JP5357291B2 - 距離センサ及び距離画像センサ - Google Patents

距離センサ及び距離画像センサ Download PDF

Info

Publication number
JP5357291B2
JP5357291B2 JP2012063965A JP2012063965A JP5357291B2 JP 5357291 B2 JP5357291 B2 JP 5357291B2 JP 2012063965 A JP2012063965 A JP 2012063965A JP 2012063965 A JP2012063965 A JP 2012063965A JP 5357291 B2 JP5357291 B2 JP 5357291B2
Authority
JP
Japan
Prior art keywords
charge
region
potential
transfer
transfer electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012063965A
Other languages
English (en)
Other versions
JP2012189599A (ja
Inventor
光人 間瀬
高志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2012063965A priority Critical patent/JP5357291B2/ja
Publication of JP2012189599A publication Critical patent/JP2012189599A/ja
Application granted granted Critical
Publication of JP5357291B2 publication Critical patent/JP5357291B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工場の製造ラインにおける製品モニタや車両等に搭載される距離センサ及び距離画像センサに関する。
従来の測距装置は、例えば、特許文献1に記載されている。この距離画像センサでは、光が入射する光感応領域の四方は4つの転送ゲート電極で囲まれており、これらの転送ゲート電極には異なる位相の転送電圧が印加され、転送ゲート電極の外側に位置する4つの電荷蓄積領域内に、光感応領域で発生した電荷が順次流れ込む。この距離画像センサでは、蓄積領域内に振り分けられた電荷量に基づいて、対象物までの距離が演算される。
特表2000−517427号公報
しかしながら、従来の距離センサを有する距離画像センサにおいては、微小な光入射領域の周囲を、三角形状の4つの転送ゲート電極で囲む構成となっているため、開口率が悪く、また、この光入射領域から離れた位置で発生した電荷は収集できず、電荷収集効率が悪く、収集できない電荷はクロストークを発生する可能性が高い。また、画素を大きくする場合には、転送ゲート電極を長くする必要がある。このように、従来の距離画像センサは、電荷収集効率を向上させることができず、信号量が少ないため、S/N比の良い距離画像を得ることができない。
本発明は、このような課題に鑑みてなされたものであり、S/N比の良い距離出力を得ることが可能な距離センサ及びS/N比の良い距離画像を得ることが可能な距離画像センサを提供することを目的とする。
上述の課題を解決するため、本発明に係る距離センサは、入射光に応じて電荷が発生する電荷発生領域と、空間的に離間して配置され、前記電荷発生領域からの電荷を収集する少なくとも2つの電荷収集領域と、前記電荷収集領域のそれぞれの周囲に設けられ、異なる位相の電荷転送信号が与えられ、前記電荷収集領域を囲む転送電極と、を備えることを特徴とし、本発明に係る距離画像センサは、二次元状に配置された複数のユニットからなる撮像領域を半導体基板上に備え、ユニットから出力される電荷量に基づいて、距離画像を得る距離画像センサにおいて、1つのユニットは、上記距離センサからなることを特徴とする。
複数のユニットを二次元状に配置すると、電荷発生領域の周辺に複数の転送電極が位置することになるが、逆に、転送電極の周辺にも電荷発生領域が位置することとなる。転送電極は電荷収集領域を囲んでいるため、転送電極へ電荷転送信号を与えることで、全方向からの電荷を電荷収集領域に転送することが可能となる。すなわち、転送電極の周辺領域を実質的に全て電荷発生領域として機能させることが可能となり、開口率が著しく改善する。したがって、信号量を増加させ、S/N比の良い距離画像を得ることができる。1つの距離センサに着目すると、転送電極の外側の全方向から内側の電荷収集領域に電荷を転送させることができるので、多くの電荷が収集でき、かかる電荷に基づいて距離を求めると、S/N比の良い距離出力を得ることができる。
