JP5406418B1 - 不揮発性記憶装置 - Google Patents
不揮発性記憶装置 Download PDFInfo
- Publication number
- JP5406418B1 JP5406418B1 JP2013531810A JP2013531810A JP5406418B1 JP 5406418 B1 JP5406418 B1 JP 5406418B1 JP 2013531810 A JP2013531810 A JP 2013531810A JP 2013531810 A JP2013531810 A JP 2013531810A JP 5406418 B1 JP5406418 B1 JP 5406418B1
- Authority
- JP
- Japan
- Prior art keywords
- layer
- current control
- electrode layer
- control element
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000008859 change Effects 0.000 claims abstract description 387
- 238000011156 evaluation Methods 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims description 200
- 239000000758 substrate Substances 0.000 claims description 80
- 230000008569 process Effects 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 41
- 238000003860 storage Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 1213
- 238000004519 manufacturing process Methods 0.000 description 165
- 230000004048 modification Effects 0.000 description 104
- 238000012986 modification Methods 0.000 description 104
- 239000011229 interlayer Substances 0.000 description 102
- 229910052751 metal Inorganic materials 0.000 description 101
- 239000002184 metal Substances 0.000 description 101
- 230000004888 barrier function Effects 0.000 description 81
- 229910044991 metal oxide Inorganic materials 0.000 description 62
- 150000004706 metal oxides Chemical class 0.000 description 62
- 238000000059 patterning Methods 0.000 description 43
- 206010021143 Hypoxia Diseases 0.000 description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 27
- 229910052802 copper Inorganic materials 0.000 description 27
- 239000010949 copper Substances 0.000 description 27
- 238000005530 etching Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 24
- 239000001301 oxygen Substances 0.000 description 24
- 229910052760 oxygen Inorganic materials 0.000 description 24
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 238000001312 dry etching Methods 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 238000000151 deposition Methods 0.000 description 16
- 229910052715 tantalum Inorganic materials 0.000 description 16
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 230000002950 deficient Effects 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 15
- 229910052581 Si3N4 Inorganic materials 0.000 description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 13
- 238000000206 photolithography Methods 0.000 description 12
- 238000004544 sputter deposition Methods 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000007257 malfunction Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 7
- 238000006479 redox reaction Methods 0.000 description 7
- 229910001936 tantalum oxide Inorganic materials 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000004380 ashing Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000009751 slip forming Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- -1 tungsten nitride Chemical class 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0007—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/003—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0069—Writing or programming circuits or methods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0054—Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
不揮発性記憶装置は、第1の抵抗変化素子(141)と第1の電流制御素子(142)とから構成された複数のメモリセル(11)を有するメモリセルアレイ(10)と、第2の抵抗変化素子(241)と第1の電流制御素子(142)と同じ電流密度の電圧特性を有する第2の電流制御素子(242)とから構成された評価セル(21)を有するパラメータ発生回路(20)とを備え、第2の抵抗変化素子(241)の側面に、電極間を短絡させる導電性短絡層(151)が設けられている。
Description
本発明は、抵抗変化型の不揮発性記憶装置及びその製造方法に関する。
近年、電子機器におけるデジタル技術の進展に伴い、音楽、画像及び情報等のデータを保存するために、大容量で、かつ不揮発性の記憶装置の開発が活発に行われている。
次世代の不揮発性記憶装置の1つとして、電気的パルスの印加によって抵抗値が変化し、その状態を保持し続ける抵抗変化型の記憶素子(抵抗変化素子)を用いた不揮発性記憶装置(ReRAMとよぶ)が注目されている。抵抗変化型の不揮発性記憶装置は、これまでの通常の半導体プロセスとの整合性を取りやすく、かつ、微細化が可能という利点を有する。
例えば特許文献1では、抵抗変化素子とダイオードとを垂直方向に直列に配置し、抵抗変化素子を構成する可変抵抗膜をコンタクトホール内に形成し、コンタクトホール上にダイオードを形成することで抵抗変化素子の実効面積より大きなダイオードの実効面積を実現する構成が開示されている。
特許文献2には、不揮発性記憶装置の高集積化を実現する構造の一つとしてクロスポイント構造が開示されている。この特許文献2に開示されるクロスポイント構造の不揮発性記憶装置では、抵抗変化素子を有した記憶素子がアレイ状に複数配置されており、その記憶素子は、複数の第1の配線に直交する複数の第2の配線との各交差領域にあるビアホール内に配置されている。また、この記憶素子では、非線形の電流・電圧特性を有する素子(非線形素子または電流制御素子)が直列に配置されている。この非線形の電流・電圧特性を有する素子は、アレイ状の複数の記憶素子の中から、所定の記憶素子を選択的にアクティブにする。具体的には、例えば電流制御素子としてMIM(Metal−Insulator−Metal)型ダイオードを用いることにより、その記憶素子に対して双方向に電流制御を行うことを可能としている。
しかしながら、従来の抵抗変化素子と非線形電流制御素子とが直列に接続された記憶素子(メモリセル)を備えるクロスポイント構造の不揮発性記憶装置においては、ウェハ基板(複数の不揮発性記憶装置が形成された基板)上の面内で、各電流制御素子の非線形電流制御特性がばらつく場合がある。この場合、ウェハ基板を分離して形成されるチップ(1つの不揮発性記憶装置が形成された基板)のそれぞれで電流制御素子の非線形電流制御特性がばらつくため、各抵抗変化素子に印加すべき最適な電圧が印加されない。その結果、信号の読み出しまたは書き込み動作において、誤動作やばらつきが生じうる。
本発明の目的は、上記課題を解決するものであり、誤動作やばらつきを抑えることができる不揮発性記憶装置及びその製造方法を提供することである。
上記目的を達成するために、本発明の不揮発性記憶装置の1つの形態は、基板と、前記基板上に互いに平行に配置された複数の第1の配線と、前記第1の配線に立体交差するように互いに平行に配置された複数の第2の配線と、前記第1の配線及び前記第2の配線の各交差部に配置され、第1の抵抗変化素子及び第1の電流制御素子から構成された複数のメモリセルとを有するメモリセルアレイと、前記基板上に配置された第3の配線と、前記第3の配線の上方に配置された第4の配線と、前記第3の配線及び前記第4の配線の間において前記第3の配線及び前記第4の配線に接続され、第2の抵抗変化素子、及び前記第1の電流制御素子と同じ電流密度の電圧特性を有する第2の電流制御素子から構成された電流制御特性評価セルとを有するパラメータ発生回路と、制御回路と、前記複数のメモリセルのうち所定のメモリセルに情報を書き込むために前記所定のメモリセルに電圧を印加する書き込み回路と、前記所定のメモリセルから情報を読み出すために電圧を印加する読み出し回路とを備え、前記第2の抵抗変化素子は、下部電極層と、前記下部電極層上に形成された抵抗変化層と、前記抵抗変化層上に形成された上部電極層とを有し、前記電流制御特性評価セルでは、前記第2の抵抗変化素子の側面に、前記上部電極層と前記下部電極層とを短絡させる導電性短絡層が設けられており、前記パラメータ発生回路は、前記第2の電流制御素子の非線形電流制御特性を示すパラメータを取得し、前記制御回路に前記パラメータに対応するパラメータ信号を出力し、前記制御回路は、前記パラメータ信号に基づいて前記書き込み回路及び前記読み出し回路を制御する制御信号を生成し、前記書き込み回路及び前記読み出し回路の少なくとも一方に前記制御信号を出力し、前記書き込み回路及び前記読み出し回路の少なくとも一方は、前記制御信号に基づいて前記所定のメモリセルに印加する電圧を決定することを特徴とする。
本発明によれば、誤動作やばらつきを抑えることが可能な不揮発性記憶装置及びその製造方法を提供することが可能である。
以下、本発明の実施の形態に係る不揮発性記憶装置及びその製造方法について、図面を参照しながら説明する。なお、図面において、同じ符号が付いたものは、実質的に同一の構成、動作、及び効果等を表す要素であるとして説明を省略する場合がある。また、図面は、理解しやすくするために各構成要素を模式的に示したものであり、形状などについては正確な表示ではない。また、図面は、その構成要素の個数等についても図示しやすい個数として示している。また、以下の実施の形態で示される数値、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
本発明の不揮発性記憶装置に係る1つの形態は、基板と、前記基板上に互いに平行に配置された複数の第1の配線と、前記第1の配線に立体交差するように互いに平行に配置された複数の第2の配線と、前記第1の配線及び前記第2の配線の各交差部に配置され、第1の抵抗変化素子及び第1の電流制御素子から構成された複数のメモリセルとを有するメモリセルアレイと、前記基板上に配置された第3の配線と、前記第3の配線の上方に配置された第4の配線と、前記第3の配線及び前記第4の配線の間において前記第3の配線及び前記第4の配線に接続され、第2の抵抗変化素子、及び前記第1の電流制御素子と同じ電流密度の電圧特性を有する第2の電流制御素子から構成された電流制御特性評価セルとを有するパラメータ発生回路と、制御回路と、前記複数のメモリセルのうち所定のメモリセルに情報を書き込むために前記所定のメモリセルに電圧を印加する書き込み回路と、前記所定のメモリセルから情報を読み出すために電圧を印加する読み出し回路とを備え、前記第2の抵抗変化素子は、下部電極層と、前記下部電極層上に形成された抵抗変化層と、前記抵抗変化層上に形成された上部電極層とを有し、前記電流制御特性評価セルでは、前記第2の抵抗変化素子の側面に、前記上部電極層と前記下部電極層とを短絡させる導電性短絡層が設けられており、前記パラメータ発生回路は、前記第2の電流制御素子の非線形電流制御特性を示すパラメータを取得し、前記制御回路に前記パラメータに対応するパラメータ信号を出力し、前記制御回路は、前記パラメータ信号に基づいて前記書き込み回路及び前記読み出し回路を制御する制御信号を生成し、前記書き込み回路及び前記読み出し回路の少なくとも一方に前記制御信号を出力し、前記書き込み回路及び前記読み出し回路の少なくとも一方は、前記制御信号に基づいて前記所定のメモリセルに印加する電圧を決定することを特徴とする。
これにより、第1の電流制御素子と第2の電流制御素子とは、同じ電流制御特性を有していて、第2の抵抗変化素子の上部電極層と下部電極層とが電気的に短絡されているので、第2の抵抗変化素子の抵抗変化層が高抵抗な状態であってもその抵抗値の影響を受けることなく、第2の電流制御素子の電流制御特性を検出することで、メモリセルに形成されている第1の電流制御素子の電流制御特性を評価することができる。
さらに、不揮発性記憶装置にパラメータ発生回路を備えることにより、不揮発性記憶装置毎に電流制御特性を評価できる。例えば、ウェハ基板上で電流制御素子特性がばらついても、チップ毎に電流制御特性を検出できる。そのため、例えば、パラメータ発生回路で取得された電流制御特性のパラメータを基にしてメモリセルに印加する電圧を変化させ、メモリセルを動作させるのに最適な電圧を印加することができ、誤動作やばらつきを抑制することができる。
さらに、メモリセルを動作させるのに最適な電圧を印加することができ、安定した抵抗変化動作(言い換えるとデータの書き込み)を実現し、さらに書き込まれたデータを誤認識することなく安定に検出できる。
さらに、メモリセルを動作させるのに最適な電圧を印加することができ、安定した抵抗変化動作(言い換えるとデータの書き込み)を実現し、さらに書き込まれたデータを誤認識することなく安定に検出できる。
また、ある形態において、前記第2の電流制御素子は、前記第1の電流制御素子の非線形電流制御特性を評価するための素子であってもよい。
これにより、第1の電流制御素子の非線形電流制御特性が変化(例えば、周辺温度による特性変化や繰り返し動作による特性劣化など)しても、第2の電流制御素子の非線形電流制御特性を検出することにより、変化後の第1の電流制御素子の非線形電流制御特性を評価(推定)できるので、第1の電流制御素子の特性変化を評価することができる。
また、ある形態において、前記基板の上面に垂直な方向から見て、前記第2の電流制御素子の電流制御層の面積が前記第1の電流制御素子の電流制御層の面積より大きくてもよい。
これにより、第2の電流制御素子の非線形電流制御特性を正確に検出することができる。例えば、第2の電流制御素子の側面付近にダメージ領域(例えばプラズマダメージ等)を有する場合であっても、第2の電流制御素子の素子面積を大きくすることで、ダメージ領域が非線形電流制御特性に及ぼす影響を低減できる。その結果、第1の電流制御素子の電流制御層の変化(例えば、周辺温度による特性変化や繰り返し動作による特性劣化など)を正確に検出することができ、電流制御特性誤差の低減ができる。
また、ある形態において、前記第1の電流制御素子は、下部電極層と、前記第1の電流制御素子の下部電極層上に配置された電流制御層と、前記第1の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記第2の電流制御素子は、下部電極層と、前記第2の電流制御素子の下部電極層上に配置された電流制御層と、前記第2の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記第1の電流制御素子の下部電極層及び前記第2の電流制御素子の下部電極層は、同一の組成を有し、前記第1の電流制御素子の電流制御層及び前記第2の電流制御素子の電流制御層は、同一の組成と同一の膜厚とを有し、前記第1の電流制御素子の上部電極層及び前記第2の電流制御素子の上部電極層は、同一の組成を有してもよい。
また、前記第1の電流制御素子の電流制御層及び前記第2の電流制御素子の電流制御層は、同一工程で形成されてもよい。
これにより、第1の電流制御素子と第2の電流制御素子とは、同じ電流制御特性を有して、非線形電流制御特性の変化(例えば、周辺温度による特性変化や繰り返し動作による特性劣化など)も同じにすることができる。
また、ある形態において、前記第1の抵抗変化素子は、下部電極層と、前記第1の抵抗変化素子の下部電極層上に配置された抵抗変化層と、前記第1の抵抗変化素子の抵抗変化層上に配置された上部電極層とから構成され、前記第1の抵抗変化素子の下部電極層及び前記第2の抵抗変化素子の下部電極層は、同一の組成を有し、前記第1の抵抗変化素子の抵抗変化層及び前記第2の抵抗変化素子の抵抗変化層は、同一の組成と同一の膜厚とを有し、前記第1の抵抗変化素子の上部電極層及び前記第2の抵抗変化素子の上部電極層は、同一の組成を有してもよい。
また、前記第1の抵抗変化素子の抵抗変化層及び前記第2の抵抗変化素子の抵抗変化層は、同一工程で形成されてもよい。
これにより、電流制御特性評価セルとメモリセルとで抵抗変化素子を作り分ける必要がないため、パラメータ発生回路を備える不揮発性記憶装置を容易に実現できる。
また、ある形態において、前記メモリセルでは、前記第1の電流制御素子と前記第1の抵抗変化素子とが直列に接続され、前記第1の抵抗変化素子が前記第1の電流制御素子上に配置され、前記電流制御特性評価セルでは、前記第2の抵抗変化素子と前記第2の電流制御素子とが直列に接続され、前記第2の抵抗変化素子が前記第2の電流制御素子上に配置されてもよい。
これにより、第1の抵抗変化素子及び第1の電流制御素子が連続して形成されるので、第1の抵抗変化素子及び第1の電流制御素子の接続部に寄生抵抗がなく安定した動作が可能なメモリセルを実現できる。また、第2の抵抗変化素子及び第2の電流制御素子が連続して形成されるので、第2の抵抗変化素子及び第2の電流制御素子の接続部に寄生抵抗がなく安定した動作が可能な電流制御特性評価セルを実現できる。
さらに、第1の電流制御素子を形成した後に第1の抵抗変化素子を形成できるため、第1の電流制御素子を形成するプロセスの影響を受けることなく第1の抵抗変化素子を形成できる。同様に、第2の電流制御素子を形成した後に第2の抵抗変化素子を形成できるため、第2の電流制御素子を形成するプロセスの影響を受けることなく第2の抵抗変化素子を形成できる。そのため、安定した特性の第1の抵抗変化素子及び第2の抵抗変化素子を形成できる。例えば、第1の電流制御素子を構成する各層(下部電極層、電流制御層及び上部電極層)と第2の電流制御素子を構成する各層(下部電極層、電流制御層及び上部電極層)とを基板上に堆積するときに、高温(室温以上)を印加しても、第1の抵抗変化素子及び第2の抵抗変化素子に対して高温プロセスは印加されない。そのため、プロセスサーマルバジェットが少ない、安定した動作の第1の抵抗変化素子及び第2の抵抗変化素子を実現できる。
また、ある形態において、前記第2の電流制御素子は、下部電極層と、前記第2の電流制御素子の下部電極層上に配置された電流制御層と、前記第2の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記導電性短絡層は、前記第2の抵抗変化素子の下部電極層及び前記第2の電流制御素子の上部電極層の少なくともいずれかと接してもよい。
また、前記パラメータ発生回路には、複数の前記電流制御特性評価セルが設けられ、前記複数の電流制御特性評価セルでは、前記導電性短絡層が兼用されていてもよい。
また、前記導電性短絡層は、前記第4の配線の一部から構成されてもよい。
また、前記第4の配線の底面の位置は、前記第2の抵抗変化素子の下部電極層の上面の位置より深くてもよい。
これにより、抵抗値の低い第4の配線の一部を導電性短絡層として活用することができ、抵抗値の低い導電性短絡層を形成できる。そのため、第2の電流制御素子で検出される電流制御特性の誤差を低減できる。
また、ある形態において、前記パラメータ発生回路には、複数の前記電流制御特性評価セルが設けられ、前記複数の電流制御特性評価セルでは、前記導電性短絡層が各セル毎に設けられていてもよい。
また、前記導電性短絡層は、前記第4の配線と前記第2の抵抗変化素子の上部電極層との間に配置された前記電流制御特性評価セルのコンタクトプラグの一部から構成されてもよい。
また、前記第1の抵抗変化素子は、下部電極層と、前記第1の抵抗変化素子の下部電極層上に配置された抵抗変化層と、前記第1の抵抗変化素子の抵抗変化層上に配置された上部電極層とから構成され、前記第1の電流制御素子は、下部電極層と、前記第1の電流制御素子の下部電極層上に配置された電流制御層と、前記第1の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記第2の配線と前記第1の抵抗変化素子の上部電極層との間には、前記メモリセルのコンタクトプラグが配置され、前記メモリセルのコンタクトプラグは、前記第1の抵抗変化素子の下部電極層及び前記第1の電流制御素子の上部電極層と接しておらず、前記基板の上面に垂直な方向から見て、前記メモリセルのコンタクトプラグの輪郭の全部が前記第1の抵抗変化素子の抵抗変化層の輪郭よりも内側に存在してもよい。
また、前記基板の上面に垂直な方向から見て、前記電流制御特性評価セルのコンタクトプラグの中心位置と、前記第2の抵抗変化素子の抵抗変化層の中心位置とが異なってもよい。
また、前記基板の上面に垂直な方向から見て、前記導電性短絡層の輪郭の少なくとも一部が前記第2の抵抗変化素子の抵抗変化層の輪郭よりも外側に存在してもよい。
また、前記基板の上面に垂直な方向から見て、前記導電性短絡層の輪郭の全部が前記第2の抵抗変化素子の抵抗変化層の輪郭よりも外側に存在してもよい。
