JP5329905B2 - ポリシロキサン系組成物およびそれから得られる硬化物 - Google Patents

ポリシロキサン系組成物およびそれから得られる硬化物 Download PDF

Info

Publication number
JP5329905B2
JP5329905B2 JP2008267338A JP2008267338A JP5329905B2 JP 5329905 B2 JP5329905 B2 JP 5329905B2 JP 2008267338 A JP2008267338 A JP 2008267338A JP 2008267338 A JP2008267338 A JP 2008267338A JP 5329905 B2 JP5329905 B2 JP 5329905B2
Authority
JP
Japan
Prior art keywords
group
polysiloxane
compound
alkenyl group
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008267338A
Other languages
English (en)
Other versions
JP2010095619A (ja
Inventor
貴雄 眞鍋
智史 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008267338A priority Critical patent/JP5329905B2/ja
Publication of JP2010095619A publication Critical patent/JP2010095619A/ja
Application granted granted Critical
Publication of JP5329905B2 publication Critical patent/JP5329905B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Description

成型加工性、透明性、耐熱性、耐光性、接着性に優れ、さらには、耐クラック性、耐冷熱衝撃性に優れる、特には液状の多面体構造ポリシロキサン変性体を用いることを特徴とするポリシロキサン系組成物に関する。
ポリシロキサン系組成物は、耐熱性、耐寒性、耐候性、耐光性、化学的安定性、電気特性、難燃性、耐水性、透明性、着色性、非粘着性、非腐食性等に優れており、様々な産業で利用されている。中でも、多面体構造ポリシロキサンは、その特異的な化学構造から、さらに優れた耐熱性、耐光性、化学的安定性、低誘電性等を示すことが知られている。しかしながら、多面体構造ポリシロキサンは、一般に、多官能性で固体の化合物であり、反応の制御が難しく、ハンドリング性、成型加工性に乏しいため、成形体とすることが困難であった。
例えば、官能基含有多面体構造ポリシロキサンを用いたヒドロシリル化硬化性組成物が開示されているが(非特許文献1)、該当技術では、出発原料である多面体構造を有するポリシロキサンが多官能性の固形物であるため、硬化反応の制御が困難であり、塗膜や注入成型が難しい。
また、多面体構造を有するポリシロキサン系化合物としては、各種官能基を有するものが知られており、例えば、エポキシ基を含有するもの(特許文献1)、(メタ)アクリロイル基を有するもの(特許文献2)、加水分解性シリル基を有するもの(特許文献3)、オキセタニル基を有するもの(特許文献4)等、各種化合物が報告されている。これらの化合物は、各種硬化開始剤の存在下、熱や光により、架橋し、硬化物を与える。
この他にも、エポキシ基やフェニル基を含有する多面体構造を有するポリシロキサンを用いた硬化性組成物(特許文献1、あるいは、特許文献5〜6)が開示されているが、高温条件化では、加熱による着色が見られるなど、ポリシロキサン系組成物の特性が活かしきれていない。
また、上述のようなポリシロキサン系材料においては、非常に厳しい条件下、例えば、高温、低温、更には、高温・低温が繰り返される環境での信頼性が要求されるが、この際の熱膨張、また冷却時の収縮に起因し、クラックが発生する恐れがあるため、材料の信頼性に課題が残る場合があった。
上記のように、多面体構造を有するポリシロキサン化合物を用いた材料の開示は見られるが、多面体構造ポリシロキサンの特性を有し、ハンドリング、成型加工性に優れ、さらには、耐クラック性、耐冷熱衝撃性が更に改良された新たな材料の開発が望まれていた。
特開2004−359933号公報 特開2004−143449号公報 特開2006−269402号公報 特開2005−23256号公報 特表2004−529984号公報 特開2006−22207号公報 J.Am.Chem.Soc.1998,120,8380−8391
本発明は、上記課題が解決された、成型加工性、透明性、耐熱性、耐光性、接着性に優れ、さらには耐クラック性、耐冷熱衝撃性に優れる、ポリシロキサン系組成物および硬化物を提供することを目的とする。
本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、本発明をなすに至った。本発明は以下の構成を有するものである。
1). アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得られた多面体構造ポリシロキサン変性体(A)、および、シリコーン系粒子(B)、を必須成分としてなるポリシロキサン系組成物。
2). (A)成分が温度20℃において、液状であることを特徴とする、1)に記載のポリシロキサン系組成物。
3). 化合物(b)が、ヒドロシリル基および/またはアルケニル基を含有する環状シロキサンであることを特徴とする、1)または2)に記載のポリシロキサン系組成物。
4). 化合物(b)が、分子末端にヒドロシリル基および/またはアルケニル基を含有する直鎖状シロキサンであることを特徴とする、1)または2)に記載のポリシロキサン系組成物。
5). 化合物(b)が、分子中に少なくとも3個のヒドロシリル基またはアルケニル基を有することを特徴とする、1)〜4)のいずれか1に記載のポリシロキサン系組成物。
6). ヒドロシリル基および/またはアルケニル基を有する化合物(b)のSi原子に直結した水素原子および/またはアルケニル基の数が、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)のアルケニル基および/またはSi原子に直結した水素原子1個あたり2.5〜20個になる範囲で加えて変性し、未反応の化合物(b)を留去して得られることを特徴とする、1)〜5)のいずれかに1に記載のポリシロキサン系組成物。
7). (A)成分が、
[XR1 2SiO−SiO3/2]a[R2 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;R1は、アルキル基またはアリール基;R2は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基;Xは、下記一般式(1)あるいは一般式(2)のいずれかの構造を有し、Xが複数ある場合は一般式(1)あるいは一般式(2)の構造が異なっていても良くまた一般式(1)あるいは一般式(2)の構造が混在していても良い。
Figure 0005329905
(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つは水素原子またはアルケニル基である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い。)を構成単位とすることを特徴とする1)〜7)のいずれか1に記載のポリシロキサン系組成物。
8). 式[AR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、ヒドロシリル基を有する化合物(b)を、アルケニル基1個あたりSi原子に直結した水素原子が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のヒドロシリル基を有する化合物(b)を留去して得られることを特徴とする、1)〜7)のいずれか1に記載のポリシロキサン系組成物。
9). 式[BR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、アルケニル基を有する化合物(b)を、Si原子に直結した水素原子1個あたり、アルケニル基が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のアルケニル基を有する化合物(b)を留去して得られることを特徴とする、1)〜8)のいずれか1に記載のポリシロキサン系組成物。
10). シリコーン系粒子(B)がコアシェル構造を有していることを特徴とする、1)〜9)のいずれか1に記載のポリシロキサン系組成物。
11). シリコーン系粒子(B)がシリコーン粒子コア−アルコキシシラン縮合物シェル構造を有するシリコーン系重合体粒子であることを特徴とする1)〜10)のいずれ1に記載のポリシロキサン系組成物。
12). シリコーン系粒子(B)のコア層が、体積平均粒径が0.005〜3.0μmのシリコーン粒子であることを特徴とする、11)に記載のポリシロキサン系組成物。
13). シリコーン系粒子(B)中のシリコーン粒子(B−1)とアルコキシシラン縮合物(B−2)の重量の割合が40:60〜97:3であることを特徴とする11)または12)に記載のポリシロキサン系組成物。
14). シリコーン系粒子(B)が、緩凝集・再分散法によって組成物中に分散されていることを特徴とする1)〜13)のいずれか1に記載のポリシロキサン系組成物。
15). 硬化剤(C)を含有することを特徴とする、1)〜14)のいずれか1に記載のポリシロキサン系組成物。
16). ヒドロシリル化触媒を含有することを特徴とする、1)〜15)のいずれか1に記載のポリシロキサン系組成物。
17). 接着性付与剤を含有することを特徴とする、1)〜16)のいずれか1に記載のポリシロキサン系組成物。
18). 1)〜17)のいずれか1に記載のポリシロキサン系組成物を硬化してなる硬化物。
本発明によれば、成型加工性、透明性、耐熱性、耐光性、接着性に優れ、さらには、耐クラック性、耐冷熱衝撃性に優れる、特には液状の多面体構造ポリシロキサン変性体を用いた組成物を提供することができる。
以下に、本発明について詳細に説明する。
<多面体構造ポリシロキサン変性体>
本発明における多面体構造ポリシロキサン変性体は、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得ることが可能である。本発明においては、変性体合成時にはゲル化しないことを特徴とし、得られる多面体構造ポリシロキサン変性体は、ハンドリング性、成形加工性の観点から、温度20℃で液状とすることが可能である。
本発明における多面体構造ポリシロキサン変性体としては、アルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた変性体が、製造の容易さや生産性の観点から好ましい。
本発明における好ましい多面体構造ポリシロキサン変性体について、以下、具体的に説明する。本発明における好ましい多面体構造ポリシロキサン変性体は、反応可能な官能基を有するシロキサン単位として[XR1 2SiO−SiO3/2]を必須単位として構成されることを特徴とし、必要に応じて、物性調整ユニットとしての任意のシロキサン単位[R2 3SiO−SiO3/2]を構成単位として含有し、以下の式、
[XR1 2SiO−SiO3/2]a[R2 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Xは一般式(1)あるいは(2)で表される基;R1は、アルキル基またはアリール基、;R2は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン変性体が例示される。ここで、aは平均して1以上、好ましくは2以上であることが好ましく、また、bは、0または1以上の整数である。a+bは6〜24の整数、好ましくは、6〜12の整数である。
Figure 0005329905
(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つはアルケニル基または水素原子である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い)
以下、反応可能な官能基を有するシロキサン単位
[XR1 2SiO−SiO3/2]
について説明する。
反応可能な官能基を有するシロキサン単位は、例えば、後述のヒドロシリル化触媒存在下、ヒドロシリル化反応により硬化剤との架橋反応を発生させる、あるいは、熱硬化開始剤あるいは光硬化開始剤の存在下、架橋し、硬化させる役割を担うユニットである。
ここで、好ましい反応性官能基を有する基Xとしては、一般式(1)あるいは一般式(2)のいずれかの式で表される基であれば特に限定はないが、mは1〜7の整数であることが好ましく、nは2〜4の整数であることが好ましい。
反応可能な官能基を有するシロキサン単位におけるR1としては、実質的に反応性を有しない置換基、具体的に例えば、アルキル基、アリール基を使用することができる。
本発明における反応可能な官能基を有するシロキサン単位は、多面体骨格を構成する全シロキサン単位のうち、平均して2つ以上含有することが好ましい。すなわち、一般式(1)におけるaは2以上が好ましい。含有する反応可能な官能基を含有するシロキサン単位が少ないと硬化性が不十分となり、さらには、得られる硬化物の強度が低下する恐れがある。
次に、任意のシロキサン単位
[R2 3SiO−SiO3/2]
について説明する。
本シロキサン単位は、本発明における多面体構造ポリシロキサン変性体および得られる硬化物の物性調整を行うためのユニットである。本シロキサン単位は、実質的に、反応可能な置換基を含有しないため、架橋密度の調整、皮膜性、レベリング性、脆さ改善などが可能となる。
本シロキサン単位におけるR2としては、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基を好適に用いることができる。前記アルキル基は、メチル基、エチル基、プロピル基、ブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基などが例示されるが、さらには、実質的に反応性を有しない置換基で一部を置き換えられていてもよい。
実質的に反応性を有しない置換基で一部を置き換えられたアルキル基としては、具体的に例えば、ポリシロキサニルアルキル基が例示され、レベリング性や皮膜性、また、後述の硬化剤や硬化開始剤との相溶性などの付与も可能となり、また、化合物の性状を液状にすることも可能である。
前記他の多面体構造ポリシロキサンと連結している基としては、ポリシロキサンやポリ(メタ)アクリレート、ポリイソブチレン等のポリマー成分を介して連結している基が例示される。
<多面体構造ポリシロキサン変性体の製造方法>
まず、多面体構造シロキサン系化合物(a)について、説明する。
前記アルケニル基および/またはヒドロシリル基を含有する多面体構造シロキサン系化合物(a)の合成方法としては、例えば、R3SiXa 3(式中R3は、アルケニル基または水素原子を表し、Xaは、ハロゲン原子、アルコキシ基等の加水分解性官能基を表す)のシラン化合物の加水分解縮合反応によって、得られる。