また、同位相の電荷転送信号が与えられる転送電極に囲まれた少なくとも2つの電荷収集領域が電気的に接続されていることとしてもよい。この場合、これらの電荷収集領域から出力される電荷量が平均化され、電荷収集領域毎の特性差を補償することができる。
また、本発明の距離画像センサは、電荷発生領域に設けられ、電荷発生領域から電荷収集領域へ向かうポテンシャル勾配を急にするポテンシャル調整手段を更に備えることが好ましい。ポテンシャル調整手段によって、ポテンシャル勾配が急になると、電荷発生領域から電荷収集領域に転送される電荷の移動速度が高速になる。すなわち、高速撮像が可能となる。
このようなポテンシャル調整手段は、電荷収集領域とは異なる導電型であり、周囲よりも不純物濃度が高い半導体領域から構成することができる。導電型が異なることにより、ポテンシャル勾配は大きくすることができる。
また、ポテンシャル調整手段は、所定の電位が与えられる電極であることを特徴とする。電荷収集領域においてイオン化されたドナー又はアクセプターによる電位とは逆の電位を、上記電極に与えれば、ポテンシャル勾配は大きくすることができる。
また、転送電極の形状は、環状であることが好ましい。これにより全方位から電荷収集領域に流れる電荷を着実に収集し、また、その流入を阻止することが可能となる。
本発明の距離センサによれば、その電荷収集効率が高く、S/N比の良い距離出力を得ることができ、これを複数用いた距離画像センサによれば、その電荷収集効率が高く、S/N比の良い距離画像を得ることができる。
拡大した撮像領域の斜視図である。 撮像領域のII−II矢印断面図である。 撮像領域におけるポテンシャル分布を示す図である。 各種信号のタイミングチャートである。 各種信号のタイミングチャートである。 図2に示した撮像チップを配線基板に取り付けた撮像デバイスの一部分の断面図である。 撮像デバイスの全体の断面図である。 距離画像測定装置の全体構成を示す図である。 画素内における回路図である。 第2実施形態に係る距離画像センサの撮像領域の斜視図である。 図10に示した撮像領域のXI−XI矢印断面図である。 第3実施形態に係る距離画像センサの撮像領域の斜視図である。 図12に示した撮像領域のXIII−XIII矢印断面図である。 画素配置について説明するための説明図である。 電荷収集領域の接続について説明するための図である。 転送電極の別の構成について説明するための説明図である。
以下、発明の実施の形態に係る距離センサを有する距離画像センサについて説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。
図1は、第1実施形態に係る距離画像センサの撮像領域の斜視図であり、図2は、撮像領域のII−II矢印断面図である。
P型の半導体基板1上には、半導体基板1よりも低濃度のP型のエピタキシャル層2が成長しており、エピタキシャル層2内には、高濃度のN型の半導体領域(電荷収集領域)3がマトリックス状に設けられている。なお、エピタキシャル層2を含む基板も半導体基板であるとする。エピタキシャル層2の表面は絶縁層4で被覆されており、絶縁層4には、半導体領域3の表面を露出させるためのコンタクトホールが設けられている。コンタクトホール内には、半導体領域3を外部に接続するための導体7が通っている。
半導体領域3の周囲の絶縁層4上には、環状の転送電極(ゲート)5が設けられている。転送電極5の外側の領域には、電荷発生領域が広がっており、画素内の電荷発生領域の中心には、ポテンシャル調整部(ポテンシャル調整手段)6が設けられている。本例のポテンシャル調整部6は、絶縁層4に配置された電極である。XYZ直交座標系を設定すると、1つの画素PはXY平面内に形成され、四角形を呈し、距離センサを構成している。ポテンシャル調整部6は、四角形の画素の中心、角部、各辺の中点上に位置している。1つの画素P内には、4つの転送電極5が含まれており、これらの中心を結ぶ線は四角形を構成することができ、その対角線の中心上に1つのポテンシャル調整部6が位置している。
半導体領域3は、光の入射に応じて転送電極5の外側で発生した電荷を収集するものである。転送電極5は、これに印加される電荷転送信号の位相が0度のものをA、180度のものをBとする。転送電極5は、X軸に沿って異なる種類のものが交互に並んでおり、Y軸方向に沿っても異なる種類のものが交互に並んでいる、すなわち、1つの転送電極Aに着目すると、その周囲のX軸方向、及び、Y軸方向には、転送電極Bが隣接している。1つの転送電極Bに着目すると、その周囲のX軸方向、及び、Y軸方向には、転送電極Aが隣接している。なお、転送電極への印加電圧の位相に着目している場合には転送電極A,Bとし、位相に拘らず転送電極に着目している場合には転送電極5として説明する。