これにより、第4の配線と第2の抵抗変化素子とを接続するコンタクトプラグの第2の抵抗変化素子と接する側面を導電性短絡層とすることができ、抵抗値の低いコンタクトプラグの一部を導電性短絡層として活用することができ、抵抗値の低い導電性短絡層を形成できる。そのため、第2の電流制御素子で検出される電流制御特性の誤差を低減できる。
また、ある形態において、前記第1の抵抗変化素子は、下部電極層と、前記第1の抵抗変化素子の下部電極層上に配置された抵抗変化層と、前記第1の抵抗変化素子の抵抗変化層上に配置された上部電極層とから構成され、前記第1の抵抗変化素子の下部電極層と前記第1の抵抗変化素子の上部電極層とは抵抗変化層を介して導通してもよい。
また、前記第1の電流制御素子は、下部電極層と、前記第1の電流制御素子の下部電極層上に配置された電流制御層と、前記第1の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記第2の配線は、前記第1の抵抗変化素子の下部電極層及び前記第1の電流制御素子の上部電極層と接していなくてもよい。
また、前記第1の電流制御素子は、下部電極層と、前記第1の電流制御素子の下部電極層上に配置された電流制御層と、前記第1の電流制御素子の電流制御層上に配置された上部電極層とから構成され、前記第2の配線と前記第1の抵抗変化素子の上部電極層との間には、前記メモリセルのコンタクトプラグが配置され、前記メモリセルのコンタクトプラグは、前記第1の抵抗変化素子の下部電極層及び前記第1の電流制御素子の上部電極層と接していなくてもよい。
また、前記基板の上面に垂直な方向から見て、前記メモリセルのコンタクトプラグの輪郭の全部が前記第1の抵抗変化素子の抵抗変化層の輪郭よりも内側に存在してもよい。
また、前記第1の抵抗変化素子の側面は、絶縁性サイドウォールに覆われていてもよい。
これにより、メモリセルの抵抗変化素子での短絡を抑えることができる。
また、ある形態において、前記第1の電流制御素子と前記第2の電流制御素子との側面は、絶縁性サイドウォールに覆われていてもよい。
これにより、第1の電流制御素子及び第2の電流制御素子の側面が保護される。従って、第4の配線を形成する工程におけるエッチングプロセスマージンが増加するため、安定した動作が可能なメモリセル及び電流制御特性評価セルを実現できる。
また、ある形態において、前記第1の抵抗変化素子の側面は、絶縁性サイドウォールに覆われていてもよい。
これにより、第1の抵抗変化素子の側面が保護される。従って、第2の配線及び第4の配線を形成する工程におけるエッチングマージンが増加するため、安定した動作が可能なメモリセル及び電流制御特性評価セルを実現できる。また、第2の配線と第4の配線とを同一工程で形成可能であり、コストを低減することができる。
また、ある形態において、前記導電性短絡層は、導電性サイドウォールであってもよい。
また、前記基板の上面に垂直な方向から見て、前記第2の電流制御素子の電流制御層の面積が前記第2の抵抗変化素子の抵抗変化層の面積より大きく、かつ、前記第1の電流制御素子の電流制御層の面積が前記第1の抵抗変化素子の抵抗変化層の面積より大きくてもよい。
また、前記第1の抵抗変化素子の側面は、導電性サイドウォールで覆われていなくてもよい。
これにより、第1の電流制御素子の許容電流を大きくすることが可能であるため、安定した動作のメモリセルを実現できる。
また、ある形態において、前記メモリセルでは、前記第1の電流制御素子と前記第1の抵抗変化素子とが直列に接続され、前記第1の電流制御素子が前記第1の抵抗変化素子上に配置され、前記電流制御特性評価セルでは、前記第2の電流制御素子と前記第2の抵抗変化素子とが直列に接続され、前記第2の電流制御素子が前記第2の抵抗変化素子上に配置されてもよい。
また、前記導電性短絡層は、導電性サイドウォールであってもよい。
また、前記第2の抵抗変化素子の側面は、前記導電性サイドウォールで覆われており、前記第1の抵抗変化素子の側面は、前記導電性サイドウォールで覆われていなくてもよい。
これにより、第1の電流制御素子及び第1の抵抗変化素子が連続して形成されるので、第1の電流制御素子及び第1の抵抗変化素子の接続部に寄生抵抗がなく安定した動作が可能なメモリセルを実現できる。また、第2の電流制御素子及び第2の抵抗変化素子が連続して形成されるので、第2の電流制御素子及び第2の抵抗変化素子の接続部に寄生抵抗がなく安定した動作が可能な電流制御特性評価セルを実現できる。
さらに、第1の抵抗変化素子を形成した後に第1の電流制御素子を形成できるため、第1の抵抗変化素子を形成するプロセスの影響を受けることなく第1の電流制御素子を形成できる。同様に、第2の抵抗変化素子を形成した後に第2の電流制御素子を形成できるため、第2の抵抗変化素子を形成するプロセスの影響を受けることなく第2の電流制御素子を形成できる。そのため、安定した特性の第1の電流制御素子及び第2の電流制御素子を形成できる。例えば、第1の抵抗変化素子を構成する各層(下部電極層、抵抗変化層及び上部電極層)と第2の抵抗変化素子を構成する各層(下部電極層、抵抗変化層及び上部電極層)とを基板上に堆積するときに、高温(室温以上)を印加しても、第1の電流制御素子及び第2の電流制御素子に対して高温プロセスは印加されない。そのため、プロセスサーマルバジェットが少ない、安定した動作の第1の電流制御素子及び第2の電流制御素子を実現できる。
本発明の不揮発性記憶装置の製造方法に係る1つの形態は、メモリセルを構成する第1の電流制御素子及び第1の抵抗変化素子と、前記第1の電流制御素子の電流制御特性をモニタするための電流制御特性評価セルを構成する第2の電流制御素子及び第2の抵抗変化素子とを形成する素子形成工程を含み、前記素子形成工程では、下部電極層と、前記下部電極層上に形成された抵抗変化層と、前記抵抗変化層上に形成された上部電極層上とを有する前記第2の抵抗変化素子を形成し、前記第2の抵抗変化素子の側面に、前記上部電極層と前記下部電極層とを短絡させる導電性短絡層を形成することを特徴とする。
これにより、第1の電流制御素子と第2の電流制御素子とは、同じ電流制御特性を有していて、第2の抵抗変化素子の上部電極層と下部電極層とが電気的に短絡されているので、第2の抵抗変化素子の抵抗変化層が高抵抗な状態であってもその抵抗値を検出することなく、第2の電流制御素子の電流制御特性を検出することで、メモリセルに形成されている第1の電流制御素子の電流制御特性を評価することができる。
さらに、各チップにパラメータ発生回路を個別に形成することで、ウェハ基板上で電流制御素子特性がばらついても、チップ毎に電流制御特性を検出できる。そのため、例えば、パラメータ発生回路による電流制御特性のパラメータを基にしてメモリセルに印加する電圧を変化させ、メモリセルを動作させるのに最適な電圧を印加することができ、誤動作やばらつきを抑制することができる。
また、前記素子形成工程は、基板上に第1の導電層を形成する工程と、前記第1の導電層上に電流制御層を形成する工程と、前記電流制御層上に第2の導電層を形成する工程と、前記第2の導電層上に第3の導電層を形成する工程と、前記第3の導電層上に抵抗変化層を形成する工程と、前記抵抗変化層上に第4の導電層を形成する工程と、前記第4の導電層をパターニングして、前記第1の抵抗変化素子の上部電極層と、前記第2の抵抗変化素子の上部電極層とを形成する工程と、前記抵抗変化層をパターニングして、前記第1の抵抗変化素子の抵抗変化層と、前記第2の抵抗変化素子の抵抗変化層とを形成する工程と、前記第3の導電層をパターニングして、前記第1の抵抗変化素子の下部電極層と、前記第2の抵抗変化素子の下部電極層とを形成する工程と、前記第2の導電層をパターニングして、前記第1の電流制御素子の上部電極層と、前記第2の電流制御素子の上部電極層とを形成する工程と、前記電流制御層をパターニングして、前記第1の電流制御素子の電流制御層と、前記第2の電流制御素子の電流制御層とを形成する工程と、前記第1の導電層をパターニングして、前記第1の電流制御素子の下部電極層と、前記第2の電流制御素子の下部電極層とを形成する工程と、前記導電性短絡層を形成する工程とを有してもよい。
これにより、メモリセルの第1の電流制御素子と電流制御特性評価セルの第2の電流制御素子とは、同じ電極層、同じ電流制御層から構成されるので、同じ電流制御特性を有している。そのため、第2の電流制御素子の電流制御特性を検出することで、メモリセルの第1の電流制御素子の電流制御特性を評価することができる。
さらに、従来のCMOSプロセス等を用いる半導体プロセスで不揮発性記憶装置を製造することができる。従って、抵抗変化素子及び電流制御素子の製造においてもそれぞれに固有な特殊な半導体プロセスを使わなくてよく、微細化が進む半導体プロセスと親和性がよい製造方法を実現することができる。
また、ある形態において、前記導電性短絡層を形成する工程では、前記第2の抵抗変化素子の上部電極層と接続された配線を形成し、前記配線の一部を前記導電性短絡層としてもよい。
これにより、第4の配線と導電性短絡層とを同時に形成することができ、製造工程数を低減することができる。
また、ある形態において、前記導電性短絡層を形成する工程では、前記配線と、前記配線と前記第2の抵抗変化素子の上部電極層とを接続する電流制御特性評価セルのコンタクトプラグとを形成し、前記電流制御特性評価セルのコンタクトプラグの一部を前記導電性短絡層としてもよい。
また、前記導電性短絡層を形成する工程では、前記基板の上面に垂直な方向から見て、前記電流制御特性評価セルのコンタクトプラグの中心位置と前記第2の抵抗変化素子の抵抗変化層の中心位置とが異なるように前記導電性短絡層を形成してもよい。
これにより、コンタクトプラグと導電性短絡層とを同時に形成することができ、製造工程数を低減することができる。
また、ある形態において、前記導電性短絡層を形成する工程では、前記基板の上面に垂直な方向から見て、前記導電性短絡層の輪郭の少なくとも一部が前記第2の抵抗変化素子の抵抗変化層の輪郭よりも外側に存在するように前記導電性短絡層を形成してもよい。
これにより、コンタクトプラグと第2の抵抗変化素子との重なり合う領域が増加し、重ね合わせマージンのある安定した動作が可能な電流制御特性評価セルを製造することができる。
また、ある形態において、前記素子形成工程は、さらに、前記導電性短絡層を形成する工程の前に、前記第1の電流制御素子及び前記第2の電流制御素子の側面に、絶縁性サイドウォールを形成する工程を有してもよい。
これにより、導電性短絡層として活用が可能な第4の配線を形成する工程におけるエッチングプロセスマージンが増加し、第2の電流制御素子を安定的に製造することができる。
また、ある形態において、前記絶縁性サイドウォールを形成する工程では、前記第1の抵抗変化素子の側面に、絶縁性サイドウォールを形成してもよい。
これにより、第2の配線と導電性短絡層とを同時に形成することができ、また、第2の配線からメモリセルに接続するコンタクトプラグと導電性短絡層とを同時に形成することもできる。さらに、第4の配線及び第2の配線を形成する工程におけるエッチングマージンが増加し、電流制御特性評価セルとメモリセルとを安定的に製造することができる。
また、ある形態において、前記素子形成工程では、前記基板の上面に垂直な方向から見て、前記第1の抵抗変化素子の抵抗変化層の面積が前記第1の電流制御素子の電流制御層の面積より小さく、かつ、前記第2の抵抗変化素子の抵抗変化層の面積が前記第2の電流制御素子の電流制御層の面積より小さくなるように、前記第1の電流制御素子、前記第1の抵抗変化素子、前記第2の電流制御素子及び前記第2の抵抗変化素子を形成してもよい。
これにより、第2の抵抗変化素子より大きい第2の電流制御素子と、第1の抵抗変化素子より大きい第1の電流制御素子を形成することができ、第1の電流制御素子の許容電流を大きくすることが可能であるため、安定した動作のメモリセルが製造できる。
また、ある形態において、前記導電性短絡層を形成する工程では、前記第2の抵抗変化素子の上部電極層、抵抗変化層及び下部電極層の側面を覆う導電性サイドウォールを形成し、前記導電性サイドウォールを前記導電性短絡層としてもよい。
これにより、メモリセル及び電流制御特性評価セルで抵抗変化素子より大きい電流制御素子を同時に形成することができ、電流制御素子の許容電流を大きくすることが可能であるため、安定した動作のメモリセルが製造できる。また、第4の配線と第2の配線とを同時に形成することができ、製造工程数を低減することができる。
また、ある形態において、前記素子形成工程は、基板上に第3の導電層を形成する工程と、前記第3の導電層上に抵抗変化層を形成する工程と、前記抵抗変化層上に第4の導電層を形成する工程と、前記第4の導電層上に第1の導電層を形成する工程と、前記第1の導電層上に電流制御層を形成する工程と、前記電流制御層上に第2の導電層を形成する工程と、前記第2の導電層をパターニングして、前記第1の電流制御素子の上部電極層と、前記第2の電流制御素子の上部電極層とを形成する工程と、前記電流制御層をパターニングして、前記第1の電流制御素子の電流制御層と、前記第2の電流制御素子の電流制御層とを形成する工程と、前記第1の導電層をパターニングして、前記第1の電流制御素子の下部電極層と、前記第2の電流制御素子の下部電極層とを形成する工程と、前記第4の導電層をパターニングして、前記第1の抵抗変化素子の上部電極層と、前記第2の抵抗変化素子の上部電極層とを形成する工程と、前記抵抗変化層をパターニングして、前記第1の抵抗変化素子の抵抗変化層と、前記第2の抵抗変化素子の抵抗変化層とを形成する工程と、前記第3の導電層をパターニングして、前記第1の抵抗変化素子の下部電極層と、前記第2の抵抗変化素子の下部電極層とを形成する工程と、前記導電性短絡層を形成する工程とを有してもよい。
また、前記導電性短絡層を形成する工程では、前記第2の抵抗変化素子の上部電極層、抵抗変化層及び下部電極層の側面を覆う導電性サイドウォールを形成し、前記導電性サイドウォールを前記導電性短絡層としてもよい。
これにより、第1の電流制御素子と第2の電流制御素子とは、同じ電極層、同じ電流制御層から構成されるので、同じ電流制御特性を有している。そのため、第2の電流制御素子の電流制御特性を検出することで、メモリセルの第1の電流制御素子の電流制御特性を評価することができる。
さらに、第1の抵抗変化素子を構成する各層(下部電極層、抵抗変化層及び上部電極層)を基板上に堆積するときに、高温(室温以上)を印加しても、第1の電流制御素子に対しては印加されない。そのため、第1の電流制御素子のプロセスサーマルバジェットを少なく形成することが可能であるため、第1の電流制御素子の下部電極、電流制御層及び上部電極の材料選択自由度が増加する。
さらに、従来のCMOSプロセス等を用いる半導体プロセスで不揮発性記憶装置を製造することができる。従って、抵抗変化素子及び電流制御素子の製造においてもそれぞれに固有な特殊な半導体プロセスを使わなくてよく、微細化が進む半導体プロセスと親和性がよい製造方法を実現することができる。
なお、第1の電流制御素子と第2の電流制御素子とは実質的に同じ形態である。第1の電流制御素子と第2の電流制御素子とは、同じ電流密度の電圧特性を示してもよい。ここで、「同じ電流密度の電圧特性」とは、寄生抵抗成分を除いて第2の電流制御素子の閾値電圧、オフ電流密度、及びオン電流密度等の特性が、第1の電流制御素子の特性と、例えば10%程度のばらつきの範囲内であり、実質的に同じであることをいう。
また、「同一の組成」及び「同一の膜厚」は、第1の電流制御素子及び第2の電流制御素子の電流密度の電圧特性が実質的に同じになる程度の組成及び膜厚のことをいう。すなわち、「実質的に同一の組成」とは、同じ膜厚であれば同等の電流密度の電圧特性を示す組成のことであり、「実質的に同一の膜厚」とは、同じ組成であれば電流密度の電圧特性を示す膜厚のことである。
(実施の形態1)
本発明の実施の形態1に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。
本発明の実施の形態1に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。
図1は本実施の形態に係る不揮発性記憶装置の一部分の構成を示すブロック図である。
この不揮発性記憶装置は、メモリセルアレイ10と、メモリセルアレイ10に電気的に接続されているパラメータ発生回路20とを備えている。なお、不揮発性記憶装置は、メモリセルアレイ10とパラメータ発生回路20とを結ぶ例えばアンプなどをさらに備えていてもよい。
メモリセルアレイ10は、交差する複数のビット線と複数のワード線、及び複数のビット線と複数のワード線の各交差点に配置され、第1の抵抗変化素子と第1の電流制御素子とが直列に接続されたメモリセルを複数備えている。メモリセルの一端は、ビット線に接続され、他端はワード線に接続される。メモリセルアレイ10は、さらに、ビット線選択回路と、ワード線選択回路と、複数のメモリセルのうち所定のメモリセルに情報を書き込むために所定のメモリセルに電圧を印加する書き込みドライバー回路と、所定のメモリセルから情報を読み出すために電圧を印加する読み出し回路と、電源回路と、それらを制御するための制御回路とを備えている。パラメータ発生回路20は、側面(側面部)に導電性短絡層を備えた第2の抵抗変化素子と、第1の電流制御素子の非線形電流制御特性を評価するための素子としての第2の電流制御素子とから構成される電流制御素子特性評価セル(以下、単に評価セルと記す)を複数備えている。言い換えると、パラメータ発生回路20では電気的に第2の抵抗変化素子の上部電極層及び下部電極層は短絡されており、パラメータ発生回路20は抵抗変化層を介さずに、すなわち抵抗変化層の抵抗値の影響を受けずに、第2の電流制御素子の非線形電流制御特性を示すパラメータの値を発生させる。このパラメータの値に基づいて、メモリセル11中の第1の電流制御素子の非線形電流制御特性が評価される。具体的には、パラメータ発生回路20は、第2の電流制御素子の非線形電流制御特性を測定して、第2の電流制御素子の閾値電圧(VF)等の非線形電流制御特性を示すパラメータを抽出(取得)し、メモリセルアレイ10の制御回路に、パラメータの値(取得したパラメータに対応するパラメータ信号)を供給(出力)する。メモリセルアレイ10の制御回路は、与えられたパラメータの値から、読み出し動作又は書き込み動作に必要な印加電圧を算定し、電源回路、書き込みドライバー回路又は読み出し回路等に制御信号を出力する。つまり、制御回路は、パラメータ信号に基づいて書き込みドライバー回路及び読み出し回路を制御する制御信号を生成し、書き込みドライバー回路及び読み出し回路の少なくとも一方に制御信号を出力する。電源回路、書き込みドライバー回路又は読み出し回路等は、入力された制御信号に応じて、適切な印加電圧を出力する。つまり、電源回路、書き込みドライバー回路及び読み出し回路の少なくとも1つは、制御信号に基づいて所定のメモリセルに印加する電圧を決定する。
図2は、本実施の形態に係る不揮発性記憶装置の一部の構成例を示す平面図である。図3A及び図3Bは、本実施の形態に係るメモリセルアレイ10の構成例を示す断面図である。図3Cは、本実施の形態に係る不揮発性記憶装置の構成例を示す断面図である。なお、図3Aは、図2中のA−A’で示された1点鎖線の断面を矢印方向に見た断面図であり、図3Bは、図2中のB−B’で示された1点鎖線の断面を矢印方向に見た断面図であり、図3Cは、図2中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本実施の形態に係る不揮発性記憶装置は、基板100と、メモリセルアレイ10と、パラメータ発生回路20とを備える。メモリセルアレイ10は、基板100上に配置された第1の層間絶縁層101、第2の層間絶縁層105、及び第3の層間絶縁層116と、基板100及び第2の層間絶縁層105の間の基板100上に互いに平行に配置されたストライプ状の複数の第1の配線103と、第1の配線103に立体交差するように第2の層間絶縁層105上に互いに平行に配置されたストライプ状の複数の第2の配線119と、第1の配線103及び第2の配線119の各交差部に位置する第3の層間絶縁層116内に配置され、第1の抵抗変化素子141及び第1の電流制御素子142から構成された複数のメモリセル11とを有する。パラメータ発生回路20は、基板100及び第2の層間絶縁層105の間の基板100上に配置された第3の配線203(第1の配線103と同じ層に配置)と、第3の配線203の上方(第2の層間絶縁層105上)に配置された第4の配線219(第2の配線119と同じ層に配置)とを有する。パラメータ発生回路20は、さらに、第3の配線203と第4の配線219との間に位置する第3の層間絶縁層116内に形成され、第3の配線203及び第4の配線219に接続され、第2の抵抗変化素子241と第2の電流制御素子242とから構成された評価セル21を有する。ここで、第2の電流制御素子242は、第1の電流制御素子142と同じ電流密度の電圧特性を有する。第2の抵抗変化素子241は、第4の下部電極層211と、第4の下部電極層211上に形成された第2の抵抗変化層212と、第2の抵抗変化層212上に形成された第4の上部電極層213とを有する。電流制御特性評価セル21では、第2の抵抗変化素子241の側面に、第4の上部電極層213と第4の下部電極層211とを短絡させる導電性短絡層151が設けられる。第2の電流制御素子242は、第2の抵抗変化層212を介さずに第3の配線203及び第4の配線219と接続される。
第1の電流制御素子142は、第1の下部電極層108と、第1の下部電極層108上に形成された第1の電流制御層109と、第1の電流制御層109上に形成された第1の上部電極層110とから構成される。第2の電流制御素子242は、第2の下部電極層208と、第2の下部電極層208上に形成された第2の電流制御層209と、第2の電流制御層209上に形成された第2の上部電極層210とから構成される。第1の下部電極層108及び第2の下部電極層208は、実質的に同一の組成を有し、第1の電流制御層109及び第2の電流制御層209は、実質的に同一の組成と同一の膜厚とを有し、第1の上部電極層110及び第2の上部電極層210は、実質的に同一の組成を有する。
第1の電流制御層109及び第2の電流制御層209は、同一工程で形成される。
メモリセル11では、第1の電流制御素子142と第1の抵抗変化素子141とが直列に接続され、第1の抵抗変化素子141が第1の電流制御素子142上に形成された積層型構造が形成される。評価セル21では、第2の電流制御素子242と第2の抵抗変化素子241とが直列に接続され、第2の抵抗変化素子241が第2の電流制御素子242上に形成された積層型構造が形成される。
第1の抵抗変化素子141は、第1の上部電極層110上に形成された第3の下部電極層111と、第3の下部電極層111上に形成された酸素不足型の第1の金属酸化物を含む第1の酸化物層112a、及び第1の金属酸化物より酸素不足度が小さく、かつ抵抗値が高い第2の金属酸化物を含む第2の酸化物層112bが積層されて構成された第1の抵抗変化層112と、第1の抵抗変化層112上に形成された第3の上部電極層113とから構成される。第3の下部電極層111及び第4の下部電極層211は、実質的に同一の組成を有し、第1の抵抗変化層112及び第2の抵抗変化層212は、実質的に同一の組成と同一の膜厚とを有し、第3の上部電極層113及び第4の上部電極層213は、実質的に同一の組成を有する。
第1の抵抗変化層112及び第2の抵抗変化層212は、同一工程で形成される。
第3の上部電極層113及び第4の上部電極層213は、例えば、イリジウム、白金又はパラジウムを含む貴金属で構成される。
第1の金属酸化物は、例えば、酸素不足型のタンタル酸化物TaOx(0<x<2.5)、ハフニウム酸化物HfOx(0<x<2.0)またはジルコニウム酸化物ZrOx(0<x<2.0)等で構成される。ここで、酸素不足型とは、化学量論的組成を有し、絶縁性を示す金属酸化物より酸素含有量が少ない金属酸化物を指し、通常、半導体的な特性を示す。また、第2の金属酸化物は、例えば、タンタル酸化物TaOy(x<y)、ハフニウム酸化物HfOy(x<y)またはジルコニウム酸化物ZrOy(x<y)等で構成される。第2の金属酸化物は、典型的には、極めて高抵抗な半導体特性、または絶縁性を示す金属酸化物である。すなわち、第2の金属酸化物は酸素不足度が0(化学量論的組成)または負(酸素過剰型)であってもよい。