または、R3SiXa 3の加水分解縮合反応によって分子内に3個のシラノール基を有するトリシラノール化合物を合成したのち、さらに、同一もしくは異なる3官能性シラン化合物を反応させることにより閉環し、合成する方法も知られている。さらには、前記トリシラノール化合物に、1官能性シランおよび/または2官能性シランを反応させることにより、部分開裂型の多面体構造ポリシロキサンを合成することもできる。
その他の多面体構造シロキサン系化合物(a)の合成方法としては、例えば、テトラエトキシシラン等のテトラアルコキシシランを、トリメチル(2−ヒドロキシエチル)アンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド等の4級アンモニウムヒドロキシド等の塩基存在下、加水分解縮合反応により、多面体構造を有するケイ酸塩を得、さらに得られたケイ酸塩をアルケニル基および/またはヒドロシリル基を有するシリルクロライド等のシリル化剤と反応させることにより合成することができる。
本発明においては、テトラアルコキシランの替わりに、シリカや稲籾殻等のシリカを含有する物質からも、同様の多面体構造ポリシロキサンを得ることが可能である。
本発明におけるアルケニル基を有する多面体構造ポリシロキサン系化合物(a)の好ましい例としては、具体的に例えば、以下の式で表されるアルケニル基を有する多面体構造ポリシロキサン系化合物
[AR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体構造ポリシロキサンやシロキサン化合物と連結している基)が例示される。
このような(a)成分を用いる場合、(b)成分としてヒドロシリル基を有する化合物を用いることにより、例えば、後述のヒドロシリル化触媒の存在下、ヒドロシリル化反応によって多面体構造ポリシロキサン変性体を得ることができる。この際、前記多面体構造シロキサン系化合物(a)のアルケニル基は、すべて反応する必要はなく、一部残存していてもよい。また、複数の多面体構造ポリシロキサン系化合物(a)と複数のヒドロシリル基を有する化合物(b)が反応していても良い。
本発明におけるヒドロシリル基を有する多面体構造ポリシロキサン系化合物(a)の他の好ましい例としては、具体的に例えば、
[BR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体構造ポリシロキサンやシロキサン化合物と連結している基)が例示される。
このような(a)成分を用いる場合、(b)成分としてアルケニル基を有する化合物を用いることにより、例えば、後述のヒドロシリル化触媒の存在下、ヒドロシリル化反応によって多面体構造ポリシロキサン変性体を得ることができる。この際、前記多面体構造シロキサン系化合物(a)の水素原子は、すべて反応する必要はなく、一部残存していてもよい。また、複数の多面体構造ポリシロキサン系化合物(a)と複数のアルケニル基を有する化合物(b)が反応していても良い。
次に、ヒドロシリル基および/またはアルケニル基を有する化合物(b)について、説明する。
前記、ヒドロシリル基を有する化合物は、ヒドロシリル基(Si原子に直結した水素原子)を有するものであり、前記多面体構造シロキサン系化合物(a)のアルケニル基と反応して、多面体構造ポリシロキサン分子に新たに反応性官能基を有する基を導入するための成分である。
本発明における好ましいヒドロシリル基を有する化合物(b)としては、具体的に例えば、ヒドロシリル基(Si原子に直結した水素原子)を有するものであり、前記アルケニル基を有する多面体構造シロキサン系化合物(a)のアルケニル基と反応して、前記の一般式(1)あるいは一般式(2)のいずれかの式で表される反応性官能基Xを形成するものが挙げられる(この場合、YあるいはZの少なくとも1つは水素原子である)。
前記、ヒドロシリル基を有する化合物(b)としては、ヒドロシリル基含有シロキサン化合物、具体的に例えば、両末端にヒドロシリル基を有する直鎖状のポリシロキサン、ヒドロシリル基を含有する環状シロキサンなどが好ましいものとして挙げられ、さらには、工業的入手性や反応させる際の反応性が良好である、また、得られた硬化物の耐青色レーザー性に優れる等の観点からヒドロシリル基を含有する環状シロキサンが好ましい。これらヒドロシリル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。
前記、両末端にヒドロシリル基を有する直鎖状のポリシロキサンの具体例としては、ジメチルハイドロジェンシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、テトラメチルジシロキサン、ヘキサメチルトリシロキサンなどが例示される。
ヒドロシリル基を含有する環状シロキサンとしては、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジハイドロジェン−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリハイドロジェン−トリメチルシクロシロキサン、1,3,5,7,9−ペンタハイドロジェン−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサハイドロジェン−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。
上記ヒドロシリル基を有する化合物(b)、特には、ヒドロシリル基含有シロキサン化合物の添加量は、アルケニル基を有する多面体構造ポリシロキサン系化合物(a)のアルケニル基の個数1個あたり、Si原子に直結した水素原子の数が2.5〜20個になるように用いることが好ましいが、化合物に依存する。
添加量が少ないと、架橋反応によりゲル化が生じてハンドリング性の劣るポリシロキサン変性体となり、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。さらには、過剰量のヒドロシリル基含有シロキサン化合物を存在させるため、例えば減圧・加熱条件下にて、未反応のヒドロシリル基含有シロキサン化合物を取り除くことが好ましい。
前記、アルケニル基を有する化合物(b)は、アルケニル基を有するものであり、前記ヒドロシリル基を有する多面体構造シロキサン系化合物(a)のヒドロシリル基と反応して、前記の一般式(1)あるいは一般式(2)のいずれかの式で表される反応性官能基Xを形成するものが挙げられる(この場合、YあるいはZの少なくとも1つはアルケニル基である)。
前記、アルケニル基を有する化合物(b)としては、アルケニル基含有シロキサン化合物、具体的に例えば、両末端にアルケニル基を有する直鎖状のポリシロキサン、アルケニル基を含有する環状シロキサンなどが好ましいものとして挙げられる。これらアルケニル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。
前記、両末端にアルケニル基を有する直鎖状のポリシロキサンの具体例としては、ジメチルビニルシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、テトラメチルジビニルジシロキサン、ヘキサメチルジビニルトリシロキサンなどが例示される。
アルケニル基を含有する環状シロキサンとしては、1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジビニル−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−トリメチルシクロシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。
本発明の多面体構造ポリシロキサン変性体(A)の製造方法は、ヒドロシリル基および/またはアルケニル基を有する化合物(b)のSi原子に直結した水素原子および/またはアルケニル基の数が、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)のアルケニル基および/またはSi原子に直結した水素原子1個あたり2.5〜20個になる範囲で加えて変性するのが好ましい。また、変性の後あるいは変性中に、未反応の化合物(b)を留去することが好ましい。
(b)成分の添加量が少ないと、架橋反応によりゲル化が生じてハンドリング性の劣るポリシロキサン変性体となり、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。
本発明においては、耐熱性、耐光性の観点から、Si原子上は、水素原子、ビニル基およびメチル基から構成されることが好ましい。
本願発明の多面体構造ポリシロキサン変性体は、硬化物を調整する上でハンドリング性等の面から液体であることが好ましく、また、成型体の光線透過率の面で透明であることが好ましい。
<(B)シリコーン系粒子>
本発明におけるシリコーン系粒子(B)は、多面体構造ポリシロキサン変性体(A)を主成分としてなる組成物に配合して用いることができ、その場合、多面体構造ポリシロキサン変性体(A)が有する、高い透明性、耐熱性、耐光性、耐青色レーザー性等を維持したまま耐クラック性や耐冷熱衝撃性を向上させたポリシロキサン系組成物を得ることができる。
本発明における(B)成分は、ポリシロキサンを主成分とするシリコーン系粒子であれば特に制限はないが、コアシェル構造を有することが好ましい。コアシェル構造を有することにより、具体的に例えば、シェルの設計により、多面体構造ポリシロキサン変性体(A)あるいは後述の硬化剤(C)との親和性あるいは相溶性を向上させることができ、良好な分散性を発現させることが可能となる。なお、本発明でいうコアシェル構造とは、具体的に例えば、コアとなる粒子の存在下、コアを形成するモノマー成分とは異なる組成や成分から構成されるモノマー成分を重合させることによって得られる構造を指す。
さらには、コア粒子との反応性を有するシェル成分を用い、コア粒子の外側にシェル部を形成したような構造を有する粒子が好ましいものとして例示される。また、シェル成分をコア粒子に吸収させながら、コアシェル構造を形成したり、コア部からシェル部への傾斜構造等を形成することも可能である。
本発明においては、特には、シリコーン粒子(B−1)によるコアとアルコキシシラン縮合物(B−2)によるシェルを有するシリコーン系重合体粒子が好適なものとして例示される。具体的に例えば、前記コア成分であるシリコーン粒子(B−1)と、シェル成分であるアルコキシシラン縮合物(B−2)の組成比を最適化することで、多面体構造ポリシロキサン変性体(A)とシリコーン系粒子(B)の屈折率を近づけることができ、ポリシロキサン系組成物や得られる硬化物の透明性を維持・向上させることができ、また、シェルと多面体構造ポリシロキサン変性体(A)や後述の硬化剤(C)との間の親和性・相溶性が向上して組成物の分散安定性や耐クラック性や耐冷熱衝撃性の改善に有利となる。
以下、シリコーン粒子コア−アルコキシシラン縮合物シェル構造を有するシリコーン系重合体粒子(以下、コアシェル粒子と略す)について、詳しく説明する。
前記コアシェル粒子は、コア成分40〜97重量%の存在下に、シェル成分3〜60重量%を縮合反応させた粒子であることが好ましい(ただし、コア成分とシェル成分を合わせて100重量%)。
さらには、耐冷熱衝撃性や耐クラック性向上の観点から、コア成分60〜95重量%の存在下に、シェル成分5〜40重量%を縮合反応させることが好ましい。コア成分が少ないと(A)成分の屈折率が、マトリクスの屈折率と大きく相違して組成物の透明性が損なわれることがあり、またシェル成分が少ないとマトリクスとの親和性・相溶性が不十分になる恐れがあるので、コア、シェルの割合は上記範囲にあることが好ましい。
本発明に用いるコア成分の製造方法には、特に限定はないが、通常の乳化重合、分散重合、溶液重合などでも得ることが可能であり、粒径の制御が可能である点や、操作の簡便性等の点を考慮すると、乳化重合で得ることが好ましい。
本発明に用いるコア成分は、通常の乳化重合でも得られるが、より粒子径の小さい粒子を得ることができ、さらにラテックス状態での粒子径分布が狭くできる利点などからもシード重合を利用することができる。シード重合に用いるシードポリマーは特に限定は無いが、アクリル酸ブチルゴム、ブタジエンゴム、ブタジエン−スチレンやブタジエン−アクリロニトリルゴム等のゴム成分、アクリル酸ブチル−スチレン共重合体やスチレン−アクリロニトリル共重合体等の重合体を用いることができる。
コア成分は、下記の一般式(3)
a mSiO(4-m)/2 (3)
(式中、Raは置換または非置換の一価の炭化水素基であり、各々同一であっても異なっていても良い。mは0〜3の整数を示す。)で表される構造単位からなり、m=2の構造単位が、コア成分の70モル%以上を占めていることが好ましく、さらに好ましくは80モル%以上を占めていることが好ましい。m=2の割合が少ないとコア成分の柔軟性が損なわれるため、硬化組成物全体の耐冷熱衝撃性が低下したりする場合がある。
コア成分はオルガノシロキサンの重合により得ることができるが、そのオルガノシロキサンは、直鎖状、分岐状および環状構造のいずれであってもよいが、入手の容易さやコストの観点から、環状構造を有するオルガノシロキサンを用いるのが好ましい。
オルガノシロキサンの具体例としては、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、トリメチルトリフェニルシクロトリシロキサンなどの環状化合物のほかに、直鎖状あるいは分岐状のオルガノシロキサンを挙げることができる。これらオルガノシロキサンは、単独または2種以上を組み合わせて使用することができる。
これらオルガノシロキサンの有する置換または非置換の一価の炭化水素基としては、好ましいものとしては例えばメチル基、エチル基、プロピル基、フェニル基、およびそれらをシアノ基などで置換した置換炭化水素基などをあげることができる。
またコア成分の分子の末端がシラノール基であることが好ましい。分子の末端にシラノール基を有していることで、後述のシェル成分との間で縮合反応により結合を形成するため、安定的なコアシェル粒子を得ることができる。
コア成分は、例えば、酸性もしくは塩基性条件下で行われる通常の乳化重合方法により製造することができるが、酸性条件下で反応させる方が、コアシェル粒子を安定的に形成することが可能となるため有利である。たとえば上記のオルガノシロキサンを含んだ各種原料を、乳化剤および水とともにホモミキサー、コロイドミル、ホモジナイザーなどを用いてエマルジョンとし、ついで、系を酸性条件下、pHを酸成分で5以下、さらには4以下に調整し、加熱して重合させるのが好ましい。この際に用いる酸成分としては、安定して乳化重合を進行させることができ、またそれ自身も乳化能を併せ持つものが好ましく、例えば、アルキルベンゼンスルホン酸、アルキル硫酸、アルキルスルホコハク酸などが例示されうる。
