JP5300255B2 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP5300255B2
JP5300255B2 JP2007319897A JP2007319897A JP5300255B2 JP 5300255 B2 JP5300255 B2 JP 5300255B2 JP 2007319897 A JP2007319897 A JP 2007319897A JP 2007319897 A JP2007319897 A JP 2007319897A JP 5300255 B2 JP5300255 B2 JP 5300255B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
electron
light
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007319897A
Other languages
English (en)
Other versions
JP2008218972A (ja
Inventor
雅之 三島
Original Assignee
ユー・ディー・シー アイルランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユー・ディー・シー アイルランド リミテッド filed Critical ユー・ディー・シー アイルランド リミテッド
Priority to JP2007319897A priority Critical patent/JP5300255B2/ja
Priority to US12/024,892 priority patent/US20080187748A1/en
Publication of JP2008218972A publication Critical patent/JP2008218972A/ja
Application granted granted Critical
Publication of JP5300255B2 publication Critical patent/JP5300255B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機電界発光素子(以下、有機EL素子と略記する。)に関する。特に発光効率が高く、かつ駆動耐久性に優れた有機EL素子に関する。
電流を通じることによって励起され発光する薄膜材料を用いた有機電界発光素子が知られている。有機電界発光素子は、低電圧で高輝度の発光が得られるために、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い潜在用途を有し、それらの分野でデバイスの薄型化、軽量化、小型化、および省電力のなどの利点を有する。このため、将来の電子ディスプレイ市場の主役としての期待が大きい。しかしながら、実用的にこれらの分野で従来ディスプレイに代わって用いられるためには、発光輝度と色調、広い使用環境条件下での耐久性、安価で大量の生産性など多くの技術改良が課題となっている。
特に課題とされる一つは、発光効率の向上と駆動耐久性の改良である。上記の多くのデバイスは、薄型化、軽量化、小型化に当たって、まず高い輝度を実現することが課題であった。薄型化および軽量化に当たっては、デバイスのみでなく駆動電源のコンパクト化、軽量化も要求される。特に、電力が1次電池あるいは2次電池より供給される場合、省電力は大きな課題であり、低駆動電圧で高輝度を得ることが強く要望されている。従来、高輝度とするためには、高電圧を必要とし、電力消費を早める結果となっていた。また、高輝度および高電圧は、デバイスの耐久性を損なう結果となっていた。
発光層として、燐光ドーパントと2種以上の燐光ホスト材料を用いる試みが提案されている(例えば、特許文献1参照。)。2種の燐光ホスト材料は、三重項エネルギー差が2.3eV以上3.5eV以下あって、混合比率が質量比で3:1〜1:3が好ましく用いられている。しかしながら、このような2種のホスト材料の併用では、発光効率および駆動耐久性にいずれの点においても十分な改良効果を得ることはできない。
発光層として、多芳香環炭化水素化合物と蛍光色素を含む発光材料とホスト材料を用いることが提案されている(例えば、特許文献2参照。)。多芳香環炭化水素化合物は、ホール移動度がホスト材料より速く、発光層中にホールの蓄積を抑制することを目的として用いられた。しかしながら、このような組成では、発光効率および駆動耐久性にいずれの点に置いても十分な改良効果を得ることはできない。
一方、青色発光の有機EL素子に関し、不活性ホスト物質中にドープしたリン光発光ドーパント材料および電荷運搬ドーパント材料を含んでいる発光層が開示されている(例えば、特許文献3参照。)。開示によれば、3.5eV以上のエネルギーギャップのある複数のホストを併用して青色発光の有機EL素子が作製される。しかしながら、この手段では発光層の抵抗が増大し駆動電圧が大きく増加し、また、駆動電圧を下げるために発光層の厚みを薄くすると駆動耐久性が悪化する。
また、発光層が発光材料及び最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料を含有する有機電界発光素子が開示されている(例えば、特許文献4参照。)。しかしながら、この手段によっても発光層の抵抗が増大し駆動電圧が大きく増加し、また、駆動電圧を下げるために発光層の厚みを薄くすると駆動耐久性が悪化する問題があった。
特開2006−135295号公報 特開2000−106277号公報 特表2004−526284号公報 特開2005−294250号公報