1つの画素Pの中心に入射した光は、半導体基板内において電荷に変換され、このようにして発生した電荷は、ポテンシャル調整部6の形成するポテンシャル勾配にしたがって、いずれかの転送電極5の方向に走行する。
転送電極5に、正電位を与えると、転送電極5によるゲートが開放し、負の電荷(電子)は、転送電極5方向に引き込まれ、N型の半導体領域3によって形成されるポテンシャル井戸内に蓄積される。N型の半導体は、正にイオン化したドナーを含んでおり、正のポテンシャルを有し、電子を引き付ける。
転送電極5に、上記正電位よりも低い電位(グランド電位)を与えると、転送電極5によるゲートが閉じ、半導体領域3で発生した電荷は、半導体領域3内には引き込まれないことになる。
なお、半導体はSi、絶縁層4はSiO、転送電極5及びポテンシャル調整部6は、ポリシリコンからなるが、これらは別の材料を用いてもよい。
図3は、撮像領域におけるポテンシャル分布を示す図である。
図3(a)は、転送電極Aの位相が0度のときの図2の断面の横方向に沿ったポテンシャル図であり、図3(b)は、転送電極Aの位相が180度のときの図2の断面の横方向に沿ったポテンシャル図である。また、図3(c)は、図3(a)の状態のときに、図1のC−C’線に沿った断面における横方向のポテンシャル図である。なお、同図では下向きがポテンシャルの正の向きである。
図3(a)に示すように、転送電極Aの位相が0度のとき、転送電極Aには正の電位が与えられ、転送電極Bには、逆相の電位、すなわち位相が180度の電位(グランド電位)が与えられる。この場合、転送電極AとBの間に位置する電荷発生部で発生した負の電荷eは、転送電極A直下の半導体のポテンシャル障壁が下がることにより、転送電極Aの内側にある半導体領域内に流れ込む。一方、転送電極B直下の半導体のポテンシャル障壁は下がらず、転送電極Bの内側にある半導体領域3内には、電荷は流れ込まない。
また、図3(b)に示すように、転送電極Bの位相が0度のとき、転送電極Bには正の電位が与えられ、転送電極Aには、逆相の電位、すなわち位相が180度の電位(グランド電位)が与えられる。この場合、転送電極AとBの間に位置する電荷発生部で発生した負の電荷eは、転送電極B直下の半導体のポテンシャル障壁が下がることにより、転送電極Bの内側にある半導体領域内に流れ込む。一方、転送電極A直下の半導体のポテンシャル障壁は下がらず、転送電極Aの内側にある半導体領域3内には、電荷は流れ込まない。
また、図3(c)に示すように、本来、転送電極Aと転送電極Bとの間には、ポテンシャル調整部6が位置しておらず、ポテンシャル調整部6を通らない断面内においては、転送電極Aと転送電極Bとの間の中点には、図3(a)、図3(b)に見られるポテンシャル障壁は観察されない。一方、図3(a)、図3(b)における断面は、ポテンシャル調整部6を通っているので、転送電極A,B間の中点のエネルギーが高く、ポテンシャル勾配が急になっており、高速の電荷転送が実現されている。なお、図3(c)における転送電極A,B間で発生した電荷も、半導体領域3内に流れ込む。
図4は、各種信号のタイミングチャートである。
後述の光源の駆動信号S、光源が対象物に当たって撮像領域まで戻ってきたときの反射光の強度信号L、転送電極Aに印加される電荷転送信号S、転送電極Bに印加される電荷転送信号Sが示されている。電荷転送信号Sは、駆動信号Sに同期しているので、反射光の強度信号Lの電荷転送信号Sに対する位相が、光の飛行時間であり、これはセンサから対象物までの距離を示している。ここでは、各電荷転送信号S,Sの印加時に、半導体領域3で収集された電荷量Q,Qの比率を用いて、距離dを演算する。すなわち、駆動信号の1つのパルス幅をTとすると、距離d=(c/2)×(T×Q/(Q+Q))で与えられる。なお、cは光速である。
図5は、実際の各種信号のタイミングチャートである。
1フレームの期間T内において、1つの画素に着目すると、複数のパルスを有する駆動信号Sが光源に印加され、これに同期して、電荷転送信号S,Sが互いに逆位相で転送電極A,Bに印加される。なお、距離測定に先立って、リセット信号resetが半導体領域3に印加され、内部に蓄積された電荷が外部に排出される。本例では、リセット信号resetが一瞬ONし、続いてOFFした後、複数の駆動振動パルスが逐次印加され、更に、これに同期して電荷転送が逐次的に行われ、半導体領域3内に電荷が積算して蓄積される。しかる後、次のリセット信号resetがONする前に、半導体領域3内に蓄積された電荷が読み出される。
図6は、図2に示した撮像チップを配線基板に取り付けた撮像デバイスの一部分の断面図である。