なお、原料の全部を一括添加したのち、一定時間撹拌してからpHを任意の値に調整してもよく、また原料の一部を仕込んでpHを任意の値に調整したエマルジョンに残りの原料を逐次追加してもよい。重合時のpHについては特に制限されるものではないが、重合が十分に進行することから、pH=5以下、特にpH=4以下に調整するのが好ましい。逐次追加する場合、そのままの状態、または水および乳化剤と混合して乳化液とした状態のいずれで添加してもよいが、重合速度を速くすることができるので、乳化状態で追加する方法を用いることが好ましい。反応温度、時間に特に制限はないが、反応制御の容易さから反応温度は0〜100℃が好ましく、50〜95℃がさらに好ましい。反応時間は、好ましくは1〜100時間であり、さらに好ましくは3〜50時間である。
酸性条件下で重合を行う場合、通常、コア成分の骨格を形成しているSi−O−Si結合は、切断と結合生成の平衡状態にある。この平衡は温度によって変化し、低温になるほど高分子量のコア成分が生成しやすくなる。したがって、高分子量のコア成分を得るためには、加熱により重合した後、重合温度以下に冷却して熟成を行うことが好ましい。
好ましい温度条件としては具体的には、50℃を越える温度で重合を行い、重合転化率が75〜90%、さらに好ましくは82〜89%に達した時点で加熱を止め、5〜50℃、さらに好ましくは10〜45℃に冷却して5〜100時間程度熟成を行う条件を挙げることができる。なお、ここで言う重合転化率は原料中の低揮発分のオルガノシロキサンのコア成分への転化率を意味する。
乳化重合に用いる水の量についてはとくに制限は無く、各種原料を乳化分散させるために必要な量であれば良く、好ましくは原料の合計量に対して1〜20倍の重量を用いれば良い。
乳化重合に用いる乳化剤は、反応を行うpH領域において乳化能を失わないものであれば特に限定なく公知のものを使用することができる。かかる乳化剤の例としては、たとえばアルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸ナトリウム、アルキルスルホコハク酸ナトリウム、ポリオキシエチレンノニルフェニルエーテルスルホン酸ナトリウムなどが挙げられる。また、該乳化剤の使用量にはとくに限定がなく、目的とするコア成分の粒子径などに応じて適宜調整すればよい。充分な乳化能が得られ、かつ得られるコア成分と、それから得られる、前記(A)成分であるシリコーン系重合体粒子の物性に悪影響を与えないという点から、エマルジョン中に0.005〜20重量%用いるのが好ましく、特には0.05〜15重量%用いるのが好ましい。
コア成分の粒子径は、乳化剤の使用量の増減など、通常の乳化重合技術を用いて制御することが可能である。例えば、適切な濃度でアルキルベンゼンスルホン酸を用いて乳化重合を行うことで、比較的小粒径のシリコーン粒子を安定して得ることができる。ラテックス状態のシリコーン粒子の体積平均粒径は、0.005μm〜3.0μmの範囲が好ましく、さらには0.01μm〜2.0μmが好ましく、さらに得られる硬化物の透明性等の観点から、0.050μm〜0.2μmが特に好ましい。
体積平均粒径が小さいものを安定的に得ることは難しく、また大きいと硬化組成物の透明性が悪くなる場合があるので体積平均粒径は上記範囲にあることが好ましい。なお、体積平均粒径の測定は、例えば、ナノトラック粒度分析計UPA150(日機装株式会社製)を用いて行うことができる。
本発明に用いるコア成分の合成の際に、必要によっては架橋剤、グラフト交叉剤を添加することもできる。
本発明のコア成分の合成に用いることができる架橋剤としては、例えば、メチルトリメトキシシラン、フェニルトリメトキシシラン、エチルトリエトキシシランなどの縮合反応に関与できる官能基を3個含むいわゆる3官能性架橋剤、テトラエトキシシラン、1,3ビス〔2−(ジメトキシメチルシリル)エチル〕ベンゼン、1,4−ビス〔2−(ジメトキシメチルシリル)エチル〕ベンゼン、1,3−ビス〔1−(ジメトキシメチルシリル)エチル〕ベンゼン、1,4−ビス〔1−(ジメトキシメチルシリル)エチル〕ベンゼン、1−〔1−(ジメトキシメチルシリル)エチル〕−3−〔2−(ジメトキシメチルシリル)エチル〕ベンゼン、1−〔1−(ジメトキシメチルシリル)エチル〕−4−〔2−ジメトキシメチルシリル〕エチル〕ベンゼンなどの縮合反応に関与できる官能基を4個含むいわゆる4官能性架橋剤、さらにはこれら架橋剤のアルコキシ基を縮合させた部分縮合物を挙げることができる。
これら架橋剤は、必要に応じ、1種若しくは2種以上組み合わせて用いることができる。この架橋剤を用いる場合はその添加量は、オルガノシロキサン100重量部に対して、0.1〜10重量部が好ましい。架橋剤の添加量が多いと、コア成分の柔軟性が損なわれるため、シリコーン系組成物の低温での耐熱衝撃性が低下する場合がある。また架橋剤の添加量を調節することで、架橋度を変化させることによりコア成分の弾性を任意に調節することができる。
本発明に用いることができるグラフト交叉剤は、例えば、p−ビニルフェニルメチルジメトキシシラン、p−ビニルフェニルエチルジメトキシシラン、2−(p−ビニルフェニル)エチルメチルジメトキシシラン、3−(p−ビニルベンゾイロキシ)プロピルメチルジメトキシシラン、p−ビニルフェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、テトラビニルテトラメチルシクロシロキサン、アリルメチルジメトキシシラン、メルカプトプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン等があげられる。
シェル成分は、本発明におけるポリシロキサン系組成物あるいは硬化物中でのシリコーン系粒子(B)の分散性を確保し、得られる硬化物の耐クラック性や耐冷熱衝撃性等の性能向上させることが可能となる。
本発明に用いる好ましいシェル成分であるアルコキシシラン縮合物は、以下の一般式(4)で表される2官能性アルコキシシラン化合物、一般式(5)で表される3官能性アルコキシシラン化合物、一般式(6)で表される4官能性アルコキシシラン化合物、およびそれらの部分縮合物(アルコキシ基を縮合させた部分縮合物)等を用いて得ることができる。これらは単独でも2種類以上でも用いることができる。
Figure 0005329905
(一般式(4)において、R22、R23は同一または異なる一価のアルキル基を示し、R24、R25は同一または異なる一価の有機基を示す。)
(一般式(5)において、R32、R33、R34は、同一または異なる一価のアルキル基を示し、R35は一価の有機基を示す。)
(c)成分:一般式(4)
(一般式(6)において、R42、R43、R44およびR45は、同一または異なる一価のアルキル基を示す。)
さらには、上記2〜4官能性アルコキシシランに、一般式(7)で表される1官能性アルコキシシラン化合物を併用して用いることができる。これらは1種類でも2種類以上でも用いることができる。
(一般式(7)において、R12はアルキル基を示し、R13、R14、R15は同一または異なる一価の有機基を示す。)。
前記1官能性アルコキシシラン化合物は、2〜4官能性アルコキシシラン化合物と併用することにより、コアシェル粒子表面の疎水化を促進することができ、多面体構造ポリシロキサン変性体(A)との親和性を向上させたり、本発明によって得られる硬化物の耐クラック性や耐冷熱衝撃性を向上させたりすることができる。
上記一般式(4)〜(7)において挙げられるアルコキシ基としては、たとえばメトキシ、エトキシ、ノルマルプロポキシ、イソプロポキシ、ノルマルブトキシ、イソブトキシ、第2級ブトキシ、第3級ブトキシ、ペンチルオキシ、ヘキシルオキシ等の、炭素数1〜6のアルコキシ基である。またアルコキシ基以外の一価の有機基としては、たとえばアルキル基、アルケニル基、アリル基、アラルキル基等があげられる。
またここでアルケニル基を含むアルコキシシラン化合物あるいはそのアルコキシ基を縮合させた部分縮合物を用いれば、(B)成分にアルケニル基を導入でき、例えば、このアルケニル基が(A)成分や(C)成分との間でヒドロシリル化反応により結合を形成することができ、組成物の高い透明性や硬度を維持しながら耐熱衝撃性を向上させることができるので好ましい。
本発明に用いるアルコキシシラン化合物の具体例としては、前記の架橋剤、グラフト交叉剤と同じもの、あるいはそのアルコキシ基を縮合させた部分縮合物が挙げられる。
アルコキシシラン化合物を用いてシェル成分を得る重合方法は、乳化重合を用いることができる。乳化重合の条件は一般的な条件が適用できるが、特に重合温度に注意を払うことが好ましい。重合の際の温度は、20〜85℃を適用することが好ましい。また、重合時間は1〜50時間が適用できる。
またシェル成分は、酸性もしくは塩基性条件下で行われる通常の乳化重合方法により製造することができるが、酸性条件下で反応させる方が、アルコキシシランの縮合反応の際にゲル化を抑制しやすい等の理由により好ましい。
乳化重合によって得られたシリコーン系粒子(B)のラテックスから粒子を分離する方法としては、特に限定は無いが、たとえばラテックスに塩化カルシウム、塩化マグネシウム、硫酸マグネシウムなどの金属塩を添加することによりラテックスを凝固、分離、水洗、脱水し、乾燥する方法などがあげられる。また、スプレー乾燥法も使用できる。
さらに本発明においては、(B)成分の粒子を水系ラテックスから取り出して、有機溶剤中に一次粒径のまま再分散させることが可能であることから、緩凝集・再分散法を用いるのが好ましい。
緩凝集方法としては、・再分散法について説明する。粒子を含む水系ラテックス溶液に、水に部分可溶な有機溶剤、例えばアルコール類(メタノール、エタノール、2−プロパノール等)やケトン類(メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、酢酸エステル類(酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等)などを加えることで、ラテックス中の粒子の乳化状態を解き、粒子どうしを緩凝集させ、さらに遠心沈降や濾過などの方法で緩凝集体を回収することができる。
再分散方法としては、この緩凝集体を分散可能な有機溶剤に再分散させればよい。緩凝集・再分散に用いる有機溶媒は1種を単独で用いてもよく、また、2種以上を併用して用いてもよい。
この方法によって得られる、分散可能な有機溶剤中にシリコーン系粒子(B)が均一に分散した分散液に、好ましくは、多面体構造ポリシロキサン変性体(A)、あるいは、後述の硬化剤(C)等を溶解させ、その後に有機溶剤を留去すれば、均一に粒子が分散した組成物の製造が可能となり、粒子がマトリクス樹脂中に均一に分散した硬化物を得ることができるので好ましい。
前記粒子分散可能な有機溶剤としては、粒子の分散安定性や多面体構造ポリシロキサン変性体(A)や硬化剤(C)との相溶性を勘案して選択することができる。好ましい有機溶剤としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、メチルシクロへキサン等の炭化水素系溶剤や、上述したケトン類、酢酸エステル類を用いることができる。前記有機溶媒は1種を単独で用いてもよく、また、2種以上を併用して用いてもよい。
本発明においては、シリコーン系粒子(B)の表面に各種官能基を導入するために、表面処理を行うことができる。この表面処理の際に用いる表面処理剤としては、具体的に例えば、アルケニル基や加水分解性基を有するシリル化剤を好適に用いることができる。アルケニル基を有するシリル化剤の具体例としては、例えば、クロロジメチルビニルシラン、ジクロロメチルビニルシラン、ジクロロジビニルシラン、トリクロロビニルシラン、テトラメチルジビニルジシロキサンを用いることができる。
加水分解性基を有するシリル化剤の具体例としては、例えば、トリメチルクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシロキサン、ヘキサメチル(ジ)シラザン、トリメチルメトキシシラン、トリメチルエトキシシランがあげられる。上記表面処理剤は、1種または2種以上を組み合わせて用いることができる。
本発明におけるシリコーン系粒子(B)の添加量は、多面体構造ポリシロキサン変性体(A)と後述の硬化剤(C)との合計100重量部に対して、2〜100重量部、さらには、5〜60重量部であることが好ましい。シリコーン系粒子の添加量が少なすぎると、耐クラック性や耐冷熱衝撃性が不十分となる恐れがあり、シリコーン系粒子の添加量が多すぎると、組成物の透明性や流動性が低下する恐れがある。
<ヒドロシリル化触媒>
次に、本発明で用いるヒドロシリル化触媒について説明する。
本発明では、多面体構造ポリシロキサン変性体の合成、および、該変性体を用いた組成物を硬化させる際に、ヒドロシリル化触媒を用いることができる。
本発明で用いるヒドロシリル化触媒としては、通常ヒドロシリル化触媒として用いられるものを用いることができ特に制限はなく、任意のものが使用できる。
具体的には例示すれば、白金−オレフィン錯体、塩化白金酸、白金の単体、担体(アルミナ、シリカ、カーボンブラック等)に固体白金を担持させたもの;白金−ビニルシロキサン錯体、例えば、Ptn(ViMe2SiOSiMe2Vi)m、Pt〔(MeViSiO)4m;白金−ホスフィン錯体、例えば、Pt(PPh34、Pt(PBu34;白金−ホスファイト錯体、例えば、Pt〔P(OPh)34、Pt〔P(OBu)34(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは整数を表す)、Pt(acac)2、また、Ashbyらの米国特許第3159601及び3159662号明細書中に記載された白金−炭化水素複合体、並びにLamoreauxらの米国特許第3220972号明細書中に記載された白金アルコラ−ト触媒も挙げられる。
また、白金化合物以外の触媒の例としては、RhCl(PPh33、RhCl3、Rh/Al23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。これらの触媒は単独で使用してもよく、2種以上併用しても構わない。触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体、Pt(acac)2等が好ましい。
多面体構造ポリシロキサン変性体の合成時および硬化時に用いるヒドロシリル化触媒の添加量としては特に制限はないが、例えば、多面体構造ポリシロキサン系化合物(a)のアルケニル基1モルに対して10-1〜10-10モルの範囲で用いるのがよい。好ましくは10-4〜10-8モルの範囲で用いるのがよい。ヒドロシリル化触媒が多すぎると、ヒドロシリル化触媒の種類によっては、短波長の光に吸収を示すため、得られる硬化物の耐光性が低下する恐れがあり、また、硬化物が発泡する恐れもある。また、ヒドロシリル化触媒が少なすぎると、反応が進まず、目的物が得られない恐れがある。
また、多面体構造ポリシロキサン変性体のヒドロシリル化反応の反応温度としては、30〜400℃、さらに好ましくは、40〜250℃であることが好ましく、より好ましくは、45〜140℃である。温度が低すぎると反応が十分に進行せず、温度が高すぎると、ゲル化が生じ、ハンドリング性が悪化する恐れがある。
<組成物>
次に、本発明によって得られるポリシロキサン系組成物について説明する。本発明においては、多面体構造ポリシロキサン変性体(A)およびシリコーン系粒子(B)に、硬化剤(C)、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤等も加えることにより得ることができる。また、本願発明に係る多面体構造ポリシロキサン変性体の中でも、本発明における多面体構造ポリシロキサン変性体(A)およびシリコーン系粒子(B)に後述の硬化剤(C)、ヒドロシリル化触媒、接着性付与剤も配合した組成物により、硬化物が基材との接着性が良好な組成物となす事ができる。