導電性短絡層151は、第4の上部電極層213及び第4の下部電極層211と接する。
パラメータ発生回路20には、複数の評価セル21が設けられ、複数の評価セル21では、導電性短絡層151が設けられる。
導電性短絡層151は、第4の配線219及び第3のバリアメタル層217の一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成される。
なお、配線溝内に第3のバリアメタル層117が設けられずに第3のバリアメタル層117が第2の配線119に置き換えられ、配線溝内に第3のバリアメタル層217が設けられずに第3のバリアメタル層217が第4の配線219に置き換えられてもよい。本実施の形態の図1〜図5Iにおいては、配線溝内の第3のバリアメタル層117が第2の配線119の一部であり、配線溝内の第3のバリアメタル層217が第4の配線219の一部であるとして説明する。この場合、導電性短絡層151は、第4の配線219の一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成される。
第4の配線219の底面の位置は、第4の下部電極層211の上面の位置より深い。
第2の配線119は、第3の下部電極層111及び第1の上部電極層110と接していない。
第3の下部電極層111と第3の上部電極層113とは短絡していない。
以下、本実施の形態に係る不揮発性記憶装置の一例について詳細に説明する。
図2に示すメモリセルアレイ10は、複数の第1の配線103と、複数の第2の配線119と、第1の抵抗変化素子141及び第1の電流制御素子142で構成される複数のメモリセル11とを備える。
複数の第1の配線103は、トランジスタなどが形成されている基板100上に形成されている。複数の第1の配線103は、互いに平行してストライプ形状に形成される。複数の第2の配線119は、互いに平行してストライプ形状に形成される。なお、以下では第1の配線103と第2の配線119とが直交するとして説明するが、必ずしも直交している必要はなく、交差するように配置していればよい。また、複数の第1の配線103と、複数の第2の配線119とが交差する位置に、第1の抵抗変化素子141及び第1の電流制御素子142で構成されるメモリセル11が形成される。
以下、メモリセルアレイ10のより具体的な構成について説明する。
図3A、図3B及び図3Cに示すように、メモリセルアレイ10は、基板100上に形成され、第1の層間絶縁層101と、第1のバリアメタル層102と、第1の配線103と、第1のライナー層104と、第2の層間絶縁層105と、第2のバリアメタル層106と、プラグ107a及び107bと、第1の抵抗変化素子141と、第1の電流制御素子142と、第3の層間絶縁層116と、第3のバリアメタル層117と、コンタクトホール118a及び118bと、第2の配線119と、第2のライナー層120とを備える。
第1のバリアメタル層102は、第1の層間絶縁層101に第1の配線103を埋め込むために形成された配線溝内に形成されている。この第1のバリアメタル層102は、例えば、厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
第1の配線103は、第1の層間絶縁層101中に形成され、例えば銅等で構成される。具体的には、第1の配線103は、第1の層間絶縁層101の配線溝内に形成されている第1のバリアメタル層102上に、この配線溝が第1の配線103及び第1のバリアメタル層102で全て充填されるように形成される。
第1のライナー層104は、第1の配線103を含む第1の層間絶縁層101上に形成される。この第1のライナー層104は、例えば厚さ30nm以上200nm以下のシリコン窒化物で構成される。
第2の層間絶縁層105は、第1のライナー層104上に形成され、例えば厚さ100nm以上500nm以下のシリコン酸化物で構成される。
ここで、第1のライナー層104及び第2の層間絶縁層105は、内部にコンタクトホール118a及び118bを有している。
第2のバリアメタル層106は、第1のライナー層104及び第2の層間絶縁層105中に形成され、具体的には、第1のライナー層104及び第2の層間絶縁層105に形成されるコンタクトホール118a内に形成される。第2のバリアメタル層106は、例えば厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
プラグ107aは、第1のライナー層104及び第2の層間絶縁層105中のコンタクトホール118a中に形成され、第1の配線103と電気的に接続される。具体的には、プラグ107aは、第1のライナー層104及び第2の層間絶縁層105中に形成されているコンタクトホール118a中の第2のバリアメタル層106上に形成され、第1の配線103と電気的に接続される。このプラグ107aは、例えば、直径50nm以上200nm以下で形成される。
プラグ107bは、第1のライナー層104及び第2の層間絶縁層105中のコンタクトホール118b中に形成され、第1の配線103と電気的に接続される。具体的には、プラグ107bは、第1のライナー層104及び第2の層間絶縁層105中に形成されているコンタクトホール118b中の第3のバリアメタル層117上に形成され、第1の配線103と電気的に接続される。このプラグ107bは、例えば、直径50nm以上200nm以下で形成される。
第1の電流制御素子142は、MIM型ダイオードまたはMSM(Metal−Semiconductor−Metal)型ダイオード等であり、第2の層間絶縁層105上に形成され、プラグ107aと電気的かつ物理的に接続されている。この第1の電流制御素子142は、第1の下部電極層108と、第1の電流制御層109と、第1の上部電極層110とで構成される。
第1の下部電極層108は、基板100上(具体的には、第2の層間絶縁層105上)に形成され、例えばタンタル窒化物で構成される。第1の電流制御層109は、第1の下部電極層108上に形成され、例えば窒素不足型シリコン窒化物で構成される。第1の上部電極層110は、第1の電流制御層109上に形成され、例えばタンタル窒化物で構成される。
ここで、窒素不足型のシリコン窒化物とは、シリコン窒化物をSiNz(0<z)と表記した場合に、窒素Nの組成zが化学量論的に安定な状態(化学量論的組成)よりも少ない組成であるときの窒化物である。Si3N4が化学量論的に安定な状態であるので、0<z<1.33の場合に、窒素不足型のシリコン窒化物であるといえる。したがって、第1の電流制御層109に窒素不足型シリコン窒化物を用い、第1の下部電極層108及び第1の上部電極層110の電極材料にタンタル窒化物を用いた場合、0<z≦0.85において、SiNzは半導体特性を示し、抵抗変化に十分な電圧・電流をオン・オフ可能なMSMダイオードを構成できる。
タンタル窒化物の仕事関数は4.6eVであり、シリコンの電子親和力3.8eVより十分高いので、第1の下部電極層108と第1の電流制御層109との界面、及び、第1の電流制御層109と第1の上部電極層110との界面でショットキーバリアが形成される。またタンタル等の高融点金属及びその窒化物は耐熱性に優れ、大電流密度の電流が印加されても安定な特性を示す。以上の理由により、MSMダイオードとしての第1の電流制御素子142を構成する電極材料としては、タンタルやタンタル窒化物、チタンやチタン窒化物、タングステンや窒化タングステン等を用いてもよい。
以上のように第1の電流制御素子142は、構成される。
第1の抵抗変化素子141は、第1の電流制御素子142上に第1の電流制御素子142と直列に接続するように形成される。この第1の抵抗変化素子141は、第3の下部電極層111と、第1の抵抗変化層112と、第3の上部電極層113とで構成される。
第3の下部電極層111は、第1の上部電極層110上に形成される。第1の抵抗変化層112は、第3の下部電極層111上に形成され、第3の上部電極層113は、第1の抵抗変化層112上に形成される。第1の抵抗変化層112は、第3の下部電極層111と第3の上部電極層113との間に介在され、第3の下部電極層111と第3の上部電極層113との間に与えられる電気的信号に基づいて可逆的に抵抗値が変化する層である。例えば、第3の下部電極層111と第3の上部電極層113との間に与えられる電圧の極性に応じて高抵抗状態と低抵抗状態とを可逆的に遷移する層である。第1の抵抗変化層112は、第3の下部電極層111に接続する第1の酸化物層112a(高酸素不足度層、低抵抗層)と、第3の上部電極層113に接続する第2の酸化物層112b(低酸素不足度層、高抵抗層)の少なくとも2層を積層して構成される。
第1の酸化物層112aは、酸素不足型の第1の金属酸化物で構成され、第2の酸化物層112bは、第1の金属酸化物よりも酸素不足度が小さい第2の金属酸化物で構成されている。抵抗変化素子の第2の酸化物層112b中には、電気パルスの印加に応じて酸素不足度が可逆的に変化する微小な局所領域が形成されている。局所領域は、酸素欠陥サイトから構成されるフィラメントを含むと考えられる。
「酸素不足度」とは、金属酸化物において、その化学量論的組成(複数の化学量論的組成が存在する場合は、そのなかで最も抵抗値が高い化学量論的組成)の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。
例えば、金属がタンタル(Ta)の場合、上述の定義による化学量論的組成の酸化物はTa2O5であるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%であり、TaO1.5の酸素不足度は、酸素不足度=(2.5−1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素不足度が負の値となる。なお、本明細書中では、特に断りのない限り、酸素不足度は正の値、0、負の値も含むものとして説明する。
酸素不足度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高く、酸素不足度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
「酸素含有率」とは、総原子数に占める酸素原子の比率である。例えば、Ta2O5の酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。例えば、第1の金属酸化物を構成する金属と、第2の金属酸化物を構成する金属とが同種である場合、酸素含有率は酸素不足度と対応関係にある。すなわち、第2の金属酸化物の酸素含有率が第1の金属酸化物の酸素含有率よりも大きいとき、第2の金属酸化物の酸素不足度は第1の金属酸化物の酸素不足度より小さい。
第1の抵抗変化層112を構成する金属としては、遷移金属、またはアルミニウム(Al)を用いることができる。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
例えば、第1の抵抗変化層112にタンタル酸化物を用いる場合、第1の酸化物層112aとなる第1の金属酸化物の組成をTaOxとした場合にxが0.8以上1.9以下であり、かつ、第2の酸化物層112bとなる第2の金属酸化物の組成をTaOyとした場合にyがxの値よりも大である場合に、抵抗変化層の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物で構成される第2の酸化物層112bの膜厚は、3nm以上4nm以下としてもよい。
また、第1の抵抗変化層112にハフニウム酸化物を用いる場合、第1の酸化物層112aとなる第1の金属酸化物の組成をHfOxとした場合にxが0.9以上1.6以下であり、かつ、第2の酸化物層112bとなる第2の金属酸化物の組成をHfOyとした場合にyがxの値よりも大である場合に、抵抗変化層の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物で構成される第2の酸化物層112bの膜厚は、3nm以上4nm以下としてもよい。
また、第1の抵抗変化層112にジルコニウム酸化物を用いる場合、第1の酸化物層112aとなる第1の金属酸化物の組成をZrOxとした場合にxが0.9以上1.4以下であり、かつ、第2の酸化物層112bとなる第2の金属酸化物の組成をZrOyとした場合にyがxの値よりも大である場合に、抵抗変化層の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物で構成される第2の酸化物層112bの膜厚は、1nm以上5nm以下としてもよい。
第1の金属酸化物を構成する第1の金属と、第2の金属酸化物を構成する第2の金属とは、異なる金属を用いてもよい。この場合、第2の金属酸化物は、第1の金属酸化物よりも酸素不足度が小さい、つまり抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に第3の下部電極層111と第3の上部電極層113との間に印加された電圧は、第2の金属酸化物により多く分配され、第2の金属酸化物中で発生する酸化還元反応をより起こしやすくすることができる。
また、第1の金属酸化物を構成する第1の金属と、第2の金属酸化物を構成する第2の金属とを、互いに異なる材料を用いる場合、第2の金属の標準電極電位は、第1の金属の標準電極電位より低くてもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。これにより、標準電極電位が相対的に低い第2の金属酸化物において、酸化還元反応が起こりやすくなる。なお、抵抗変化現象は、抵抗が高い第2の金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こってフィラメント(導電パス)が変化することにより、その抵抗値(酸素不足度)が変化すると考えられる。
例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaOx)を用い、第2の金属酸化物にチタン酸化物(TiO2)を用いることにより、安定した抵抗変化動作が起きる。チタン(標準電極電位=−1.63eV)はタンタル(標準電極電位=−0.6eV)より標準電極電位が低い材料である。このように、第2の金属酸化物に第1の金属酸化物より標準電極電位が低い金属の酸化物を用いることにより、第2の金属酸化物中でより酸化還元反応が発生しやすくなる。その他の組み合わせとして、高抵抗層となる第2の金属酸化物にアルミニウム酸化物(Al2O3)を用いることができる。例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaOx)を用い、第2の金属酸化物にアルミニウム酸化物(Al2O3)を用いてもよい。
積層構造の抵抗変化層における抵抗変化現象は、高抵抗化及び低抵抗化のいずれも、抵抗が高い第2の酸化物層112b中に形成された微小な局所領域中で酸化還元反応が起こって、局所領域中のフィラメント(導電パス)が変化することにより、その抵抗値が変化すると考えられる。
つまり、第2の酸化物層112bに接続する第3の上部電極層113に、第3の下部電極層111を基準にして正の電圧を印加したとき、第1の抵抗変化層112中の酸素イオンが第2の酸化物層112b側に引き寄せられる。これによって、第2の酸化物層112b中に形成された微小な局所領域中で酸化反応が発生し、酸素不足度が減少する。その結果、局所領域中のフィラメントが繋がりにくくなり、抵抗値が増大すると考えられる。
逆に、第2の酸化物層112bに接続する第3の上部電極層113に、第3の下部電極層111を基準にして負の電圧を印加したとき、第2の酸化物層112b中の酸素イオンが第1の金属酸化物側に押しやられる。これによって、第2の酸化物層112b中に形成された微小な局所領域中で還元反応が発生し、酸素不足度が増加する。その結果、局所領域中のフィラメントが繋がりやすくなり、抵抗値が減少すると考えられる。
酸素不足度がより小さい第2の酸化物層112bに接続されている第3の上部電極層113は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2の金属酸化物を構成する金属及び第1電極を構成する材料と比べて標準電極電位が、より高い材料で構成する。また、酸素不足度がより高い第1の酸化物層112aに接続されている第3の下部電極層111は、例えば、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、窒化タンタル(TaN)、窒化チタン(TiN)など、第1の金属酸化物を構成する金属と比べて標準電極電位が、より低い材料で構成してもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。
すなわち、第3の上部電極層113の標準電極電位V2、第2の金属酸化物を構成する金属の標準電極電位Vr2、第1の金属酸化物を構成する金属の標準電極電位Vr1、第3の下部電極層111の標準電極電位V1との間には、Vr2<V2、かつV1<V2なる関係を満足してもよい。さらには、V2>Vr2で、Vr1≧V1の関係を満足してもよい。
上記の構成とすることにより、第3の上部電極層113と第2の酸化物層112bの界面近傍の第2の金属酸化物中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が起きる。
なお、第2の酸化物層112bがいずれの材料で構成される場合でも、製造直後の状態から抵抗変化素子を安定に抵抗変化できる状態にするため、初期ブレイクが必要な場合がある。初期ブレイクは、製造直後の第2の酸化物層112bの抵抗値が、通常、抵抗変化する場合の高抵抗状態より大きい場合、第2の酸化物層112bの一部により低抵抗な部分(フィラメント)を形成するために通常1回行う。第2の酸化物層112bの膜厚が大きくなると、初期ブレイクに必要な電圧は高くなる。つまり、第2の酸化物層112bの膜厚が上記の厚さより大きくなることは、第1の抵抗変化素子141と直列に接続された例えばダイオードなどの第1の電流制御素子142を破壊することにつながる懸念がある。一方、第2の酸化物層112bがいずれの材料で構成される場合でも、第2の酸化物層112bの酸素不足度をより小さく設計することにより、第2の酸化物層112bが接している電極との界面近傍に電圧がかかりやすくなり、低い電圧で初期ブレイクができるようになる。つまり、第2の酸化物層112bの酸素不足度を小さく設計することで、酸化・還元による抵抗変化を発現しやすくして、これにより低電圧での初期ブレイクが可能な良好なメモリセル特性を得ることができる。
以上のように第1の抵抗変化素子141は構成される。
第3の層間絶縁層116は、第1の抵抗変化素子141と第1の電流制御素子142とを覆い、第2の層間絶縁層105上に形成されている。また、第1のライナー層104、第2の層間絶縁層105及び第3の層間絶縁層116中にはコンタクトホール118bが形成され、第3の層間絶縁層116中には配線溝が形成されている。そして、コンタクトホール118b内にはプラグ107bが埋め込み形成され、配線溝内には第2の配線119が埋め込み形成されている。
第3のバリアメタル層117は、コンタクトホール118b及び配線溝内に形成される。第3のバリアメタル層117は、例えば厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
第2の配線119は、第3の層間絶縁層116中の配線溝内に形成され、第1の抵抗変化素子141の上部すなわち第1の抵抗変化素子141を構成する第3の上部電極層113と接続される。また、第2の配線119は、コンタクトホール118b内のプラグ107bと接続されることで、メモリセルアレイ10の周辺配線用の第1の配線103とも接続されている。
以上のようにメモリセルアレイ10は構成される。
図4は、本実施の形態に係るパラメータ発生回路20の構成例を示す断面図である。なお、図4は、図2中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図である。
このパラメータ発生回路20は、複数の評価セル21が集積されて構成され、複数の第3の配線203と、複数の第4の配線219と、複数の第2の電流制御素子242と、複数の第2の抵抗変化素子241とを備える。
複数の第3の配線203は、トランジスタなどが形成されている基板100上に形成されている。複数の第3の配線203は、互いに平行してストライプ形状に形成される。複数の第4の配線219は、互いに平行してストライプ形状に形成される。複数の第3の配線203と、複数の第4の配線219とが交差する位置に、導電性短絡層151を側面に有する第2の抵抗変化素子241及びそれと直列に接続された第2の電流制御素子242で構成される評価セル21が形成されている。第3の配線203及び第4の配線219は、評価セル21、センスアンプ及び電源等に接続されている。
以下、パラメータ発生回路20のより具体的な構成について説明する。
図3C及び図4に示すように、パラメータ発生回路20は、基板100上に形成され、第1の層間絶縁層101と、第1のバリアメタル層202と、第3の配線203と、第1のライナー層104と、第2の層間絶縁層105と、第2のバリアメタル層206と、プラグ207a及び207bと、第2の抵抗変化素子241と、第2の抵抗変化素子241の側面の導電性短絡層151と、第2の電流制御素子242と、第3の層間絶縁層116と、第3のバリアメタル層217と、コンタクトホール218a及び218bと、第4の配線219と、第2のライナー層120とを備える。
第1のバリアメタル層202は、第1の層間絶縁層101に第3の配線203を埋め込むために形成された配線溝内に形成されている。この第1のバリアメタル層202は、例えば、厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
第3の配線203は、第1の層間絶縁層101中に形成され、例えば銅等で構成される。具体的には、第3の配線203は、第1の層間絶縁層101の配線溝内に形成されている第1のバリアメタル層202上に、この配線溝が第3の配線203及び第1のバリアメタル層202で全て充填されるように形成される。
第1のライナー層104は、第3の配線203を含む第1の層間絶縁層101上に形成される。第1のライナー層104及び第2の層間絶縁層105は、内部にコンタクトホール218aを有している。
第2のバリアメタル層206は、第1のライナー層104及び第2の層間絶縁層105中に形成され、具体的には、第1のライナー層104及び第2の層間絶縁層105に形成されるコンタクトホール218a内に形成される。第2のバリアメタル層206は、例えば厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
プラグ207aは、第1のライナー層104及び第2の層間絶縁層105中のコンタクトホール218a中に形成され、第3の配線203と電気的に接続される。具体的には、プラグ207aは、第1のライナー層104及び第2の層間絶縁層105中に形成されているコンタクトホール218a中の第2のバリアメタル層206上に形成され、第3の配線203と電気的に接続される。このプラグ207aは、例えば、直径50nm以上200nm以下で形成される。
プラグ207bは、第1のライナー層104及び第2の層間絶縁層105中のコンタクトホール218b中に形成され、第3の配線203と電気的に接続される。具体的には、プラグ207bは、第1のライナー層104及び第2の層間絶縁層105中に形成されているコンタクトホール218b中の第3のバリアメタル層217上に形成され、第3の配線203と電気的に接続される。このプラグ207bは、例えば、直径50nm以上200nm以下で形成される。
第2の電流制御素子242は、MSMダイオード等であり、第2の層間絶縁層105上に形成され、プラグ207aと電気的かつ物理的に接続されている。この第2の電流制御素子242は、第2の下部電極層208と、第2の電流制御層209と、第2の上部電極層210とで構成される。
第2の下部電極層208は、基板100上(具体的には、第2の層間絶縁層105上)に形成され、例えばタンタル窒化物で構成される。第2の電流制御層209は、第2の下部電極層208上に形成され、例えば窒素不足型シリコン窒化物で構成される。第2の上部電極層210は、第2の電流制御層209上に形成され、例えばタンタル窒化物で構成される。