この撮像デバイスは、図2に示した撮像チップCPを反転させ、多層配線基板M1と接着剤FLを介して配線基板WBに撮像チップCPを貼り付けたものである。多層配線基板M1の内部には、各半導体領域3、転送電極5、及びポテンシャル調整部6にそれぞれ電気的に接続された貫通電極7、5E、6Eが設けられている。貫通電極7は、配線基板WBと多層配線基板M1との間に介在するバンプ電極BPを介して、配線基板WBの貫通電極8に接続されており、貫通電極8は配線基板WBの裏面に露出している。各転送電極5に接続された貫通電極5Eは、図示しない配線を介して配線基板WBの内部配線50Eに接続されている。配線基板WBを構成する絶縁基板M2の接着剤FLとの界面側の表面には、遮光層40が形成されており、撮像チップCPを透過した光の配線基板WBへの入射を抑制している。
図7は、撮像デバイスの全体の断面図である。
この撮像デバイスは、裏面照射型の距離画像測定装置である。図7の点線Gで囲まれた領域の拡大図が、図6に相当する。撮像チップCPは、中央部CRが周辺部PRと比較して薄化されており、薄化された領域が撮像領域となり、対象物からの反射光IMが入射する。この装置では、電荷発生部の光入射側に電極が存在しないので、S/N比の高い距離出力及び距離画像を得ることができる。
図8は、距離画像測定装置の全体構成を示す図である。
対象物OJまでの距離dは、距離画像測定装置によって測定される。上述のように、LEDなどの光源100には、駆動信号Sが印加され、対象物OJで反射された反射光像の強度信号Lが撮像チップCPの撮像領域IAに入射する。撮像チップCPからは、各画素毎に、電荷転送信号S.Sに同期して収集された電荷量Q,Qが出力され、これは駆動信号Sに同期して演算回路ARTに入力される。演算回路ARTでは、上述のように画素毎に距離dを演算し、演算結果を制御部CONTに転送する。制御部CONTは、光源100を駆動する駆動回路DRVを制御すると共に、電荷転送信号S,Sを出力し、演算回路ARTから入力された演算結果を表示器DSPに表示する。
図9は、画素内における回路図である。
ポテンシャル調整部6を電荷発生領域とすると、この領域で発生した電荷は、転送電極A,Bに交互に電圧を印加することで、左右の半導体領域3内に電荷を振り分けている。なお、転送電極A,Bは、それぞれ電界効果トランジスタのゲート電極を構成している。
以上、説明したように、上述の距離画像センサは、二次元状に配置された複数のユニット(画素P)からなる撮像領域を半導体基板上に備え、ユニットから出力される電荷量Q,Qに基づいて、距離画像を得る距離画像センサにおいて、1つのユニットは、入射光に応じて電荷が発生する電荷発生領域(転送電極5の外側の領域)と、空間的に離間して配置され、電荷発生領域からの電荷を収集する少なくとも2つの半導体領域(電荷収集領域)3と、半導体領域3のそれぞれの周囲に設けられ、異なる位相の電荷転送信号が与えられ、半導体領域3を囲む転送電極5とを備えている。
このように、複数の画素Pを二次元状に配置すると、電荷発生領域の周辺に複数の転送電極5が位置することになるが、逆に、転送電極5の周辺にも電荷発生領域が位置することとなる。転送電極5は半導体領域3を囲んでいるため、転送電極5へ電荷転送信号を与えることで、全方向からの電荷を半導体領域3に転送することが可能となる。すなわち、転送電極5の周辺領域を実質的に全て電荷発生領域として機能させることが可能となり、開口率が著しく改善する。したがって、信号量を増加させ、S/N比の良い距離出力及びその集合情報としての距離画像を得ることができる。
また、第1実施形態の距離画像センサは、電荷発生領域に設けられ、電荷発生領域から半導体領域3へ向かうポテンシャル勾配を急にするポテンシャル調整部6を更に備えている。ポテンシャル調整部6によって、ポテンシャル勾配が急になると、電荷発生領域から半導体領域3に転送される電荷の移動速度が高速になる。すなわち、高速撮像が可能となる。なお、また、第1実施形態のポテンシャル調整部6は、所定の電位が与えられる電極である。好適には、本例では、この電極には、転送電極に与えられる電位の最低値よりも低い電位が与えられる。電荷収集領域においてイオン化されたドナー(全ての導電型を逆にした場合には又はアクセプター)による電位とは逆の電位を、上記電極に与えれば、ポテンシャル勾配は大きくすることができる。
また、転送電極5の形状は環状であり、これにより全方位から電荷収集領域に流れる電荷を着実に収集し、また、その流入を阻止するこが可能となる。転送電極5の形状は、円環状であるが、これは角環状であってもよく、図16のように環状に沿って離間して配置された微小電極群から構成してもよい。図16に示す転送電極5は、複数の部分転送電極51,52,53,54,55,56,57,58,59が等間隔に離れて並んでいる。各部分転送電極51〜59の形状は円弧状であり、その内側の側面は、点線で示される円に沿っている。このように、転送電極5は、空隙を有する環状を構成している。但し、この場合には、全ての電極に同時に電位が与えられるように各微小電極は電気的に接続されていることとする。
