JP5408899B2 - 積層多孔性フィルム、それを利用した電池用セパレータおよび電池 - Google Patents

積層多孔性フィルム、それを利用した電池用セパレータおよび電池 Download PDF

Info

Publication number
JP5408899B2
JP5408899B2 JP2008117527A JP2008117527A JP5408899B2 JP 5408899 B2 JP5408899 B2 JP 5408899B2 JP 2008117527 A JP2008117527 A JP 2008117527A JP 2008117527 A JP2008117527 A JP 2008117527A JP 5408899 B2 JP5408899 B2 JP 5408899B2
Authority
JP
Japan
Prior art keywords
resin
porous film
acid
crystal
laminated porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008117527A
Other languages
English (en)
Other versions
JP2008307890A (ja
Inventor
剛幹 山田
康 宇佐見
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008117527A priority Critical patent/JP5408899B2/ja
Publication of JP2008307890A publication Critical patent/JP2008307890A/ja
Application granted granted Critical
Publication of JP5408899B2 publication Critical patent/JP5408899B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Description

本発明は積層多孔性フィルムに関し、包装用品、衛生用品、畜産用品、農業用品、建築用品、医療用品、分離膜、光拡散板、電池用セパレータとして利用でき、特に非水電解液電池用セパレータとして好適に利用できるものである。
二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく、機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。
一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。
非水電解液用の溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてポリプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステルが主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶かして使用している。
リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。当該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。
さらに、最近では適度なシャットダウン特性を持たせたセパレータが使われ始めている。シャットダウン特性とは高温状態になると電池用セパレータの微細孔が閉塞される機能であり、また、微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度という。シャットダウン特性は電池用セパレータをリチウムイオン二次電池に組み込んで使用した場合に安全に寄与する重要な特性である。例えば電池が異常を起こし高温状態になった際に、シャットダウン特性を有する電池用セパレータではその微細孔が閉塞され、電池内部のイオン伝導を遮断することにより、その後の電池内部の温度上昇を防止できる。特に、最近の電池の高容量化に伴い電池の安全性に対する重要度が増しているなかで、本特性の必要性はさらに増している。
このような要望に対して、特許3128132号公報(特許文献1)ではポリエチレンとポリプロピレンの混合樹脂からなる電池用セパレータの製造方法が提案されている。
しかしながら、該発明の製造方法は混合樹脂を一軸方向に低温で延伸を行い、更に同方向に高温で延伸するものであり、得られる多孔性フィルムは延伸方向に沿って非常に裂けやすいという問題を有している。
また、低温延伸および高温延伸ともに延伸速度が大きく制限され、生産性が非常に悪いという問題も有している。
一方、β晶を含むポリプロピレンシートを延伸して多孔性フィルムを得る方法が種々提案されている。
例えば特許2509030号公報(特許文献2)では、β晶含有率が高い(K>0.5)オリジナルポリプロピレンフィルムより二軸延伸して得られる超透過性ポリプロピレンのミクロポーラスフィルムが提案されている。
国際公開2002/066233号パンフレット(特許文献3)では、針状β晶を含むポリプロピレンを逐次二軸延伸することにより得られるポリプロピレン製多孔性フィルムおよびその製造方法が提案されている。
該発明に記載の製造方法はいずれも二軸延伸法を用いるものであり、得られる多孔性フィルムは等方的な機械的強度を有しており、かつ優れた値を示す。しかしながら該発明により得られる多孔性フィルムは電池の安全性に大きく寄与するシャットダウン特性を具備しておらず、これらの多孔性フィルムを電池用セパレータとして使用するには電池の安全性を確保するという点で問題があった。
特開平9−255804号公報(特許文献4)には、ポリプロピレンとポリエチレンとβ結晶型核剤からなる樹脂組成物を、該樹脂組成物中のポリプロピレン成分の結晶相が実質的にβ結晶相である膜状物に溶融成形し、次いで該膜状物を60〜135℃で延伸することを特徴する微多孔性膜の製造方法が提供されている。
しかしながら、該発明には電池の安全性を確保するためのシャットダウン特性については記載されておらず、電池用セパレータとして使用するにあたって非常に重要である熱的な透気特性の変化については全く論じていない。ゆえに、ポリエチレンの結晶融解ピーク温度に関しては全く記載がなく、示唆さえもされていない。
特許3128132号公報 特許2509030号公報 国際公開2002/066233号パンフレット 特開平9−255804号公報
本発明は、優れた透気特性と機械的強度を有し、かつシャットダウン特性を具備した積層多孔性フィルムを提供することを課題としている。
本発明者らは、前記従来技術の問題を鋭意検討した結果、その問題点を解消しうる積層多孔性フィルムを得ることに成功し、本発明を完成するに至った。すなわち、シャットダウン特性を発現する層と機械的強度を向上させる層との少なくとも2層を有する積層多孔性フィルムであって、シャットダウン特性を発現する層としてポリプロピレン系樹脂と結晶融解ピーク温度が100〜150℃である熱可塑性樹脂とを含む層を用い、機械的強度を向上させる層としてポリプロピレン系樹脂を多く含む層を用いることにより本発明の課題を解決している。かつ、本発明の積層多孔性フィルムは全体としてβ活性及び/又はβ晶生成力を有するもの、あるいはβ活性を有するポリプロピレン系樹脂を含む層を有するものとしているため、微細な多孔質層を設けることができ、優れた透気特性を発揮させることができる。
特に、β晶を含有する樹脂組成物から成形した膜状物を逐次2軸延伸を行うことにより製造すると、フィラー等の添加剤を使用しない場合においても、容易に微細孔を多数設けて多孔化することができる。
本発明の積層多孔性フィルムとしては次のつの態様が挙げられる。
第1の態様としては、少なくとも2層の多孔質層を積層した積層多孔性フィルムであって、
前記2層はβ活性を有するポリプロピレン系樹脂を含み、
該2層のうちの1層は結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含み、
前記β活性を有するポリプロピレン系樹脂と前記熱可塑性樹脂の混合質量比が、前記β活性を有するポリプロピレン系樹脂/前記熱可塑性樹脂=20〜80/80〜20である一方、
他の1層は、前記β活性を有するポリプロピレン系樹脂からなり、結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含まず、
二軸延伸によって多孔化され、透気抵抗が5〜3000秒/100mlであることを特徴とする積層多孔性フィルムである。
第2の態様としては、少なくとも2層の多孔質層を積層した積層多孔性フィルムであって、
前記2層はポリプロピレン系樹脂を含み、
該2層のうちの1層は結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含み、
前記ポリプロピレン系樹脂と前記熱可塑性樹脂の混合質量比が、前記ポリプロピレン系樹脂/前記熱可塑性樹脂=20〜80/80〜20である一方、
他の1層は、前記ポリプロピレン系樹脂からなり、前記結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含まず、
かつ、β活性及び/またはβ晶生成力を有し、
二軸延伸によって多孔化され、透気抵抗が5〜3000秒/100mlであることを特徴とする積層多孔性フィルムである
本発明の積層多孔性フィルムにおいて、「β活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合、β活性を有すると判断している。
また、「β晶生成力」の有無は、後述するX線解析装置を用いたβ晶生成力の測定により、β晶に由来する回析ピークが検出された場合、β晶生成力を有すると判断している。
前記β活性及び/又はβ晶生成力は、本発明の積層多孔性フィルムが前記2層のみで構成される場合、他の多孔質層が積層される場合のいずれにおいても積層多孔性フィルムの状態で測定している。
前記2層の少なくとも1層を形成する組成物にβ晶核剤を配合して前記β活性及び/又は前記β晶生成力を有するものとしていることが好ましい。さらに、前記2層の少なくとも1層のポリプロピレン系樹脂にβ晶核剤を配合して、前記β活性及び/又は前記β晶生成力を有するものとしていることが好ましい。前記β晶核剤の配合量は、前記ポリプロピレン系樹脂100質量部に対して0.0001〜5.0質量部であることが好ましい。
記ポリプロピレン系樹脂と結晶融解ピーク温度が100〜150℃である熱可塑性樹脂とを含む層においては、前記ポリプロピレン系樹脂と前記熱可塑性樹脂の混合質量比が前記ポリプロピレン系樹脂/前記熱可塑性樹脂=20〜80/80〜20である。
前記結晶融解ピーク温度が100〜150℃である熱可塑性樹脂はポリエチレン系樹脂であることが好ましい。
本発明の積層多孔性フィルムは、孔が閉塞するシャットダウン温度が141℃以上160℃以下であることが好ましい。
本発明において、「シャットダウン温度」とは微細孔が閉塞する最も低い温度をいい、具体的には本発明の積層多孔性フィルムを実施例に記載の方法で加熱した際に加熱後の透気抵抗が加熱前の透気抵抗の10倍以上になる温度のうち最も低い温度をいう。
また、積層多孔性フィルムのJIS P8117に準拠して測定した透気抵抗が、前記のように、5〜3000秒/100mlである。さらに、日本農林規格告示1019号に準じ、ピン径1.0mm、先端部0.5R、ピン刺速度300mm/分の条件で測定したピン刺し強度が1.5N以上であることが好ましい。
また、本発明の積層多孔性フィルムのJIS P8117に準拠して測定した透気抵抗が5〜3000秒/100mlであるため、電池用セパレータとして好適に使用することができる。
さらに、本発明はこの電池用セパレータを組み込んだ電池を提供し、当該電池は従来よりも高い安全性を確保することができる。
本発明によれば、優れた透気特性と機械的強度を有し、かつシャットダウン特性を具備した積層多孔性フィルムを提供することができ、当該積層多孔性フィルムは特に電池用セパレータに好適に利用することができる。
より具体的には、本発明においては、ポリプロピレン系樹脂を含む層の少なくとも1層において結晶融解ピーク温度が100〜150℃である熱可塑性樹脂をさらに配合することにより、フィルム自体を破膜させることなく、フィルムの微細孔を閉塞させてフィルムの透気抵抗を変化させることができる。この機能は、本発明の積層多孔性フィルムを電池用セパレータに用いた場合、シャットダウン特性として電池の安全性確保に大きく貢献する。
さらに、本発明においては前述のシャットダウン特性を発現する層に機械的強度を向上させる層が積層されているから、優れた機械的強度を有する。そのため、電池製造における電極とセパレータを捲回する際、あるいは充放電において電極が膨張・収縮を繰り返す際に、電極凹凸やバリによってセパレータが破膜し、両電極間の短絡を生じせしめるということが起こりにくい。かつ、本発明の積層多孔性フィルムは、β活性および/又はβ晶生成力を有するので、微細な多孔質層を設けることができ、優れた透気特性を発揮させることができる。
本発明の積層多孔性フィルムは、厳密な製造条件の制御を必要とせず、簡便にかつ効率よく生産することができる。
本発明においては延伸処理により多孔化させている。多孔化するための添加剤を溶媒で除去する必要がないので環境への悪影響が少なく、前記添加剤の残存によるセパレータ特性の悪化もない。さらに、多孔化するためのフィラーも含まないので、より軽量な多孔性フィルムを提供できる。
さらに、特許文献4では実施例において縦方向および横方向の二軸延伸において同温度条件で延伸しているが、延伸処理の条件をさらに選択することにより理想的な多孔構造を形成でき、結果として透気抵抗が低い多孔性フィルムとすることができる。
以下、本発明の積層多孔性フィルムの実施形態、ならびに電池用セパレータとしての電池への適応形態について詳細に説明する。
本発明の積層多孔性フィルムは、いずれの実施形態においても少なくとも2層の多孔質層を積層した構成としている。
[第1実施形態]
第1実施形態の積層多孔性フィルムは、前記2層の多孔質層がポリプロピレン系樹脂(以下「PP樹脂」という)を含み、該2層のうちの1層を結晶融解ピーク温度が100〜150℃である熱可塑性樹脂(以下「LM樹脂」という)を含む層(PP−S層)とする一方、他の1層は前記結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含まない層(PP−N層)とする積層多孔性フィルムとしている。かつ、本発明の積層多孔性フィルムは、β活性および/又はβ晶生成力を有している。
本発明の積層多孔性フィルムは、前記β活性と前記β晶生成力のうち、少なくとも1つを有することを重要な特徴としている。
β活性とβ晶生成力はいずれも、延伸前の膜状物においてポリプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中のポリプロピレン系樹脂がβ晶を生成していれば、その後延伸を施すことで微細孔が形成されるため、透気特性を有する積層多孔性フィルムを得ることができる。
前記のβ活性の有無は、示差走査型熱量計を用いて、積層多孔性フィルムの示差熱分析を行い、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度が検出されるか否かで判断している。
具体的には、示差走査型熱量計で積層多孔性フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β活性を有すると判断している。
また、前記積層多孔性フィルムのβ活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上175℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1〜4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
前記積層多孔性フィルムのβ活性度は大きい方が好ましく、β活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。積層多孔性フィルムが20%以上のβ活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れたリチウムイオン電池用セパレータとすることができる。
β活性度の上限値は特に限定されないが、β活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
前記β晶生成力の有無は、特定の熱処理を施した積層多孔性フィルムの広角X線測定により得られる回折プロファイルで判断している。
詳細には、ポリプロピレン系樹脂(PP樹脂)の融点を超える温度である170℃〜190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔性フィルムについて広角X線測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°〜16.5°の範囲に検出された場合、β晶生成力が有ると判断している。
ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643−652(1986)、Prog.Polym.Sci.Vol.16,361−404(1991)、Macromol.Symp.89,499−511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。β晶生成力の詳細な評価方法については、後述の実施例にて示す。