評価セル21を構成する第2の抵抗変化素子241は、メモリセル11を構成する第1の抵抗変化素子141と同様で、第2の電流制御素子242上に第2の電流制御素子242と直列に接続するように形成される。この第2の抵抗変化素子241は、第4の下部電極層211と、第2の抵抗変化層212と、第4の上部電極層213とで構成される。
第2の抵抗変化層212は、第4の下部電極層211上に形成され、金属酸化物で構成される。この第2の抵抗変化層212は、低酸素不足度層(第2の酸化物層212b、高抵抗層)と高酸素不足度層(第1の酸化物層212a、低抵抗層)の積層構造で構成される。
第4の下部電極層211は、第2の上部電極層210上に形成される。第4の上部電極層213は、第2の抵抗変化層212上に形成される。
なお、第2の抵抗変化素子241は第1の抵抗変化素子141と同じ形態である。つまり、第4の下部電極層211と第2の抵抗変化層212と第4の上部電極層213とは、それぞれ第3の下部電極層111と第1の抵抗変化層112と第3の上部電極層113と同じ形態であり、同じ材料、同じ組成、同じ膜厚で構成される。
第3の層間絶縁層116は、第2の電流制御素子242を覆い、第2の層間絶縁層105上に形成されている。また、第1のライナー層104、第2の層間絶縁層105及び第3の層間絶縁層116中にはコンタクトホール218bが形成され、第3の層間絶縁層116中には配線溝が形成されている。そして、コンタクトホール218b内にはプラグ207bが埋め込み形成され、配線溝内には第4の配線219が埋め込み形成されている。
第3のバリアメタル層217は、コンタクトホール218b及び配線溝内に形成される。第3のバリアメタル層217は、例えば厚さ5nm以上40nm以下のタンタル窒化物と、厚さ5nm以上40nm以下のタンタルとが順に堆積されて構成される。
導電性短絡層151は、第4の配線219の一部として、第3の層間絶縁層116中の配線溝内に形成され、評価セル21の第2の抵抗変化素子241を覆い、第2の抵抗変化素子241の下部すなわち第2の抵抗変化素子241を構成する第4の下部電極層211と接続される。つまり、導電性短絡層151は、第2の抵抗変化素子241を構成する、第4の下部電極層211と、第2の抵抗変化層212と、第4の上部電極層213との側面(両端)に接している。したがって、第4の配線219と第2の電流制御素子242とは、第2の抵抗変化層212を介さずに電気的に接続される。なお、第4の配線219を導電性短絡層151として機能させる場合、典型的には、導電性短絡層151が複数の評価セル21に跨って配置される。別の言い方をすると、複数の評価セル21で導電性短絡層151が兼用される。この場合、導電性短絡層151の形状は、基板100の上面(主面)に垂直な方向から見て(基板100の上面に垂直な方向から見て基板100に転写された)、図2に示すx方向の幅は第4の配線219の配線幅(図2のF)に対応し、y方向の幅は配線長(図2のG)に対応する。この場合、導電性短絡層151の形状は、x方向の最大幅よりも、y方向の最大幅の方が大きい。
第4の配線219は、コンタクトホール218b内のプラグ207bと接続されることで、第3の配線203とも接続されている。
評価セル21は、図3A及び図3Bに示すメモリセル11に対して、実質的に、第2の抵抗変化素子241の側面に導電性短絡層151をさらに備えた構成である。つまり、評価セル21は、電気的に第2の抵抗変化層212の抵抗値を介さずに、第2の電流制御素子242の特性を検出することが可能な構成である。
メモリセルアレイ10では、第1の抵抗変化素子141と、第1の電流制御素子142とからメモリセル11が構成されているが、パラメータ発生回路20では、第1の電流制御素子142と同じ構成である第2の電流制御素子242と、第1の抵抗変化素子141と同じ構成である第2の抵抗変化素子241と、第2の抵抗変化素子241の側面に形成された導電性短絡層151とから評価セル21が構成されている。
評価セル21を構成する第2の電流制御素子242とメモリセル11を構成する第1の電流制御素子142とは同一プロセスで形成されるため、第2の電流制御素子242の各層は第1の電流制御素子142の各層に対し同層かつ同じ形態(材料、膜厚、組成及び熱履歴等)で形成されている。なお、第2の電流制御素子242及び第1の電流制御素子142が異なるプロセスで形成された場合、いずれかの素子の下地に段差が生じる。また、同層とは基板100からの高さが同じ状態で基板100の主面と平行な水平方向に並んでいることをいう。
具体的に、第2の下部電極層208が第1の電流制御素子142の第1の下部電極層108と同層で同じ材料及び膜厚で形成され、第2の電流制御層209が第1の電流制御素子142の第1の電流制御層109と同層で同じ材料及び膜厚で形成され、第2の上部電極層210が第1の電流制御素子142の第1の上部電極層110と同層で同じ材料及び膜厚で形成されている。これにより、第1の電流制御素子142と第2の電流制御素子242とは同じ電流制御特性を有する。そのため、評価セル21の第2の電流制御素子242の電流制御特性を検出することで、メモリセル11の第1の電流制御素子142の電流制御特性を把握することができる。
例えば、金属酸化物としてタンタル酸化物を用いた場合は、メモリセル11では酸素含有率は67.7atm%以上71.4atm%以下である高濃度酸素含有層である第2の酸化物層112b(TaOy)(2.1≦y≦2.5)が第1の抵抗変化層112に含まれている。従って、第1の抵抗変化素子141の初期抵抗値(第1の抵抗変化素子141が超高抵抗状態にあるときの抵抗値)は10MΩ以上となり、通常のメモリセル11を用いて第1の電流制御素子142の電流制御特性を直接検出するのは困難である。しかし、第1の電流制御素子142と同等の特性を有する評価セル21をパラメータ発生回路20に備えさせ、導電性短絡層151により第2の抵抗変化素子241を無効化することで、第1の電流制御素子142の電流制御特性を評価することが容易にできる。
以上のように、本実施の形態の不揮発性記憶装置によれば、パラメータ発生回路20がメモリセル11の第1の電流制御素子142と同等の電流密度の電圧特性を有する第2の電流制御素子242を備える。第2の抵抗変化素子241は第1の抵抗変化素子141と同様の形態を有するが、導電性短絡層151により第2の抵抗変化素子241の第4の上部電極層213と第4の下部電極層211とは短絡されている。よって、第2の抵抗変化素子241に高抵抗な第2の抵抗変化層212が含まれていても、電気的に高抵抗な第2の抵抗変化層212を介さずに、第2の電流制御素子242の非線型電流制御特性を検出し、結果として第1の電流制御素子142の非線型電流制御特性を評価することができる。そのため、第1の電流制御素子142の非線形電流制御特性を直接検出しなくても、第2の電流制御素子242の非線形電流制御特性を検出することにより、第1の電流制御素子142の非線形電流制御特性を評価できる。従って、パラメータ発生回路20がメモリセル11に印加する電圧を発生させる場合、例えば第2の電流制御素子242の電流制御特性を検出し、それをメモリセルアレイ10の制御回路に出力して最適な書き込み電圧に補償することができるため、誤動作やばらつきの少ない安定した不揮発性記憶装置を実現することができる。
例えば、パラメータ発生回路20は、評価セル21、センス回路、電源回路、制御回路等で構成され、第2の電流制御素子242の順方向閾値電圧Vf、オン電流及びオフ電流を検出し、メモリセルアレイ10の制御回路に出力する。メモリセルアレイ10の制御回路は、検出結果に基づいてメモリセルアレイ10の内部電圧生成回路でオフセット電圧を生成し、メモリセル11への書き込み電圧、読み出し電圧及び初期ブレイク電圧等を最適化してメモリセル11に印加する。このような印加電圧の最適化は、不揮発性記憶装置の出荷前の検査時に行われてもよいし、出荷後の動作時に定期的に行われてもよいし、またその両方で行われてもよい。定期的に行うことにより、不揮発性記憶装置の経時変化に対応することができる。また、パラメータ発生回路20は、複数の評価セル21を有し、複数の評価セル21による検出結果を平均した結果を用いてオフセット電圧を生成することにより、最適化の精度を向上させることもできる。
なお、評価セル21の評価は、第4の配線219及び第3の配線203を外部端子と接続し、この外部端子と不揮発性記憶装置の外部のテスト回路とを接続することにより、外部のテスト回路により行われてもよい。
次に、上述した不揮発性記憶装置の製造方法、具体的にはメモリセルアレイ10及びパラメータ発生回路20の製造方法の一例について説明する。
図5A〜図5Iは、本実施の形態に係るメモリセルアレイ10(メモリセル11とその配線部)及びパラメータ発生回路20(評価セル21とその配線部)の製造方法の一例について説明するための断面図である。なお、典型的には、基板100上には多数のメモリセル11及び評価セル21が形成されるが、図面の簡略化のため、図5A〜図5Iではメモリセル11を2個形成し、評価セル21を1個形成する場合を示している。また、理解しやすいように、構成の一部を拡大して示している。なお、本願図面において、本実施形態を説明する図面に限らず、他の実施形態を説明する図面においても、同様の簡略化を行なう場合がある。
本実施の形態の不揮発性記憶装置の製造方法は、第1の電流制御素子142と第1の抵抗変化素子141とから構成され、それらが直列に接続された積層型構造を持つメモリセル11を複数有するメモリセルアレイ10と、第1の電流制御素子142の電流制御特性を評価(モニタ)するための、第2の電流制御素子242と第2の抵抗変化素子241とから構成される評価セル21を有し、メモリセルアレイ10と電気的に接続され、メモリセル11を動作させるパラメータ発生回路20とを備える不揮発性記憶装置の製造方法であり、第1の電流制御素子142、第1の抵抗変化素子141、第2の電流制御素子242及び第2の抵抗変化素子241を形成する素子形成工程を含む。素子形成工程では、第4の下部電極層211と、第4の下部電極層211上に形成された第2の抵抗変化層212と、第2の抵抗変化層212上に形成された第4の上部電極層213とを有する第2の抵抗変化素子241を形成し、第2の抵抗変化素子241の側面に、第4の上部電極層213と第4の下部電極層211とを短絡させる導電性短絡層151を形成する。
第1の電流制御素子142と第1の抵抗変化素子141とは、同一のマスクで形成され、第2の電流制御素子242と第2の抵抗変化素子241とは、同一のマスクで形成され、第2の電流制御素子242と第1の電流制御素子142とは、同時に形成される。
素子形成工程は、基板100上に第1の導電層308を形成する工程と、第1の導電層308上に電流制御層309を形成する工程と、電流制御層309上に第2の導電層310を形成する工程と、第2の導電層310上に第3の導電層311を形成する工程と、第3の導電層311上に抵抗変化層312を形成する工程と、抵抗変化層312上に第4の導電層313を形成する工程と、第4の導電層313をパターニングして第3の上部電極層113と第4の上部電極層213とを形成する工程と、抵抗変化層312をパターニングして第1の抵抗変化層112と第2の抵抗変化層212とを形成する工程と、第3の導電層311をパターニングして第3の下部電極層111と第4の下部電極層211とを形成する工程と、第2の導電層310をパターニングして第1の上部電極層110と第2の上部電極層210とを形成する工程と、電流制御層309をパターニングして第1の電流制御層109と第2の電流制御層209とを形成する工程と、第1の導電層308をパターニングして第1の下部電極層108と第2の下部電極層208とを形成する工程と、導電性短絡層151を形成する工程とを有する。
素子形成工程は、第4の導電層313、抵抗変化層312及び第3の導電層311をパターニングすることで第1の抵抗変化素子141及び第2の抵抗変化素子241を形成した後、第2の導電層310、電流制御層309及び第1の導電層308をパターニングして分離することで、メモリセル11を構成する第1の抵抗変化素子141の下方に接するように形成された第1の電流制御素子142と、評価セル21を構成する第2の抵抗変化素子241の下方に接するように形成された第2の電流制御素子242とを同時に形成する工程と、メモリセル11と電気的に接続された第2の配線119と、評価セル21と電気的に接続された第4の配線219とを形成する工程とを含み、パターニングにより各素子を形成する工程では、メモリセル11を構成する第1の抵抗変化素子141の形成のためのパターニングと、第1の電流制御素子142の形成のためのパターニングとで同一のハードマスク層125が用いられ、評価セル21を構成する第2の抵抗変化素子241の形成のためのパターニングと、第2の電流制御素子242の形成のためのパターニングとで同一のハードマスク層125が用いられ、評価セル21を構成する第2の抵抗変化素子241の側面に導電性短絡層151を形成する。
第2の配線119と第4の配線219とを形成する工程では、メモリセル11と評価セル21を覆うように第3の層間絶縁層116を形成する工程と、第3の層間絶縁層116に第2の配線119の配線パターンを形成するための配線溝119aを形成する工程と、第3の層間絶縁層116に第4の配線219の配線パターンを形成するための配線溝219aを形成する工程と、配線溝119a及び配線溝219aに導電体を埋め込み、第2の配線119及び第4の配線219の配線パターンを形成する工程と含み、配線溝219aを形成する工程で、評価セル21を構成する第2の抵抗変化素子241の少なくとも一部の側面を露出させる。
抵抗変化層312は、金属酸化物で構成される。この金属酸化物は低酸素不足度層と高酸素不足度層との2層を少なくとも含んでいる。素子形成工程は、第3の導電層311上に酸素不足型の第1の金属酸化物を含む第1の酸化物層312aを形成した後、第1の酸化物層312a上に第1の金属酸化物より酸素不足度が小さく、かつ抵抗値が高い第2の金属酸化物を含む第2の酸化物層312bを形成する工程を有している。
導電性短絡層151を形成する工程では、第4の上部電極層213と接続された第4の配線219を形成し、第4の配線219の一部を導電性短絡層151とする。
以下、本実施の形態に係る不揮発性記憶装置の製造方法の一例について詳細に説明する。
はじめに、図5Aに示すように、トランジスタなどがあらかじめ形成されている半導体から構成される基板100上に第1の配線103及び第3の配線203を形成し、形成した第1の配線103及び第3の配線203上に第1の配線103及び第3の配線203と接続されるプラグ107a及び207aを形成する。
具体的には、基板100上に、プラズマCVD等を用いてシリコン酸化物で構成される第1の層間絶縁層101を形成する。続いて、形成した第1の層間絶縁層101に第1の配線103及び第3の配線203を埋め込み形成するための配線溝をフォトリソグラフィー及びドライエッチングにより形成する。続いて、形成したこの配線溝内にタンタル窒化物(5nm以上40nm以下)及びタンタル(5nm以上40nm以下)で構成される第1のバリアメタル層102及び202と、配線材料の銅(50nm以上300nm以下)を、スパッタ法等を用いて堆積させる。そして、電解めっき法等により、銅をシードとして銅をさらに堆積させることで、配線溝を全て配線材料の銅と第1のバリアメタル層102及び202とで充填する。続いて、堆積した銅のうち表面の余分な銅及び余分な第1のバリアメタル層102及び202をCMP法によって除去することにより、表面が平坦で第1の層間絶縁層101の表面と面一な第1の配線103及び第3の配線203を形成する。続いて、第1の層間絶縁層101並びに第1の配線103及び第3の配線203上に、プラズマCVD等を用いてシリコン窒化物を30nm以上200nm以下程度堆積させ、第1の層間絶縁層101並びに第1の配線103及び第3の配線203上を覆うように第1のライナー層104を形成する。続いて、形成された第1のライナー層104上に第2の層間絶縁層105をさらに堆積させる。ここで、必要であればCMP法により表面の段差緩和を行う。続いて、フォトリソグラフィー及びドライエッチングにより第1の配線103上の所定の位置に、第1の配線103に接続するプラグ107aを埋め込み形成するためのコンタクトホール118aを形成する。同様に、第3の配線203上の所定の位置に、第3の配線203に接続するプラグ207aを埋め込み形成するためのコンタクトホール218aを形成する。続いて、形成されたコンタクトホール118a及び218aを含む第2の層間絶縁層105上に、タンタル窒化物(膜厚は5nm以上40nm以下)及びタンタル(膜厚は5nm以上40nm以下)で構成される第2のバリアメタル層106及び206と、配線材料の銅(膜厚は50nm以上300nm以下)とをスパッタ法等を用いて堆積させる。そして、電解めっき法等により、銅をシードとして銅をさらに堆積させることで、コンタクトホール118a及び218aを全て第2のバリアメタル層106及び206と銅とで充填する。続いて、CMP法によって表面の余分な銅及び余分な第2のバリアメタル層106及び206を除去することにより、表面が平坦で第2の層間絶縁層105の表面と面一なプラグ107a及び207aを形成する。
次に、図5Bに示すように、プラグ107a及び207aを含む第2の層間絶縁層105上に、タンタル窒化物で構成される第1の導電層308(膜厚は20nm)と、窒素不足型のシリコン窒化物で構成される電流制御層309(膜厚は20nm)と、タンタル窒化物で構成される第2の導電層310(膜厚は30nm)とを順にスパッタ法等を用いて堆積する。続いて、堆積された第2の導電層310上に、タンタル窒化物で構成される第3の導電層311(膜厚は30nm)と、第1の酸化物層312aと、第2の酸化物層312bと、イリジウムを含む第4の導電層313(膜厚は80nm)とを順にスパッタ法等を用いて堆積する。その後、ドライエッチング時のハードマスクとして、導電性の層であって、チタン窒化物及びチタン−アルミニウム窒化物のいずれか(例えばチタン−アルミニウム窒化物)で構成されるハードマスク層325(膜厚は100nm)を、スパッタ法等を用いて堆積する。
ここで、第1の酸化物層312a及び第2の酸化物層312bは、高酸素不足度層(第1の酸化物層312a)としてTaOx(0<x<2.5)を50nm堆積した後、堆積した高酸素不足度層(第1の酸化物層312a)のTaOxの上にTaOxよりも酸素不足度が小さい低酸素不足度層(第2の酸化物層312b)のTaOy(ここでx<y)を5nm堆積して形成する。このとき、第1の酸化物層312a及び第2の酸化物層312bは、TaOxを50nm堆積した後に、TaOxの上面を酸素雰囲気中のプラズマ酸化により酸化処理して、高酸素不足度層(第1の酸化物層312a)のTaOxの上にTaOxより酸素不足度が小さい低酸素不足度層(第2の酸化物層312b)のTaOy(ここでx<y)を5nm堆積することにより形成してもよい。なお、酸化処理の方法は、プラズマ酸化に限られることはなく、例えば、酸素雰囲気中の熱処理など表面を酸化させる効果のある処理であってもよい。また、高酸素不足度層(第1の酸化物層312a)のTaOxは50nm堆積するのに限らず、高酸素不足度層(第1の酸化物層312a)のTaOxを45nm堆積し、その後に、酸化処理を行うことに代えて、低酸素不足度層(第2の酸化物層312b)としてTaOy(ここでx<y)を5nm堆積するとしてもよい。また、低酸素不足度層(第2の酸化物層312b)としてTaOyに代えて、低酸素不足度のチタン酸化物を5nm堆積してもよい。
次に、図5Cに示すように、第1の抵抗変化素子141及び第2の抵抗変化素子241を形成するための第1のレジストマスクパターン131aを、フォトリソグラフィーを用いてハードマスク層325上に形成する。
次に、図5Dに示すように、第1のレジストマスクパターン131aを用いてハードマスク層325をパターニングし、ハードマスク層125を形成する。その後、アッシング処理により第1のレジストマスクパターン131aを除去する。
次に、図5Eに示すようにハードマスク層125を用いて第4の導電層313、第1の酸化物層312a、第2の酸化物層312b及び第3の導電層311をパターニングし、第1の抵抗変化素子141の第3の上部電極層113、第1の抵抗変化層112及び第3の下部電極層111と、第2の抵抗変化素子241の第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211を形成する。さらに、ハードマスク層125を用いて第2の導電層310、電流制御層309及び第1の導電層308をパターニングすることにより、第1の電流制御素子142の第1の上部電極層110、第1の電流制御層109及び第1の下部電極層108を形成する。同時に、パラメータ発生回路20が形成される領域において、ハードマスク層125を用いて第2の導電層310、電流制御層309及び第1の導電層308をパターニングすることにより、第2の電流制御素子242の第2の上部電極層210、第2の電流制御層209及び第2の下部電極層208を形成する。その後、ハードマスク層125を例えばエッチングにより除去する。なお、ハードマスク層125は、除去しなくてもよく、必要に応じて残してもよい。これにより、メモリセル11を構成する第1の電流制御素子142と同一の電流制御特性を有し、評価セル21を構成する第2の電流制御素子242を第1の電流制御素子142と同層に形成することができる。
次に、図5F及び図5Gに示すように、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を覆うように、第3の層間絶縁層116を形成する。その後、形成した第3の層間絶縁層116中に、第1の抵抗変化素子141の第3の上部電極層113に接続する第2の配線119と、評価セル21を構成する第2の抵抗変化素子241の側面に接続する第4の配線219とを形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。
具体的には、まず、図5Fに示すように、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を覆うように、第2の配線119及び第4の配線219を埋め込み形成するための第3の層間絶縁層116を堆積する。続いて、図5Gに示すように、フォトリソグラフィー及びドライエッチングにより、第3の層間絶縁層116中に、第1の抵抗変化素子141を構成する第3の上部電極層113に接続する第2の配線119と、評価セル21を構成する第2の抵抗変化素子241の側面に接続する第4の配線219とを埋め込み形成するための配線溝119a及び219aを形成する。このとき、配線溝219aを形成するドライエッチング工程で、評価セル21の第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211を露出させる。それとともに、フォトリソグラフィー及びドライエッチングにより、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を設けていない所定の位置に、第1の配線103及び第3の配線203に接続するプラグ107b及び207bを形成するためのコンタクトホール118b及び218bを形成する。
なお、一般的には、1回目のフォトリソグラフィー及びドライエッチングにより引き出しコンタクトとしてのプラグ107b及び207b用のコンタクトホール118b及び218bを先に形成し、2回目のフォトリソグラフィー及びドライエッチングにより第2の配線119及び第4の配線219用の配線溝119a及び219aを形成するが、配線溝119a及び219aを先に形成しても差し支えない。