本発明の課題は、特に高い発光効率で且つ高耐久性である有機EL素子を提供するものである。
本発明の上記課題は、下記の手段によって解決された。
<1> 対向する一対の電極間に少なくとも1層の発光層を含む有機化合物層を有し、該発光層が少なくとも発光材料及び最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料を含有する有機電界発光素子であって、該発光材料が少なくとも第1発光材料及び第2発光材料を含み、該第1発光材料が電子輸送性発光材料であり、該第2発光材料が正孔輸送性発光材料であり、かつ該発光層の厚みが0.5nm以上20nm以下であることを特徴とする有機電界発光素子。
<2> 前記第1発光材料の電子親和力(Ea1)が前記第2発光材料の電子親和力(Ea2)より大きく、且つ、前記第1発光材料のイオン化ポテンシャル(Ip1)が前記第2発光材料のイオン化ポテンシャル(Ip2)より大きいことを特徴とする<1>に記載の有機電界発光素子。
<3> 前記第1発光材料が白金錯体であることを特徴とする<1>または<2>に記載の有機電界発光素子。
<4> 前記第2発光材料がイリジウム錯体であることを特徴とする<1>〜<3>のいずれかに記載の有機電界発光素子。
<5> 前記第1発光材料が白金錯体であり、前記第2発光材料がイリジウム錯体であることを特徴とする<4>に記載の有機電界発光素子。
<6> 該発光層の厚みが1nm以上10nm以下であることを特徴とする<1>〜<5>のいずれかに記載の有機電界発光素子。
<7> 前記発光層における前記発光材料及び電気的に不活性な材料の合計量に対する前記発光材料の比率が質量比で5%以上40%以下であることを特徴とする<1>〜<6>のいずれかに記載の有機電界発光素子。
<8> 前記電気的に不活性な材料が有機化合物であって、そのイオン化ポテンシャル(Ip)が前記発光材料より大きい事を特徴とする<1>〜<7>のいずれかに記載の有機電界発光素子。
<9> 前記電気的に不活性な材料が有機化合物であって、その電子親和力(Ea)が前記発光材料より小さい事を特徴とする<1>〜<8>のいずれかに記載の有機電界発光素子。
<10> 前記電気的に不活性な材料が、芳香族炭化水素化合物であることを特徴とする<1>〜<9>のいずれかに記載の有機電界発光素子。
<11> 前記芳香族炭化水素化合物が、下記一般式(1)で示される化合物であることを特徴とする<10>に記載の有機電界発光素子:
一般式(1) L−(Ar)
(一般式(1)中、Arは下記一般式(2)で表される基、Lは3価以上のベンゼン骨格を表し、mは3以上の整数を表す。);
(一般式(2)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n1は0〜9の整数を表す。)。
<12> 前記芳香族炭化水素化合物が、下記一般式(3)で示される化合物であることを特徴とする<10>に記載の有機電界発光素子:
(一般式(3)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n2は0〜20の整数を表す。)。
<13> 前記電気的に不活性な材料が絶縁性無機化合物であることを特徴とする<1>〜<7>のいずれかに記載の有機電界発光素子。
<14> 前記有機化合物層が、陽極側から少なくとも正孔注入層及び正孔輸送層の少なくとも一方の層、前記発光層、及び電子輸送層または電子注入層を有し、該正孔注入層及び正孔輸送層の少なくとも一方の層が電子受容性材料を含有することを特徴とする<1>〜<13>のいずれかに記載の有機電界発光素子。
<15> 前記有機化合物層が、陽極側から少なくとも正孔輸送層、前記発光層、及び電子輸送層及び電子注入層の少なくとも一方の層を有し、該電子輸送層または電子注入層が電子供与性材料を含有することを特徴とする<1>〜<14>のいずれかに記載の有機電界発光素子。
本発明によれば、高い発光効率で駆動耐久性に優れた有機EL素子が提供される。特に、本発明によれば、駆動電圧が低く、且つ駆動耐久性が高い改良された有機EL素子が提供される。
以下、本発明の有機EL素子について詳細に説明する。
(構成)
本発明の有機電界発光素子は、一対の電極(陽極と陰極)間に少なくとも発光層を含む有機化合物層を有し、更に、好ましくは、陽極と該発光層との間に正孔輸送層を、また陰極と該発光層との間に電子輸送層を有する。
発光素子の性質上、前記一対の電極のうち少なくとも一方の電極は、透明であることが好ましい。
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び/又は発光層と電子輸送層との間に、電子輸送性中間層を有する。また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。
本発明の有機電界発光素子における有機化合物層の好適な態様は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(2)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(3)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様である。
上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有することが好ましい。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能及び正孔をブロックする機能の少なくとも一方を有することが好ましい。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層の少なくとも一方は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