前述した多孔質層のβ活性および/又はβ晶生成力を得る方法としては、ポリプロピレン系樹脂のα晶の生成を促進させる物質を添加しない方法や、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
なかでも、前記2層の少なくとも1層を形成する組成物にβ晶核剤を添加してβ活性および/又はβ晶生成力を得ていることが好ましい。β晶核剤を添加することで、より均質に効率的にポリプロピレン系樹脂のβ晶の生成を促進させることができ、β活性および/又はβ晶生成力を有する積層多孔性フィルムを得ることができる。
特に前記2層の両方にβ晶核剤を配合し、該2層が共にβ活性及び/又はβ晶生成力を有することが好ましい。
本発明において、β晶核剤は、ポリプロピレン系樹脂に配合していることが好ましい。前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤0.0001〜5.0質量部が好ましい。0.001〜3.0質量部がより好ましく、0.01〜1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、積層多孔性フィルムとした際にも十分なβ活性および/又はβ晶生成力が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、積層多孔性フィルム表面へのβ晶核剤のブリ−ドなどがなく好ましい。
本発明において、前記2層のそれぞれでβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
前記PP−S層においては、PP樹脂とLM樹脂との総和質量がPP−S層の全質量に対し70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上を占める。
PP樹脂とLM樹脂との混合質量比は、PP樹脂/LM樹脂=20〜80/80〜20とし、30〜70/70〜30が好ましい。なかでもPP樹脂の含有量が多い方が好ましく、特にPP樹脂/LM樹脂=60〜70/40〜30であることがさらに好ましい。LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中0質量%未満になると適度な温度でシャットダウン特性を発現することが困難になる。一方、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中0質量%を超えるとPP−S層の多孔化が難しくなる。
前記PP−S層が2層以上存在する場合は、そのうち少なくとも1層においてPP樹脂とLM樹脂との混合質量比が前記規定の範囲内にあればよい。それ以外のPP−S層におけるPP樹脂とLM樹脂との混合質量比は、PP樹脂/LM樹脂=10〜99/90〜1であることが好ましく、30〜99/70〜1がより好ましく、60〜99/40〜1が更に好ましく、60〜90/40〜10が特に好ましい。
シャットダウン特性を発現する層は少なくとも1層存在すればよいから、それ以外のPP−S層についてはシャットダウン特性を必ずしも必要とされない。ゆえに、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中1質量%以上であればよい。もちろんPP−S層の全てがシャットダウン特性を発現してもなんら問題はなく、むしろその方が好ましい。一方、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中90質量%を超えるとPP−S層の多孔化が難しくなる。
前記PP−N層においては、PP樹脂の含有量がPP−N層の全質量に対し70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上を占める。
機械的強度を向上させるために、PP樹脂に他の熱可塑性樹脂を組み合わせても良い。
以下に、本発明の積層多孔性フィルムを構成する成分について説明する。
[ポリプロピレン系樹脂(PP樹脂)の説明]
ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1−ブテン、1−ペンテン、1−へキセン、1−へプテン、1−オクテン、1−ノネンもしくは1−デセンなどα−オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、積層多孔性フィルムの機械的強度の観点からはホモポリプロピレンがより好適に使用される。
また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80〜99%であることが好ましい。より好ましくは83〜98%、更に好ましくは85〜97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠している。
また、ポリプロピレン系樹脂は、分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であることが好ましい。より好ましくは2.0〜8.0、更に好ましくは2.0〜6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、積層多孔性フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5〜15g/10分であることが好ましく、1.0〜10g/10分であることがより好ましい。MFRが0.5g/10分未満では成形加工時の樹脂の溶融粘度が高く生産性が低下する。一方、15g/10分を超えると得られる積層多孔性フィルムの機械的強度が不足するため実用上問題が生じやすい。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定している。
[β晶核剤の説明]
本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2−ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられるが、その中でも特に好ましいものを以下に示す。
好ましいβ晶核剤としては、一般式(I);
Ib―NHCO―RIa―CONH―RIc (I)
一般式(II);
IIb―CONH―RIIa―CONH―RIIc (II)
または、一般式(III);
IIIb―CONH―RIIIa―NHCO―RIIIc (III)
(各式中、RIa、RIIaおよびRIIIaは同一または異なって炭素数1〜28の置換されていてもよい二価の炭化水素基を表し、
Ib、RIc、RIIb、RIIc、RIIIbおよびRIIIcは同一または異なって炭素数1〜18の置換されていてもよい炭化水素基を表す。)
で示されるアミド化合物が挙げられる。
なかでも、前記一般式(I)、(II)、(III)で示されるアミド化合物として、下記一般式(1)、(2)または(3)で表されるアミド化合物が特に好ましいβ晶核剤の一態様として挙げられる。
前記一般式(I)に含まれる一般式(1)で表されるアミド化合物は、
―NHCO―R―CONH―R (1)
(式中、Rは炭素数1〜28の飽和または不飽和の脂肪族、脂環族または芳香族のジカルボン酸残基を表し、
およびRは同一または異なって良く、炭素数3〜18のシクロアルキル基、シクロアルケニル基、
下記式(a);
Figure 0005408899
下記式(b);
Figure 0005408899
下記式(c);
Figure 0005408899
または、下記式(d);
Figure 0005408899
で示される基を表す。化学式1〜4において、RおよびRは同一または異なって水素原子、炭素数1〜12の直鎖状または分岐鎖状のアルキル基、RおよびRは同一または異なって炭素数1〜12の直鎖状または分岐状のアルキレン基を表す。)
で示される化合物である。
前記一般式(II)に含まれる一般式(2)で表されるアミド化合物は、
―CONH―R―CONH―R10 (2)
(式中、Rは炭素数1〜28の飽和または不飽和の脂肪族、脂環族または芳香族のアミノ酸残基を表し、
およびR10は同一または異なって良く、炭素数3〜12のシクロアルキル基、シクロアルケニル基、
下記式(e);
Figure 0005408899
下記式(f);
Figure 0005408899
下記式(g);
Figure 0005408899
または、下記式(h);
Figure 0005408899
で示される基を表す。化学式5〜8において、R11は水素原子、炭素数1〜12の直鎖状もしくは分岐鎖状のアルキル基、アルケニル基、シクロアルキル基またはフェニル基を表し、R12は炭素数1〜12の直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはフェニル基を表す。R13およびR14は同一または異なって、炭素数1〜4の直鎖状または分岐鎖状のアルキレン基を表す。)
で示される化合物である。
なお、Rで示される「アミノ酸残基」におけるアミノ酸としては、天然のアミノ酸に限らず非天然のアミノ酸であってもよく、D−体またはL−体のいずれでもよく、α−、β−、γ−、ε−型のいずれのものでもよい。
前記一般式(III)に含まれる一般式(3)で表されるアミド化合物は、
15―CONH―R16―NHCO―R17 (3)
(式中、R15は炭素数1〜24の脂肪族ジアミン残基、脂環族ジアミン残基または芳香族ジアミノ酸残基を表し、
16およびR17は同一または異なって良く、それぞれ炭素数3〜12のシクロアルケニル基、シクロアルキル基、
下記式(i);
Figure 0005408899
下記式(j);
Figure 0005408899
下記式(k);
Figure 0005408899
または、下記式(l);
Figure 0005408899
で示される基を表す。化学式9〜12において、R18は水素原子、炭素数1〜4の直鎖状もしくは分岐鎖状のアルキル基、アルケニル基を示し、R19は炭素数1〜12の直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはフェニル基を表し、R20およびR21は同一または異なって、炭素数1〜3の直鎖状若しくは分岐鎖状のアルキレン基を表す。)
で示される化合物である。
前記一般式(1)で表されるアミド系化合物は、ジカルボン酸とモノアミンとをアミド化することにより調製することができる。
前記ジカルボン酸としては、例えば、マロン酸、ジフェニルマロン酸、コハク酸、フェニルコハク酸、ジフェニルコハク酸、グルタル酸、3,3−ジメチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,12−ドデカン二酸、1,14−テトラデカン二酸、1,18−オクタデカン二酸、1,2−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジ酢酸、p−フェニレンジ酢酸、p−フェニレンジエタン酸、フタル酸、4−tert−ブチルフタル酸、イソフタル酸、5−tert−ブチルイソフタル酸、テレフタル酸、1,8−ナフタル酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェン酸、3,3’−ビフェニルジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビナフチルジカルボン酸、ビス(3−カルボキシフェニル)メタン、ビス(4−カルボキシフェニル)メタン、2,2−ビス(3−カルボキシフェニル)プロパン、2,2−ビス(4−カルボキシフェニル)プロパン、3,3’−スルホニルジ安息香酸、4,4’−スルホニルジ安息香酸、3,3’−オキシジ安息香酸、4,4’−オキシジ安息香酸、3,3’−カルボニルジ安息香酸、4,4’−カルボニルジ安息香酸、3,3’−チオジ安息香酸、4,4’−チオジ安息香酸、4,4’−(p−フェニレンジオキシ)ジ安息香酸、4,4’−イソフタロイルジ安息香酸、4,4’−テレフタロイルジ安息香酸、ジチオサリチル酸等が挙げられる。
前記モノアミンとしては、例えば、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、2−メチルシクロヘキシルアミン、3−メチルシクロヘキシルアミン、4−メチルシクロヘキシルアミン、2−エチルシクロヘキシルアミン、4−エチルシクロヘキシルアミン、2−プロピルシクロヘキシルアミン、2−イソプロピルシクロヘキシルアミン、4−プロピルシクロヘキシルアミン、4−イソプロピルシクロヘキシルアミン、2−tert−ブチルシクロヘキシルアミン、4−n−ブチルシクロヘキシルアミン、4−イソブチルシクロヘキシルアミン、4−sec−ブチルシクロヘキシルアミン、4−tert−ブチルシクロヘキシルアミン、4−n−ペンチルシクロヘキシルアミン、4−イソペンチルシクロヘキシルアミン、4−sec−ペンチルシクロヘキシルアミン、4−tert−ペンチルシクロヘキシルアミン、4−ヘキシルシクロヘキシルアミン、4−ヘプチルシクロヘキシルアミン、4−オクチルシクロヘキシルアミン、4−ノニルシクロヘキシルアミン、4−デシルシクロヘキシルアミン、4−ウンデシルシクロヘキシルアミン、4−ドデシルシクロヘキシルアミン、4−シクロヘキシルシクロヘキシルアミン、4−フェニルシクロヘキシルアミン、シクロヘプチルアミン、シクロドデシルアミン、シクロヘキシルメチルアミン、α−シクロヘキシルエチルアミン、β−シクロヘキシルエチルアミン、α−シクロヘキシルプロピルアミン、β−シクロヘキシルプロピルアミン、γ−シクロヘキシルプロピルアミン、アニリン、o−トルイジン、m−トルイジン、p−トルイジン、o−エチルアニリン、p−エチルアニリン、o−プロピルアニリン、m−プロピルアニリン、p−プロピルアニリン、o−クミジン、m−クミジン、p−クミジン、o−tert−ブチルアニリン、p−n−ブチルアニリン、p−イソブチルアニリン、p−sec−ブチルアニリン、p−tert−ブチルアニリン、p−n−アミルアニリン、p−イソアミルアニリン、p−sec−アミルアニリン、p−tert−アミルアニリン、p−ヘキシルアニリン、p−ヘプチルアニリン、p−オクチルアニリン、p−ノニルアニリン、p−デシルアニリン、p−ウンデシルアニリン、p−ドデシルアニリン、p−シクロヘキシルアニリン、o−アミノジフェニル、m−アミノジフェニル、p−アミノジフェニル、p−アミノスチレン、ベンジルアミン、α−フェニルエチルアミン、β−フェニルエチルアミン、α−フェニルプロピルアミン、β−フェニルプロピルアミン、γ−フェニルプロピルアミン等が挙げられる。
前記一般式(2)で示されるアミド系化合物は、アミノ酸とモノカルボン酸およびモノアミンとをアミド化することにより調製することができる。
前記アミノ酸としては、例えば、アミノ酢酸、α−アミノプロピオン酸、β−アミノプロピオン酸、α−アミノアクリル酸、α−アミノブタン酸、β−アミノブタン酸、γ−アミノブタン酸、α−アミノ−α−メチルブタン酸、γ−アミノ−α−メチレンブタン酸、α−アミノイソブタン酸、β−アミノイソブタン酸、α−アミノ−n−ペンタン酸、δ−アミノ−n−ペンタン酸、β−アミノクロトン酸、α−アミノ−β−メチルペンタン酸、α−アミノイソペンタン酸、2−アミノ−4−ペンテノイック酸、α−アミノ−n−カプロン酸、6−アミノカプロン酸、α−アミノイソカプロン酸、7−アミノヘプタン酸、α−アミノ−n−カプリル酸、8−アミノカプリル酸、9−アミノノナン酸、11−アミノウンデカン酸、12−アミノドデカン酸、1−アミノシクロヘキサンカルボン酸、2−アミノシクロヘキサンカルボン酸、3−アミノシクロヘキサンカルボン酸、4−アミノシクロヘキサンカルボン酸、p−アミノメチルシクロヘキサンカルボン酸、2−アミノ−2−ノルボルナンカルボン酸、α−アミノフェニル酢酸、α−アミノ−β−フェニルプロピオン酸、2−アミノ−2−フェニルプロピオン酸、3−アミノ−3−フェニルプロピオン酸、α−アミノ桂皮酸、2−アミノ−4−フェニルブタン酸、4−アミノ−3−フェニルブタン酸、アントラニル酸、m−アミノ安息香酸、p−アミノ安息香酸、2−アミノ−4−メチル安息香酸、2−アミノ−6−メチル安息香酸、3−アミノ−4−メチル安息香酸、2−アミノ−3−メチル安息香酸、2−アミノ−5−メチル安息香酸、4−アミノ−2−メチル安息香酸、4−アミノ−3−メチル安息香酸、2−アミノ−3−メトキシ安息香酸、3−アミノ−4−メトキシ安息香酸、4−アミノ−2−メトキシ安息香酸、4−アミノ−3−メトキシ安息香酸、2−アミノ−4,5−ジメトキシ安息香酸、o−アミノフェニル酢酸、m−アミノフェニル酢酸、p−アミノフェニル酢酸、4−(4−アミノフェニル)ブタン酸、4−アミノメチル安息香酸、4−アミノメチルフェニル酢酸、o−アミノ桂皮酸、m−アミノ桂皮酸、p−アミノ桂皮酸、p−アミノ馬尿酸、2−アミノ−1−ナフトエ酸、3−アミノ−1−ナフトエ酸、4−アミノ−1−ナフトエ酸、5−アミノ−1−ナフトエ酸、6−アミノ−1−ナフトエ酸、7−アミノ−1−ナフトエ酸、8−アミノ−1−ナフトエ酸、1−アミノ−2−ナフトエ酸、3−アミノ−2−ナフトエ酸、4−アミノ−2−ナフトエ酸、5−アミノ−2−ナフトエ酸、6−アミノ−2−ナフトエ酸、7−アミノ−2−ナフトエ酸、8−アミノ−2−ナフトエ酸等が挙げられる。