なお、上記では4つの転送電極を含む領域を1画素としたが、これは、異なる位相の電荷転送信号が印加される2つの転送電極を含む領域としてもよい。
図10は、第2実施形態に係る距離画像センサの撮像領域の斜視図であり、図11は、図10に示した撮像領域のXI−XI矢印断面図である。
第1実施形態においては、ポテンシャル調整部6として電極を用いたが、本例のポテンシャル調整部6は、第1実施形態のポテンシャル調整部6と、同一の平面内位置であって、絶縁層4の下に形成されたP型の半導体領域である。この場合において、ポテンシャル調整部6が、第1実施形態の場合と同様にポテンシャル勾配を高めるように機能する。
本実施形態のポテンシャル調整部6は、半導体領域3とは異なる導電型であり、周囲よりも不純物濃度が高い半導体領域から構成されている。このように、ポテンシャル調整部6の導電型が半導体領域3とは異なることにより、ポテンシャル勾配を大きくすることができる。
図12は、第3実施形態に係る距離画像センサの撮像領域の斜視図であり、図13は、図12に示した撮像領域のXIII−XIII矢印断面図である。
本例では、転送電極5が、環状部5Xと、環状部5Xから外方に放射状に延びた放射部5Yからなり、また、ポテンシャル調整部を備えていない。放射部5Yは、上述の実施形態においてポテンシャル調整部が位置していた箇所に向かって延びており、この箇所の近辺で発生した電荷も放射部5Yを介して、半導体領域3内に転送することができる。
図14は、画素配置について説明するための説明図である。
第1〜第3実施形態においては、図14(a)のように転送電極A,Bを配置し、4つの転送電極を含む四角形の領域を1画素Pとして説明した。これは、図14(b)に示すように一点鎖線で囲まれた8つの転送電極A,Bを含む組を1画素Pとしてもよい。図14(b)において中央で隣接する2つの転送電極A,Bは、点線で囲まれた5つの転送電極A,Bの組と、二点鎖線で囲まれた5つの転送電極A,Bの組の双方に属するものである。この場合、図14(a)に示したように、4つの転送電極を含む四角形の領域を1画素とした場合に比べて、2倍近くの面積の電荷発生領域から電荷収集するので、距離精度を向上させることができるという効果がある。
図15は、電荷収集領域の接続について説明するための図である。
この構成では、1つの画素内において、同位相の電荷転送信号が与えられる転送電極Aに囲まれた少なくとも2つの半導体領域3が電気的に接続されている。また、この構成では、1つの画素内において、同位相の電荷転送信号が与えられる転送電極Bに囲まれた少なくとも2つの半導体領域3が電気的に接続されている。
転送電極Aに囲まれた半導体領域3同士を接続するために、金属配線W1A、W1B、W1Cを用いている。転送電極Aに囲まれた一方の半導体領域3に接続された金属配線W1Aは、コンタクトホールを介して、金属配線W1Bに接続され、金属配線W1Bは更にコンタクトホールを介して金属配線W1Cに接続され、金属配線W1Cは他方の半導体領域3に接続されている。
同様に、転送電極Bに囲まれた一方の半導体領域3に接続された金属配線W2Aは、コンタクトホールを介して、金属配線W2Bに接続され、金属配線W2Bは更にコンタクトホールを介して金属配線W2Cに接続され、金属配線W2Cは転送電極Bに囲まれた他方の半導体領域3に接続されている。
この場合、各グループの半導体領域3から出力される電荷量が平均化され、半導体領域3毎の特性差を補償することができる。
また、電荷収集領域として高濃度のN型の半導体領域3を、P型の半導体基板1の上に成長させたP型の半導体基板1よりも低濃度のP型のエピタキシャル層2の中に作りこんでいるが、高濃度のN型の半導体領域3の底(P型のエピタキシャル層2との界面)にP型のエピタキシャル層2の濃度よりも濃いP型の層を設けると、高濃度のN型の半導体領域3に電圧を印加することによる電界の影響を抑えることができて好ましい。これは、高濃度のN型の半導体領域3に電圧を印加するとP型のエピタキシャル層2との間で空乏層が広がってしまい、光により生じた電荷が空乏層内部の電界によって転送電極の電位に関係なく高濃度のN型の半導体領域3に流れ込む可能性があるが、高濃度のN型の半導体領域3の下にP型のエピタキシャル層2よりも濃い濃度でP型の層を設けてやることにより、P型のエピタキシャル層2の中で空乏層があまり広がらなくすることができるからである。なお、上述の導電型は一括して反転させることも可能である。
3・・・半導体領域(電荷収集領域)、5,A,B・・・転送電極、6・・・ポテンシャル調整部。