次に、本発明の発光素子を構成する要素について、詳細に説明する。
本発明の有機電界発光素子は、少なくとも一層の発光層を含む有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔注入層、正孔輸送層、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、電子注入層等の各層が挙げられる。
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
(発光層)
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性中間層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性中間層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における有機電界発光素子は、少なくとも発光材料及び最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料を含有する発光層を有し、該発光材料が少なくとも第1発光材料及び第2発光材料を含み、該第1発光材料が電子輸送性発光材料であり、該第2発光材料が正孔輸送性発光材料であり、かつ該発光層の厚みが0.5nm以上20nm以下であることを特徴とする。
発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。発光層が複数の場合であっても、発光層の少なくとも一層に上記電気的に不活性な材料と第1発光材料、第2発光材料を含む。
好ましくは、前記第1発光材料の電子親和力(Ea1)が前記第2発光材料の電子親和力(Ea2)より大きく、かつ前記第1発光材料のイオン化ポテンシャル(Ip1)が前記第2発光材料のイオン化ポテンシャル(Ip2)より大きい。より好ましくは、該Ea1が該Ea2より0.01eV以上大きく、さらに好ましくは0.02eV以上大きい。また、より好ましくは該Ip1が該Ip2より0.01eV以上大きく、さらに好ましくは0.02eV以上大きい。
本発明における発光層の不活性な材料、第1発光材料及び第2発光材料の含有比率は、それぞれの材料の具体的構造によって異なるが、発光層のキャリア移動度を適性に保ち、また、ホール移動度と電子移動度のバランスを保つ範囲内で選ばれるが、概ね、該不活性材料量に対する第1発光材料及び第2発光材料を含む総発光材料量の比率が、質量比で5%以上40%以下が好ましい。より好ましくは、該質量比が5%以上35%以下である。
第1発光材料と第2発光材料の含有比率は、それぞれの材料の具体的構造によって異なるがホール移動度と電子移動度のバランスを保つ範囲内で選ばれるが、概ね、第1発光材料に対する第2発光材料の比率が、質量比で30%以上70%以下が好ましい。より好ましくは、該質量比が40%以上60%以下である。
発光層の厚みは、0.5nm以上20nm以下であり、好ましくは1nm以上15nm以下、より好ましくは、1nm以上10nmである。発光層の厚みが、0.5nmを下まわると発光効率、耐久性の悪化の点で好ましくなく、20nmを超えると駆動電圧の上昇の点で好ましくない。
1)不活性な材料
本発明における発光層は、最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料を含有する。
好ましくは該Egが4.1eV以上(a)5.0eV以下、より好ましくは4.2eV以上5.0eV以下である。該Egが4.0eVを下まわると、正孔、電子が不活性材料に入り、キャリア移動度を適正に保つ事ができなくなる。その結果、発光効率の悪化、耐久性の悪化の点で好ましくない。
<材料>
本発明における最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料は、有機化合物もしくは無機化合物より選ばれる。
有機化合物より選ばれる電気的不活性化合物としては、そのイオン化ポテンシャル(Ip)が前記第1発光材料より大きいものが好ましい。より好ましくは、前記電気的不活性化合物のIpが前記第1発光材料より0.1eV以上大きく、さらに好ましくは0.2eV以上大きい。
また、前記電気的不活性化合物は、その電子親和力(Ea)が前記第2発光材料より小さいものが好ましい。より好ましくは、該電気的不活性化合物のEaが前記第2発光材料より0.1eV以上小さく、さらに好ましくは0.2eV以上小さい。
好ましい具体的化合物は、芳香族炭化水素化合物より選ばれ、その一つの化合物群が下記一般式(1)で表される化合物である。
一般式(1) L−(Ar)
一般式(1)中、Arは下記一般式(2)で表される基、Lは3価以上のベンゼン骨格を表し、mは3以上の整数を表す。
一般式(2)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n1は0〜9の整数を表す。
別の好ましい化合物群は、下記一般式(3)で示される化合物である。
一般式(3)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n2は0〜20の整数を表す。
まず、一般式(1)について詳細に説明する。
一般式(1)に含まれるLは3価以上のベンゼン骨格を表す。Arは一般式(2)で表される基を表し、mは3以上の整数を表す。mは好ましくは3以上6以下であり、さらに好ましくは3または4である。