前記モノカルボン酸としては、例えば、シクロプロパンカルボン酸、シクロブタンカルボン酸、シクロペンタンカルボン酸、1−メチルシクロペンタンカルボン酸、2−メチルシクロペンタンカルボン酸、3−メチルシクロペンタンカルボン酸、1−フェニルシクロペンタンカルボン酸、シクロペンテンカルボン酸、シクロヘキサンカルボン酸、1−メチルシクロヘキサンカルボン酸、2−メチルシクロヘキサンカルボン酸、3−メチルシクロヘキサンカルボン酸、4−メチルシクロヘキサンカルボン酸、4−プロピルシクロヘキサンカルボン酸、4−ブチルシクロヘキサンカルボン酸、4−ペンチルシクロヘキサンカルボン酸、4−ヘキシルシクロヘキサンカルボン酸、4−フェニルシクロヘキサンカルボン酸、1−フェニルシクロヘキサンカルボン酸、シクロヘキセンカルボン酸、4−ブチルシクロヘキセンカルボン酸、シクロヘプタンカルボン酸、1−シクロヘプテンカルボン酸、1−メチルシクロヘプタンカルボン酸、4−メチルシクロヘプタンカルボン酸、シクロヘキシル酢酸、安息香酸、o−メチル−安息香酸、m−メチル−安息香酸、p−メチル−安息香酸、p−エチル−安息香酸、p−プロピル−安息香酸、p−ブチル安息香酸、p−tert−ブチル安息香酸、p−ペンチル安息香酸、p−ヘキシル安息香酸、o−フェニル安息香酸、p−フェニル安息香酸、p−シクロヘキシル安息香酸、フェニル酢酸、フェニルプロピオン酸、フェニルブタン酸等が挙げられる。
前記モノアミンとしては、一般式(1)で表されるアミド系化合物の原料であるモノアミンと同様のものが挙げられる。
前記一般式(3)で示されるアミド系化合物は、ジアミンとモノカルボン酸とをアミド化することにより調製することができる。
前記ジアミンとしては、例えば、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,3−ジアミノペンタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、メンセンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン等が挙げられる。
前記モノカルボン酸としては、一般式(2)で表されるアミド系化合物の原料であるモノカルボン酸と同様のものが挙げられる。
特に好ましいβ晶核剤の他の態様としては、下記一般式(4);
Figure 0005408899
(式中のR41およびR42は同一でも異なっても良く、水素原子または炭素数1〜18の置換されていてもよい炭化水素基、好ましくは水素原子、アルキル基、シクロアルキル基またはアリール基を表すか、或いはR41、R42および窒素原子が共同して含窒素複素環基を表し、好ましくはR41およびR42はそれぞれの端で相互に結合して共同して炭素数2〜6のアルキレン基を表す。)
で示されるテトラオキサスピロ化合物が挙げられる。
テトラオキサスピロ化合物を具体的に例示すると、3,9−ビス[4−(N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(4−t−ブチルシクロヘキシル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(2,4−ジ−t−ブチルシクロヘキシル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(1−アダマンチル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−フェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(4−t−ブチルフェニル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(2,4−ジ−t−ブチルフェニル)カルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(1−ナフチル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ドデシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−オクタデシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス(4−カルバモイルフェニル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N,N−ジシクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N,N−ジフェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチル−N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチル−N−フェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(1−ピロリジニルカルボニル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(1−ピペリジニルカルボニル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等が好適に使用することができる。
特に好ましいβ晶核剤の他の態様としては、例えばキナクリドン、ジメチルキナクリドンおよびジメトキシキナクリドンなどのキナクリドン型化合物、;例えばキナクリドンキノン、5,12−ジヒドロ(2,3b)アクリジン−7−1,4−ジオンとキノ(2,3b)アクリジンー6,7,13−1,4−(5H,12H)−テトロンの混合結晶、およびジメトキシキナクリドンキノンなどのキナクリドンキノン型化合物、:例えばジヒドロキナクリドン、ジメトキシヒドロキナクリドンおよびジベンゾジヒドロキナクリドンなどのジヒドロキナクリドン型化合物が挙げられる。
特に好ましいβ晶核剤の他の態様としては、例えばピメリン酸のカルシウム塩およびスベリン酸のカルシウム塩などの周期律表のIIa族からの金属のジカルボン酸塩、ならびにジカルボン酸と周期律表のIIa族からの金属塩の混合物が挙げられる。
なかでも、周期律表のIIa族からの金属と式(5);
Figure 0005408899
(式中、nは1〜12の自然数であり、
51は水素原子、カルボキシル基、炭素数1〜12の置換されていてもよい炭化水素基、好ましくは水素原子、カルボキシル基、炭素数1〜12の直鎖状もしくは分岐鎖状のアルキル基、炭素数5〜8のシクロアルキル基または炭素数6〜12のアリール基を表し、
Xは炭素数1〜12の置換されていてもよい二価の炭化水素基、好ましくは置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、より好ましくは炭素数1〜12のアルキル基、炭素数5〜8のシクロアルキル基または炭素数6〜12のアリール基で置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基を表す。)
で示されるイミド酸との塩が特に好ましい。
当該塩としては、例えば、フタロイルグリシン、ヘキサヒドロフタロイルグリシン、N−ナフタロイルアラニンまたはN−4−メチルフタロイルグリシンのカルシウム塩が例示できる。
特に好ましいβ晶核剤の他の態様としては、一般式(6)で示される環状リン化合物と、脂肪酸マグネシウム、脂肪族リン酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、一般式(7)で示される環状リン化合物のマグネシウム塩および一般式(8)で示されるマグネシウムフォスフィネート系化合物からなる群から選ばれる少なくとも1種のマグネシウム化合物とからなる組成物、または、一般式(9)で示される環状リン化合物と、前記一般式(8)で示されるマグネシウムフォスフィネート系化合物、硫酸マグネシウムおよびタルクからなる群から選ばれる少なくとも1種のマグネシウム化合物とからなる組成物が挙げられる。
一般式(6)で示される環状リン化合物は、
Figure 0005408899
(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
一般式(7)で示される環状リン化合物のマグネシウム塩は、
Figure 0005408899
(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
一般式(8)で示されるマグネシウムフォスフィネート系化合物は、
Figure 0005408899
(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
一般式(9)で示される環状リン化合物は、
Figure 0005408899
(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
前記一般式(6)で示される環状リン化合物としては、10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、7−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジメチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリメチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジエチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリエチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,8−ジ−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,6−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,7−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,8−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−フェニル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ(α,α−ジメチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドおよび2,6−ジシクロヘキシル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドなどを例示できる。
これら環状リン化合物の単独使用はもちろんのこと2種以上の環状リン化合物を併用することもできる。
本発明で用いられるβ晶核剤として前述の一般式(6)で示される環状リン化合物と併用するマグネシウム化合物としては、酢酸マグネシウム、プロピオン酸マグネシウム、n−酪酸マグネシウム、i−酪酸マグネシウム、n−吉草酸マグネシウム、i−吉草酸マグネシウム、n−ヘキサン酸マグネシウム、n−オクタン酸マグネシウム、2−エチルヘキサン酸マグネシウム、デカン酸マグネシウム、ラウリン酸マグネシウム、ミリスチン酸マグネシウム、ミリストレイン酸マグネシウム、パルミチン酸マグネシウム、パルミトレイン酸マグネシウム、ステアリン酸マグネシウム、オレイン酸マグネシウム、リノール酸マグネシウム、リノレン酸マグネシウム、アラキン酸マグネシウム、ベヘン酸マグネシウム、エルカ酸マグネシウム、リグノセリン酸マグネシウム、セロチン酸マグネシウム、モンタン酸マグネシウム、メリシン酸マグネシウム、12−ヒドロキシオクタデカン酸マグネシウム、リシノール酸マグネシウム、セレブロン酸マグネシウム、(モノ,ジミックスド)ヘキシルリン酸マグネシウム、(モノ,ジミックスド)オクチルリン酸マグネシウム、(モノ,ジミックスド)2−エチルヘキシルリン酸マグネシウム、(モノ,ジミックスド)デシルリン酸マグネシウム、(モノ,ジミックスド)ラウリルリン酸マグネシウム、(モノ,ジミックスド)ミリスチルリン酸マグネシウム、(モノ,ジミックスド)パルミチルリン酸マグネシウム、(モノ,ジミックスド)ステアリルリン酸マグネシウム、(モノ,ジミックスド)オレイルリン酸マグネシウム、(モノ,ジミックスド)リノールリン酸マグネシウム、(モノ,ジミックスド)リノリルリン酸マグネシウム、(モノ,ジミックスド)ドコシルリン酸マグネシウム、(モノ,ジミックスド)エルシルリン酸マグネシウム、(モノ,ジミックスド)テトラコシルリン酸マグネシウム、(モノ,ジミックスド)ヘキサコシルリン酸マグネシウム、(モノ,ジミックスド)オクタコシルリン酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウムが挙げられる。
本発明で用いられるβ晶核剤として前述の一般式(6)で示される環状リン化合物と併用するマグネシウム化合物としては、さらに、一般式(6)で示される環状リン化合物として例示した前記化合物のマグネシウム塩、マグネシウム−ビス(1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−メチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6−メチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−5’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジメチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリメチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−エチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−エチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−エチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジエチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリエチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−i−プロピル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−i−プロピル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−s−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−s−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6,6’−ジ−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,6’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,5’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6,4’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−アミル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−アミル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−オクチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−オクチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−シクロヘキシル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−シクロヘキシル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−フェニル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス[5−(α−メチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−4’−(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−6’−(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−4’,6’−ジ(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[5,4’,6’−トリ(α−メチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[5,4’−ジ(α,α−ジメチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス[1’−ヒドロキシ−4’−(α−メチルベンジル)−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’−ジ−t−ブチル−6’−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)およびマグネシウム−ビス(5,4’−ジシクロヘキシル−6’−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)などを例示できる。