本発明のポリシロキサン系組成物は、透明な液状組成物となす事が可能である。特に液状の多面体構造ポリシロキサン変性体を用いることで溶媒を用いずとも液状組成物と成すことができ、成型体に流し込み、加熱して硬化させることで容易に成形体を得ることができる。透明であることにより、光学用組成物として用いることができる。
液状の透明組成物を硬化させた成型体は、例えば3mm厚さの成型体での透過率は400nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明のポリシロキサン系組成物が容易に液状として得ることができるので好ましい。
多面体構造ポリシロキサン変性体を含有する組成物をヒドロシリル化反応により硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。
具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、好ましくは1分〜12時間、さらには5分〜10時間行うことにより、良好な硬化物を得ることができる。
<硬化剤(C)>
次に、本発明に用いる硬化剤(C)について説明する。
硬化剤(C)は、多面体構造ポリシロキサン変性体の主たる反応性基の種類よって使い分けることができる。多面体構造ポリシロキサン変性体がヒドロシリル基を主たる反応性基として有する場合は、アルケニル基を有する化合物、アルケニル基を主たる反応性基として有する場合は、ヒドロシリル基を有する化合物を硬化剤として用いることができる。以下、詳細に説明する。
前記、アルケニル基を有する硬化剤は、アルケニル基を有する化合物であれば特に限定されないが、1分子中に少なくともアルケニル基を2個含有するものが好ましく、アルケニル基を有する直鎖構造のポリシロキサン、分子末端にアルケニル基を有するポリシロキサン、アルケニル基を含有する環状シロキサンなどのシロキサン化合物がさらに好ましく、特には、高温加熱時における耐クラック性等の観点より直鎖構造のポリシロキサンであることが好ましい。これらアルケニル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。
直鎖構造を有するアルケニル基含有ポリシロキサンの具体例としては、ジメチルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジフェニルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、メチルフェニルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジメチルビニルシリル基で末端が封鎖されたポリジメチルシロキサン、ジメチルビニルシリル基で末端が封鎖されたポリジフェニルシロキサン、ジメチルビニルシリル基で末端が封鎖されたポリメチルフェニルシロキサンなどが例示される。
本発明における直鎖構造を有するアルケニル基含有ポリシロキサンとしては、得られる硬化物の靭性や耐クラック性の観点から、分子末端にアルケニル基を有することが好ましい。
分子末端にアルケニル基を有するポリシロキサンの具体例としては、先に例示したジメチルアルケニル基で末端が封鎖されたポリシロキサン、ジメチルアルケニルシロキサン単位とSiO2単位、SiO3/2単位、SiO2/2単位からなる群において選ばれる少なくとも1つのシロキサン単位からなるポリシロキサンなどが例示される。
アルケニル基を含有する環状シロキサン化合物としては、1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジビニル−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−トリメチルシクロシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。
前記、ヒドロシリル基を有する硬化剤は、ヒドロシリル基を有する化合物であれば特に限定されないが、1分子中に少なくともヒドロシリル基を2個含有するものが好ましく、ヒドロシリル基を有する直鎖構造のポリシロキサン、分子末端にヒドロシリル基を有するポリシロキサン、ヒドロシリル基を含有する環状シロキサンなどのシロキサン化合物が特に好ましい。これらヒドロシリル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。
直鎖構造を有するヒドロシリル基含有ポリシロキサンの具体例としては、ジメチルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジフェニルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、メチルフェニルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジメチルハイドロジェンシリル基で末端が封鎖されたポリジメチルシロキサン、ジメチルハイドロジェンシリル基で末端が封鎖されたポリジフェニルシロキサン、ジメチルハイドロジェンシリル基で末端が封鎖されたポリメチルフェニルシロキサン、などが例示される。
分子末端にヒドロシリル基を有するポリシロキサンの具体例としては、先に例示したジメチルハイドロジェンシリル基で末端が封鎖されたポリシロキサン、ジメチルハイドロジェンシロキサン単位(H(CH32SiO1/2単位)とSiO2単位、SiO3/2単位、SiO2/2単位からなる群において選ばれる少なくとも1つのシロキサン単位からなるポリシロキサンなどが例示される。
ヒドロシリル基を含有する環状シロキサン化合物としては、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジハイドロジェン−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリハイドロジェン−トリメチルシクロシロキサン、1,3,5,7,9−ペンタハイドロジェン−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサハイドロジェン−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。
本発明においては、耐熱性、耐光性の観点から、Si原子上は、水素原子、ビニル基およびメチル基から構成されることが好ましい。
硬化剤の添加量は種々設定できるが、アルケニル基1個あたり、Si原子に直結した水素原子が0.3〜5個、好ましくは、0.5〜3.5個となる割合であることが望ましい。アルケニル基の割合が少なすぎると、発泡等による外観不良が生じやすくなり、また、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。
<硬化遅延剤>
次に、本発明で用いる硬化遅延剤について説明する。
硬化遅延剤は、本発明の多面体構造ポリシロキサン変性体、および、ポリシロキサン系組成物の保存安定性を改良あるいは、硬化過程でのヒドロシリル化反応の反応性を調整するための成分である。本発明においては、硬化遅延剤としては、ヒドロシリル化触媒による付加型硬化性組成物で用いられている公知のものが使用でき、具体的には脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらを単独使用、または2種以上併用してもよい。
前記の脂肪族不飽和結合を含有する化合物としては、具体的には3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、無水マレイン酸、マレイン酸ジメチル等のマレイン酸エステル類等が例示できる。
有機リン化合物としては、具体的にはトリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示できる。
有機イオウ化合物としては、具体的にはオルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示できる。
窒素含有化合物としては、具体的にはN,N,N′,N′−テトラメチルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジブチルエチレンジアミン、N,N−ジブチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N,N′,N′−テトラエチルエチレンジアミン、N,N−ジブチル−1,4−ブタンジアミン、2,2’−ビピリジン等が例示できる。
スズ系化合物としては、具体的にはハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示できる。
有機過酸化物としては、具体的にはジ−t−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示されうる。これらのうち、マレイン酸ジメチル、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサノールが、特に好ましい硬化遅延剤として例示できる。
硬化遅延剤の添加量は、特に限定するものではないが、ヒドロシリル化触媒1モルに対して10−1〜103モルの範囲で用いるのが好ましく、1〜500モルの範囲で用いるのがより好ましい。また、これらの硬化遅延剤は単独で使用してもよく、2種類以上組み合わせて使用してもよい。
<接着性付与剤>
接着性付与剤は本願発明の組成物と基材との接着性を向上する目的で用いるものであり、その様な効果があるものは時に制限はないが、シランカップリング剤、エポキシ化合物が好ましい物として例示できる。
具体的に例えば、多面体構造ポリシロキサン変性体としてヒドロシリル基を含有する多面体構造ポリシロキサン変性体に硬化剤、ヒドロシリル化触媒、接着性付与剤も配合した組成物により、硬化物が基材との接着性が良好な組成物となす事ができる。
シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、具体的には3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。
シランカップリング剤の添加量としては、多面体構造ポリシロキサン変性体(A)および硬化剤(C)の合計重量の0.05〜30重量%であることが好ましく、さらに好ましくは、0.1〜15重量%である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。
エポキシ化合物としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート等を挙げることができる。
エポキシ化合物の添加量としては、多面体構造ポリシロキサン変性体および硬化剤の合計重量の0.1〜50重量%であることが好ましく、さらに好ましくは、0.2〜15重量%である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。
また、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種併用してもよい。
本発明においては、接着性付与剤の効果を高めるために、公知の接着性促進剤を用いることができる。接着性促進剤としては、ボロン酸エステル化合物、有機アルミニウム化合物、有機チタン化合物が挙げられるが、これらに限定されるものではない。
本発明に用いるポリシロキサン系組成物には、上記成分に加え、本発明の効果を妨げない範囲で、必要に応じ、粉砕石英、炭酸カルシウム、カーボンブラック、シリカなどの無機フィラー(充填剤)を添加してもよい。
本発明で用いることが出来る無機フィラーは、無機物もしくは無機物を含む化合物であれば特に限定されないが、具体的に例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化鉄、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、ガラスフレーク、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、フェライト、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等を挙げることができる。これらは、単独で用いてもよく、2種類以上併用してもよい。
無機フィラーは、適宜表面処理をほどこしてもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられるが、特に限定されるものではない。
前記カップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。
有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。
好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が挙げられる。
上記無機フィラーをポリシロキサン系組成物の組成分として用いることにより、得られる成形体の強度、硬度、弾性率、熱膨張率、熱伝導率、放熱性、電気的特性、光の反射率、難燃性、耐火性等の諸物性を改善することができる。
無機フィラーの形状としては、破砕状、片状、球状、棒状等、各種用いることができる。無機フィラーの平均粒径や粒径分布は、特に限定されるものではないが、平均粒径が0.005〜100μmであることが好ましく、さらには0.01〜50μmであることが好ましい。同様に、比表面積についても、特に限定されない。
無機フィラーの添加量は特に限定されないが、多面体構造ポリシロキサン変性体と硬化剤の混合物100重量部に対して、1〜1000重量部、よりこの好ましくは、5〜500重量部、さらに好ましくは、10〜300重量部である。無機フィラーの添加量が多すぎると、流動性が悪くなる場合があり、少ないと、得られる成型体の物性が不十分となる場合がある。
本願発明の多面体構造ポリシロキサン変性体およびシリコーン系粒子に無機フィラーを配合させて組成物とすることができる。また、多面体構造ポリシロキサン変性体としてはアルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた変性体が、耐熱性、耐光性、耐青色レーザー性等の観点から好ましい。
無機フィラーの混合の順序としては、特に限定されないが、貯蔵安定性が良好になりやすいという点においては、無機フィラーと硬化剤を混ぜた後、多面体構造ポリシロキサン変性体を混合する方法が望ましい。また、多面体構造ポリシロキサン変性体、硬化剤がよく混合され安定した成形物が得られやすいという点においては、多面体構造ポリシロキサン変性体、硬化剤を混合したものに無機フィラーを混合することが好ましい。
これら無機フィラーを混合する手段としては、特に限定されるものではないが、具体的に例えば、2本ロールあるいは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、プラストミル等の溶融混練機等が挙げられる。無機フィラーの混合は、常温で行ってもよいし加熱して行ってもよく、また、常圧下に行ってもよいし減圧状態で行ってもよい。