Claims (7)

  1. 入射光に応じて電荷が発生する電荷発生領域と、
    前記電荷発生領域に配置され、前記電荷発生領域からの電荷を収集する電荷収集領域と、
    前記電荷発生領域上において前記電荷収集領域の周囲に設けられ、電荷転送信号が与えられ、前記電荷収集領域を囲む転送電極と、
    前記電荷発生領域から前記電荷収集領域へ向かうポテンシャル勾配を急にするポテンシャル調整手段と、
    を備え、
    前記転送電極の外側に位置する前記電荷発生領域にて発生した電荷を、前記転送電極の全方向から前記転送電極に囲まれる前記荷収集領域に転送することを特徴とする距離センサ。
  2. 前記ポテンシャル調整手段は、前記電荷収集領域とは異なる導電型であり、周囲よりも不純物濃度が高い半導体領域からなることを特徴とする請求項1に記載の距離センサ。
  3. 前記ポテンシャル調整手段は、所定の電位が与えられる電極であることを特徴とする請求項1に記載の距離センサ。
  4. 複数の前記ポテンシャル調整手段を備え、
    複数の前記ポテンシャル調整手段は、互いに直交する対角線を有し且つ該対角線の交点に前記電荷収集領域が位置する四角形の角部に配置されていることを特徴とする請求項1〜3のいずれか一項に記載の距離センサ。
  5. 複数の前記電荷収集領域を備え、
    複数の前記電荷収集領域間を結ぶ方向で見て複数の前記電荷収集領域間に位置する前記ポテンシャル調整手段は、複数の前記電荷収集領域に対して共用されていることを特徴とする請求項1〜4のいずれか一項に記載の距離センサ。
  6. 前記転送電極の形状は、環状であることを特徴とする請求項1〜5のいずれか一項に記載の距離センサ。
  7. 二次元状に配置された複数のユニットからなる撮像領域を半導体基板上に備え、前記ユニットから出力される電荷量に基づいて、距離画像を得る距離画像センサにおいて、
    1つの前記ユニットは、請求項1〜6のいずれか一項に記載の距離センサであることを特徴とする距離画像センサ。
JP2012063965A 2012-03-21 2012-03-21 距離センサ及び距離画像センサ Active JP5357291B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063965A JP5357291B2 (ja) 2012-03-21 2012-03-21 距離センサ及び距離画像センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063965A JP5357291B2 (ja) 2012-03-21 2012-03-21 距離センサ及び距離画像センサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008128681A Division JP5356726B2 (ja) 2008-05-15 2008-05-15 距離センサ及び距離画像センサ