次に、一般式(2)で表される基について説明する。
一般式(2)に含まれるRは置換基を表す。ここで置換基としては、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントラニルなどが挙げられる)、
アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる)、ヘテロアリールオキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる)、
スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる)、ヘテロアリールチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる)、
スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる)、
ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、又はヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子として、例えば窒素原子、酸素原子、硫黄原子などを有し、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。
は、複数存在する場合、互いに同じでも異なっていてもよく、これらは互いに結合して環を形成してもよい。また、Rは更に置換されてもよい。
n1は0から9の整数を表す。n1として好ましくは0から6の整数であり、さらに好ましくは0から3である。
続いて、一般式(3)について説明する。
一般式(3)におけるRは置換基を表す。置換基Rは、前記置換基Rと好ましい態様を含んで同義である。
n2は0から20の整数を表す。n2の好ましい範囲は0から10であり、さらに好ましくは0から5である。
以下に、一般式(1)または一般式(3)の化合物例を示すが、本発明はこれらに限定されない。
本発明に用いられる前記電気的に不活性な材料の別の一群は、絶縁性無機化合物である。
本発明に用いられる絶縁性無機化合物としては、実質上導電性が無い無機化合物であれば特に限定される事はない。例えば金属酸化物、金属窒化物、金属炭化物、金属ハロゲン化物、金属硫酸塩、金属硝酸塩、金属リン酸塩、金属硫化物、金属炭酸塩、金属ホウハロゲン化物、又は金属リンハロゲン化物等が使用可能である。なかでも発光材料との相溶性や、製膜適性の観点から、酸化珪素、二酸化珪素、窒化珪素、酸化窒化珪素、炭化珪素、酸化ゲルマニウム、二酸化ゲルマニウム、酸化スズ、二酸化スズ、酸化バリウム、フッ化リチウム、塩化リチウム、フッ化セシウム、又は塩化セシウム等が好ましい。さらに好ましくは、窒化珪素、酸化窒化珪素、酸化珪素、および炭化珪素である。
2)第1の発光材料
本発明に用いることのできる発光材料としては、燐光発光材料、蛍光発光材料のいずれでもよい。好ましくは、燐光発光材料である。
《燐光発光材料》
前記燐光性の発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
これらの中でも、発光材料の具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、特開2001−247859、特願2000−33561、特開2002−117978、特開2002−225352、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特願2005−75341等の特許文献に記載の燐光発光化合物などが挙げられる。
《蛍光発光材料》
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
本発明における第1発光材料は、電子輸送性発光材料である。
好ましくは、その電子親和力(Ea)が2.5eV以上3.5eV以下であり、イオン化ポテンシャル(Ip)が5.7eV以上7.0eV以下の電子輸送性発光材料である。
本発明における第1発光材料としては、従来知られている電子輸送性発光材料を用いることができる。
好ましく用いることのできる材料は、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテシウム錯体を挙げる事ができる。より好ましくは、ルテニウム、ロジウム、パラジウム、又は白金錯体であり、最も好ましくは白金錯体である。
具体的白金錯体の例を以下に例示するが、本発明はこれらに限定されものではない。
3)第2の発光材料
本発明における第2発光材料としては、従来知られている正孔輸送性発光材料を用いることができる。好ましくは、その電子親和力(Ea)が2.4eV以上3.4eV以下であり、イオン化ポテンシャル(Ip)が5.0eV以上6.3eV以下の正孔輸送性発光材料である。
好ましく用いることのできる材料は、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテシウム錯体を挙げる事ができ、より好ましくは、イリジウム錯体である。
具体的イリジウム錯体の例を以下に例示するが、本発明はこれらに限定されものではない。
本発明における特に好ましい組合せは、前記第1発光材料が白金錯体であり、前記第2発光材料がイリジウム錯体である。
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