次に、図5Hに示すように、コンタクトホール118b及び218b並びに配線溝119a及び219a内にタンタル窒化物(5nm以上40nm以下)及びタンタル(5nm以上40nm以下)で構成される第3のバリアメタル層117及び217と配線材料の銅(50nm以上300nm以下)とをスパッタ法等を用いて堆積する。ここでは、図5Aで示した第1の配線103及び第3の配線203を埋め込み形成する工程と同様の条件を用いる。そして、電解めっき法等により、銅をシードとして銅をさらに堆積させることでコンタクトホール118b及び218b並びに配線溝119a及び219aを全て配線材料の銅と第3のバリアメタル層117及び217とで充填する。続いて、CMP法によって堆積した銅のうち表面の余分な銅と余分な第3のバリアメタル層117及び217とを除去することにより、表面が平坦で第3の層間絶縁層116の表面と面一な第2の配線119及び第4の配線219を形成する。これにより、図5Gに示す配線溝219aの形成により露出された評価セル21つまり第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面に、第3のバリアメタル層217と、配線材料の銅とが形成され、抵抗値が低い導電性短絡層151が形成される。これにより、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することができる評価セル21を形成することができる。
次に、図5Iに示すように、第2の配線119及び第4の配線219並びに第3の層間絶縁層116上に第2の配線119及び第4の配線219を覆うように、プラズマCVD等を用いて窒化シリコン層を30nm以上200nm以下、例えば50nm程度堆積させて第2のライナー層120を形成する。
以上のように、本実施の形態の不揮発性記憶装置の製造方法によれば、メモリセル11の第1の電流制御素子142と第2の電流制御素子242とは、同じ電極層、同じ電流制御層から構成されるので、同じ電流密度に対する電圧の関係つまり同じ電流制御特性を有している。そのため、第2の電流制御素子242の電流制御特性を検出することで、メモリセル11の第1の電流制御素子142の電流制御特性を評価することができ、誤動作やばらつきの少ない安定した不揮発性記憶装置を製造することができる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、従来のCMOSプロセス等を用いる半導体プロセスで不揮発性記憶装置を製造することができる。従って、抵抗変化素子及び電流制御素子の製造においてもそれぞれに固有な特殊な半導体プロセスを使わなくてよく、微細化が進む半導体プロセスと親和性がよい製造方法を実現することができる。その結果、容易に微細化が可能で安定した製造方法を実現できる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、抵抗変化素子及び電流制御素子を構成する層を連続して形成するので、抵抗変化素子及び電流制御素子のプロセスダメージを低減し、特性のばらつきを抑えることができる。
また、第4の配線219と導電性短絡層151とを同時に形成することができ、製造工程数を低減することができる。
なお、第1の電流制御素子142と第2の電流制御素子242とは必ずしも同じ寸法でなくてもよく、第2の電流制御素子242の寸法が大きくてもよい。
具体的には、基板100の上面に垂直な方向から見て、第2の電流制御素子242を構成し、第2の上部電極層210と接する第2の電流制御層209の面積及び第2の下部電極層208と接する第2の電流制御層209の面積が、第1の電流制御素子142を構成し、第1の上部電極層110と接する第1の電流制御層109の面積及び第1の下部電極層108と接する第1の電流制御層109の面積より大きくてもよい。
これにより、本実施の形態の効果に加えて、側面に印加されるプラズマダメージの影響が小さい第2の電流制御素子242を実現できる。プラズマダメージの影響を低減して非線型電流制御特性を正確に検出することができ、第1の電流制御層109の変化(例えば、周辺温度による特性変化や繰り返し動作による特性劣化など)を正確に検出ことができ、電流制御特性の誤差を低減できる。つまり、第2の電流制御素子242の側面にエッチングダメージが印加されても、エッチングダメージの影響のない第2の上部電極層210と第2の電流制御層209とが接する界面と、第2の下部電極層208と第2の電流制御層209とが接する界面とを含む領域を大きくすることができ、安定した電流制御特性を検出することができる。
このとき、メモリセル11の第1の電流制御素子142と、評価セル21の第2の電流制御素子242とは、同じ電極層、同じ電流制御層から構成されるので、電流密度に対する電圧の関係が同じである。これにより、第1の電流制御素子142の面積と第2の電流制御素子242の面積とが異なっていても、設計時における寸法が明らかであるので、面積等で検出される電流値を補正することにより、第2の電流制御素子242の電流制御特性を検出することで、第1の電流制御素子142の電流制御特性を評価することができる。
具体的な製造方法として、図5C及び図5Dに示す工程において、メモリセル11を構成する第1の抵抗変化素子141と第1の電流制御素子142とをパターニングするハードマスク層125をパターニングする第1のレジストマスクパターン131aより、評価セル21を構成する第2の抵抗変化素子241と第2の電流制御素子242とをパターニングするハードマスク層125をパターニングする第1のレジストマスクパターン131aを大きくすることが考えられる。それぞれの素子を形成する異なる寸法の第1のレジストマスクパターン131aを用いることにより、図5Dで示す工程において、メモリセルアレイ10とパラメータ発生回路20とで寸法の異なるハードマスク層125がそれぞれ形成される。図5Eで示す工程において、寸法が異なる第1の電流制御素子142と第2の電流制御素子242とが形成され、大きい第1のレジストマスクパターン131aを用いた第2の電流制御素子242の方が大きい面積で形成される。
また、本実施の形態では、メモリセルアレイ10が1層であり、互いに平行に配置されたストライプ状の複数の第1の配線103と、第1の配線103に交差するように第3の層間絶縁層116中に互いに平行に配置されたストライプ状の複数の第2の配線119と、第1の配線103と第2の配線119との各交差部に位置する第3の層間絶縁層116内に配置され、第1の抵抗変化素子141と第1の電流制御素子142とから構成される複数のメモリセル11とを有する構成であるとした。しかし、これに限られず、例えば基板100上に、メモリセルアレイ10が繰り返し積層され、多層化(複数層に形成)された不揮発性記憶装置としてもよい。このとき、パラメータ発生回路20は、必ずしもメモリセルアレイ10の層毎に必ず形成されている必要はなく、メモリセルアレイ10が形成されている層の少なくとも1層に形成されていればよい。これにより、パラメータ発生回路20は、少なくとも非線形電流制御特性の周辺温度による変化を検出することが可能であり、温度補償が可能な制御回路として機能することができる。
(実施の形態1の変形例1)
次に、本発明の実施の形態1における変形例1について説明する。
次に、本発明の実施の形態1における変形例1について説明する。
図6は本変形例に係る不揮発性記憶装置の一部の構成例を示す平面図である。図7は本変形例に係るパラメータ発生回路20の構成例を示す断面図である。図8は本変形例に係る不揮発性記憶装置の構成例を示す断面図である。なお、図7は図6中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図8は図6中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本変形例の不揮発性記憶装置は、パラメータ発生回路20の導電性短絡層151が第4の配線219と第4の上部電極層213との間に配置された評価セル21のプラグ(コンタクトプラグ)307b及び第3のバリアメタル層217の一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成されている点で実施の形態1の不揮発性記憶装置と異なる。具体的に、図7に示す評価セル21は、図3C及び図4に示す評価セル21に対して、第2の抵抗変化素子241の側面に形成される導電性短絡層151が、第4の配線219と評価セル21とを電気的に接続するプラグ307b及び第3のバリアメタル層217の一部から構成される点で異なる。
なお、コンタクトホール318a内に第3のバリアメタル層117が設けられずに第3のバリアメタル層117がプラグ307aに置き換えられ、コンタクトホール318b内に第3のバリアメタル層217が設けられずに第3のバリアメタル層217がプラグ307bに置き換えられてもよい。本変形例の図6〜図9Cの説明においては、コンタクトホール318a内の第3のバリアメタル層117がプラグ307aの一部であり、コンタクトホール318b内の第3のバリアメタル層217がプラグ307bの一部であるとして説明する。この場合、導電性短絡層151は、プラグ307bの一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成される。
以下、実施の形態1の不揮発性記憶装置と異なる点を中心に説明する。
第2の配線119と第3の上部電極層113との間には、メモリセル11のプラグ307aが配置され、メモリセル11のプラグ307aは、第3の下部電極層111及び第1の上部電極層110と接していない。基板100の上面に垂直な方向から見て、メモリセル11のプラグ307aの輪郭の全部が第1の抵抗変化層112の輪郭よりも内側に存在する。一方、基板100の上面に垂直な方向から見て、評価セル21のプラグ307bつまり導電性短絡層151の輪郭の一部が第2の抵抗変化層212の輪郭よりも外側に存在し、他部が第2の抵抗変化層212の輪郭よりも内側に存在する。
基板100の上面に垂直な方向から見て、メモリセル11のプラグ307aの底面の面積は、第1の抵抗変化層112の面積よりも小さい。
プラグ307a及び307bは第1の抵抗変化素子141(第3の上部電極層113)及び第2の抵抗変化素子241(第4の上部電極層213)と接する位置が異なる。
基板100の上面に垂直な方向から見て、導電性短絡層151の中心位置と、評価セル21を構成する第2の抵抗変化素子241の第2の抵抗変化層212の中心位置とが異なる。
導電性短絡層151は、基板100の上面に垂直な方向から見て、x方向の最大幅とy方向の最大幅とが同じ形状、例えば円形状である。
プラグ307bの下部を導電性短絡層151として機能させる場合、典型的には、導電性短絡層151は評価セル21毎に個別に設けられることとなる。
第2の電流制御素子242は、第2の下部電極層208と、第2の電流制御層209と、第2の上部電極層210とで構成され、第2の電流制御素子242の構成は図3C及び図4の評価セル21と図7の評価セル21とで同様である。
以上のように本変形例の不揮発性記憶装置によれば、実施の形態1と同様の効果が得られる。
また、本変形例の不揮発性記憶装置によれば、第4の配線219と評価セル21とを接続するプラグ307bを導電性短絡層151とすることができ、抵抗値の低い導電性短絡層151を実現できる。そのため、第2の電流制御素子242で検出される電流制御特性の誤差を低減できる。その結果、異なる不揮発性記憶装置でメモリセル11を動作させるのにより最適な電圧を印加することができ、より不揮発性記憶装置の誤動作やばらつきを抑えることができる。
次に、本変形例の不揮発性記憶装置の製造方法の一例について説明する。
図9A〜図9Cは、本変形例に係るメモリセルアレイ10及びパラメータ発生回路20の製造方法の一例について説明するための断面図である。
本変形例の不揮発性記憶装置の製造方法は、図5A〜図5Iの不揮発性記憶装置の製造方法に対して、図5G及び図5Hに示す工程が異なる。つまり、本変形例の不揮発性記憶装置の製造方法は、導電性短絡層151を形成する工程で、第4の配線219と、第4の配線219と第4の上部電極層213とを接続する評価セル21のプラグ307bとを形成し、評価セル21のプラグ307bの一部(第4の上部電極層213及び第4の下部電極層211と接する部分)を導電性短絡層151とする点で実施の形態1の不揮発性記憶装置の製造方法と異なる。
以下、実施の形態1の不揮発性記憶装置の製造方法と異なる点を中心に説明する。
まず、実施の形態1で説明した図5A〜図5Fに示す工程を経た後、図9Aに示すように、第1の抵抗変化素子141の第3の上部電極層113に接続するプラグ307aを形成するためのコンタクトホール318aと、評価セル21を構成する第2の抵抗変化素子241の側面に接続するプラグ307bを形成するためのコンタクトホール318bと、第2の配線119及び第4の配線219を形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。ここで、コンタクトホール318bを形成するドライエッチング工程で評価セル21を構成する第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の一部(側面)を露出させる。第2の抵抗変化素子241の側面が露出したコンタクトホール318bには、後の図9Bに示す工程で、導電体が埋め込まれ、プラグ307bが形成される。
具体的に、図9Aに示すように、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を覆うように、プラグ307a及び307b並びに第2の配線119及び第4の配線219を埋め込み形成するための第3の層間絶縁層116を堆積する。その後、フォトリソグラフィー及びドライエッチングにより、第3の層間絶縁層116中に、第1の抵抗変化素子141を構成する第3の上部電極層113に接続するプラグ307aと、評価セル21を構成する第2の抵抗変化素子241の側面に接続するプラグ307bとを埋め込み形成するためのコンタクトホール318a及び318bを形成する。このとき、コンタクトホール318bを形成するドライエッチング工程で、評価セル21を構成する第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の一部を露出させる。コンタクトホール318a及び318bの形成とともに、フォトリソグラフィー及びドライエッチングにより、第2の配線119及び第4の配線219を埋め込み形成するための配線溝119a及び219aを形成する。さらに、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を設けていない所定の位置に、第1の配線103及び第3の配線203に接続するプラグ107b及び207bを形成するためのコンタクトホール118b及び218bを形成する。
次に、図9Bに示すように、基板100の上面に垂直な方向から見て、評価セル21のプラグ307bの中心位置と第2の抵抗変化層212の中心位置とが異なるように導電性短絡層151を形成する。言い換えると、基板100の上面に垂直な方向から見て、導電性短絡層151の輪郭の少なくとも一部が第2の抵抗変化層212の輪郭よりも外側に存在するように導電性短絡層151を形成する。具体的に、コンタクトホール118b及び218b、コンタクトホール318a及び318b並びに配線溝119a及び219a内にタンタル窒化物(5nm以上40nm以下)及びタンタル(5nm以上40nm以下)で構成される第3のバリアメタル層117及び217と配線材料の銅(50nm以上300nm以下)とをスパッタ法等を用いて堆積する。ここでは、図5Aで示した第1の配線103及び第3の配線203を埋め込み形成する工程と同様の条件を用いる。そして、電解めっき法等により、銅をシードとして銅をさらに堆積させることでコンタクトホール118b及び218b、コンタクトホール318a及び318b並びに配線溝119a及び219aを全て配線材料の銅と第3のバリアメタル層117及び217とで充填する。続いて、CMP法によって堆積した銅のうち表面の余分な銅と余分な第3のバリアメタル層117及び217とを除去することにより、表面が平坦で第3の層間絶縁層116の表面と面一な第2の配線119及び第4の配線219を形成する。これにより、図9Aに示すコンタクトホール318aの形成により露出された、評価セル21の第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面に、第3のバリアメタル層217と配線材料の銅とが形成され、抵抗値が低い導電性短絡層151が形成される。導電性短絡層151により、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することが可能な評価セル21を形成することができる。
次に、図9Cに示すように、第2の配線119及び第4の配線219並びに第3の層間絶縁層116上に第2の配線119及び第4の配線219を覆うように、プラズマCVD等を用いて窒化シリコン層を30nm以上200nm以下、例えば50nm程度堆積させて第2のライナー層120を形成する。
以上のように本変形例の不揮発性記憶装置の製造方法によれば、実施の形態1と同様の効果が得られる。
また、本変形例の不揮発性記憶装置の製造方法によれば、プラグ307bと導電性短絡層151とを同時に形成することができ、製造工程数を低減することができる。
(実施の形態1の変形例2)
次に、本発明の実施の形態1における変形例2について説明する。
次に、本発明の実施の形態1における変形例2について説明する。
図10は本変形例に係る不揮発性記憶装置の一部の構成例を示す平面図である。図11は本変形例に係るパラメータ発生回路20の構成例を示す断面図である。図12は本変形例に係る不揮発性記憶装置の構成例を示す断面図である。なお、図11は図10中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図12は図10中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
以下、説明の簡便のため、本変形例2について、実施の形態1の変形例1の不揮発性記憶装置と異なる点を中心に説明する。すなわち、本変形例における図10〜図12の説明のうち、変形例1の図6〜図8の説明と同様の部分については説明を省略する。
本実施例の不揮発性半導体装置は、基板100の上面に垂直な方向から見て、評価セル21のプラグ307bつまり導電性短絡層151の輪郭の全部が第2の抵抗変化層212の輪郭よりも外側に存在する点で、変形例1と異なる。
基板100の上面に垂直な方向から見て、評価セル21のプラグ307bの底面の面積(導電性短絡層151の面積)は、メモリセル11のプラグ307aの底面の面積より大きく、第2の抵抗変化層212の面積よりも大きい。基板100の上面に垂直な方向から見て、メモリセル11のプラグ307aの底面の面積は、第1の抵抗変化層112の面積よりも小さい。
プラグ307a及び307bの底面は、基板100の上面に垂直な方向から見て、その形状が略同じであるが、その大きさ及び第1の抵抗変化素子141(第3の上部電極層113)又は第2の抵抗変化素子241(第4の上部電極層213)と接する位置が異なる。
基板100の上面に垂直な方向から見て、導電性短絡層151の中心位置と、評価セル21を構成する第2の抵抗変化素子241の第2の抵抗変化層212の中心位置とが同じである。
導電性短絡層151は、基板100の上面に垂直な方向から見て、x方向の最大幅とy方向の最大幅とが同じ形状、例えば円形状となっており、第2の抵抗変化素子241を囲むように形成される。
以上のように本変形例の不揮発性記憶装置によれば、実施の形態1又は変形例1と同様の効果が得られる。
さらに、本変形例の不揮発性記憶装置によれば、第2の抵抗変化素子241の全ての側面に導電性短絡層151が形成されているため、導電性短絡層151の抵抗値をより低くすることができ、第2の電流制御素子242で検出される電流制御特性の誤差をより低減できる。
次に、本変形例の不揮発性記憶装置の製造方法について、変形例1の不揮発性記憶装置の製造方法と異なる点を中心に説明し、重複する点については説明を省略する場合がある。すなわち、本変形例における図13A〜図13Cの説明のうち、変形例1の図9A〜図9Cの説明と重複する部分については説明を省略する。
図13A〜図13Cは本変形例に係るメモリセルアレイ10及びパラメータ発生回路20の製造方法の一例について説明するための断面図である。
本変形例の不揮発性記憶装置の製造方法は、図5A〜図5Iの不揮発性記憶装置の製造方法に対して、図5G及び図5Hに示す工程が異なる。また、変形例1に示した製造方法に対して、特に図9Aで示す工程が異なる。
まず、実施の形態1で説明した図5A〜図5Fに示す工程を経た後、図13Aに示すように、第1の抵抗変化素子141の第3の上部電極層113に接続するプラグ307aを形成するためのコンタクトホール318aと、評価セル21を構成する第2の抵抗変化素子241の側面全面に接続し、第2の抵抗変化素子241より大きいプラグ307bを形成するためのコンタクトホール318bと、第2の配線119及び第4の配線219を形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。ここで、コンタクトホール318bを形成するドライエッチング工程で評価セル21の第2の抵抗変化素子241の上部全面を露出させる。第2の抵抗変化素子241の上部全面とは、第4の上部電極層213の上面の全領域及び側面の全領域、第2の抵抗変化層212の側面の全領域、並びに第4の下部電極層211の側面の少なくとも一部を意味する。第2の抵抗変化素子241の上部全面が露出したコンタクトホール318bには、後の図13Bに示す工程で、導電体が埋め込まれ、プラグ307bが形成される。基板100の上面に垂直な方向から見たとき、コンタクトホール318bは、第2の抵抗変化素子241より大きい。
具体的には、第3の層間絶縁層116を堆積した後、フォトリソグラフィー及びドライエッチングにより、第3の層間絶縁層116中に、第1の抵抗変化素子141を構成する第3の上部電極層113に接続するプラグ307aと、評価セル21を構成する第2の抵抗変化素子241の上部全面に接続するプラグ307bとを埋め込み形成するためのコンタクトホール318a及び318bを形成する。このとき、コンタクトホール318bを形成するドライエッチング工程で、評価セル21を構成する第2の抵抗変化素子241の上部全面を露出させる。
次に、図13Bに示すように、基板100の上面に垂直な方向から見て、導電性短絡層151の全部が第2の抵抗変化層212の輪郭よりも外側に存在するように導電性短絡層151を形成する。その後、図13Cに示すように、第2のライナー層120を形成する。
以上のように本変形例の不揮発性記憶装置の製造方法によれば、実施の形態1又は変形例1と同様の効果が得られる。
さらに、本変形例の不揮発性記憶装置の製造方法によれば、評価セル21の第2の抵抗変化素子241の全面を被覆するように導電性短絡層151が形成されるので、プロセスマージンのある安定した動作が可能な評価セル21を製造することができる。
(実施の形態2)
本発明の実施の形態2に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
本発明の実施の形態2に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
図14は本実施の形態に係るパラメータ発生回路20aの構成例を示す断面図である。図15は本実施の形態に係る不揮発性記憶装置の構成例を示す断面図である。なお、本実施の形態に係る不揮発性記憶装置の平面図は図2と同様である。図14は図2中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図15は図2中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本実施の形態の不揮発性記憶装置は、第1の電流制御素子142と第2の電流制御素子242との側面が絶縁性サイドウォール501a及び501bに覆われている点で実施の形態1の不揮発性記憶装置と異なる。
なお、配線溝内に第3のバリアメタル層117が設けられずに第3のバリアメタル層117が第2の配線119に置き換えられ、配線溝内に第3のバリアメタル層217が設けられずに第3のバリアメタル層217が第4の配線219に置き換えられてもよい。本実施の形態の図14〜図19Hにおいては、配線溝内の第3のバリアメタル層117が第2の配線119の一部であり、配線溝内の第3のバリアメタル層217が第4の配線219の一部であるとして説明する。この場合、導電性短絡層151は、第4の配線219の一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成される。