混合する際の温度が高いと、成型する前に組成物が硬化する場合がある。また、本発明のポリシロキサン系組成物には、必要に応じて、顔料、蛍光体、着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。
この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。
また、本発明のポリシロキサン系組成物を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe23、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。
本発明に用いるポリシロキサン系組成物は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。
本発明のポリシロキサン系組成物は、成形材料として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。また、本発明のポリシロキサン系組成物を、シリコンやガラスなどの各種基材にスピンコーター等で塗布し、皮膜させて使用することもできる。この際、粘度調整のために、任意の溶剤で希釈して用いてもよい。
本発明によるポリシロキサン系組成物から得られる硬化物は、耐熱性、耐光性に優れ、広い波長領域および温度領域において、高い透明性を発現する。また、低誘電特性や低屈折率材料としても好適である。さらには、耐クラック性、耐冷熱衝撃性にも優れ、高い信頼性を有する。
本発明によるポリシロキサン系組成物から得られる硬化物・成形体・膜は、耐熱性、耐光性に優れ、400nm程度の紫外領域の波長の光に対しても、高い耐久性を有している。この特性によりオプトデバイス用部材(光学材料)として用いることが可能である。
本発明のポリシロキサン系組成物は、光学材料用組成物として用いることができ、硬化等により、例えば、オプトデバイス用部材として用いることができる。
ここで言う光学材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。ここで、光学材料として用途を想定する場合、具体的に、例えば、厚さ3mmでの波長650nmにおける光線透過率が70%以上、さらには、75%以上であることが望ましい。近年、光学材料においては、高い耐熱性や耐光性が要求されており、特に、これらの試験後での光線透過率の低下が小さいもの(低下率が試験前の透過率の好ましくは5%以下)が望まれる。
また、本発明によって得られる硬化物は、短波長領域(350nm〜450nm)のレーザー光への耐久性に優れ、例えば、405nm±10nmの青色レーザーを長時間照射しても、レーザー光線透過率の変化率を小さく抑制することが可能である。従い、オプトデバイス用部材として用いた場合、デバイスを長寿命化することが可能となる。また、具体的に例えば、短波長領域のレーザーへの高い耐久性を発現させたい場合は、ゲル分率が95%以上であることが好ましい。ゲル分率が95%未満の場合、レーザー透過部の屈折率変化が起こったり、スジが発生したり、また、表面に凹凸を生じたりする場合がある。
なお、前記ゲル分率は、具体的に例えば、20±5℃の条件下において、1gのサンプルをステンレス製の金網に包み、トルエンに72時間浸漬した後100℃x5時間の条件で乾燥させた際の、試験前後のサンプル重量を測定することにより算出する。具体的には、 (ゲル分率)=[(試験後の重量)/(試験前の重量)]x100
の計算式にて算出することができる。
本発明において得られるポリシロキサン系組成物および成形体の用途としては、具体的には、液晶ディスプレイ分野におけるカラーフィルタ、レジスト材料、基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、液晶用フィルム、層間絶縁膜、ゲート絶縁膜、パッシベーション膜などの液晶表示装置周辺材料が例示される。
また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止剤、反射防止膜、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤が例示される。
またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、封止剤、偏光子保護フィルムが例示される。
また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、各種封止剤、接着剤、また、フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤が例示される。
またLED表示装置に使用されるLED素子のモールド材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤などが例示される。
光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止剤、接着剤が例示される。さらに具体的には、次世代DVD等の光ピックアップ用の部材、例えば、ピックアップレンズ、コリメータレンズ、対物レンズ、センサレンズ、保護フィルム、素子封止剤、センサー封止剤、グレーティング、接着剤、プリズム、波長板、補正板、スプリッタ、ホログラム、ミラー等に好適に用いることができる。
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部が例示される。また、ビデオカメラの撮影レンズ、ファインダーが例示される。またプロジェクションテレビの投射レンズ、保護フィルム、封止剤、接着剤などが例示される。光センシング機器のレンズ用材料、封止剤、接着剤、フィルムなどが例示される。
光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止剤、接着剤などが例示される。光コネクタ周辺の光ファイバー材料、フェルール、封止剤、接着剤などが例示される。光受動部品、光回路部品ではレンズ、導波路、LED素子の封止剤、接着剤などが例示される。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止剤、接着剤などが例示される。
光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーが例示される。
半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料が例示される。
自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品が例示される。また、鉄道車輌用の複層ガラスが例示される。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートが例示される。
建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料が例示される。農業用では、ハウス被覆用フィルムが例示される。
次世代の光・電子機能有機材料としては、次世代DVD、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止剤、接着剤などが例示される。
本願発明のポリシロキサン系組成物は、光素子封止剤、光学素子用組成物、絶縁膜として好適に用いることができる。前記多面体構造ポリシロキサン変性体としては、耐熱性、耐光性、耐青色レーザー性の観点から、アルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた本願発明の多面体構造ポリシロキサン変性体であることが好ましい。
前記光素子封止剤としては、多面体構造ポリシロキサン変性体およびシリコーン系粒子に、必要に応じて、硬化剤、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤を加えることにより得ることができる。本発明の光素子封止剤は、透明な液状樹脂組成物として取り扱うことが可能である。液状組成物とすることにより、型、パッケージ、基板等に流し込み、加熱して硬化させることで容易に素子封止を実施することができる。
本発明の光素子封止剤によって得られる封止層は、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性、耐青色レーザー性に優れ、オプトデバイスの長寿命化が可能となる。さらには、耐クラック性、耐冷熱衝撃性にも優れ、デバイスの信頼性に優れる。
液状の光素子封止剤を硬化させた硬化物は、例えば3mm厚さの硬化物での透過率は650nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明の光素子封止剤が容易に液状として得ることができるので好ましい。
硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。
本発明においては、必要に応じて、ヒドロシリル化触媒を追加して用いることができる。硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜15時間、好ましくは10分〜12時間行うことにより、良好な硬化物を得ることができる。
本発明における光素子封止剤は、具体的に例えば、素子を搭載したパッケージや基板などに、注入あるいは塗布して使用することが可能である。注入あるいは塗布した後、上述の硬化条件にて、硬化させることで、良好に素子を封止することが可能である。
本発明に用いる光素子封止剤には、上記必須成分に加え、任意成分として本発明の効果を妨げない範囲で、必要に応じ充填剤として、シリカ、粉砕石英、炭酸カルシウム、カーボンブラック、酸化チタン、酸化亜鉛、アルミナ、蛍光体などの充填剤を添加してもよい。
また、本発明の光素子封止剤には、必要に応じて着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。
この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。
また、本発明の光素子封止剤を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe23、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。
本発明に用いる光素子封止剤は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。
本発明の光素子封止剤は、成形体として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。
本発明の光素子封止剤により得られる硬化物(封止層)は、耐熱性、耐光性、耐青色レーザー性に優れ、400nm程度の近紫外領域の波長の光に対しても、高い耐久性を発現する。
前記光学素子用組成物は、多面体構造ポリシロキサン変性体およびシリコーン系粒子に、必要に応じて、硬化剤、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤等を加えることにより得ることができる。本発明の光学素子用組成物は、透明な液状樹脂組成物として取り扱うことが可能である。液状組成物とすることにより、例えば、金型に射出・注入して加熱硬化させることで容易に光学素子を製造することができる。
本発明の光学素子用組成物によって得られる光学素子は、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性、耐青紫色レーザー性に優れることから、オプトデバイスの生産上の熱履歴による品質低下を抑制し、また、オプトデバイスの長寿命化が可能となる。さらには、耐クラック性、耐冷熱衝撃性にも優れ、デバイスの信頼性に優れる。
液状の光学素子用組成物を硬化させた硬化物(光学素子)は、例えば3mm厚さの硬化物での透過率は650nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明の光学素子用組成物が容易に液状として得ることができるので好ましい。
硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。
本発明においては、必要に応じて、ヒドロシリル化触媒を追加して用いることができる。
硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜12時間、好ましくは10分〜8時間行うことにより、良好な硬化物を得ることができる。
本発明における光学素子用組成物は、具体的に例えば、組成物を光学素子の金型に射出、注入し硬化させて得ることが可能である。また、ガラスや各種プラスチック等の光学素子用基材上に塗布した後、硬化させて複合材料として使用したり、また、塗布した後に微細な溝、ホール、ドットを施した鋳型を押し当てながら硬化させることで、表面に微細構造を有する光学素子を作成することも可能である。
また、本発明による光学素子用組成物は、例えば、ガラスやプラスチック等の光学素子に反射防止能を付与することも可能である。
本発明に用いる光学素子用組成物には、上記必須成分に加え、任意成分として本発明の効果を妨げない範囲で、必要に応じ充填剤として、シリカ、粉砕石英、炭酸カルシウム、カーボンブラック、酸化チタン、酸化亜鉛、アルミナ、蛍光体などの充填剤を添加してもよい。
また、本発明の光学素子用組成物には、必要に応じて着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。
この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。
また、本発明の光学素子用組成物を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe23、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。
本発明に用いる光学素子用組成物は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。
本発明の光学素子用組成物は、成形体として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。
本発明の光学素子用組成物により得られる硬化物(光学素子)は、耐熱性、耐光性、耐青色レーザー性に優れ、400nm程度の近紫外領域の波長の光に対しても、高い耐久性を発現する。
前記絶縁膜は、多面体構造ポリシロキサン変性体およびシリコーン系粒子に、必要に応じて、硬化剤、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤、溶剤を加え、均一組成物とし、例えば、基板上に塗布した後、加熱により溶剤を除去、組成物を硬化させることによって作成することができる。