正孔注入層は正孔の移動のキャリアとなる電子受容性材料を含有するのが好ましい。正孔注入層に導入する電子受容性材料としては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用でき、具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、および五塩化アンチモンなどのルイス酸化合物を好適に用いることができる。
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フレーレンなどを好適に用いることができる。
具体的にはヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、フラーレンC60、およびC70などが挙げられる。
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンが特に好ましい。
これらの電子受容性材料は、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔注入層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。該使用量が、正孔注入材料に対して0.01質量%未満のときには、本発明の効果が不十分であるため好ましくなく、50質量%を超えると正孔注入能力が損なわれるため好ましくない。
正孔注入層、正孔輸送層の材料としては、具体的には、ピロール誘導体、カルバゾール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、またはカーボン等を含有する層であることが好ましい。
正孔注入層、正孔輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入され得た正孔を障壁する機能のいずれかを有している層である。
電子注入層、あるいは電子輸送層に導入される電子供与性材料としては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属などが好適に用いられる。
特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。
これらの電子供与性材料は、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。該使用量が、電子輸送層材料に対して0.1質量%未満のときには、本発明の効果が不十分であるため好ましくなく、99質量%を超えると電子輸送能力が損なわれるため好ましくない。
電子注入層、電子輸送層の材料としては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子注入層、電子輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明においては、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層は、特に限定されるものではないが、具体的には、BAlq等のアルミニウム錯体、トリアゾール誘導体、ピラザボール誘導体等を含有することができる。
また、正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に50nm以下であることが好ましく、1nm〜50nmであることが好ましく、5nm〜40nmであることが更に好ましい。
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、またはCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、およびイオンプレーティング法等により形成することができる。
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
(基板)
本発明においては基板を用いることができる。用いられる基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、またはNi等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、またはTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、またはCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、または転写法を適用できる。
(封止)
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。
水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機電界発光素子の駆動耐久性は、特定の輝度における、ある輝度まで減少する時間により測定することができる。例えば、KEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させ、初期輝度2000cd/mの条件で連続駆動試験をおこない、輝度が1000cd/mになった時間を輝度半減時間として、該輝度半減時間を従来発光素子と比較することにより求めることができる。本発明においてはこの数値を用いた。
この有機電界発光素子の重要な特性値として、外部量子効率がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
また、有機電界発光素子の外部量子効率は、「外部量子効率φ=内部量子効率×光取り出し効率」で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。