以下に、本実施の形態に係る不揮発性記憶装置の一例について詳細に説明する。
図14及び図15に示すメモリセル11a及び評価セル21aは、図3C及び図4に示すメモリセル11及び評価セル21に対して、第2の電流制御素子242の側面に絶縁性サイドウォール501bを備え、第1の電流制御素子142の側面に絶縁性サイドウォール501aを備えた構造である。言い換えると、評価セル21aを構成する第2の電流制御素子242とメモリセル11aを構成する第1の電流制御素子142の側面に絶縁性サイドウォール501b及び501aが形成されている以外は、メモリセル11a及び評価セル21aは実施の形態1のメモリセル11及び評価セル21と同様の構成である。
以上のように、本実施の形態の不揮発性記憶装置によれば、実施の形態1の不揮発性記憶装置と同様の効果が得られる。
さらに、本実施の形態の不揮発性記憶装置によれば、第1の電流制御素子142及び第2の電流制御素子242の側面に絶縁性サイドウォール501a及び501bを備えるため、プロセスマージンのある安定した動作が可能なメモリセル11a及び評価セル21aを実現できる。
次に、上述した不揮発性記憶装置の製造方法、具体的にはメモリセルアレイ10a及びパラメータ発生回路20aの製造方法の一例について説明する。
16A〜図16Fは本実施の形態に係るメモリセルアレイ10a及びパラメータ発生回路20aの製造方法の一例について説明するための断面図である。
本実施の形態の製造方法は、図5A〜図5Iの不揮発性記憶装置の製造方法に対して、図5Fからの工程が異なる。つまり、本実施の形態の不揮発性記憶装置の製造方法は、素子形成工程が、導電性短絡層151を形成する工程の前に、第1の電流制御素子142および第2の電流制御素子242の側面に、絶縁性サイドウォール501a及び501bを形成する工程を有する点で実施の形態1の不揮発性記憶装置の製造方法と異なる。言い換えると、パターニングにより各素子(第1の抵抗変化素子141と第2の抵抗変化素子241と第1の電流制御素子142と第2の電流制御素子242)を形成する工程の後に、第1の電流制御素子142及び第2の電流制御素子242の側面に絶縁性サイドウォール501a及び501bを形成する工程を有する点で実施の形態1の不揮発性記憶装置の製造方法と異なる。
以下、本実施の形態に係る不揮発性記憶装置の製造方法の一例について、詳細に説明する。
まず、実施の形態1で説明した図5A〜図5Eに示す工程を経た後、16Aに示すように、第1の抵抗変化素子141と第2の抵抗変化素子241と第1の電流制御素子142と第2の電流制御素子242と第2の層間絶縁層105とを覆うように、プラズマCVDを用いて、シリコン窒化膜からなる絶縁層501(膜厚は170nm)を第2の層間絶縁層105上に堆積する。
次に、図16Bに示すように、絶縁層501に対してエッチバック(異方性エッチング)を行うことで、第3の上部電極層113及び第4の上部電極層213の上面と、第2の層間絶縁層105の上面と、第1の抵抗変化素子141及び第2の抵抗変化素子241の側面とに堆積した絶縁層501を除去する。このようにエッチバックを行うことにより、第1の電流制御素子142の側面に絶縁性サイドウォール501aを形成し、かつ第2の電流制御素子242の側面に絶縁性サイドウォール501bを形成することができる。
ここで、例えば、絶縁層501をエッチングする方法として反応性イオンエッチング(RIE)を用いる方法がある。反応性イオンエッチングを用いた場合、一般的に、イオン入射方向(縦方向)へのエッチング速度が、そうでない方向(横方向)へのエッチング速度より圧倒的に速い。そのため、反応性イオンエッチングを用いてエッチバックを行うことにより、第1の電流制御素子142及び第2の電流制御素子242の側面(側壁)にのみ絶縁層501を残すことができ、絶縁性サイドウォール501a及び501b(膜厚150nm)を容易に形成することができる。
次に、図16C及び図16Dに示すように、第1の抵抗変化素子141と、第2の抵抗変化素子241と、第1の電流制御素子142の側面に形成された絶縁性サイドウォール501aと、第2の電流制御素子242の側面に形成された絶縁性サイドウォール501bとを覆うように、第3の層間絶縁層116を形成する。その後、形成した第3の層間絶縁層116中に、第1の抵抗変化素子141の第3の上部電極層113に接続する第2の配線119と、評価セル21aを構成する第2の抵抗変化素子241の側面に接続する第4の配線219とを形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。具体的な形成方法として、実施の形態1における図5F及び図5Gの説明と同様の方法を用いることができる。
このとき、第2の電流制御素子242の側面に絶縁性サイドウォール501bが形成されている。従って、配線溝219aを形成するドライエッチング工程で第3の層間絶縁層116をエッチングしすぎて、配線溝219aの底面が第4の下部電極層211の下面よりも深くなっても、絶縁性サイドウォール501bが形成されているため、第2の電流制御素子242の側面が露出することはない。これにより、後に配線溝219aが導電体で埋め込まれても、埋め込まれた導電体が第2の電流制御素子242の側面に付着することがない。これにより、例えば、ドライエッチング工程のプロセスばらつきが大きい場合であっても、第2の電流制御素子242の短絡を防ぐことができる。したがって、プロセスマージンを大きくすることができる。
次に、図16Eに示すように、第2の配線119及び第4の配線219を形成する。具体的な形成方法は、実施の形態1における図5Hの説明と同様の方法を用いることができる。これにより、図16Dに示す評価セル21aの第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面に第4の配線219の一部が接し、これが導電性短絡層151となる。これにより、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することが可能な評価セル21aを形成することができる。
次に、図16Fに示すように、第2のライナー層120を形成する。
以上のように、本実施の形態の不揮発性記憶装置の製造方法によれば、実施の形態1と同様の効果が得られる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、導電性短絡層151を形成する前に、第1の電流制御素子142の側面に絶縁性サイドウォール501aを形成し、第2の電流制御素子242の側面に絶縁性サイドウォール501bを形成する。従って、絶縁性サイドウォールを形成した後に行われる導電性短絡層151を形成する工程のプロセスマージンが増加し、第2の電流制御素子242を安定的に製造することができる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、第1の電流制御素子142及び第2の電流制御素子242は同時に形成され、側壁部に形成する絶縁性サイドウォール501a及び501bも同時に形成されるため、同じ非線形電流制御特性を有する第1の電流制御素子142及び第2の電流制御素子242を形成することができる。
なお、本実施の形態においても実施の形態1の変形例1及び2と同様に、導電性短絡層151が第4の配線219と第4の上部電極層213との間に配置されたプラグ307bから構成されてもよい。
(実施の形態2の変形例1)
次に、本発明の実施の形態2における変形例1について説明する。
次に、本発明の実施の形態2における変形例1について説明する。
図17は本変形例に係るパラメータ発生回路20aの構成例を示す断面図である。図18は本変形例に係る不揮発性記憶装置の構成例を示す断面図である。なお、本実施の形態に係る不揮発性記憶装置の平面図は図2と同様である。図17は図2中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図18は図2中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本変形例の不揮発性記憶装置は、第1の抵抗変化素子141の側面が絶縁性サイドウォール501aに覆われている点で実施の形態2の不揮発性記憶装置と異なる。
具体的に、図17及び図18に示す評価セル21aは、図14及び図15に示す評価セル21aと同様の構成を持つ。しかし、図18に示すメモリセル11aは、絶縁性サイドウォール501aが第1の抵抗変化素子141の側面及び第1の電流制御素子142の側面に形成された構成を持つ。従って、メモリセル11aの絶縁性サイドウォール501aが形成されている領域が異なるだけで、第2の電流制御素子242の構成、第2の電流制御素子242の構成及び絶縁性サイドウォール501bが形成されている領域は図14及び図15の評価セル21aと図17及び図18の評価セル21aとで同様である。
以上のように本変形例の不揮発性記憶装置によれば、実施の形態2と同様の効果が得られる。
また、本変形例の不揮発性記憶装置によれば、第1の抵抗変化素子141の側面が絶縁性サイドウォール501aで覆われている。従って、第2の配線119及び第4の配線219を同じ深さで形成しても、第1の抵抗変化素子141で短絡を生じさせず、第2の抵抗変化素子241でのみ短絡を生じさせることができる。そのため、不揮発性記憶装置の製造を容易にし、製造コストを低減させることができる。
次に、本変形例の不揮発性記憶装置の製造方法の一例について説明する。
図19A〜図19Hは本変形例に係るメモリセルアレイ10a及びパラメータ発生回路20aの製造方法の一例について説明するための断面図である。
本変形例の不揮発性記憶装置の製造方法は、16A〜図16Fの不揮発性記憶装置の製造方法に対して、図16Bからの工程が異なる。つまり、本変形例の不揮発性記憶装置の製造方法は、絶縁性サイドウォール501a及び501bを形成する工程で、第1の抵抗変化素子141の側面に、絶縁性サイドウォール501aを形成するという点で実施の形態2の不揮発性記憶装置の製造方法と異なる。具体的に、メモリセル11aを構成する第1の抵抗変化素子141及び第1の電流制御素子142の側面に絶縁性サイドウォール501aを形成し、評価セル21aを構成する第2の抵抗変化素子241の側面の絶縁性サイドウォール501bを選択的に除去し、第2の電流制御素子242の側面にのみ絶縁性サイドウォール501bを形成するという点で実施の形態2の不揮発性記憶装置の製造方法と異なる。
以下、実施の形態2の不揮発性記憶装置の製造方法と異なる点を中心に説明し、重複する点については説明を省略する場合がある。具体的には、本変形例における図19A〜図19Hの説明のうち、実施の形態2の16A〜図18の説明と重複する部分については説明を省略する。
まず、実施の形態1で説明した図5A〜図5Eに示す工程を経た後、図19Aに示すように、第1の抵抗変化素子141と第1の電流制御素子142と第2の抵抗変化素子241と第2の電流制御素子242と第2の層間絶縁層105とを覆うように、絶縁層501を第2の層間絶縁層105上に堆積する。
次に、図19Bに示すように、絶縁層501に対してエッチバック(異方性エッチング)を行うことで、絶縁性サイドウォール501a及び501bを形成することができる。ただし、絶縁性サイドウォール501aが、第1の電流制御素子142だけでなく第1の抵抗変化素子141の側面をも覆っており、絶縁性サイドウォール501bが、第2の電流制御素子242だけでなく第2の抵抗変化素子241の側面をも覆っている点で、実施の形態2の図16Bと異なる。
次に、図19Cに示すように、評価セル21aを構成する第2の抵抗変化素子241の側面に形成された絶縁性サイドウォール501bを選択的に除去するため、第3のレジストマスクパターン511を評価セル21aが形成されている領域以外の領域を覆うように形成する。
次に、図19Dに示すように、評価セル21aを構成する第2の抵抗変化素子241の側面に形成されている絶縁性サイドウォール501bをエッチングにより除去する。エッチング方法としては、例えば、実施の形態1の図16Bに示す方法(異方性エッチング)を用いてエッチング時間を調整することが考えられる。これにより、選択的に評価セル21aを構成する第2の抵抗変化素子241の側面に形成されている絶縁性サイドウォール501bのみをエッチングすることができ、第2の電流制御素子242の側面のみに絶縁性サイドウォール501bを形成することができる。その後、アッシング処理により、第3のレジストマスクパターン511を除去する。
次に、図19E及び図19Fに示すように、第3の層間絶縁層116を形成し、第3の層間絶縁層116中に、配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。
このとき、絶縁性サイドウォール501aはメモリセル11aを構成する第1の抵抗変化素子141及び第1の電流制御素子142の側面に形成されている。従って、配線溝119aを形成するとき、評価セル21aの第2の抵抗変化素子241の側面が露出する配線溝219aと同様に、配線溝119aの底面が第3の下部電極層111の下面よりも深くなるように形成しても、絶縁性サイドウォール501aによりメモリセル11aを構成する第1の抵抗変化素子141及び第1の電流制御素子142の側面が露出することがない。従って、配線溝119a及び配線溝219aを同時に形成することができる。
次に、図19Gに示すように、第2の配線119及び第4の配線219を形成する。これにより、図19Fに示す評価セル21aの第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面に第4の配線219の一部が接し、これが導電性短絡層151となる。これにより、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することが可能な評価セル21aを形成することができる。
次に、図19Hに示すように、第2のライナー層120を形成する。
以上のように本変形例の不揮発性記憶装置の製造方法によれば、実施の形態2と同様の効果が得られる。
また、本変形例の不揮発性記憶装置の製造方法によれば、絶縁性サイドウォール501aがメモリセル11aを構成する第1の抵抗変化素子141の側面にも形成されているため、配線溝119a及び配線溝219aを同時に形成することができる。従って、導電性短絡層151を形成する工程のプロセスマージンが増加し、第2の電流制御素子242を安定的に製造することができ、製造工程数が減少し、製造コストを低減することができる。
(第3の実施の形態)
本発明の実施の形態3に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
本発明の実施の形態3に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
図20は本実施の形態に係る不揮発性記憶装置の一部の構成例を示す平面図である。図21は本実施の形態に係るパラメータ発生回路20bの構成例を示す断面図である。図22は本実施の形態に係る不揮発性記憶装置の構成例を示す断面図である。なお、図21は図20中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図22は図20中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本実施の形態の不揮発性記憶装置は、基板100の上面に垂直な方向から見て、第2の電流制御素子242の第2の電流制御層209の面積が第2の抵抗変化素子241の第2の抵抗変化層212の面積より大きく、かつ、第1の電流制御素子142の第1の電流制御層109の面積が第1の抵抗変化素子141の第1の抵抗変化層112の面積より大きい点で実施の形態1の不揮発性記憶装置と異なる。言い換えると、基板100の上面に垂直な方向から見て、第2の電流制御素子242が第2の抵抗変化素子241より大きい面積を有し、第1の電流制御素子142が第1の抵抗変化素子141より大きい面積を有する点で実施の形態1の不揮発性記憶装置と異なる。
なお、配線溝内に第3のバリアメタル層117が設けられずに第3のバリアメタル層117が第2の配線119に置き換えられ、配線溝内に第3のバリアメタル層217が設けられずに第3のバリアメタル層217が第4の配線219に置き換えられてもよい。本実施の形態の図20〜図23Gにおいては、配線溝内の第3のバリアメタル層117が第2の配線119の一部であり、配線溝内の第3のバリアメタル層217が第4の配線219の一部であるとして説明する。この場合、導電性短絡層151は、第4の配線219の一部(第2の抵抗変化素子241の側面つまり第4の上部電極層213及び第4の下部電極層211の側面と接する部分を含む側方に位置する部分)から構成される。
以下に、本実施の形態に係る不揮発性記憶装置の一例について詳細に説明する。
図21及び図22に示すメモリセル11b及び評価セル21bは、図3C及び図4に示すメモリセル11及び評価セル21に対して、基板100の上面に垂直な方向から見たときの第1の抵抗変化素子141が第1の電流制御素子142より小さく、第2の抵抗変化素子241が第2の電流制御素子242より小さくなるように形成した構造である。言い換えると、基板100の上面に垂直な方向から見たときの第1の電流制御素子142及び第2の電流制御素子242の面積が第1の抵抗変化素子141及び第2の抵抗変化素子241の面積より大きく形成されている以外は、メモリセル11b及び評価セル21bは実施の形態1のメモリセル11及び評価セル21と同様の構成である。
基板100の上面に垂直な方向から見たとき、第1の電流制御素子142の面積(具体的には、第1の上部電極層110と接する第1の電流制御層109の面積及び第1の下部電極層108と接する第1の電流制御層109の面積)は、第1の抵抗変化素子141の面積(具体的には、第3の上部電極層113と接する第1の抵抗変化層112の面積及び第3の下部電極層111と接する第1の抵抗変化層112の面積)より大きい。
基板100の上面に垂直な方向から見たとき、第2の電流制御素子242の面積(具体的には、第2の上部電極層210と接する第2の電流制御層209の面積及び第2の下部電極層208と接する第2の電流制御層209の面積)は、第2の抵抗変化素子241の面積(具体的には、第4の上部電極層213と接する第2の抵抗変化層212の面積及び第4の下部電極層211と接する第2の抵抗変化層212の面積)より大きい。
以上のように、本実施の形態の不揮発性記憶装置によれば、実施の形態1の不揮発性記憶装置と同様の効果が得られる。
さらに、本実施の形態の不揮発性記憶装置によれば、第1の電流制御素子142の面積を大きくして第1の電流制御素子142の許容電流を大きくすることが可能であるため、安定した動作のメモリセル11bを実現できる。
次に、上述した不揮発性記憶装置の製造方法、具体的にはメモリセルアレイ10b及びパラメータ発生回路20bの製造方法の一例について説明する。
図23A〜図23Gは本実施の形態に係るメモリセルアレイ10b及びパラメータ発生回路20bの製造方法の一例について説明するための断面図である。
本実施の形態の製造方法は、図5A〜図5Iの不揮発性記憶装置の実施の形態1の製造方法に対して、図5Eからの工程が異なる。つまり、本実施の形態の不揮発性記憶装置の製造方法は、素子形成工程で、基板100の上面に垂直な方向から見て、第1の抵抗変化素子141の第1の抵抗変化層112の面積が第1の電流制御素子142の第1の電流制御層109の面積より小さく、かつ、第2の抵抗変化素子241の第2の抵抗変化層212の面積が第2の電流制御素子242の第2の電流制御層209の面積より小さくなるように、第1の電流制御素子142、第1の抵抗変化素子141、第2の電流制御素子242及び第2の抵抗変化素子241を形成する点で実施の形態1の不揮発性記憶装置の製造方法と異なる。言い換えると、パターニングにより各素子を形成する工程において、第1の抵抗変化素子141及び第2の抵抗変化素子241の形成のための第1のレジストマスクパターン131aを形成し、第1のレジストマスクパターン131aを用いて、第1の抵抗変化素子141及び第2の抵抗変化素子241を形成した後、第1のレジストマスクパターン131aより大きく、第1の抵抗変化素子141及び第2の抵抗変化素子241を覆う第2のレジストマスクパターン131bを形成し、形成された第2のレジストマスクパターン131bを用いて、第1の電流制御素子142及び第2の電流制御素子242を形成する点で実施の形態1の不揮発性記憶装置の製造方法と異なる。
以下、本実施の形態に係る不揮発性記憶装置の製造方法の一例について、詳細に説明する。
まず、実施の形態1で説明した図5A〜図5Dに示す工程を経た後、図23Aに示すように、第1のレジストマスクパターン131aによりパターニングされたハードマスク層125を用いて、第4の導電層313、第1の酸化物層312a、第2の酸化物層312b及び第3の導電層311をドライエッチングによりパターニングする。これにより、第1の抵抗変化素子141を構成する第3の上部電極層113、第1の抵抗変化層112及び第3の下部電極層111と、第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211とが形成される。つまり、第1の抵抗変化素子141及び第2の抵抗変化素子241が形成される。
次に、図23Bに示すように、図23Aで形成された第1の抵抗変化素子141と第2の抵抗変化素子241とを覆うように、換言すると第1の抵抗変化素子141と第2の抵抗変化素子241とが露出しないように、第1のレジストマスクパターン131aより大きい第2のレジストマスクパターン131bを、フォトリソグラフィーを用いて形成する。第2のレジストマスクパターン131bは、第1のレジストマスクパターン131aより大きく、かつ、第1のレジストマスクパターン131aによりパターニングされた第3の上部電極層113と第1の抵抗変化層112と第3の下部電極層111とで構成される第1の抵抗変化素子141と、第4の上部電極層213と第2の抵抗変化層212と第4の下部電極層211とで構成される第2の抵抗変化素子241と、ハードマスク層125とを覆うものである。
次に、図23Cに示すように、図23Bで形成された第2のレジストマスクパターン131bを用いて、第2の導電層310、電流制御層309及び第1の導電層308をドライエッチングによりパターニングする。これにより、第1の電流制御素子142を構成する第1の上部電極層110、第1の電流制御層109及び第1の下部電極層108と、第2の電流制御素子242を構成する第2の上部電極層210、第2の電流制御層209及び第2の下部電極層208とが形成される。その後、アッシング処理により第2のレジストマスクパターン131bを除去し、ハードマスク層125を例えばエッチングにより除去する。なお、ハードマスク層125は、除去しなくてもよく、必要に応じて残してもよい。
次に、図23D及び図23Eに示すように、第1の抵抗変化素子141、第2の抵抗変化素子241、第1の電流制御素子142及び第2の電流制御素子242を覆うように、第3の層間絶縁層116を形成する。その後、形成した第3の層間絶縁層116中に、第1の抵抗変化素子141の第3の上部電極層113に接続する第2の配線119と、評価セル21bを構成する第2の抵抗変化素子241の側面に接続する第4の配線219とを形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。具体的な形成方法として、実施の形態1における図5F及び図5Gの説明と同様の方法を用いることができる。
次に、図23Fに示すように、第2の配線119及び第4の配線219を形成する。具体的な形成方法は、実施の形態1における図5Hの説明と同様の方法を用いることができる。これにより、図23Eに示す評価セル21bの第2の抵抗変化素子241を構成する第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面に第4の配線219の一部が接し、これが導電性短絡層151となる。これにより、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することが可能な評価セル21bを形成することができる。