上記溶媒は、特に限定されないが、具体的に例えば、エチレンジクロライド、シクロヘキサノン、シクロペンタノン、2−ヘプタノン、メチルイソブチルケトン、γ−ブチロラクトン、メチルエチルケトン、メタノール、エタノール、ジメチルイミダゾリジノン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、2−メトキシエチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、テトラエチレングリコールジメチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、イソプロパノール、エチレンカーボネート、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、N,N −ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン、テトラヒドロフラン、ジイソプロピルベンゼン、トルエン、キシレン、メシチレン等が挙げられる。これらの溶媒は、単独で用いてもよく、2種類以上混合して用いても良い。
基板材料としては、特に限定されず、各種電子部品、光部品、電極、半導体素子、金属配線等を搭載した基板等であってもよい。具体的に例えば、ガラス、ガラスエポキシ、シリコンウエハ、SiO2ウエハ、SiNウエハ等の基板材料に加え、液晶表示素子、トランジスタ、ダイオード等の固体素子で構成されている半導体集積回路等が挙げられる。
基板への塗布方法としては、特に限定されるものではないが、スピンコート法、ロールコート法、ディッピング法、スプレー法等の公知の方法を用いることができる。膜厚に関しては、用途に応じて調整でき特に限定されるものではないが、乾燥膜厚で、0.01〜100μm、好ましくは、0.05〜50μm、より好ましくは、0.1〜20μmである。
加熱方法は、所定の温度に設定できるのであれば、特に限定されるものではない。具体的に例えば、オーブン、ホットプレート、赤外炉などを使用することができる。また、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下など、用途に応じて、いずれの雰囲気下で加熱してもよい。加熱温度についても特に限定されるものではないが、好ましくは、30〜600℃、さらに好ましくは50〜500℃である。温度が高すぎると、絶縁膜に外観不良を引き起こす恐れがあり、低すぎると硬化が不十分となる場合がある。
また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な絶縁膜を得ることができ好ましい。加熱時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜12時間、好ましくは10分〜8時間行うことにより、良好な絶縁膜を得ることができる。
本発明の絶縁膜は、必要であれば、膜の機械強度の許す範囲内で、空孔形成剤(発泡剤)を使用し、低誘電率化を図ることができる。空孔形成剤としては特に限定はされないが、溶剤との溶解性、組成物との相溶性を同時に満たしていることが好ましい。
空孔形成剤として使用できるポリマーとしては、例えば、ポリビニル芳香族化合物(ポリスチレン、ポリビニルピリジン、ハロゲン化ポリビニル芳香族化合物など)、ポリアクリロニトリル、ポリアルキレンオキシド(ポリエチレンオキシドおよびポリプロピレンオキシドなど)、ポリエチレン、ポリ乳酸、ポリシロキサン、ポリカプロラクトン、ポリカプロラクタム、ポリウレタン、ポリメタクリレート(ポリメチルメタクリレートなど)またはポリメタクリル酸、ポリアクリレート(ポリメチルアクリレートなど)およびポリアクリル酸、ポリジエン(ポリブタジエンおよびポリイソプレンなど)、ポリビニルクロライド、ポリアセタール、およびアミンキャップドアルキレンオキシドなどが挙げられる。
その他、ポリフェニレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリビニルピリジン、ポリカプロラクトン等であってもよい。
特にポリスチレンは、空孔形成剤として好適に使用できる。ポリスチレンはとしては、たとえば、アニオン性重合ポリスチレン、シンジオタクチックポリスチレン、未置換および置換ポリスチレン(たとえば、ポリ(α−メチルスチレン))が挙げられ、未置換ポリスチレンが好ましい。
本発明の絶縁膜は、低誘電性を示すのに加え、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性に優れ、オプトデバイスの長寿命化が可能となる。さらには、耐クラック性、耐冷熱衝撃性にも優れ、デバイスの信頼性に優れる。
本発明の絶縁膜は、多様の目的に使用することが出来る。具体的に例えば、LSI、システムLSI、DRAM、SDRAM、RDRAM、D −RDRAM、Si−TFT、酸化物TFT、有機TFT等の半導体装置、マルチチップモジュール多層配線板等の電子部品における絶縁膜、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜の他、パッシベーション膜、α線遮断膜、フレキソ印刷版のカバーレイフィルム、オーバーコート膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜、平坦化膜等を挙げることができるが、これらに限定されるものではない。
次に本発明の組成物を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(耐熱試験)
200℃に温度設定した熱風循環オーブン内にて、3mm厚板状成形体を24時間養生し、外観の変化がみられない場合を○、着色がみられる場合を×と評価した。
(耐光試験)
スガ試験機(株)社製、メタリングウェザーメーター(形式M6T)を用いた。ブラックパネル温度120℃、放射照度0.53kW/m2で、積算放射照度50MJ/m2まで照射後、外観の変化がみられない場合を○、着色がみられる場合を×と評価した。
(耐青色レーザー試験)
レーザーダイオード(日亜化学製、製品名:NDHV310APC)を用いて、400〜415nm、20W/mm2の青紫色レーザー光を60℃の環境下、24時間照射した。レーザー照射後のレーザー照射箇所の外観変化の有無を目視にて確認し、変化が見られないものを○、外観に変化が生じているものを×、と評価した。
(耐冷熱衝撃試験)
評価用サンプルについて、熱衝撃試験機(エスペック製、TSA−71H−W)によって、100℃x5分間、−40℃x5分間の繰り返しを100サイクル行ったあと、評価用サンプルを観察した。変化が無ければ○、クラック等の変化が見られるものについては×と評価した。
(製造例1)
ビニル基を両末端に含有する直鎖状ポリジメチルシロキサン(クラリアント製、商品名MVD8MV)816.48gを減圧条件下、150℃で、10時間加熱することにより、低分子量成分を留去した。低分子量成分を留去後のMVD8MVの重量は、670.88gであった。GPCにより分子量を算出した結果、低分子量成分を留去前では、数平均分子量(Mn)が1010、重量平均分子量(Mw)が1740であり、留去後では、Mnが1490、Mwが2150であった。
なお、用いた直鎖状ポリジメチルシロキサンについて、上記減圧加熱処理前の130℃での重量減少量を評価したところ、3.3%、また、上記減圧処理後の130℃での重量減少量を評価したところ、0.7%であった。
(製造例2)
48%コリン水溶液34.5gとテトラエトキシシラン27.9gの混合溶液を室温で4時間攪拌した後、メタノール30mLを加えて均一溶液とした。次に、ジメチルクロロビニルシラン16.15g、トリメチルクロロシラン14.53gとヘキサン (50mL)の撹拌溶液に、先に調整した溶液をゆっくり滴下した。滴下終了後、室温で3時間攪拌し、ヘキサンを加えて有機層を抽出し、減圧濃縮した。粗生成物をメタノールで洗浄し、吸引ろ過を行い、以下の式で平均組成が表されるビニルジメチルシロキシ基およびトリメチルシロキシ基を含有するオクタシルセスキオキサン
[CH2=CH(CH32SiO−SiO3/2]3.7[(CH33SiO−SiO3/2]4.3を10g得た。
(製造例3)
製造例2で得た多面体構造ポリシロキサン系化合物10g、白金ビニルシロキサン錯体(白金として3wt%含有する白金ビニルシロキサン錯体、ユミコアプレシャスメタルズジャパン製、Pt-VTSC-3X)1.2μL、トルエン40gの混合溶液を、1、3、5、7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン18.94gとトルエン18.9gの混合溶液に滴下し、100℃で6.5時間加温したのち、室温まで冷却した。
反応終了後、トルエンと過剰量加えた1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサンを留去することにより、ポリシロキサン変性体15.31gを得た。得られた変性体は、無色透明液体であり、1H−NMRにより、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン由来のSiH基が導入されていることを確認した。
(製造例4)
攪拌機、還流冷却機、窒素吹込口、モノマー追加口、温度計を備えた五つ口フラスコに純水400重量部および10重量%ドデシルベンゼンスルホン酸ナトリウム水溶液12重量部(固形分)を混合したのち窒素雰囲気下で50℃に昇温した。その後アクリル酸ブチル(BA)10重量部、t−ドデシルメルカプタン3重量部、パラメンタンハイドロパーオキサイド0.01重量部(固形分)を加えた。
30分後、ナトリウムホルムアルデヒドスルホキシレート(SFS)0.18部、エチレンジアミン4酢酸2ナトリウム(EDTA)0.019重量部、硫酸第一鉄0.019重量部を添加し、1時間攪拌した。BA90重量部、t−ドデシルメルカプタン27重量部、および、パラメンタンハイドロパーオキサイド0.18重量部(固形分)の混合液を3時間かけて連続追加した。さらに1時間の後重合を行い、シードポリマー(体積平均粒径0.020μm)を含むラテックスを得た。
次に、撹拌機、還流冷却器、窒素吹込口、モノマー追加口、温度計を備えた五つ口フラスコに、上述のシードポリマーを2.0重量部(固形分)、10重量%ドデシルベンゼンスルホン酸1.5重量部(固形分)および純水300重量部(シードポリマーを含むラテックスからの持ち込み分を含む)を仕込んだ後、10分間攪拌してから、窒素雰囲気下で系を80℃に昇温させた。
これとは別に純水150重量部、5重量%ドデシルベンゼンスルホン酸ナトリウム水溶液0.5重量部(固形分)、オクタメチルシクロテトラシロキサン97重量部、トリメトキシメチルシラン3重量部からなる混合物をホモミキサーにて、8000rpmで5分間強制乳化した後に、この混合液を3.5時間かけて連続追加した。さらに2.5時間の後重合を行い、25℃に冷却して20時間放置して重合を終了し、(B−1)成分であるシリコーン粒子(体積平均粒径0.110μm)を含むラテックスを得た。
(製造例5)
攪拌機、還流冷却機、窒素吹込口、モノマー追加口、温度計を備えた五つ口フラスコに、製造例4で得られた(B−1)成分であるシリコーン粒子90重量部(固形分)、およびドデシルベンゼンスルホン酸を10重量%水溶液で0.45重量部(固形分)を仕込み、窒素雰囲気下で40℃に昇温させた。
これとは別に、純水40重量部とドデシルベンゼンスルホン酸ナトリウムを15重量%水溶液で0.1重量部(固形分)、ジメトキシジメチルシラン7.30重量部((CH32SiO2/2で表される構造単位の完全縮合物に換算して4.5重量部に相当)、エチルシリケート縮合物(多摩化学工業社製、商品名エチルシリケート40、SiO2含有量:39.0〜42.0重量%)11.16重量部(SiO2で表される構造単位の完全縮合物に換算して4.5重量部に相当)からなる混合物をホモミキサーにて5000rpmで5分間強制乳化した後に、20分間かけて滴下して加えた。この溶液を40℃に保ったまま5時間攪拌した。
次にこの溶液に、純水27重量部とドデシルベンゼンスルホン酸ナトリウムを15重量%水溶液で0.03重量部(固形分)、メトキシトリメチルシラン6.42重量部((CH33SiO1/2で表される構造単位の完全縮合物に換算して5.0重量部に相当)、ジメトキシジメチルシラン0.81重量部((CH32SiO2/2で表される構造単位の完全縮合物に換算して0.5重量部に相当)、エチルシリケート縮合物(多摩化学工業社製、商品名エチルシリケート40、SiO2含有量:39.0〜42.0重量%)1.24重量部(SiO2で表される構造単位の完全縮合物に換算して0.5重量部に相当)からなる混合物をホモミキサーにて5000rpmで5分間強制乳化した後に、10分間かけて滴下して加えた。
この溶液を40℃に保ったまま4.5時間攪拌することで(A−3)成分を形成した。この系を25℃に冷却して20時間放置して重合を終了し、シリコーン系粒子(体積平均粒径0.112μm)を含むラテックスを得た。
(製造例6)
前記シリコーン系粒子を含む得られたラテックス(樹脂固形分濃度16重量%)の固形分35重量部に対してメチルエチルケトン/メタノール=8/2 (vol/vol)から成る混合溶媒200重量部を加えて粒子を凝集させた後、遠心分離機で2000rpm、5分間遠心沈降させた。得られた沈殿をメチルエチルケトン/メタノール=5/5 (vol/vol)の混合溶媒200重量部に分散させて洗浄した後、遠心分離機で2000rpm、5分間遠心沈降させた。この洗浄を合計3回行った後、得られた沈殿35重量部にトルエン350重量部を加えて、シリコーン系粒子のトルエン溶液を得た。
前記シリコーン系粒子のトルエン溶液(粒子成分を35重量部含有)に、製造例1で得られたビニル基を両末端に含有する直鎖状ポリジメチルシロキサン100重量部を加えて溶解させたのち、減圧エバポレーターにてトルエン等の揮発分を留去し、硬化剤を含むシリコーン系粒子のマスターバッチ組成物を得た。
(実施例1)
製造例3で得られた変性体2.0gに、製造例6で得られたマスターバッチ組成物4.9gを加え、さらに、硬化遅延剤として、マレイン酸ジメチル0.1μLを加えた後、良く攪拌し、均一混合し、ポリシロキサン系組成物を得た。
このようにして得られたポリシロキサン系組成物を型枠に流し込み、60℃で3時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で1時間、180℃で1時間加熱して硬化させた後、型枠を取り外した。次に、型枠より取り外した硬化物を、所定の大きさ(30×10×2mm)に切断し、200℃に温度設定した熱風循環オーブン内にて、2時間養生することにより、評価用の板状硬化物を得た。
得られた硬化物について、各種評価に供した。結果を表1に示す。
(実施例2)
製造例3で得られた変性体2.0gに、製造例5で得られたマスターバッチ組成物4.9gを加え、さらに、接着性付与剤として3−グリシドキシプロピルトリメトキシシラン0.2g、硬化遅延剤として、マレイン酸ジメチル0.1μLを加えた後、良く攪拌し、均一混合し、ポリシロキサン系組成物を得た。
このようにして得られたポリシロキサン系組成物をLEDパッケージ(TOP LED1−IN−1、エノモト製)に流し込み、60℃で1時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で5時間加熱して硬化させた評価用サンプルを得た。
また、パッケージ封止も良好に行うことが出来た。
得られた硬化物について、各種評価に供した。結果を表1に示す。
Figure 0005329905