該外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100cd/m〜300cd/m付近(好ましくは200cd/m)での外部量子効率の値を用いることができる。
本発明においては、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定し、200cd/mにおける外部量子効率を算出した値を用いる。
また、発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出することができる。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算することができる。
これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算することができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
(本発明の有機電界発光素子の用途)
本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、または光通信等に好適に利用できる。
以下に、本発明の有機電界発光素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。
実施例1
1.有機EL素子の作製
1)本発明の素子No.1の作製
酸化インジウム錫(ITOと略記する)蒸着層を有するガラス基板(ジオマテック(株)製、表面抵抗10Ω/□、サイズ:0.5mm厚み、2.5cm角)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を、順次、蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
−正孔注入層−
4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)に対して2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を1.0質量%ドープして、ITO膜の上に膜厚160nmに蒸着した。
−正孔輸送層−
正孔注入層の上に、N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)を蒸着した。膜厚は1nmであった。
−発光層−
電気的不活性材料として、下記の不活性化合物1、第1の発光材料として下記の発光材A、及び第2の発光材料としてIr(ppy)を含む層を厚み5nmに共蒸着した。不活性化合物1、第1の発光材料、及び第2の発光材料の組成比は質量比で70:15:15であった。
−電子輸送層−
アルミニウム(III)ビス(2−メチル−8−キノリナート)−4−フェニルフェノラート(Balqと略記する)を膜厚1nmに蒸着した。
−電子注入層−
トリス(8−ヒドロキシキノニナート)アルミニウム(Alqと略記する)、およびAlqに対しリチウム(Li)1質量%となるように、共蒸着した。蒸着厚みは30nmであった。
−陰極−
この上にパタ−ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、フッ化リチウム(LiF)を0.5nm蒸着し、更に金属アルミニウムを100nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ−ブボックス内に入れ、ステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
2)本発明の素子No.2〜9の作製
上記素子No.1の作製において、発光層の厚み、及び電気的不活性材料の種類を表1に示すように変更して本発明の素子No.2〜9を作製した。
3)比較の素子の作製
比較素子a:上記素子1において、発光層の膜厚を30nmにした。
比較素子b:上記素子1において、発光層として下記の組成の層を用いた以外は素子1と同様にして作製した。
比較の発光層:CBP、およびCBPに対してIr(ppy)を15質量%の比率で共蒸着した。厚みは10nmであった。CBPは正孔輸送性ホスト材料であり、Ir(ppy)は正孔輸送性発光材である。
比較素子c:上記素子1において、発光層として下記の組成の層を用いた以外は素子1と同様にして作製した。
比較の発光層:不活性化合物1、不活性化合物1に対して40質量%の比率でCBP、および不活性化合物1に対して15%質量の比率でIr(ppy)を共蒸着した。厚みは10nmであった。CBPは正孔輸送性ホスト材料であり、Ir(ppy)は正孔輸送性発光材である。従って、比較素子cにおける発光層の構成は、不活性材料に対して、2種の正孔輸送材を含有するものであり、本発明の構成と異なる。
本発明の素子および比較の素子の発光層に用いた材料の電子親和力(Ea)およびイオン化ポテンシャル(Ip)を表2に示した。
不活性化合物1〜5はいずれもEgが4.0eV以上であるのに対して、比較素子に用いた材料はいずれも4.0eVを下廻る。
また、本発明の素子における第1の発光材料の発光材A、及び第2の発光材料のIr(ppy)のEaおよびIpは、いずれも発光材Aの方がIr(ppy)よりそれぞれ0.1eV、0.4eV大きい。一方比較素子cにおける2種の発光材(ホストとドーパント)においては、EaについてはIr(ppy)がCBPより大きく、Ipに関しては逆にCBPがIr(ppy)より大きい関係にあった。
2.性能評価
(評価項目)
(1)発光効率