これらマグネシウム化合物の単独使用はもちろんのこと2種以上のマグネシウム化合物を併用することもできる。
前述の一般式(6)で示される環状リン化合物と前記マグネシウム化合物との混合物の質量比率は特に限定されないが、通常環状リン化合物1質量部に対してマグネシウム化合物を0.01〜100質量部、好ましくは0.1〜10質量部の比率である。
本発明で用いられるβ晶核剤として前述の一般式(9)で示される環状リン化合物としては、9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、7−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジメチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリメチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジエチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリエチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,8−ジ−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,6−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,7−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,8−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−フェニル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ(α,α−ジメチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドおよび2,6−ジシクロヘキシル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドなどを例示できる。
これら環状リン化合物の単独使用はもちろんのこと2種以上の環状リン化合物を併用することもできる。
本発明で用いられるβ晶核剤として前述の一般式(9)で示される環状リン化合物と併用するマグネシウム化合物としては、前述の各種マグネシウムフォスフィネート系化合物、硫酸マグネシウム、塩基性硫酸マグネシウム(マグネシウムオキシサルフェート)、タルクなどを例示できる。これらマグネシウム化合物の単独使用はもちろんのこと2種以上のマグネシウム化合物を併用することもできる。
一般式(9)で示される環状リン化合物とマグネシウム化合物との混合物の質量比率は特に限定されないが、通常環状リン化合物1質量部に対してマグネシウム化合物を0.01〜100質量部、好ましくは0.1〜10質量部の比率である。
本明細書において「置換されていてもよい二価の炭化水素基」の「二価の炭化水素基」としては、飽和の直鎖状の二価の炭化水素基、不飽和の直鎖状の二価の炭化水素基、飽和の環状の二価の炭化水素基または不飽和の環状の二価の炭化水素基が挙げられる。
飽和の直鎖状の二価の炭化水素基としては、直鎖状のアルキル基(例えばメチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル等のC1-10アルキル基等)からその末端の水素原子を1個取り除いた基が挙げられ、具体的には例えばメチレン、エチレン、プロピレン、ブチレン、ペンチレンなどの直鎖状のC1-6アルキレンなどが挙げられる。
不飽和の直鎖状の二価の炭化水素基としては、直鎖状のアルケニル基(例えばビニル、アリル、1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル等のC2-6アルケニル基等)等または直鎖状のアルキニル基(例えばエチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル、1−ペンチニル、2−ペンチニル、3−ペンチニル、4−ペンチニル、1−ヘキシニル、2−ヘキシニル、3−ヘキシニル、4−ヘキシニル、5−ヘキシニル等のC2-6アルキニル基等)等からその末端の水素原子を1個取り除いた基が挙げられ、具体的には例えば直鎖状のC2-6アルケニレンまたはC2-6アルキニレンなどが挙げられる。
飽和の環状の二価の炭化水素基としては、シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル等のC3-9シクロアルキル等)等の任意の位置(好ましくは、結合手を有する炭素原子と異なる炭素原子、さらに好ましくは、最も離れた位置の炭素原子)の水素原子を1個取り除いた基(例えば、C5-7シクロアルキレンなど)が挙げられる。
不飽和の環状の二価の炭化水素基としては、シクロアルケニル基(例えば、2−シクロペンテン−1−イル、3−シクロペンテン−1−イル、2−シクロヘキセン−1−イル、3−シクロヘキセン−1−イル、1−シクロブテン−1−イル、1−シクロペンテン−1−イル等のC3-6シクロアルケニル基等)、シクロアルカンジエニル基(例えば、2,4−シクロペンタンジエン−1−イル、2,4−シクロヘキサンジエン−1−イル、2,5−シクロヘキサンジエン−1−イル等のC4-6シクロアルカンジエニル基等)、アリール基(例えば、フェニル、ナフチル等のC6-12アリール基等)等の任意の位置(好ましくは、結合手を有する炭素原子と異なる炭素原子、さらに好ましくは最も離れた位置の炭素原子)の水素原子を1個取り除いた基(例えばC6-12アリレーンなど)が挙げられる。
前記「置換されていてもよい二価の炭化水素基」の置換基としては、例えば水酸基、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)、ニトロ基、シアノ基、置換されていてもよいアミノ基、置換されていてもよい低級アルキル基、1ないし5個のハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)で置換されていてもよい低級アルコキシ基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基等が挙げられる。これらの任意の置換基は化学的に許容される位置に1ないし3個(好ましくは1ないし2個)置換されていてよい。
本明細書において「置換されていてもよい炭化水素基」の炭化水素基としては、例えば脂肪族鎖式炭化水素基、脂環式炭化水素基、アリール基およびアラルキル基等が挙げられる。
炭化水素基の例としての「脂肪族鎖式炭化水素基」としては、例えばアルキル基、アルケニル基、アルキニル基等の直鎖状または分枝鎖状の脂肪族炭化水素基が挙げられる。
アルキル基としては、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、1−メチルプロピル、n−ヘキシル、イソヘキシル、1,1−ジメチルブチル、2,2−ジメチルブチル、3,3−ジメチルブチル、3,3−ジメチルプロピル、2−エチルブチル、n−ヘプチル、1−メチルヘプチル、1−エチルヘキシル、n−オクチル、1−メチルヘプチル、ノニル等のC1-10アルキル基(好ましくはC1-6アルキル等)等が挙げられる。
アルケニル基としては、例えばビニル、アリル、イソプロペニル、2−メチルアリル、1−プロペニル、2−メチル−1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、2−エチル−1−ブテニル、2−メチル−2−ブテニル、3−メチル−2−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、4−メチル−3−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル等のC2-6アルケニル基等が挙げられる。
アルキニル基としては、例えばエチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル、1−ペンチニル、2−ペンチニル、3−ペンチニル、4−ペンチニル、1−ヘキシニル、2−ヘキシニル、3−ヘキシニル、4−ヘキシニル、5−ヘキシニル等のC2-6アルキニル基が挙げられる。
炭化水素基の例としての「脂環式炭化水素基」としては、例えばシクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基等の飽和または不飽和の脂環式炭化水素基が挙げられる。
「シクロアルキル基」としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル等のC3-9シクロアルキル等が挙げられる。
「シクロアルケニル基」としては、例えば2−シクロペンテン−1−イル、3−シクロペンテン−1−イル、2−シクロヘキセン−1−イル、3−シクロヘキセン−1−イル、1−シクロブテン−1−イル、1−シクロペンテン−1−イル等のC3-6シクロアルケニル基等が挙げられる。
「シクロアルカンジエニル基」としては、例えば2,4−シクロペンタンジエン−1−イル、2,4−シクロヘキサンジエン−1−イル、2,5−シクロヘキサンジエン−1−イル等のC4-6シクロアルカンジエニル基等が挙げられる。
炭化水素基の例としての「アリール基」としては、単環式または縮合多環式芳香族炭化水素基が挙げられ、具体的には例えばフェニル、ナフチル、アントリル、フェナントリル、アセナフチレニル等のC6-14アリール基等が挙げられる。
炭化水素基の例としての「アラルキル基」としては、例えば、ベンジル、フェネチル、ジフェニルメチル、1−ナフチルメチル、2−ナフチルメチル、2,2−ジフェニルエチル、3−フェニルプロピル、4−フェニルブチル、5−フェニルペンチル、2−ビフェニリルメチル、3−ビフェニリルメチル、4−ビフェニリルメチル等のC7−19アラルキル基等が挙げられる。
「置換されていてもよい炭化水素基」の置換基としては、例えば置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、置換されていてもよいシクロアルキル基もしくはシクロアルケニル基、置換されていてもよい複素環基、置換されていてもよいアミノ基、置換されていてもよいイミドイル基、置換されていてもよいアミジノ基、置換されていてもよい水酸基、置換されていてもよいチオール基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基、置換されていてもよいチオカルバモイル基、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等、好ましくは塩素、臭素等)、シアノ基、ニトロ基、スルホン酸由来のアシル基、カルボン酸由来のアシル基等が挙げられる。これらの任意の置換基は化学的に許容される位置に1ないし3個(好ましくは1ないし2個)置換されていてよい。
これら特に好ましいβ晶核剤の具体例としては新日本理化社製β晶核剤『エヌジェスターNU−100』、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン『Bepol B−022SP』、Borealis社製ポリプロピレン『Beta(β)−PP BE60−7032』、mayzo社製ポリプロピレン『BNX BETAPP−LN』などが挙げられる。
[LM樹脂の説明]
次に、LM樹脂について説明する。
LM樹脂は結晶融解ピーク温度が100〜150℃であることが重要である。このような熱可塑性樹脂を用いることにより、本発明の積層多孔性フィルムが後述する適度なシャットダウン特性を発現することができるようになる。
ここで熱可塑性樹脂の結晶融解ピーク温度とは、示差走査型熱量計を用いて25〜240℃まで加熱速度10℃/分で昇温後1分保持した後、240〜25℃まで冷却速度10℃/分で降温後1分保持し、更に25〜240℃まで加熱速度10℃/分で再昇温させた際に、検出される結晶融解ピーク温度を指す。
LM樹脂としては、前記結晶融解ピーク温度の条件を満たすものであれば特に限定されるものではない。
具体的には、例えば低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、またはポリメチルペンテンなどポリオレフィン系樹脂が前記熱可塑性樹脂として好ましい。そのほか、前記結晶融解温度のピーク値の条件を満たすポリスチレン系樹脂、ポリアクリル系樹脂、ポリ塩化ビニル、ポリエステル系樹脂、ポリエーテル系樹脂、ポリアミド系樹脂も挙げられる。
なお、前記条件を満たす限りにおいて、前記ポリプロピレン系樹脂と異なる他のポリプロピレン系樹脂を用いることもできる。
中でも電池用セパレータとしての使用を考えた場合は、その耐薬品性等の観点からLM樹脂としてポリオレフィン系樹脂、ポリオレフィン系樹脂同士の混合物またはポリオレフィン系樹脂と他の熱可塑性樹脂との混合物が好ましい。特に、LM樹脂としては、低密度ポリエチレン、高密度ポリエチレンもしくは線状低密度ポリエチレンなどのポリエチレン系樹脂またはポリエチレン系樹脂と他のポリオレフィン系樹脂との混合物がより好ましく、ポリエチレン系樹脂単独が更に好ましい。
前記ポリエチレン系樹脂の密度は、0.920〜0.970g/cmであることが好ましく、0.930〜0.970g/cmであることがより好ましく、0.940〜0.970g/cmであることが更に好ましい。密度が0.920g/cm以上であれば適度なシャットダウン温度を有する積層多孔性フィルムとなるため好ましい。一方、0.970g/cm以下であれば適度なシャットダウン温度を有する積層多孔性フィルムとなるほか、延伸性が維持される点で好ましい。密度の測定は密度勾配管法を用いてJIS K7112に準じて測定することができる。
また、前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.5〜15g/10分であることが好ましく、1.0〜10g/10分であることがより好ましい。MFRが0.5g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れ好ましい。一方、15g/10分以下であれば、混合するポリプロピレン系樹脂の溶融粘度に近いため分散性が向上し、結果として均質な積層多孔性フィルムとなるため好ましい。
MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
なお、前記ポリプロピレン系樹脂、ポリエチレン系樹脂に代表される熱可塑性樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
[他の成分の説明]
前記2層(PP−S層およびPP−N層)のいずれにおいても前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および積層多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。具体的には、「プラスチックス配合剤」のP154〜P158に記載されている酸化防止剤、P178〜P182に記載されている紫外線吸収剤、P271〜P275に記載されている帯電防止剤としての界面活性剤、P283〜294に記載されている滑剤などが挙げられる。
積層多孔性フィルムの熱特性、具体的にはシャットダウン特性を損なわない限りにおいて、前述のポリオレフィン系樹脂との混合させることができる。前記LM樹脂以外の他の熱可塑性樹脂としては、スチレン、AS樹脂、ABS樹脂もしくはPMMA樹脂等のスチレン系樹脂:ポリ塩化ビニル、フッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートもしくはポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6−6ナイロン、6−12ナイロン等のポリアミド系樹脂等の熱可塑性樹脂が挙げられる。
また、必要に応じてPP−S層およびPP−N層には、積層多孔性フィルムの熱特性、具体的にはシャットダウン特性を損なわない範囲で熱可塑性エラストマー等のゴム成分と呼ばれているものを添加しても良い。熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2−ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどが挙げられる。
第1実施形態の積層多孔性フィルムの構成は、基本的な構成となるPP−S層とPP−N層が少なくとも存在すれば特に限定されるものではない。本発明の積層多孔性フィルムの機能を妨げない範囲で、他の層を積層してもよいし、自体公知の処理を適宜施すなどしてもよい。
最も単純な構成としてはPP−S層/PP−N層の2層構造が挙げられる。次に単純な構造がPP−S層とPP−N層の2種類からなる3層構造である。具体的にはPP−S層/PP−N層/PP−S層、PP−N層/PP−S層/PP−N層である。前者の構成の場合、2つあるPP−S層においてLM樹脂の含有量は同じであってもよいし、異なっていても良い。
また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、PP−S層とPP−N層と他の機能を持つ層との積層順序は特に問わない。
更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。PP−S層が2つ以上ある場合、それぞれのPP−S層でLM樹脂の含有量が同じであってもよいし、異なっていても良い。
特に好適な実施形態のひとつとしてPP−N層/PP−S層/PP−N層の3層構成が例示できる。この3層構成を採用することにより、本発明の目的である優れた透気特性と機械的強度を有し、かつシャットダウン特性を具備した積層多孔性フィルムを、より一層生産性、経済性よく得ることができる。
PP−S層とPP−N層との積層比については、PP−N層(2層以上ある場合はその厚みの合計)/PP−S層(2層以上ある場合はその厚みの合計)の値が0.1〜10であり、好ましくは0.3〜5であり、より好ましくは0.5〜3である。0.1より小さい場合はPP−N層が実質的にないものと同じで機械的強度が十分に発揮できないおそれがある。また10より大きい場合は、シャットダウン特性が不足するという観点から電池の安全性を確保し難い。また、PP−S層およびPP−N層以外の他の層が存在する場合は、当該他の層の厚みの合計が全体の厚み1に対し0.1〜0.5、好ましくは0.1〜0.3となるようにする。
参考実施形態の説明]
層多孔性フィルムの参考実施形態は、前記少なくとも2層の多孔質層はPP樹脂とLM樹脂とを含む層(PP−S層)としており、該2層のPP−S層の熱可塑性樹脂の含有量を異ならせている。
PP樹脂とLM樹脂とを含む層(PP−S層)において、PP樹脂とLM樹脂との総和質量がPP−S層の全質量に対し70質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上を占める。
PP樹脂とLM樹脂とを含む層(PP−S層)のうちLM樹脂の含有量が最も多い層(PP−Sm層)においては、PP樹脂とLM樹脂との混合質量比がPP樹脂/LM樹脂=20〜80/80〜20、好ましくは30〜70/70〜30である。なかでもPP樹脂の含有量が多い方が好ましく、特にPP樹脂/LM樹脂=60〜70/40〜30であることがさらに好ましい。LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中10質量%未満になると適度な温度でシャットダウン特性を発現することが困難になる。一方、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中90質量%を超えるとPP−Sm層の多孔化が難しくなる。
PP樹脂とLM樹脂とを含む層(PP−S層)のうちLM樹脂の含有量が最も少ない層(PP−Sf層)においては、PP樹脂とLM樹脂との混合質量比がPP樹脂/LM樹脂=50〜99/50〜1であることが好ましく、70〜99/30〜1がより好ましく、90〜99/10〜1が更に好ましい。PP樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中50質量%未満になると優れた機械的強度を発揮しにくくなる。
PP樹脂とLM樹脂とを含む層(PP−S層)のうち、LM樹脂の含有量が最も多い層(PP−Sm層)におけるLM樹脂の含有率(質量%)と、LM樹脂の含有量が最も少ない層(PP−Sf層)におけるLM樹脂の含有率(質量%)との差は、1〜50質量%が好ましく、5〜40質量%がより好ましく、10〜30質量%がさらに好ましい。
PP−Sm層およびPP−Sf層以外のPP−S層におけるPP樹脂とLM樹脂との混合質量比は、PP樹脂/LM樹脂=10〜99/90〜1であることが好ましく、30〜99/70〜1がより好ましく、60〜99/40〜1が更に好ましく、60〜90/40〜10が特に好ましい。
シャットダウン特性を発現する層はPP−Sm層の少なくとも1層存在すればよいから、それ以外のPP−S層についてはシャットダウン特性を必ずしも必要とされない。ゆえに、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中1質量%以上であればよい。一方、LM樹脂の含有量がPP樹脂とLM樹脂との総和質量100質量%中90質量%を超えるとPP−S層の多孔化が難しくなる。
参考実施形態の積層多孔性フィルムの構成は、基本的な構成となるPP−Sm層とPP−Sf層が少なくとも存在すれば特に限定されるものではない。
層数としては2層、3層、4層、5層、6層、7層と適宜選択できる。ただし、生産性または経済性の観点からは2層または3層構造が好ましい
各層の積層比については特に限定されないが、PP−Sf層/PP−Sm層の値が0.1〜10であり、好ましくは0.3〜5であり、より好ましくは0.5〜3である。0.1より小さい場合はPP−Sf層が実質的にないものと同じで機械的強度が十分に発揮できないおそれがある。また10より大きい場合は、シャットダウン特性が不足するという観点から電池の安全性を確保し難い。また、PP−S層以外の他の層が存在する場合は、当該他の層の厚みの合計が全体の厚み1に対し0.1〜0.5、好ましくは0.1〜0.3となるようにする。
他の成分および効果は、第1実施形態と同様のため、説明を省略する。
第1実施形態、参考実施形態の積層多孔性フィルムの形状及び物性の説明]
第1、参考実施形態のフィルムの形態としては平面状、チューブ状の何れであってもよいが、膜状物の幅方向に製品として数丁取りが可能であることから生産性がよく、さらに内面にコートなどの処理が可能でること等の観点から、平面状がより好ましい。
本発明の積層多孔性フィルムの厚みは1〜500μmであり、好ましくは5〜300μm、更に好ましくは7〜100μmである。特に電池用セパレータとして使用する場合は1〜50μmが好ましく、10〜30μmがより好ましい。電池用セパレータとして使用する場合、厚みが1μm以上、好ましくは10μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば大きな電圧がかかった場合にも短絡しにくく安全性に優れる。また、厚みが50μm以下、好ましくは30μm以下であれば、積層多孔性フィルムの電気抵抗が小さくできるので電池の性能を十分に確保することができる。
本発明の積層多孔性フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
本発明の積層多孔性フィルムは141℃以上160℃以下でシャットダウン特性を発現することが好ましい
例えば夏場に自動車車内に放置された場合、場所によっては100℃近くまでなる可能性がある。シャットダウン温度が141℃以上であれば、かかる場合でも電池用セパレータ中の微細孔は保持され、セパレータとしてリチウムイオン透過機能を維持できるため好ましい。一方、160℃以下であれば、例えば電池が異常を起こし100℃を超えた高温状態になった際に、即座に多孔性フィルムの微細孔が閉塞され、リチウムイオンの透過を遮断し、その後の電池内部の温度上昇を防止できるため、安全性に優れる。
ここで、「シャットダウン温度」とは微細孔が閉塞する最も低い温度をいい、具体的には本発明の積層多孔性フィルムを実施例に記載の方法で加熱した際に加熱後の透気抵抗が加熱前の透気抵抗の10倍以上になる温度のうち最も低い温度をいう。
シャットダウン温度を調整する手段としては、希望するシャットダウン温度に近い結晶融解ピーク温度を有するLM樹脂を選択する、PP−S層においてLM樹脂の質量比率を増加させるなどの手段が有効である。
本発明の積層多孔性フィルムの透気抵抗は5〜3000秒/100mlであり、更に好ましくは10〜2000秒/100mlである。透気抵抗が000秒/100mlより大きければ、測定上、透気抵抗の数値は出るものの、連通性のかなり乏しい構造であることを意味しているので、実質的には連通性が無い場合が多い。
透気抵抗はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が該フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔性フィルムの透気抵抗が低ければ様々な用途に使用することができる。例えばリチウムイオン二次電池のセパレータとして使用した場合、透気抵抗が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
本発明の積層多孔性フィルムにおいては空孔率が40〜65%であることが好ましい。空孔率は多孔構造を規定する為の重要なファクターである。空孔率が40%以上であれば、連通性を確保し透気特性に優れた積層多孔性フィルムとすることができる。一方、空孔率が65%以下であれば、微細孔が増えすぎてフィルムの機械的強度が低下する問題もなくなり、ハンドリングの観点からも好ましい。
例えば、空孔率を増加する手段としては、PP−S層におけるLM樹脂の質量比率を増加させる手段があるほか、延伸温度を本発明で規定する範囲内でより低い温度とする手段が有効である。
なお、空孔率は実施例に記載の方法で測定している。
本発明の積層多孔性フィルムにおいては、厚みにかかわらず、ピン刺し強度は1.5N以上、より好ましくは2.0N以上、さらに好ましくは3.0N以上である。
ピン刺し強度は、積層多孔性フィルムの面へ針を突き刺した際の破断強度の値であり、フィルムの機械的強度の指標となる値である。具体的には、実施例に記載の方法で測定している。
ピン刺し強度は、特に本発明の積層多孔性フィルムを電池用セパレータとして使用する場合、電池作製時の短絡、生産性に大きく寄与する。ピン刺し強度が1.5Nより低いと電池作製時に金属エッジ、突起物に接触した際にフィルムが破れやすく、結果として正極と負極が直接接触することによる短絡の発生確率が高くなる。
一方、ピン刺し強度の上限値は特に規定するものではないが、ハンドリングなどの観点から通常10N以下のものが使用される。
また、本発明の積層多孔性フィルムにおいては、フィルム物性の観点からその異方性が小さいことが好ましい。異方性の指標として、MD方向とTD方向の引張強度の比やMD方向とTD方向の引き裂き強度の比で表すことが出来る。
例えば、引張強度を例に挙げると、その比率の割合としては「MD強度/TD強度比」の下限値は、0.05以上、好ましくは0.1以上、より好ましくは0.3以上である。「MD強度/TD強度比」が0.05以上であれば、物性的なバランスが取れており、ハンドリングの他、最終的には多孔構造もより異方性が小さいフィルムとなる。また、「MD強度/TD強度比」の上限値は20以下、好ましくは10以下、より好ましくは7以下である。「MD強度/TD強度比」が20以下であれば、物性的なバランスが取れており、ハンドリングの他、最終的には多孔構造もより異方性が小さいフィルムとなる。
[積層多孔性フィルムの製造方法の説明]
次に本発明の積層多孔性フィルムの製造方法について説明するが、本発明はかかる製造方法により製造される積層多孔性フィルムのみに限定されるものではない。
本発明の積層多孔性フィルムの製造方法は、多孔化と積層の順序によって次の3つに大別される。
(a)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(b)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(c)2層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物とをラミネートする方法や接着剤等で接着する方法で積層物を作製し、ついで、当該積層物を多孔化する方法。
本発明においては、その工程の簡略さ、生産性の観点から(b)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するため共押出で直接積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
本発明の積層多孔性フィルムの製造方法の好ましい態様としては以下の製造方法が挙げられる。
前記第1実施形態の積層多孔性フィルムの製造方法としては、PP樹脂、β晶核剤及びLM樹脂を含む熱可塑性樹脂組成物と、PP樹脂及びβ晶核剤を含みLM樹脂を含まない熱可塑性樹脂組成物を用いて、共押出によりPP−S層とPP−N層の少なくとも2層からなる積層無孔膜状物を作製し、当該積層無孔膜状物を二軸延伸することにより厚み方向に連通性を有する微細孔を多数形成させることを特徴とする積層多孔性フィルムの製造方法が挙げられる。
前記参考実施形態の積層多孔性フィルムの製造方法としては、LM樹脂の含有量が異なる2種類以上の、PP樹脂、β晶核剤及びLM樹脂を含む熱可塑性樹脂組成物を用いて、共押出によりLM樹脂の含有量が異なる2層以上のPP−S層からなる積層無孔膜状物を作製し、当該積層無孔膜状物を二軸延伸することにより厚み方向に連通性を有する微細孔を多数形成させることを特徴とする積層多孔性フィルムの製造方法が挙げられる。
また、第1、参考実施形態の製造方法においても、共押出における層間接着性を確保するためには、各層のPP比率が50質量%以上であることが好ましい。
積層無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから共押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造したフィルムを切り開いて平面状とする方法も適用できる。
積層無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法がある。中でも、多孔構造制御の観点から二軸延伸が好ましく、本発明は二軸延伸によって多孔化している
以下に、第1実施形態の製造方法の詳細を述べる
まず、PP−S層を構成することになるPP樹脂、β晶核剤およびLM樹脂を含む熱可塑性樹脂組成物を作製する。
例えば、ポリプロピレン系樹脂、β晶核剤、LM樹脂および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、ペレット化する。
次に、PP−N層を構成することになるPP樹脂、β晶核剤を含みLM樹脂を含まない熱可塑性樹脂組成物を作製する。
例えば、ポリプロピレン系樹脂、β晶核剤および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、ペレット化する。
前記PP−S層用樹脂組成物のペレットと前記PP−N層用樹脂組成物のペレットを別個の押出機に投入し、Tダイ共押出用口金から押出して膜状物を成形する。Tダイの種類としては特に限定されない。例えば本発明の積層多孔性フィルムが2種3層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1〜3.0mm程度、好ましくは0.5〜1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きければドラフト率が大きくなるので生産安定性の観点から好ましくない。
押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180〜300℃が好ましく、200〜280℃の範囲であることが更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れて好ましい。一方、300℃以下にすることにより、樹脂組成物の劣化、ひいてはフィルムの機械的強度の低下を抑制できる。
キャストロールによる冷却固化温度は本発明において非常に重要であり、PP樹脂のβ晶を生成・成長させ、膜状物中のPP樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80〜150℃、より好ましくは90〜140℃、更に好ましくは100〜130℃である。冷却固化温度を80℃以上とすることで冷却固化させた膜状物中のβ晶の比率を十分に増加させることができ好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
前記温度範囲にキャストロールを設定することで、得られる膜状物のPP樹脂のβ晶比率は30〜100%に調整することができる。40〜100%がより好ましく、50〜100%が更に好ましく、60〜100%が最も好ましい。延伸前の膜状物のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良い積層多孔性フィルムを得ることができる。
延伸前の膜状物のβ晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
ついで、得られた積層無孔膜状物を二軸延伸する。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。なかでも、各延伸工程で延伸条件を選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。
逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、LM樹脂の結晶融解ピーク温度、PP樹脂の結晶化度等によって適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
縦延伸での延伸温度は概ね20〜130℃、好ましくは40〜120℃、更に好ましくは60〜110℃の範囲で制御される。また、縦延伸倍率は好ましくは2〜10倍、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
一方、横延伸での延伸温度は概ね100〜160℃、好ましくは110〜150℃、更に好ましくは120〜140℃である。また、横延伸倍率は好ましくは2〜10倍、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができるため、結果として優れた透気特性を有する積層多孔性フィルムを得ることができる。
前記延伸工程の延伸速度としては、500〜12000%/分が好ましく、1500〜10000%/分がより好ましく、2500〜8000%/分であることが更に好ましい。この範囲の延伸速度であれば効率よく本発明の積層多孔性フィルムを製造することができる。
本発明においては、延伸工程での多孔化を制御し、理想的な多孔構造を形成させることで優れた透気特性を発揮させるために、逐次二軸延伸の際の延伸温度を下記式を満たすように設定することが好ましい。
20℃<TMD<TmLM−20℃<TTD
MD:縦(MD)延伸における延伸温度、TTD:横(TD)延伸における延伸温度、TmLM:LM樹脂の結晶融解ピーク温度(LM樹脂が2種類以上の熱可塑性樹脂の混合物である場合は、そのうち結晶融解ピーク温度が最も低い樹脂の結晶融解ピーク温度)
すなわち縦延伸での延伸温度は20℃<TMD<TmLM−20℃であることが好ましく、30℃<TMD<TmLM−30℃がより好ましく、40℃<TMD<TmLM−35℃が更に好ましい。20℃<TMD、すなわち縦延伸における延伸温度が20℃以上であれば、延伸時の破断が抑制され、均一な延伸が行われるため好ましい。一方、TMD<TmLM−20℃、すなわち縦延伸における延伸温度がLM樹脂の結晶融解ピーク温度より20℃以上低い場合、PP樹脂中の空孔形成と、PP樹脂とLM樹脂の界面剥離による空孔形成の2種の空孔形成が起こるため、効率よく空孔形成を行うことができる。また、このようにして形成された空孔は後の横延伸によって閉塞され難く、例えば横延伸温度をLM樹脂の結晶融解ピーク温度TmLMより高くした場合にも、透気特性を発現することができ、生産上非常に有用である。
一方、横延伸での延伸温度はTmLM−20℃<TTDである。すなわち、横延伸での延伸温度がLM樹脂の結晶融解ピーク温度より20℃低い温度以上であれば延伸性に優れ、例えば横延伸倍率を高くした場合にも延伸時の破断を抑制できるため生産性に優れる。一方延伸温度の上限は特に規定するものではないが、ポリプロピレン系樹脂のα晶融解ピーク温度以下が好ましく、概ね160℃以下、好ましくは150℃以下、更に好ましくは140℃以下である。
このようにして得られた積層多孔性フィルムは、寸法安定性の改良等を目的として100〜170℃程度の温度で熱処理を行うことが好ましい。熱処理工程中には、必要に応じて1〜15%の弛緩処理を施しても良い。この熱処理後均一に冷却して巻き取ることにより、本発明の積層多孔性フィルムが得られる。
本発明の積層多孔性フィルムは、透気性が要求される種々の用途に応用することができる。電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
なかでも、本発明の積層多孔性フィルムは各種電子機器等の電源として利用されるリチウムイオン二次電池等の非水電解液電池用セパレータとして好適に用いられる。
前記電池用セパレータとして使用する場合は、透気抵抗5〜3000秒/100mlであるため好適に用いられる。該透気抵抗は、より好ましくは20〜2000秒/100mlであり、更に好ましくは50〜1000秒/100mlであり、最も好ましくは50〜500秒/100mである。
透気抵抗が3000秒/100mlより大きければ、測定上、透気抵抗の数値は出るものの、連通性のかなり乏しい構造であることを意味しているので、実質的には電池用セパレータとして利用できる程度の連通性は無い場合が多い。すなわち、透気抵抗が3000秒/100ml以下であればイオン伝導性を確保し十分な電池特性を得ることができるため好ましい。一方、透気抵抗が5秒/100ml以上であれば孔径が適度に小さく、積層多孔性フィルムの機械的強度が維持できるため好ましい。
透気抵抗はセパレータの厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が該セパレータを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がセパレータの厚み方向の連通性が良いことを意味し、その数値が大きい方がセパレータの厚み方向の連通性が悪いことを意味する。連通性とはセパレータの厚み方向の孔のつながり度合いである。本発明のリチウムイオン電池用セパレータの透気抵抗が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
また本発明の積層多孔性フィルムを電池用セパレータとして使用する場合、空孔率は40〜65%であることが特に好ましい。空孔率が0%以上であるとイオン透過性を確保して十分な電池性能を得ることができる。一方で、電池の安全性の観点から空孔率は65%以下としている
[電池用セパレータの説明]
次に、本発明の前記積層多孔性フィルムを電池用セパレータとして収容している非水電解液電池について、図1を参照して説明する。
正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。この渦巻き状に巻回する際、電池用セパレータ10は厚みが5〜40μmであることがなかでも好ましく、5〜30μmであることが特に好ましい。厚みを5μm以上とすることにより電池用セパレータが破れにくくなり、40μm以下にすることにより所定の電池缶に捲回して収納する際電池面積を大きくとることができ、ひいては電池容量を大きくすることができる。
前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジメトキシメタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランもしくは4−メチル−1,3−ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.4mol/Lの割合で溶解した電解質が好ましい。
負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
本実施形態では、負極として、フッ化ビニリデンをN−メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
[実施例の説明]
次に実施例および比較例を示し、本発明の積層多孔性フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。
なお、積層多孔性フィルムの引き取り(流れ)方向を「縦」方向、その直角方向を「横」方向と記載する。
(実施例、比較例)
表1に示すように、第1層(I)の各原材料を東芝機械株式会社製の同方向2軸押出機(口径40mmφ、L/D=32)に、第2層(II)の各原材料を同型の同方向2軸押出機に投入し、240℃で溶融混合後、表1に記載の層構成に応じて単層、2種2層または2種3層のフィードブロックを通じてTダイより押出し、表1に記載の温度のキャストロールで引き取り、冷却固化させて、幅300mm、厚み180μmの未延伸膜状物を得た。この際、溶融樹脂膜状物とキャストロールの(冷却)接触時間は12秒であった。
次いで、得られた未延伸膜状物に対し、フィルムロール縦延伸機を用い、ロール間で表1に記載の延伸温度および延伸倍率で縦方向に延伸を行った後、次いで京都機械社製フィルムテンター設備にて、表1に記載の延伸温度および延伸倍率で横方向に延伸した。更に表1に記載の条件で熱弛緩を行い、積層多孔性フィルムを得た。
実施例、比較例で使用した原材料は以下の通りである。
なお、各ポリプロピレン系樹脂(PP−1、βPP−1、βPP−2)については、パ−キンエルマ−社製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた場合に、再昇温時に145℃以上160℃未満の範囲にβ晶由来の結晶融解ピーク(Tmβ)が検出されるか否かを併記した。
(a)ポリプロピレン系樹脂
・PP−1:プライムポリプロ社製「プライムPP F300SV(商品名)」(MFR3.0g/10分、Tm167℃、密度0.89g/cm
再昇温時には166℃にポリプロピレンのα晶に由来する結晶融解ピーク温度(Tmα)のみが検出され、β晶に由来する結晶融解ピーク温度(Tmβ)は検出されなかった。すなわち、PP−1のみではβ活性を有していなかった。
・βPP−1
前記ポリプロピレン系樹脂(PP−1)100質量部にβ晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボン酸アミドを0.1質量部添加した後、各原材料をハンドブレンドし、東芝機械株式会社製の2軸押出機(口径40mmφ、L/D=32)に投入し、設定温度240℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂(PP−1)とβ晶核剤の混合ペレットを作製した。
再昇温時には、ポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)が154℃に、α晶に由来する結晶融解ピーク温度(Tmα)が168℃に検出された。
すなわち、βPP−1はβ活性を有しており、下記式から算出したβ活性度は80%であった。
β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
ΔHmβ:145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量
ΔHmα:160℃以上175℃以下に検出されるα晶由来の結晶融解熱量
・βPP−2:β晶核剤の配合されたポリプロピレン樹脂であるAristech社製「Bepol B−022SP(商品名)」(MFR0.3g/10分)のペレットを用いた。
再昇温時には、ポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)が151℃に、α晶に由来する結晶融解ピーク温度(Tmα)が169℃に検出された。
すなわち、βPP−2はβ活性を有しており、前記式から算出したβ活性度は78%であった。
(b)ポリエチレン樹脂
・PE−1:プライムポリマ−社製 高密度ポリエチレン「ハイゼックスHZ2200J(商品名)」
(MFR5.2g/10分、Tm134℃、密度0.964g/cm
・PE−2:宇部興産社製 直鎖状低密度ポリエチレン「ユメリット3540F(商品名)」
(MFR4.0g/10分、Tm123℃、密度0.931g/cm
・PE−3:日本ポリエチ社製 直鎖状低密度ポリエチレン「カ−ネルKF260(商品名)」
(MFR2.0g/10分、Tm93℃、密度0.903g/cm
Figure 0005408899
得られた多孔性フィルムについて次のようにして各種特性の測定および評価を行い、その結果を表2にまとめた。
(1)層比
積層多孔性フィルムの断面を切り出し、走査型電子顕微鏡(SEM)にて観察し、その層構成及び厚みから層比を測定した。
(2)シャットダウン温度
得られたフィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように、中央部に40mmΦの円状の穴を空けたアルミ板(材質:JIS規格A5052、サイズ:縦60mm、横60mm、厚み1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップ(KOKUYO社製、ダブルクリップ『クリ−J35(商品名)』)で拘束した。
アルミ板2枚で拘束した状態のフィルムを、99℃,100℃,101℃,102℃,103℃,・・・,148℃,149℃,150℃というように、99〜160℃の範囲で1℃刻みの各温度に設定したオ−ブン(タバイエスペック社製、タバイギヤオ−ブン『GPH200(商品名)』、ダンパー閉状態)に入れ、オーブン内部温度が各温度に上がってから、3分間保持した後、直ちに取り出し、拘束状態のまま25℃の雰囲気下で30分間冷却した。
その後、アルミ板からフィルムを取り出し、中央部の40mmΦの円状の部分の透気抵抗をJIS P8117に準拠して測定した。
高温熱処理後の透気抵抗が加熱前の透気抵抗の10倍以上になった温度のうち、最も低い温度をシャットダウン温度とした。なお、100℃では透気抵抗が加熱前の10倍以上にならないものは『100℃を超える』と判断し、160℃では透過抵抗が加熱前の10倍以上になっているものは『160℃以下』と判断した。
本発明においてシャットダウン温度は100℃を超えて160℃以下であることが好ましいため、以下のように評価をした。
○:シャットダウン温度が100℃を超えて160℃以下
×:シャットダウン温度が100℃以下、もしくは160℃を超える
なお、フィルム片が60mm×60mm角に切り出せない場合は、中央部に40mmΦの円状の穴にフィルムが設置されるように調整し、試料を作成しても構わない。
(3)ピン刺し強度
日本農林規格告示1019号に準じ、ピン径1.0mm、先端部0.5R、ピン刺速度300mm/分の条件で測定した。
ピン刺し強度が3.0N以上の場合を「◎」と、ピン刺し強度が1.5N以上3.0N未満の場合を「○」と、ピン刺し強度が1.5N未満の場合を「×」と評価した。
(4)透気抵抗(ガーレ値)
JIS P8117に準拠して透気抵抗(秒/100ml)を測定した。
透気抵抗が500秒/100ml以下の場合を「◎」と、透気抵抗が500秒/100mlを超えて2000秒/100ml以下の場合を「○」と、透気抵抗が3000秒/100mlを超える場合を「×」と評価した。
(5)厚み
1/1000mmのダイアルゲージにて、面内の厚みを不特定に30箇所測定しその平均を厚みとした。
(6)空孔率
空孔率は多孔性フィルム中の空間部分の割合を示す数値である。空孔率は、多孔性フィルムの実質量W1を測定し、樹脂組成物の密度と厚みから空孔率0%の場合の質量W0を計算し、それらの値から下記式に基づき算出した。
空孔率Pv(%)={(W0−W1)/W0}×100
(7)β活性
フィルムをパ−キンエルマ−社製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温した。再昇温時にポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)である145℃〜160℃にピークが検出されるか否かにより、以下のようにβ活性の有無を評価をした。
○:Tmβが145℃〜160℃の範囲内に検出された場合(β活性有り)
×:Tmβが145℃〜160℃の範囲内に検出されなかった場合(β活性なし)
なお、β活性の測定は、試料量10mgで、雰囲気ガスを窒素として行った。
(8)β晶生成力
前記シャットダウン温度の測定の場合と同様に、フィルムを縦60mm×横60mm角に切り出し、図2(A)(B)に示すように固定した。
アルミ板2枚に拘束した状態のフィルムを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でフィルムを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたフィルムについて、以下の測定条件で、中央部の40mmΦの円状の部分について広角X線測定を行った。
・広角X線測定装置:マックサイエンス社製 型番XMP18A
・X線源:CuKα線、出力:40kV、200mA
・走査方法:2θ/θスキャン、2θ範囲:5°〜25°、走査間隔:0.05°、走査速度:5°/min
得られた回折プロファイルについて、ポリプロピレンのβ晶の(300)面に由来するピークより、β晶生成力の有無を以下のように評価した。
○:ピークが2θ=16.0°〜16.5°の範囲に検出された場合(β晶生成力有り)
×:ピークが2θ=16.0°〜16.5°の範囲に検出されなかった場合(β晶生成力なし)
なお、フィルム片が60mm×60mm角に切り出せない場合は、中央部に40mmΦの円状の穴にフィルムが設置されるように調整し、試料を作成しても構わない。
Figure 0005408899
本発明で規定する範囲内で構成された実施例の積層多孔性フィルムは、本発明で規定する以外の範囲で構成された比較例の多孔性フィルムに比し、優れた透気特性と機械的強度を有し、かつシャットダウン特性も具備していることがわかる。
一方、比較例1から、β活性および/又はβ晶生成力を有するポリプロピレン系樹脂に、LM樹脂以外の熱可塑性樹脂、具体的には結晶融解ピーク温度が100℃以下である熱可塑性樹脂を添加した場合には、適当な温度域でシャットダウン特性を発現せず、透気特性も低下することがわかる。
比較例2から、LM樹脂を添加しない場合、適当な温度域でシャットダウン特性が発現しないことがわかる。
比較例3から、PP樹脂とLM樹脂とを含む層(PP−S層)単独では、得られる積層多孔性フィルムの機械的強度が低いことがわかる。
本発明の積層多孔性フィルムは、優れた透気特性と機械的強度を有し、かつシャットダウン特性を具備しているため、電池用セパレータに好適に利用することができる。
本発明の積層多孔性フィルムを電池用セパレータとして収容している非水電解液電池の一部破断斜視図である。 (A)(B)は、シャットダウン特性及びβ晶生成力の測定におけるフィルムの拘束方法を説明する図である。
符号の説明
10 電池用セパレータ
20 非水電解質電池
21 正極板
22 負極板

Claims (12)

  1. 少なくとも2層の多孔質層を積層した積層多孔性フィルムであって、
    前記2層はβ活性を有するポリプロピレン系樹脂を含み、
    該2層のうちの1層は結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含み、前記β活性を有するポリプロピレン系樹脂と前記熱可塑性樹脂の混合質量比が、前記β活性を有するポリプロピレン系樹脂/前記熱可塑性樹脂=20〜80/80〜20である一方、
    他の1層は前記β活性を有するポリプロピレン系樹脂からなり、結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含まず、
    二軸延伸によって多孔化されて透気抵抗が5〜3000秒/100mlであることを特徴とする積層多孔性フィルム。
  2. 少なくとも2層の多孔質層を積層した積層多孔性フィルムであって、
    前記2層はポリプロピレン系樹脂を含み、
    該2層のうちの1層は、結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含み、前記ポリプロピレン系樹脂と前記熱可塑性樹脂の混合質量比が、前記ポリプロピレン系樹脂/前記熱可塑性樹脂=20〜80/80〜20である一方、
    他の1層は前記ポリプロピレン系樹脂からなり、結晶融解ピーク温度が100〜150℃である熱可塑性樹脂を含まず、
    かつ、β活性及び/またはβ晶生成力を有し、二軸延伸によって多孔化されて透気抵抗が5〜3000秒/100mlであることを特徴とする積層多孔性フィルム。
  3. ピン刺し強度が1.5N以上である請求項1または請求項2に記載の積層多孔性フィルム。
  4. 前記2層の少なくとも1層を形成する組成物にβ晶核剤を配合して、前記β活性及び/又は前記β晶生成力を有するものとしている請求項1乃至請求項3のいずれか1項に記載の積層多孔性フィルム。
  5. 前記2層の少なくとも1層のポリプロピレン系樹脂にβ晶核剤を配合して、前記β活性及び/又は前記β晶生成力を有するものとしている請求項1乃至請求項4のいずれか1項に記載の積層多孔性フィルム。
  6. 前記β晶核剤は、前記ポリプロピレン系樹脂100質量部に対して0.0001〜5.0質量部の割合で配合されている請求項5に記載の積層多孔性フィルム。
  7. 前記結晶融解ピーク温度が100〜150℃である熱可塑性樹脂が、ポリエチレン系樹脂である請求項1乃至請求項6のいずれか1項に記載の積層多孔性フィルム。
  8. 前記孔が閉塞するシャットダウン温度が、141℃以上160℃以下である請求項1乃至請求項7のいずれか1項に記載の積層多孔性フィルム。
  9. 空孔率が40〜65%であることを特徴とする請求項1乃至請求項8いずれか1項に記載の積層多孔性フィルム。
  10. 下記式を満たす延伸温度によって製造されてなる請求項1乃至請求項9のいずれか1項に記載の積層多孔性フィルム。
    20℃<T MD <T mLM −20℃<T TD
    MD :縦(MD)延伸における延伸温度、T TD :横(TD)延伸における延伸温度、T mLM :結晶融解ピーク温度が100〜150℃である熱可塑性樹脂(LM樹脂)の結晶融解ピーク温度(LM樹脂が2種類以上の熱可塑性樹脂の混合物である場合は、そのうち結晶融解ピーク温度が最も低い樹脂の結晶融解ピーク温度)
  11. 請求項1乃至請求項10のいずれか1項に記載の積層多孔性フィルムからなることを特徴とする電池用セパレータ。
  12. 請求項11に記載の電池用セパレータが組み込まれていることを特徴とする電池
JP2008117527A 2007-05-11 2008-04-28 積層多孔性フィルム、それを利用した電池用セパレータおよび電池 Active JP5408899B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117527A JP5408899B2 (ja) 2007-05-11 2008-04-28 積層多孔性フィルム、それを利用した電池用セパレータおよび電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007127053 2007-05-11
JP2007127053 2007-05-11
JP2008117527A JP5408899B2 (ja) 2007-05-11 2008-04-28 積層多孔性フィルム、それを利用した電池用セパレータおよび電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013035214A Division JP5712236B2 (ja) 2007-05-11 2013-02-25 積層多孔性フィルム、それを利用した電池用セパレータおよび電池

Publications (2)

Publication Number Publication Date
JP2008307890A JP2008307890A (ja) 2008-12-25
JP5408899B2 true JP5408899B2 (ja) 2014-02-05

Family

ID=40235908

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008117527A Active JP5408899B2 (ja) 2007-05-11 2008-04-28 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP2013035214A Active JP5712236B2 (ja) 2007-05-11 2013-02-25 積層多孔性フィルム、それを利用した電池用セパレータおよび電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013035214A Active JP5712236B2 (ja) 2007-05-11 2013-02-25 積層多孔性フィルム、それを利用した電池用セパレータおよび電池

Country Status (1)

Country Link
JP (2) JP5408899B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026954A1 (ja) * 2008-09-03 2010-03-11 三菱樹脂株式会社 セパレータ用積層多孔性フィルム
WO2010147149A1 (ja) * 2009-06-19 2010-12-23 三菱樹脂株式会社 多孔性ポリプロピレンフィルム
JP2011126122A (ja) * 2009-12-17 2011-06-30 Asahi Kasei E-Materials Corp 積層微多孔性フィルム及びその製造方法、並びに電池用セパレータ
US8592071B2 (en) 2010-02-26 2013-11-26 Mitsubishi Plastics, Inc. Laminated porous film and separator for battery
JP6154585B2 (ja) * 2012-06-25 2017-06-28 三菱ケミカル株式会社 積層多孔性フィルム
JP6580211B1 (ja) * 2018-06-01 2019-09-25 住友化学株式会社 非水電解液二次電池用セパレータ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352801B2 (ja) * 1994-01-31 2002-12-03 日東電工株式会社 多孔質フィルム、その製造法およびその用途
JPH09117959A (ja) * 1995-10-24 1997-05-06 Ube Ind Ltd 積層多孔質ポリオレフィンフイルムの製法
JP3523404B2 (ja) * 1996-01-17 2004-04-26 株式会社トクヤマ 微多孔性膜の製造方法
JPH09259857A (ja) * 1996-03-27 1997-10-03 Sanyo Electric Co Ltd 非水系電解液二次電池
JPH10241659A (ja) * 1997-02-28 1998-09-11 Nitto Denko Corp 電池セパレータ用多孔質フィルムの製造方法
JP4186798B2 (ja) * 2003-11-14 2008-11-26 チッソ株式会社 ポリオレフィン樹脂製多層多孔膜
JP2007003975A (ja) * 2005-06-27 2007-01-11 Toray Ind Inc 光反射板用ポリプロピレンフィルム
KR101401833B1 (ko) * 2005-10-18 2014-05-29 도레이 카부시키가이샤 축전 디바이스 세퍼레이터용 미다공 필름 및 그것을 이용한축전 디바이스 세퍼레이터
JP4888098B2 (ja) * 2005-12-16 2012-02-29 東レ株式会社 壁紙

Also Published As

Publication number Publication date
JP2013173362A (ja) 2013-09-05
JP2008307890A (ja) 2008-12-25
JP5712236B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5823588B2 (ja) 積層多孔性フィルム、電池用セパレータおよび電池
US8592071B2 (en) Laminated porous film and separator for battery
JP5196908B2 (ja) 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP5473042B2 (ja) 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP5712236B2 (ja) 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP5144987B2 (ja) リチウムイオン電池用セパレータの製造方法
WO2011108539A1 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP5994016B2 (ja) 多孔性フィルムの製造方法
WO2011115117A1 (ja) ポリオレフィン樹脂多孔性フィルムおよび電池用セパレータ
JP5460025B2 (ja) 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP5144979B2 (ja) リチウムイオン電池用セパレータおよび、その製造方法
JP5473041B2 (ja) 積層多孔性フィルムおよび電池用セパレータ
JP5086736B2 (ja) 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP6682942B2 (ja) ポリプロピレン系樹脂多孔性フィルム及びその製造方法
JP5298215B2 (ja) 積層多孔性フィルム、それを利用した電池用セパレータおよび電池
JP2012033315A (ja) 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
JP6194938B2 (ja) 積層多孔性延伸フィルム、それを利用した電池用セパレータ及び電池
JP5460024B2 (ja) 多孔性フィルム、それを利用したリチウム電池用セパレータ、および電池
JP5750511B2 (ja) 電池用セパレータおよび電池
JP5723353B2 (ja) 積層多孔性フィルムの製造方法
JP5671508B2 (ja) 積層多孔性フィルムの製造方法
JP5833999B2 (ja) 積層多孔性フィルムの製造方法
JP5997000B2 (ja) ポリプロピレン系樹脂多孔性フィルム
JP2012089243A (ja) 非水系二次電池用のセパレータ及びそれを用いた非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5408899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350