次に、図23Gに示すように、第2のライナー層120を形成する。
以上のように、本実施の形態の不揮発性記憶装置の製造方法によれば、実施の形態1と同様の効果が得られる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、第1の電流制御素子142の面積を大きくして第1の電流制御素子142の許容電流を大きくすることが可能であるため、安定した動作の不揮発性記憶装置を実現できる。
なお、本実施の形態においても実施の形態1の変形例1及び2と同様に、導電性短絡層151が第4の配線219と第4の上部電極層213との間に配置されたプラグ307bから構成されてもよい。
(実施の形態3の変形例1)
次に、本発明の実施の形態3における変形例1について説明する。
次に、本発明の実施の形態3における変形例1について説明する。
図24は本変形例に係るパラメータ発生回路20bの構成例を示す断面図である。図25は本変形例に係る不揮発性記憶装置の構成例を示す断面図である。なお、本実施の形態に係る不揮発性記憶装置の平面図は図20と同様である。図24は図20中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図25は図20中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本変形例の不揮発性記憶装置は、導電性短絡層151が導電性サイドウォールであり、第2の抵抗変化素子241の側面が導電性サイドウォール601aで覆われており、第1の抵抗変化素子141の側面が導電性サイドウォールで覆われていない点で実施の形態3の不揮発性記憶装置と異なる。
具体的に、図25に示すメモリセル11bは、図22に示すメモリセル11bと同様の構成を持つ。しかし、図24及び図25に示す評価セル21bは、図21及び図22に示す評価セル21bに対して、導電性サイドウォール601aが第2の抵抗変化素子241の側面に形成された構成を持つ。従って、評価セル21bを構成する第2の抵抗変化素子241の側壁部に導電性サイドウォール601aが形成されているだけで、第2の電流制御素子242の構成及び第2の電流制御素子242の構成は図21及び図22の評価セル21bと図24及び図25の評価セル21bとで同様である。
以上のように本変形例の不揮発性記憶装置によれば、実施の形態3と同様の効果が得られる。
次に、本変形例の不揮発性記憶装置の製造方法の一例について説明する。
図26A〜図26Iは本変形例に係るメモリセルアレイ10b及びパラメータ発生回路20bの製造方法の一例について説明するための断面図である。
本変形例の不揮発性記憶装置の製造方法は、図23A〜図23Gの不揮発性記憶装置の製造方法に対して、図23Bからの工程が異なる。つまり、本変形例の不揮発性記憶装置の製造方法は、導電性短絡層151を形成する工程で、第2の抵抗変化素子241の第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面を覆う導電性サイドウォール601aを形成し、導電性サイドウォール601aを導電性短絡層151とするという点で実施の形態3の不揮発性記憶装置の製造方法と異なる。具体的に、第1の抵抗変化素子141及び第2の抵抗変化素子241の側面に導電性サイドウォール601aを形成し、導電性サイドウォール601aをマスクとして第1の電流制御素子142及び第2の電流制御素子242を形成した後、メモリセル11bを構成する第1の抵抗変化素子141の側面の導電性サイドウォール601aを選択的に除去し、評価セル21bを構成する第2の抵抗変化素子241の側面のみに導電性サイドウォール601aを形成するという点で実施の形態3の不揮発性記憶装置の製造方法と異なる。
以下、実施の形態3の不揮発性記憶装置の製造方法と異なる点を中心に説明し、重複する点については説明を省略する場合がある。具体的には、本変形例における図26A〜図26Iの説明のうち、実施の形態3の図23B〜図23Gの説明と重複する部分については説明を省略する。
まず、実施の形態1で説明した図5A〜図5D及び図23Aに示す工程を経た後、図26Aに示すように、ハードマスク層125を除去し、第1の抵抗変化素子141と第2の抵抗変化素子241と第2の導電層310とを覆うように、チタン窒化膜からなる導電層601(膜厚は170nm)を堆積する。
次に、図26Bに示すように、導電層601に対してエッチバック(異方性エッチング)を行うことで、第3の上部電極層113及び第4の上部電極層213の上面と、第2の導電層310の上面とに堆積した導電層601を除去する。このようにエッチバックを行うことにより、第1の抵抗変化素子141及び第2の抵抗変化素子241の双方の側面に導電性サイドウォール601aを形成することができる。
ここで、例えば、導電層601をエッチングする方法は、実施の形態2の図16Bの説明と同様である。これにより、側壁部分にのみ導電層601を残すことができ、導電性サイドウォール601aを形成することができる。
次に、図26Cに示すように、第1の抵抗変化素子141及び第2の抵抗変化素子241の側面に形成された導電性サイドウォール601aをマスクとして、第2の導電層310、電流制御層309及び第1の導電層308をドライエッチングによりパターニングする。これにより、第1の電流制御素子142を構成する第1の上部電極層110、第1の電流制御層109及び第1の下部電極層108と、第2の電流制御素子242を構成する第2の上部電極層210、第2の電流制御層209及び第2の下部電極層208とが形成される。つまり、基板100の上面に垂直な方向から見て、第1の抵抗変化素子141より面積の大きい第1の電流制御素子142と、第2の抵抗変化素子241より面積の大きい第2の電流制御素子242とが形成される。
次に、図26Dに示すように、メモリセル11bを構成する第1の抵抗変化素子141の側面に形成された導電性サイドウォール601aを選択的に除去するため、第4のレジストマスクパターン611をメモリセル11bが形成されている領域以外の領域を覆うように形成する。
次に、図26Eに示すように、メモリセル11bを構成する第1の抵抗変化素子141の側面に形成されている導電性サイドウォール601aをエッチングにより除去する。エッチング方法としては、例えば図26Bに示す方法を用いてエッチング時間を調整することが考えられる。これにより、選択的にメモリセル11bを構成する第1の抵抗変化素子141の側面に形成されている導電性サイドウォール601aのみをエッチングすることができ、評価セル21bを構成する第2の抵抗変化素子241の側面のみに導電性サイドウォール601aを形成することができる。その後、アッシング処理により、第4のレジストマスクパターン611を除去する。
次に、図26F及び図26Gに示すように、第3の層間絶縁層116を形成し、第3の層間絶縁層116中に、配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。
このとき、導電性サイドウォール601aは評価セル21bを構成する第2の抵抗変化素子241の側面に形成されているため、第2の抵抗変化素子241を構成する第4の上部電極層213が露出するように配線溝219aを形成すればよい。これは、メモリセル11bの第1の抵抗変化素子141を構成する第3の上部電極層113を露出させる配線溝119aと配線溝219aとを、第4の下部電極及び第3の下部電極に達しない浅い深さで同様に形成しても、後の工程で形成される第4の配線219と第2の電流制御素子242とは電気的に第2の抵抗変化層212を介さず導電性サイドウォール601aを介して接続するからである。その結果、第2の抵抗変化層212が高抵抗な状態であっても、第2の電流制御素子242の電流制御特性を検出することが可能な評価セル21bを形成することができる。つまり、配線溝119a及び配線溝219aを同時に形成することができる。
次に、図26Hに示すように、第2の配線119及び第4の配線219を形成する。
次に、図26Iに示すように、第2のライナー層120を形成する。
以上のように本変形例の不揮発性記憶装置の製造方法によれば、実施の形態3と同様の効果が得られる。
(第4の実施の形態)
本発明の実施の形態4に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
本発明の実施の形態4に係る不揮発性記憶装置の構成及び製造方法の一例について説明する。以下では、実施の形態1と異なる点を中心に説明する。
図27は本実施の形態に係るパラメータ発生回路20cの構成例を示す断面図である。図28は本実施の形態に係る不揮発性記憶装置の構成例を示す断面図である。なお、本実施の形態に係る不揮発性記憶装置の平面図は図2と同様である。図27は図2中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図28は図2中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図である。
本実施の形態の不揮発性記憶装置は、メモリセル11cで、第1の電流制御素子142と第1の抵抗変化素子141とが直列に接続され、第1の電流制御素子142が第1の抵抗変化素子141上に形成され、評価セル21cで、第2の電流制御素子242と第2の抵抗変化素子241とが直列に接続され、第2の電流制御素子242が第2の抵抗変化素子241上に形成される点で実施の形態1の不揮発性記憶装置と異なる。言い換えると、メモリセルアレイ10cは、第1の抵抗変化素子141が、第2の層間絶縁層105上に形成され、プラグ107aと電気的かつ物理的に接続されている第3の下部電極層111と、第3の下部電極層111上に形成された第1の抵抗変化層112と、第1の抵抗変化層112上に形成された第3の上部電極層113とから構成され、第1の電流制御素子142が、第3の上部電極層113上に形成された第1の下部電極層108と、第1の電流制御層109と、第1の上部電極層110とで構成される点で実施の形態1のメモリセルアレイ10と異なる。そして、パラメータ発生回路20cは、第2の抵抗変化素子241が、第2の層間絶縁層105上に形成され、プラグ207aと電気的かつ物理的に接続されている第4の下部電極層211と、第4の下部電極層211上に形成された第2の抵抗変化層212と、第2の抵抗変化層212上に形成された第4の上部電極層213とから構成され、第2の電流制御素子242が、第4の上部電極層213上に形成された第2の下部電極層208と、第2の電流制御層209と、第2の上部電極層210とで構成される点で実施の形態1のパラメータ発生回路20と異なる。
また、本実施の形態の不揮発性記憶装置は、導電性短絡層151が導電性サイドウォールであり、第2の抵抗変化素子241の側面が導電性サイドウォール601aで覆われており、第1の抵抗変化素子141の側面が導電性サイドウォールで覆われていない点でも実施の形態1の不揮発性記憶装置と異なる。
なお、配線溝内に第3のバリアメタル層117が設けられずに第3のバリアメタル層117が第2の配線119に置き換えられ、配線溝内に第3のバリアメタル層217が設けられずに第3のバリアメタル層217が第4の配線219に置き換えられてもよい。本実施の形態の図27〜図29Lにおいては、配線溝内の第3のバリアメタル層117が第2の配線119の一部であり、配線溝内の第3のバリアメタル層217が第4の配線219の一部であるとして説明する。
以下に、本実施の形態に係る不揮発性記憶装置の一例について詳細に説明する。
図27及び図28に示すメモリセル11c及び評価セル21cは、図3C及び図4に示すメモリセル11及び評価セル21に対して、第1の抵抗変化素子141上に第1の電流制御素子142を形成し、第2の抵抗変化素子241上に第2の電流制御素子242を形成し、導電性短絡層151を導電性サイドウォール601aとした構造である。つまり、第1の抵抗変化素子141及び第1の電流制御素子142の上下配置と、第2の抵抗変化素子241及び第2の電流制御素子242の上下配置とを逆にし、導電性短絡層151として導電性サイドウォール601aを形成した以外は、メモリセル11c及び評価セル21cは実施の形態1のメモリセル11及び評価セル21と同様の構成である。
以上のように、本実施の形態の不揮発性記憶装置によれば、実施の形態1の不揮発性記憶装置と同様の効果が得られる。
さらに、本実施の形態の不揮発性記憶装置によれば、第1の電流制御素子142及び第2の電流制御素子242が第1の抵抗変化素子141及び第2の抵抗変化素子241上に形成されている。従って、プロセスサーマルバジェットが少ない第1の電流制御素子142及び第2の電流制御素子242を形成することができ、安定した動作が可能なメモリセル11c及び評価セル21cを実現できる。
次に、上述した不揮発性記憶装置の製造方法、具体的にはメモリセルアレイ10c及びパラメータ発生回路20cの製造方法の一例について説明する。
図29A〜図29Lは本実施の形態に係るメモリセルアレイ10c及びパラメータ発生回路20cの製造方法の一例について説明するための断面図である。
本実施の形態の製造方法は、図5A〜図5Iの不揮発性記憶装置の実施の形態1の製造方法に対して、図5Bからの工程が異なる。つまり、本実施の形態の不揮発性記憶装置の製造方法は、素子形成工程が、基板100上に第3の導電層311を形成する工程と、第3の導電層311上に抵抗変化層312を形成する工程と、抵抗変化層312上に第4の導電層313を形成する工程と、第4の導電層313上に第1の導電層308を形成する工程と、第1の導電層308上に電流制御層309を形成する工程と、電流制御層309上に第2の導電層310を形成する工程と、第2の導電層310をパターニングして第1の上部電極層110と第2の上部電極層210とを形成する工程と、電流制御層309をパターニングして第1の電流制御層109と第2の電流制御層209とを形成する工程と、第1の導電層308をパターニングして第1の下部電極層108と第2の下部電極層208とを形成する工程と、第4の導電層313をパターニングして第3の上部電極層113と第4の上部電極層213とを形成する工程と、抵抗変化層312をパターニングして第1の抵抗変化層112と第2の抵抗変化層212とを形成する工程と、第3の導電層311をパターニングして第3の下部電極層111と第4の下部電極層211とを形成する工程とを有し、導電性短絡層151を形成する工程で、第2の抵抗変化素子241の第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211の側面を覆う導電性サイドウォール601aを形成し、導電性サイドウォール601aを導電性短絡層151とする点で実施の形態1の不揮発性記憶装置の製造方法と異なる。具体的に、メモリセル11cを構成する第1の電流制御素子142と評価セル21cを構成する第2の電流制御素子242とを同時に形成する工程と、第1の電流制御素子142及び第2の電流制御素子242を形成した後に、メモリセル11cを構成する第1の電流制御素子142の下方に接するように形成された第1の抵抗変化素子141と、評価セル21cを構成する第2の電流制御素子242の下方に接するように形成された第2の抵抗変化素子241とを形成する工程と、メモリセル11cと電気的に接続された第2の配線119と、評価セル21cと電気的に接続された第4の配線219とを形成する工程とを含み、パターニングにより各素子を形成する工程では、メモリセル11cを形成する第1の電流制御素子142の形成のためのパターニングと、第1の抵抗変化素子141の形成のためのパターニングとで同一のハードマスク層125が用いられ、評価セル21cを形成する第2の電流制御素子242の形成のためのパターニングと、第2の抵抗変化素子241の形成のためのパターニングとで同一のハードマスク層125が用いられ、評価セル21cを構成する第2の抵抗変化素子241の側面に導電性サイドウォール601aを導電性短絡層151として形成する点で実施の形態1の不揮発性記憶装置の製造方法と異なる。
以下、本実施の形態に係る不揮発性記憶装置の製造方法の一例について、詳細に説明する。
まず、実施の形態1で説明した図5Aに示す工程を経た後に、図29Aに示すように、プラグ107a及び207aを含む第2の層間絶縁層105上に、タンタル窒化物で構成される第3の導電層311(膜厚は30nm)と、第1の酸化物層312aと、第2の酸化物層312bと、イリジウムを含む第4の導電層313(膜厚は80nm)とを順にスパッタ法等を用いて堆積する。続いて、第4の導電層313上に、タンタル窒化物で構成される第1の導電層308(膜厚は20nm)と、窒素不足型のシリコン窒化物で構成される電流制御層309(膜厚は20nm)と、タンタル窒化物で構成される第2の導電層310(膜厚は30nm)とを順にスパッタ法等を用いて堆積する。その後、ドライエッチング時のハードマスクとして、導電性の層であって、チタン窒化物及びチタン−アルミニウム窒化物のいずれか(例えばチタン−アルミニウム窒化物)で構成されるハードマスク層325(膜厚は100nm)を、スパッタ法等を用いて堆積する。
次に、図29Bに示すように、第1の電流制御素子142及び第2の電流制御素子242を形成するための第1のレジストマスクパターン131aを、フォトリソグラフィーを用いてハードマスク層325上に形成する。
次に、図29Cに示すように、第1のレジストマスクパターン131aを用いてハードマスク層325をパターニングし、ハードマスク層125を形成する。その後、アッシング処理により第1のレジストマスクパターン131aを除去する。
次に、図29Dに示すように、ハードマスク層125を用いて第2の導電層310、電流制御層309及び第1の導電層308をパターニングすることにより、第1の電流制御素子142の第1の上部電極層110、第1の電流制御層109及び第1の下部電極層108と、第2の電流制御素子242の第2の上部電極層210、第2の電流制御層209及び第2の下部電極層208とを同時に形成する。続いて、ハードマスク層125を用いて、第4の導電層313、第1の酸化物層312a、第2の酸化物層312b及び第3の導電層311をパターニングすることにより、第1の抵抗変化素子141の第3の上部電極層113、第1の抵抗変化層112及び第3の下部電極層111と、第2の抵抗変化素子241の第4の上部電極層213、第2の抵抗変化層212及び第4の下部電極層211とを同時に形成する。
次に、図29E及び図29Fに示すように、導電層601を堆積した後に、導電層601に対してエッチバック(異方性エッチング)を行うことで、第1の抵抗変化素子141及び第2の抵抗変化素子241の双方の側面にのみ導電性サイドウォール601aを形成することができる。具体的な形成方法として、実施の形態3で説明した方法を用いることができる。
次に、図29Gに示すように、メモリセル11cを構成する第1の抵抗変化素子141の側面に形成された導電性サイドウォール601aを選択的に除去するため、第4のレジストマスクパターン611をメモリセル11cが形成されている領域以外の領域を覆うように形成する。
次に、図29Hに示すように、メモリセル11cを構成する第1の抵抗変化素子141の側面に形成されている導電性サイドウォール601aをエッチングにより除去する。エッチング方法としては、例えば図29Fの工程と同様の方法を用いて、選択的にメモリセル11cを構成する第1の抵抗変化素子141の側面に形成されている導電性サイドウォール601aのみをエッチングすることが考えられる。これにより、評価セル21cを構成する第2の抵抗変化素子241の側面のみに導電性サイドウォール601aを形成することができる。その後、アッシング処理により、第4のレジストマスクパターン611を除去する。その後、ハードマスク層125を例えばエッチングにより除去する。なお、ハードマスク層125は、除去しなくてもよく、必要に応じて残してもよい。
次に、図29I及び図29Jに示すように、第1の電流制御素子142と、第1の抵抗変化素子141と、第2の電流制御素子242と、第2の抵抗変化素子241の側面に形成された導電性サイドウォール601aとを覆うように、第3の層間絶縁層116を形成する。その後、形成した第3の層間絶縁層116中に、第1の電流制御素子142の第1の上部電極層110に接続する第2の配線119と、第2の電流制御素子242の第2の上部電極層210に接続する第4の配線219とを形成するための配線溝119a及び219aと、コンタクトホール218a及び118bとを形成する。具体的な形成方法として、実施の形態1における図5F及び図5Gの説明と同様の方法を用いることができる。
次に、図29Kに示すように、第2の配線119及び第4の配線219を形成する。具体的な形成方法は、実施の形態1における図5Hの説明と同様の方法を用いることができる。
次に、図29Lに示すように、第2のライナー層120を形成する。
以上のように、本実施の形態の不揮発性記憶装置の製造方法によれば、実施の形態1と同様の効果が得られる。
また、本実施の形態の不揮発性記憶装置の製造方法によれば、第1の抵抗変化素子141及び第2の抵抗変化素子241上に、第1の電流制御素子142及び第2の電流制御素子242を形成する。従って、第1の電流制御素子142と第2の電流制御素子242のプロセスサーマルバジェットを少なく形成することが可能であるため、電流制御素子の下部電極、電流制御層及び上部電極の材料選択の自由度が増加する。
以上、本発明の不揮発性記憶装置及びその製造方法について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。
例えば、上記実施の形態では、抵抗変化素子及び電流制御素子のx方向の最大幅及びy方向の最大幅が配線幅よりも小さい例について説明したが、抵抗変化素子及び電流制御素子のx方向の最大幅及びy最大幅が配線幅以上でもよい。図30〜図33には、第4の配線219の配線幅が、第2の抵抗変化素子241のx方向の幅よりも小さい場合の構成例を示している。図30は不揮発性記憶装置の一部の構成例を示す平面図であり、図31は不揮発性記憶装置の構成例を示す断面図であり、図32及び図33はパラメータ発生回路20の構成例を示す断面図である。なお、図31は図30中のD−D’で示された1点鎖線の断面を矢印方向に見た断面図であり、図32は図30中のC−C’で示された1点鎖線の断面を矢印方向に見た断面図であり、図33は図30中のE−E’で示された1点鎖線の断面を矢印方向に見た断面図である。
このような場合、図30〜図32に示されるとおり、第2の抵抗変化素子241の側面のうち第4の配線219の配線幅方向(x方向)の面には、導電性短絡層151が形成されない。しかしながら、そのような場合であっても、図33に示されるとおり、第4の配線219の長手方向(y方向)において、第4の配線219及び第3のバリアメタル層217の下部を第2の抵抗変化素子241の側面に接するように形成することができる。すなわち、第4の配線219の長手方向(y方向)において、第2の抵抗変化素子241の側面に導電性短絡層151を形成することができる。なお、図33に示される例では、第4の配線219及び第3のバリアメタル層217の底面は、評価セル21の周囲だけでなく、同じ第4の配線219及び第3のバリアメタル層217で接続された複数の評価セル21の間においても第2の抵抗変化素子241の第4の下部電極層211の上面より深く位置する。従って、複数の評価セル21で兼用された導電性短絡層151が第4の配線219及び第3のバリアメタル層217により形成されている。
また、上記実施の形態において、導電性短絡層151は、第4の下部電極層211と接するとしたが、第4の下部電極層211及び第2の上部電極層210の少なくともいずれかと接していればよい。
また、上記の実施の形態において、第1の抵抗変化素子141の第3の下部電極層111と第1の電流制御素子142の第1の上部電極層110とが共通の1つの層(中間電極層)であってもよい。同様に、第2の抵抗変化素子241の第4の下部電極層211と第2の電流制御素子242の第2の上部電極層210とが共通の1つの層(中間電極層)であってもよい。その場合、第2の導電層310を形成する工程と第3の導電層311を形成する工程とは同一工程であり、第2の導電層310をパターニングする工程と第3の導電層311をパターニングする工程とは同一工程である。