発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出した。外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算を行った。
(2)駆動電圧
照度2000cd/mにおける駆動電圧を測定した。
(3)駆動耐久性
初期輝度2000cd/mの条件で連続駆動試験をおこない、輝度が半減した時間を耐久時間として求めた。
(評価結果)
得られた結果を表3に示した。
本発明の素子は、比較例の素子に比べて、予想外に極めて発光子効率が高く、特に駆動耐久性を長寿命化することができた。これらの特性の飛躍的向上にも拘わらず、予想外に駆動電圧は同等もしくは素子によっては減少した。
発光層の厚みが30nmの比較素子aは、駆動電圧が著しく上昇、発光効率も低かった。
比較素子b、cとも発光効率が低く、また、比較素子cは駆動耐久性が著しく劣った。

Claims (12)

  1. 対向する一対の電極間に少なくとも1層の発光層を含む有機化合物層を有し、前記発光層が少なくとも発光材料及び最高占有軌道と最低非占有軌道とのエネルギー差(Eg)が4.0eV以上である電気的に不活性な材料を含有する有機電界発光素子であって、前記発光材料が少なくとも第1発光材料及び第2発光材料を含み、前記第1発光材料が電子輸送性発光材料であり、前記第2発光材料が正孔輸送性発光材料であり、かつ前記発光層の厚みが0.5nm以上20nm以下であり、前記第1発光材料が白金錯体であり、前記第2発光材料がイリジウム錯体であり、前記第1発光材料に対する前記第2発光材料の比率が質量比で40%以上60%以下であることを特徴とする有機電界発光素子。
  2. 前記第1発光材料の電子親和力(Ea1)が前記第2発光材料の電子親和力(Ea2)より大きく、且つ、前記第1発光材料のイオン化ポテンシャル(Ip1)が前記第2発光材料のイオン化ポテンシャル(Ip2)より大きいことを特徴とする請求項1に記載の有機電界発光素子。
  3. 前記発光層の厚みが1nm以上10nm以下であることを特徴とする請求項1又は請項2に記載の有機電界発光素子。
  4. 前記発光層における前記発光材料及び電気的に不活性な材料の合計量に対する前記発光材料の比率が質量比で5%以上40%以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の有機電界発光素子。
  5. 前記電気的に不活性な材料が有機化合物であって、そのイオン化ポテンシャル(Ip)が前記発光材料より大きいことを特徴とする請求項1〜請求項4のいずれか1項に記載の有機電界発光素子。
  6. 前記電気的に不活性な材料が有機化合物であって、その電子親和力(Ea)が前記発光材料より小さいことを特徴とする請求項1〜請求項5のいずれか1項に記載の有機電界発光素子。
  7. 前記電気的に不活性な材料が、芳香族炭化水素化合物であることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機電界発光素子。
  8. 前記芳香族炭化水素化合物が、下記一般式(1)で示される化合物であることを特徴とする請求項7に記載の有機電界発光素子:
    一般式(1) L−(Ar)
    (一般式(1)中、Arは下記一般式(2)で表される基、Lは3価以上のベンゼン骨格を表し、mは3以上の整数を表す。);


    (一般式(2)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n1は0〜9の整数を表す。)。
  9. 前記芳香族炭化水素化合物が、下記一般式(3)で示される化合物であることを特徴とする請求項7に記載の有機電界発光素子:


    (一般式(3)中、Rは置換基を表し、Rが複数存在する場合、互いに同じでも異なっていてもよい。n2は0〜20の整数を表す。)。
  10. 前記電気的に不活性な材料が絶縁性無機化合物であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機電界発光素子。
  11. 前記有機化合物層が、陽極側から少なくとも正孔注入層及び正孔輸送層の少なくとも一方の層、前記発光層、及び電子輸送層又は電子注入層を有し、前記正孔注入層及び正孔輸送層の少なくとも一方の層が電子受容性材料を含有することを特徴とする請求項1〜請求項10のいずれか1項に記載の有機電界発光素子。
  12. 前記有機化合物層が、陽極側から少なくとも正孔輸送層、前記発光層、及び電子輸送層及び電子注入層の少なくとも一方の層を有し、前記電子輸送層及び電子注入層の少なくとも一方の層が電子供与性材料を含有することを特徴とする請求項1〜請求項11のいずれか1項に記載の有機電界発光素子。
JP2007319897A 2007-02-07 2007-12-11 有機電界発光素子 Active JP5300255B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007319897A JP5300255B2 (ja) 2007-02-07 2007-12-11 有機電界発光素子
US12/024,892 US20080187748A1 (en) 2007-02-07 2008-02-01 Organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007028453 2007-02-07
JP2007028453 2007-02-07
JP2007319897A JP5300255B2 (ja) 2007-02-07 2007-12-11 有機電界発光素子