Publications (2)

Publication Number Publication Date
JP2012189599A JP2012189599A (ja) 2012-10-04
JP5357291B2 true JP5357291B2 (ja) 2013-12-04

Family

ID=47082891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063965A Active JP5357291B2 (ja) 2012-03-21 2012-03-21 距離センサ及び距離画像センサ

Country Status (1)

Country Link
JP (1) JP5357291B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356726B2 (ja) * 2008-05-15 2013-12-04 浜松ホトニクス株式会社 距離センサ及び距離画像センサ
JP6304738B2 (ja) * 2013-09-18 2018-04-04 ソニーセミコンダクタソリューションズ株式会社 撮像装置、撮像方法、製造装置、製造方法、並びに電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162380A (ja) * 1995-10-04 1997-06-20 Sony Corp 増幅型固体撮像素子及びその製造方法
DE19830179B4 (de) * 1998-07-06 2009-01-08 Institut für Mikroelektronik Stuttgart Stiftung des öffentlichen Rechts MOS-Transistor für eine Bildzelle
JP3615144B2 (ja) * 2000-11-22 2005-01-26 イノテック株式会社 固体撮像装置
JP3568885B2 (ja) * 2000-08-15 2004-09-22 イノテック株式会社 固体撮像装置
JP2003051988A (ja) * 2001-08-07 2003-02-21 Inst Of Physical & Chemical Res 固体撮像素子
JP3829832B2 (ja) * 2003-09-09 2006-10-04 セイコーエプソン株式会社 固体撮像装置及びその駆動方法
JP4280822B2 (ja) * 2004-02-18 2009-06-17 国立大学法人静岡大学 光飛行時間型距離センサ
JP4187691B2 (ja) * 2004-06-29 2008-11-26 富士通マイクロエレクトロニクス株式会社 閾値変調型イメージセンサ
JP4720434B2 (ja) * 2005-10-31 2011-07-13 日本ビクター株式会社 固体撮像装置
JP4814741B2 (ja) * 2006-09-22 2011-11-16 旭化成エレクトロニクス株式会社 Ccdイメージセンサ

Also Published As

Publication number Publication date
JP2012189599A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5356726B2 (ja) 距離センサ及び距離画像センサ
JP5558999B2 (ja) 距離センサ及び距離画像センサ
US9134401B2 (en) Range sensor and range image sensor
JP5620087B2 (ja) 距離センサ及び距離画像センサ
WO2011065286A1 (ja) 距離センサ及び距離画像センサ
KR20130121691A (ko) 거리 센서 및 거리 화상 센서
JP2015215182A (ja) 距離画像センサ
TW201448600A (zh) 固體攝像裝置
JP5357291B2 (ja) 距離センサ及び距離画像センサ
US10871582B2 (en) Detection panel, manufacturing method thereof and detection device
JP2003255049A (ja) 光検出装置及び放射線検出装置
JP5438476B2 (ja) 距離画像センサ
JP2001332716A (ja) フォトセンサアレイおよびその製造方法
JP2009272452A (ja) 固体撮像装置
JP6315679B2 (ja) 距離画像センサ
KR102028223B1 (ko) 거리 센서 및 거리 화상 센서
WO2021084994A1 (ja) 撮像素子
WO2021084995A1 (ja) 撮像素子
JP5632423B2 (ja) 距離センサ及び距離画像センサ
JP2019047374A (ja) 固体撮像装置
JP2015230958A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5357291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150