本発明は、不揮発性記憶装置及びその製造方法に利用でき、特にデジタル家電、メモリカード、携帯型電話機及びパーソナルコンピュータなどの種々の電子機器などに利用することができる。
10、10a、10b、10c メモリセルアレイ
11、11a、11b、11c メモリセル
20、20a、20b、20c パラメータ発生回路
21、21a、21b、21c 評価セル
100 基板
101 第1の層間絶縁層
102、202 第1のバリアメタル層
103 第1の配線
104 第1のライナー層
105 第2の層間絶縁層
106、206 第2のバリアメタル層
107a、107b、207a、207b、307a、307b プラグ
108 第1の下部電極層
109 第1の電流制御層
110 第1の上部電極層
111 第3の下部電極層
112 第1の抵抗変化層
112a、212a 第1の酸化物層
112b、212b 第2の酸化物層
113 第3の上部電極層
116 第3の層間絶縁層
117、217 第3のバリアメタル層
118a、118b、218a、218b、318a、318b コンタクトホール
119 第2の配線
119a、219a 配線溝
120 第2のライナー層
125、325 ハードマスク層
131a 第1のレジストマスクパターン
131b 第2のレジストマスクパターン
141 第1の抵抗変化素子
142 第1の電流制御素子
151 導電性短絡層
203 第3の配線
208 第2の下部電極層
209 第2の電流制御層
210 第2の上部電極層
211 第4の下部電極層
212 第2の抵抗変化層
213 第4の上部電極層
219 第4の配線
241 第2の抵抗変化素子
242 第2の電流制御素子
308 第1の導電層
309 電流制御層
310 第2の導電層
311 第3の導電層
312 抵抗変化層
312a 第1の酸化物層
312b 第2の酸化物層
313 第4の導電層
501 絶縁層
501a、501b 絶縁性サイドウォール
511 第3のレジストマスクパターン
601 導電層
601a 導電性サイドウォール
611 第4のレジストマスクパターン
11、11a、11b、11c メモリセル
20、20a、20b、20c パラメータ発生回路
21、21a、21b、21c 評価セル
100 基板
101 第1の層間絶縁層
102、202 第1のバリアメタル層
103 第1の配線
104 第1のライナー層
105 第2の層間絶縁層
106、206 第2のバリアメタル層
107a、107b、207a、207b、307a、307b プラグ
108 第1の下部電極層
109 第1の電流制御層
110 第1の上部電極層
111 第3の下部電極層
112 第1の抵抗変化層
112a、212a 第1の酸化物層
112b、212b 第2の酸化物層
113 第3の上部電極層
116 第3の層間絶縁層
117、217 第3のバリアメタル層
118a、118b、218a、218b、318a、318b コンタクトホール
119 第2の配線
119a、219a 配線溝
120 第2のライナー層
125、325 ハードマスク層
131a 第1のレジストマスクパターン
131b 第2のレジストマスクパターン
141 第1の抵抗変化素子
142 第1の電流制御素子
151 導電性短絡層
203 第3の配線
208 第2の下部電極層
209 第2の電流制御層
210 第2の上部電極層
211 第4の下部電極層
212 第2の抵抗変化層
213 第4の上部電極層
219 第4の配線
241 第2の抵抗変化素子
242 第2の電流制御素子
308 第1の導電層
309 電流制御層
310 第2の導電層
311 第3の導電層
312 抵抗変化層
312a 第1の酸化物層
312b 第2の酸化物層
313 第4の導電層
501 絶縁層
501a、501b 絶縁性サイドウォール
511 第3のレジストマスクパターン
601 導電層
601a 導電性サイドウォール
611 第4のレジストマスクパターン
Claims (18)
- 基板と、
前記基板上に互いに平行に配置された複数の第1の配線と、前記第1の配線に立体交差するように互いに平行に配置された複数の第2の配線と、前記第1の配線及び前記第2の配線の各交差部に配置され、第1の抵抗変化素子及び第1の電流制御素子から構成された複数のメモリセルとを有するメモリセルアレイと、
前記基板上に配置された第3の配線と、前記第3の配線の上方に配置された第4の配線と、前記第3の配線及び前記第4の配線の間において前記第3の配線及び前記第4の配線に接続され、第2の抵抗変化素子、及び前記第1の電流制御素子と同じ電流密度の電圧特性を有する第2の電流制御素子から構成された電流制御特性評価セルとを有するパラメータ発生回路と、
制御回路と、
前記複数のメモリセルのうち所定のメモリセルに情報を書き込むために前記所定のメモリセルに電圧を印加する書き込み回路と、
前記所定のメモリセルから情報を読み出すために電圧を印加する読み出し回路とを備え、
前記第2の抵抗変化素子は、
下部電極層と、
前記下部電極層上に形成された抵抗変化層と、
前記抵抗変化層上に形成された上部電極層とを有し、
前記電流制御特性評価セルでは、
前記第2の抵抗変化素子の側面に、前記上部電極層と前記下部電極層とを短絡させる導電性短絡層が設けられており、
前記パラメータ発生回路は、前記第2の電流制御素子の非線形電流制御特性を示すパラメータを取得し、前記制御回路に前記パラメータに対応するパラメータ信号を出力し、
前記制御回路は、前記パラメータ信号に基づいて前記書き込み回路及び前記読み出し回路を制御する制御信号を生成し、前記書き込み回路及び前記読み出し回路の少なくとも一方に前記制御信号を出力し、
前記書き込み回路及び前記読み出し回路の少なくとも一方は、前記制御信号に基づいて前記所定のメモリセルに印加する電圧を決定する
不揮発性記憶装置。 - 前記第2の電流制御素子は、前記第1の電流制御素子の非線形電流制御特性を評価するための素子である
請求項1に記載の不揮発性記憶装置。 - 前記第1の電流制御素子は、
下部電極層と、
前記第1の電流制御素子の下部電極層上に配置された電流制御層と、
前記第1の電流制御素子の電流制御層上に配置された上部電極層とから構成され、
前記第2の電流制御素子は、
下部電極層と、
前記第2の電流制御素子の下部電極層上に配置された電流制御層と、
前記第2の電流制御素子の電流制御層上に配置された上部電極層とから構成され、
前記第1の電流制御素子の下部電極層及び前記第2の電流制御素子の下部電極層は、同一の組成を有し、
前記第1の電流制御素子の電流制御層及び前記第2の電流制御素子の電流制御層は、同一の組成と同一の膜厚とを有し、
前記第1の電流制御素子の上部電極層及び前記第2の電流制御素子の上部電極層は、同一の組成を有する
請求項1に記載の不揮発性記憶装置。 - 前記第1の電流制御素子の電流制御層及び前記第2の電流制御素子の電流制御層は、同一工程で形成される
請求項3に記載の不揮発性記憶装置。 - 前記第1の抵抗変化素子は、
下部電極層と、
前記第1の抵抗変化素子の下部電極層上に配置された抵抗変化層と、
前記第1の抵抗変化素子の抵抗変化層上に配置された上部電極層とから構成され、
前記第1の抵抗変化素子の下部電極層及び前記第2の抵抗変化素子の下部電極層は、同一の組成を有し、
前記第1の抵抗変化素子の抵抗変化層及び前記第2の抵抗変化素子の抵抗変化層は、同一の組成と同一の膜厚とを有し、
前記第1の抵抗変化素子の上部電極層及び前記第2の抵抗変化素子の上部電極層は、同一の組成を有する
請求項1に記載の不揮発性記憶装置。 - 前記第1の抵抗変化素子の抵抗変化層及び前記第2の抵抗変化素子の抵抗変化層は、同一工程で形成される
請求項5に記載の不揮発性記憶装置。 - 前記メモリセルでは、
前記第1の電流制御素子と前記第1の抵抗変化素子とが直列に接続され、前記第1の抵抗変化素子が前記第1の電流制御素子上に配置され、
前記電流制御特性評価セルでは、
前記第2の抵抗変化素子と前記第2の電流制御素子とが直列に接続され、前記第2の抵抗変化素子が前記第2の電流制御素子上に配置される
請求項1に記載の不揮発性記憶装置。 - 前記第2の電流制御素子は、
下部電極層と、
前記第2の電流制御素子の下部電極層上に配置された電流制御層と、
前記第2の電流制御素子の電流制御層上に配置された上部電極層とから構成され、
前記導電性短絡層は、前記第2の抵抗変化素子の下部電極層及び前記第2の電流制御素子の上部電極層の少なくともいずれかと接する
請求項7に記載の不揮発性記憶装置。 - 前記導電性短絡層は、前記第4の配線の一部から構成される
請求項8に記載の不揮発性記憶装置。 - 前記第4の配線の底面の位置は、前記第2の抵抗変化素子の下部電極層の上面の位置より深い
請求項9に記載の不揮発性記憶装置。 - 前記パラメータ発生回路には、複数の前記電流制御特性評価セルが設けられ、
前記複数の電流制御特性評価セルでは、前記導電性短絡層が各セル毎に設けられており、
前記導電性短絡層は、前記第4の配線と前記第2の抵抗変化素子の上部電極層との間に配置された前記電流制御特性評価セルのコンタクトプラグの一部から構成される
請求項8に記載の不揮発性記憶装置。 - 前記基板の上面に垂直な方向から見て、前記電流制御特性評価セルのコンタクトプラグの中心位置と、前記第2の抵抗変化素子の抵抗変化層の中心位置とが異なる
請求項11に記載の不揮発性記憶装置。 - 前記第1の抵抗変化素子は、
下部電極層と、
前記第1の抵抗変化素子の下部電極層上に配置された抵抗変化層と、
前記第1の抵抗変化素子の抵抗変化層上に配置された上部電極層とから構成され、
前記第1の抵抗変化素子の下部電極層と前記第1の抵抗変化素子の上部電極層とは抵抗変化層を介して導通し、
前記第1の抵抗変化素子の側面は、絶縁性サイドウォールに覆われている
請求項8に記載の不揮発性記憶装置。 - 前記第1の電流制御素子と前記第2の電流制御素子との側面は、絶縁性サイドウォールに覆われている
請求項8に記載の不揮発性記憶装置。 - 前記第1の抵抗変化素子の側面は、絶縁性サイドウォールに覆われている
請求項14に記載の不揮発性記憶装置。 - 前記導電性短絡層は、導電性サイドウォールである
請求項8に記載の不揮発性記憶装置。 - 前記メモリセルでは、
前記第1の電流制御素子と前記第1の抵抗変化素子とが直列に接続され、前記第1の電流制御素子が前記第1の抵抗変化素子上に配置され、
前記電流制御特性評価セルでは、
前記第2の電流制御素子と前記第2の抵抗変化素子とが直列に接続され、前記第2の電流制御素子が前記第2の抵抗変化素子上に配置される
請求項1に記載の不揮発性記憶装置。 - 前記導電性短絡層は、導電性サイドウォールである
請求項17に記載の不揮発性記憶装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013531810A JP5406418B1 (ja) | 2012-03-29 | 2013-03-27 | 不揮発性記憶装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012078285 | 2012-03-29 | ||
JP2012078285 | 2012-03-29 | ||
JP2013531810A JP5406418B1 (ja) | 2012-03-29 | 2013-03-27 | 不揮発性記憶装置 |
PCT/JP2013/002082 WO2013145736A1 (ja) | 2012-03-29 | 2013-03-27 | 不揮発性記憶装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5406418B1 true JP5406418B1 (ja) | 2014-02-05 |
JPWO2013145736A1 JPWO2013145736A1 (ja) | 2015-12-10 |
Family
ID=49259032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013531810A Expired - Fee Related JP5406418B1 (ja) | 2012-03-29 | 2013-03-27 | 不揮発性記憶装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8995170B2 (ja) |
JP (1) | JP5406418B1 (ja) |
WO (1) | WO2013145736A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9196828B2 (en) * | 2012-06-25 | 2015-11-24 | Macronix International Co., Ltd. | Resistive memory and fabricating method thereof |
JP6489480B2 (ja) * | 2014-06-12 | 2019-03-27 | パナソニックIpマネジメント株式会社 | 不揮発性記憶装置およびその製造方法 |
US9595311B2 (en) * | 2014-08-13 | 2017-03-14 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
US9679945B2 (en) * | 2015-09-04 | 2017-06-13 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing the same |
US9853091B2 (en) * | 2016-04-26 | 2017-12-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Side bottom contact RRAM structure |
US10217794B2 (en) | 2017-05-24 | 2019-02-26 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits with vertical capacitors and methods for producing the same |
US11793093B2 (en) * | 2017-09-29 | 2023-10-17 | Crossbar, Inc. | Resistive random access memory and fabrication techniques |
KR102403731B1 (ko) * | 2017-11-01 | 2022-05-30 | 삼성전자주식회사 | 가변 저항 메모리 소자 |
US10297750B1 (en) * | 2017-11-16 | 2019-05-21 | International Business Machines Corporation | Wraparound top electrode line for crossbar array resistive switching device |
US11158788B2 (en) * | 2018-10-30 | 2021-10-26 | International Business Machines Corporation | Atomic layer deposition and physical vapor deposition bilayer for additive patterning |
US11737289B2 (en) | 2020-12-09 | 2023-08-22 | International Business Machines Corporation | High density ReRAM integration with interconnect |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099199A (ja) * | 2007-10-17 | 2009-05-07 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP2010049776A (ja) * | 2008-08-25 | 2010-03-04 | Panasonic Corp | 不揮発性メモリ装置 |
JP2011198407A (ja) * | 2010-03-18 | 2011-10-06 | Toshiba Corp | 不揮発性半導体メモリ及びその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6052520B2 (ja) | 1981-12-29 | 1985-11-19 | 富士通株式会社 | 半導体記憶装置 |
JP2541773B2 (ja) | 1993-12-24 | 1996-10-09 | シチズン時計株式会社 | マトリクス表示装置 |
US6034882A (en) | 1998-11-16 | 2000-03-07 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
US6753561B1 (en) | 2002-08-02 | 2004-06-22 | Unity Semiconductor Corporation | Cross point memory array using multiple thin films |
JP4118942B2 (ja) | 2006-10-16 | 2008-07-16 | 松下電器産業株式会社 | 不揮発性記憶素子およびその製造方法 |
WO2009057212A1 (ja) | 2007-10-31 | 2009-05-07 | Fujitsu Microelectronics Limited | 半導体装置及びその製造方法 |
US7977962B2 (en) * | 2008-07-15 | 2011-07-12 | Micron Technology, Inc. | Apparatus and methods for through substrate via test |
US8553444B2 (en) * | 2008-08-20 | 2013-10-08 | Panasonic Corporation | Variable resistance nonvolatile storage device and method of forming memory cell |
JP4531863B2 (ja) * | 2008-11-19 | 2010-08-25 | パナソニック株式会社 | 不揮発性記憶素子および不揮発性記憶装置 |
US8471235B2 (en) * | 2008-12-05 | 2013-06-25 | Panasonic Corporation | Nonvolatile memory element having a resistance variable layer and manufacturing method thereof |
JP5435713B2 (ja) | 2009-07-23 | 2014-03-05 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法、製造プログラム、及び半導体装置 |
JP5161946B2 (ja) * | 2010-09-30 | 2013-03-13 | シャープ株式会社 | 不揮発性半導体記憶装置 |
JP5547111B2 (ja) * | 2011-02-15 | 2014-07-09 | 株式会社東芝 | 不揮発性抵抗変化素子および不揮発性抵抗変化素子の製造方法 |
JP5606390B2 (ja) * | 2011-05-16 | 2014-10-15 | 株式会社東芝 | 不揮発性抵抗変化素子 |
US20140077149A1 (en) * | 2012-09-14 | 2014-03-20 | Industrial Technology Research Institute | Resistance memory cell, resistance memory array and method of forming the same |
-
2013
- 2013-03-27 WO PCT/JP2013/002082 patent/WO2013145736A1/ja active Application Filing
- 2013-03-27 US US14/122,708 patent/US8995170B2/en not_active Expired - Fee Related
- 2013-03-27 JP JP2013531810A patent/JP5406418B1/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099199A (ja) * | 2007-10-17 | 2009-05-07 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP2010049776A (ja) * | 2008-08-25 | 2010-03-04 | Panasonic Corp | 不揮発性メモリ装置 |
JP2011198407A (ja) * | 2010-03-18 | 2011-10-06 | Toshiba Corp | 不揮発性半導体メモリ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8995170B2 (en) | 2015-03-31 |
US20140098595A1 (en) | 2014-04-10 |
JPWO2013145736A1 (ja) | 2015-12-10 |
WO2013145736A1 (ja) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5406418B1 (ja) | 不揮発性記憶装置 | |
JP5427982B2 (ja) | 不揮発性記憶装置及びその製造方法 | |
JP5295465B2 (ja) | 不揮発性記憶素子及びその製造方法 | |
JP5000788B2 (ja) | 不揮発性記憶装置およびその製造方法 | |
JP5996324B2 (ja) | 不揮発性半導体記憶装置とその製造方法 | |
JP4948688B2 (ja) | 抵抗変化型不揮発性記憶素子、抵抗変化型不揮発性記憶装置及び抵抗変化型不揮発性記憶素子の製造方法 | |
JP5291269B2 (ja) | 不揮発性半導体記憶素子、不揮発性半導体記憶装置およびその製造方法 | |
WO2011105060A1 (ja) | 不揮発性メモリ装置の製造方法、不揮発性メモリ素子、および不揮発性メモリ装置 | |
JP5571833B2 (ja) | 不揮発性記憶素子及び不揮発性記憶素子の製造方法 | |
JPWO2010064444A1 (ja) | 不揮発性記憶素子及びその製造方法 | |
KR20090026580A (ko) | 저항 메모리 소자 및 그 형성방법 | |
JP5555821B1 (ja) | 不揮発性記憶素子及びその製造方法 | |
JP2014082279A (ja) | 不揮発性記憶装置及びその製造方法 | |
JP5374865B2 (ja) | 抵抗変化素子、これを用いた記憶装置、及びそれらの作製方法 | |
JP2013062327A (ja) | 不揮発性記憶素子及び不揮発性記憶装置並びにそれらの製造方法 | |
JP2014033094A (ja) | 可変抵抗素子とその製造方法、及び、不揮発性半導体記憶装置 | |
JP2011198909A (ja) | 抵抗変化型不揮発性記憶素子 | |
JP2015146343A (ja) | 不揮発性記憶装置およびその製造方法 | |
CN103999218A (zh) | 非易失性存储元件、非易失性存储装置、非易失性存储元件的制造方法及非易失性存储装置的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5406418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |