動機の駆動方法および駆動装置
JP2005168195A (ja) * 2003-12-03 2005-06-23 Toshiba Corp インバータ制御装置及びインバータ制御方法並びに記憶媒体
JP2006074951A (ja) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd 交流電動機の制御装置
JP4415832B2 (ja) * 2004-11-18 2010-02-17 パナソニック株式会社 モータ駆動装置
JP4709218B2 (ja) * 2005-07-11 2011-06-22 株式会社日立製作所 界磁巻線型同期モータの制御装置,電動駆動システム,電動4輪駆動車およびハイブリッド自動車

Also Published As

Publication number Publication date
JP2010063335A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
US9136785B2 (en) Motor control system to compensate for torque ripple
JP5321614B2 (ja) 回転機の制御装置
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
JP2007159368A (ja) モータ駆動システムの制御装置
WO2008047438A1 (fr) Contrôleur vectoriel d'un moteur synchrone à aimant permanent
JPWO2016121751A1 (ja) インバータ制御装置及びモータ駆動システム
JP5104721B2 (ja) 界磁巻線型同期機の制御装置及び制御システム
TW201820769A (zh) 換流器控制裝置及馬達驅動系統
JPWO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
JP6747050B2 (ja) 回転電機の制御装置
JP5779862B2 (ja) 回転機の制御装置
JP2016111788A (ja) 回転電機の制御装置
JP2015109777A (ja) モータ制御装置
JP5473289B2 (ja) 永久磁石型同期モータの制御装置及び制御方法
JP5412772B2 (ja) 回転機の制御装置
JP5510156B2 (ja) 回転機の制御装置
JP5055966B2 (ja) 多相回転機の制御装置
JP2008154308A (ja) 電動パワーステアリング制御装置
JP5326444B2 (ja) 回転機の制御装置
JP2012105403A (ja) 回転機の制御装置
JP5444983B2 (ja) 回転機の制御装置
JP6361569B2 (ja) 回転電機の制御装置
KR102409792B1 (ko) 영구 자석 동기 전동기의 제어 장치, 마이크로 컴퓨터, 전동기 시스템 및 영구 자석 동기 전동기의 운전 방법
JP2009044908A (ja) 回転機の回転角度推定装置及び駆動システム
JP2013172550A (ja) モータ制御装置及びモータの3相電圧指令生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

LAPS Cancellation because of no payment of annual fees