Publications (2)

Publication Number Publication Date
JP2008218972A JP2008218972A (ja) 2008-09-18
JP5300255B2 true JP5300255B2 (ja) 2013-09-25

Family

ID=39838599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319897A Active JP5300255B2 (ja) 2007-02-07 2007-12-11 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP5300255B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
JP2012195572A (ja) * 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光層および発光素子
JP6197650B2 (ja) * 2011-12-20 2017-09-20 コニカミノルタ株式会社 有機el素子
KR101740771B1 (ko) * 2014-11-18 2017-06-09 주식회사 효성 금속-유기 배위 중합체 발광 화합물, 및 이의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106277A (ja) * 1998-09-28 2000-04-11 Asahi Glass Co Ltd 有機エレクトロルミネセンス素子
JP2001196178A (ja) * 2000-01-11 2001-07-19 Fuji Photo Film Co Ltd 発光素子
CN100379049C (zh) * 2001-03-14 2008-04-02 普林斯顿大学理事会 用于蓝色磷光基有机发光二极管的材料与器件
JP4035372B2 (ja) * 2001-06-15 2008-01-23 キヤノン株式会社 発光素子
JP4899284B2 (ja) * 2003-07-18 2012-03-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP3883999B2 (ja) * 2003-09-30 2007-02-21 三洋電機株式会社 有機エレクトロルミネッセント素子
JP4352008B2 (ja) * 2004-03-10 2009-10-28 富士フイルム株式会社 発光素子
JP4369269B2 (ja) * 2004-03-24 2009-11-18 富士フイルム株式会社 有機電界発光素子
JP2006054422A (ja) * 2004-07-15 2006-02-23 Fuji Photo Film Co Ltd 有機電界発光素子及び表示素子
JP4362461B2 (ja) * 2004-11-05 2009-11-11 三星モバイルディスプレイ株式會社 有機電界発光素子
JP4496949B2 (ja) * 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
JP4850521B2 (ja) * 2005-02-28 2012-01-11 富士フイルム株式会社 有機電界発光素子
US7683536B2 (en) * 2005-03-31 2010-03-23 The Trustees Of Princeton University OLEDs utilizing direct injection to the triplet state

Also Published As

Publication number Publication date
JP2008218972A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4833106B2 (ja) 有機発光素子
JP5117199B2 (ja) 有機電界発光素子
JP5497284B2 (ja) 白色有機電界発光素子
JP4896544B2 (ja) 有機電界発光素子
JP5255794B2 (ja) 有機電界発光素子
JP5441654B2 (ja) 有機電界発光素子
JP5063007B2 (ja) 有機電界発光素子
WO2010058716A1 (ja) 有機電界発光素子
JP2009016579A (ja) 有機電界発光素子および製造方法
JP2009055010A (ja) 有機電界発光素子
JP2007134677A (ja) 有機電界発光素子
JP2007141736A (ja) 有機電界発光素子
JP2007200938A (ja) 有機電界発光素子
JP2007287652A (ja) 発光素子
JP2007221097A (ja) 有機電界発光素子
JP5349921B2 (ja) 有機電界発光素子
JP5008584B2 (ja) 有機電界発光素子及び表示装置
JP2010153820A (ja) 有機電界発光素子
JP4855286B2 (ja) 有機電界発光素子の製造方法
JP5211282B2 (ja) 有機電界発光素子
JP2009076508A (ja) 有機電界発光素子
JP5478818B2 (ja) 有機電界発光素子
JP5300255B2 (ja) 有機電界発光素子
JP5722291B2 (ja) 有機電界発光素子
US20080187748A1 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250