Claims (16)

  1. アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得られた多面体構造ポリシロキサン変性体(A)、および、シリコーン系粒子(B)、を必須成分としてなるポリシロキサン系組成物であって、
    (A)成分が温度20℃において、液状であり、
    (A)成分が、
    [XR SiO−SiO 3/2 [R SiO−SiO 3/2
    (a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;R は、アルキル基またはアリール基;R は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基;Xは、下記一般式(1)あるいは一般式(2)のいずれかの構造を有し、Xが複数ある場合は一般式(1)あるいは一般式(2)の構造が異なっていても良くまた一般式(1)あるいは一般式(2)の構造が混在していても良い。
    Figure 0005329905
    (lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つは水素原子またはアルケニル基である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い。)を構成単位とすることを特徴とするポリシロキサン系組成物。
  2. 化合物(b)が、ヒドロシリル基および/またはアルケニル基を含有する環状シロキサンであることを特徴とする、請求項1に記載のポリシロキサン系組成物。
  3. 化合物(b)が、分子末端にヒドロシリル基および/またはアルケニル基を含有する直鎖状シロキサンであることを特徴とする、請求項1に記載のポリシロキサン系組成物。
  4. 化合物(b)が、分子中に少なくとも3個のヒドロシリル基またはアルケニル基を有することを特徴とする、請求項1〜3のいずれか1項に記載のポリシロキサン系組成物。
  5. ヒドロシリル基および/またはアルケニル基を有する化合物(b)のSi原子に直結した水素原子および/またはアルケニル基の数が、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)のアルケニル基および/またはSi原子に直結した水素原子1個あたり2.5〜20個になる範囲で加えて変性し、未反応の化合物(b)を留去して得られることを特徴とする、請求項1〜4のいずれか1項に記載のポリシロキサン系組成物。
  6. 式[AR SiO−SiO3/2[R SiO−SiO3/2
    (a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;Rは、アルキル基またはアリール基;Rは、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、ヒドロシリル基を有する化合物(b)を、アルケニル基1個あたりSi原子に直結した水素原子が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のヒドロシリル基を有する化合物(b)を留去して得られることを特徴とする、請求項1〜のいずれか1項に記載のポリシロキサン系組成物。
  7. 式[BR SiO−SiO3/2[R SiO−SiO3/2
    (a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;Rは、アルキル基またはアリール基;Rは、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、アルケニル基を有する化合物(b)を、Si原子に直結した水素原子1個あたり、アルケニル基が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のアルケニル基を有する化合物(b)を留去して得られることを特徴とする、請求項1〜のいずれか1項に記載のポリシロキサン系組成物。
  8. シリコーン系粒子(B)がコアシェル構造を有していることを特徴とする、請求項1〜のいずれか1項に記載のポリシロキサン系組成物。
  9. シリコーン系粒子(B)がシリコーン粒子コア−アルコキシシラン縮合物シェル構造を有するシリコーン系重合体粒子であることを特徴とする請求項1〜のいずれ1項に記載のポリシロキサン系組成物。
  10. シリコーン系粒子(B)のコア層が、体積平均粒径が0.005〜3.0μmのシリコーン粒子であることを特徴とする、請求項に記載のポリシロキサン系組成物。
  11. シリコーン系粒子(B)中のシリコーン粒子(B−1)とアルコキシシラン縮合物(B−2)の重量の割合が40:60〜97:3であることを特徴とする請求項または10に記載のポリシロキサン系組成物。
  12. シリコーン系粒子(B)が、緩凝集・再分散法によって組成物中に分散されていることを特徴とする請求項1〜11のいずれか1項に記載のポリシロキサン系組成物。
  13. 硬化剤(C)を含有することを特徴とする、請求項1〜12のいずれか1項に記載のポリシロキサン系組成物。
  14. ヒドロシリル化触媒を含有することを特徴とする、請求項1〜13のいずれか1項に記載のポリシロキサン系組成物。
  15. 接着性付与剤を含有することを特徴とする、請求項1〜14のいずれか1項に記載のポリシロキサン系組成物。
  16. 請求項1〜15のいずれか1項に記載のポリシロキサン系組成物を硬化してなる硬化物。

JP2008267338A 2008-10-16 2008-10-16 ポリシロキサン系組成物およびそれから得られる硬化物 Expired - Fee Related JP5329905B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267338A JP5329905B2 (ja) 2008-10-16 2008-10-16 ポリシロキサン系組成物およびそれから得られる硬化物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267338A JP5329905B2 (ja) 2008-10-16 2008-10-16 ポリシロキサン系組成物およびそれから得られる硬化物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013100237A Division JP2013147673A (ja) 2013-05-10 2013-05-10 ポリシロキサン系組成物およびそれから得られる硬化物

Publications (2)

Publication Number Publication Date
JP2010095619A JP2010095619A (ja) 2010-04-30
JP5329905B2 true JP5329905B2 (ja) 2013-10-30

Family

ID=42257529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267338A Expired - Fee Related JP5329905B2 (ja) 2008-10-16 2008-10-16 ポリシロキサン系組成物およびそれから得られる硬化物

Country Status (1)

Country Link
JP (1) JP5329905B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614968B2 (ja) * 2009-10-22 2014-10-29 株式会社Adeka 疎水性コアシェルシリカ粒子、中空シリカ粒子およびこれらの製造方法
JP5682257B2 (ja) * 2010-07-30 2015-03-11 三菱化学株式会社 半導体発光装置用樹脂組成物
JP2012064928A (ja) * 2010-08-18 2012-03-29 Mitsubishi Chemicals Corp 半導体発光装置用樹脂成形体用材料及び樹脂成形体
JP6197118B2 (ja) 2013-12-09 2017-09-13 スリーエム イノベイティブ プロパティズ カンパニー 硬化性シルセスキオキサンポリマー、組成物、物品、及び方法
CN106661228A (zh) 2014-06-20 2017-05-10 3M创新有限公司 包括倍半硅氧烷聚合物芯和倍半硅氧烷聚合物外层的可固化聚合物及方法
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
EP3197966A1 (en) 2014-09-22 2017-08-02 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US20190367773A1 (en) * 2018-05-24 2019-12-05 Nbd Nanotechnologies, Inc. Invisible fingerprint coatings and process for forming same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091935A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp ポリマー、膜形成用組成物、絶縁膜およびその製造方法
JP2007246880A (ja) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd 半導体光装置及び透明光学部材
US8299198B2 (en) * 2006-07-21 2012-10-30 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member
JP2008045005A (ja) * 2006-08-11 2008-02-28 Kaneka Corp シリコーン系重合体粒子を含有するシリコーン系組成物

Also Published As

Publication number Publication date
JP2010095619A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5329905B2 (ja) ポリシロキサン系組成物およびそれから得られる硬化物
JP5329904B2 (ja) ポリシロキサン系組成物およびそれから得られる硬化物
JP5784618B2 (ja) 多面体構造ポリシロキサン変性体、多面体構造ポリシロキサン系組成物、硬化物、及び、光半導体デバイス
JPWO2006059719A1 (ja) シリコーン系重合体粒子およびそれを含有するシリコーン系組成物
WO2011148896A1 (ja) ポリシロキサン系組成物、硬化物、及び、光学デバイス
JPWO2009008452A1 (ja) シリコーン系重合体粒子を含有するシリコーン系組成物およびその製造方法
JP5643009B2 (ja) オルガノポリシロキサン系組成物を用いた光学デバイス
JP2008115302A (ja) シリコーン系重合体粒子を含有する光学材料用シリコーン系組成物
JP2009024077A (ja) シリコーン系重合体粒子を含有するシリコーン系組成物およびその製造方法
JP2008045039A (ja) シリコーン系重合体粒子およびそれを含有するシリコーン系組成物
JPWO2010055632A1 (ja) シリコーン系重合体粒子およびシリコーン系組成物
JP2009191120A (ja) シリコーン系重合体粒子を含有する粒子分散液の製造方法
JP2011068753A (ja) 多面体構造ポリシロキサン系変性体及び組成物
JP2010248384A (ja) シリコーン系組成物
JP2008045005A (ja) シリコーン系重合体粒子を含有するシリコーン系組成物
JP2010276855A (ja) 光拡散樹脂および該樹脂を用いた発光装置
JP2007126609A (ja) ポリシルセスキオキサン系表面処理粒子及びそれを含有するシリコーン系硬化性組成物
JP5571329B2 (ja) 多面体構造ポリシロキサン変性体、及び該変性体を含有する組成物。
JP2013209565A (ja) 多面体構造ポリシロキサン変性体を含有するポリシロキサン系組成物、該組成物を硬化させてなる硬化物
JP5620151B2 (ja) 光学デバイス
JP2009191119A (ja) シリコーン系重合体粒子を含有するシリコーン系硬化性組成物
JP5571342B2 (ja) ポリシロキサン系組成物およびそれから得られる硬化物、絶縁膜
JP2013147673A (ja) ポリシロキサン系組成物およびそれから得られる硬化物
JP5912352B2 (ja) 多面体構造ポリシロキサン変性体、該変性体を含有する組成物、該組成物を硬化させてなる硬化物
JP5710998B2 (ja) 多面体構造ポリシロキサン変性体、該変性体を含有する組成物、該組成物を硬化させてなる硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees