JP5246898B1 - クランクシャフトの製造方法およびクランクシャフト - Google Patents

クランクシャフトの製造方法およびクランクシャフト Download PDF

Info

Publication number
JP5246898B1
JP5246898B1 JP2012111269A JP2012111269A JP5246898B1 JP 5246898 B1 JP5246898 B1 JP 5246898B1 JP 2012111269 A JP2012111269 A JP 2012111269A JP 2012111269 A JP2012111269 A JP 2012111269A JP 5246898 B1 JP5246898 B1 JP 5246898B1
Authority
JP
Japan
Prior art keywords
crankshaft
diameter
eccentric
hollow pipe
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012111269A
Other languages
English (en)
Other versions
JP2013237065A (ja
Inventor
豹治 吉村
Original Assignee
株式会社 吉村カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 吉村カンパニー filed Critical 株式会社 吉村カンパニー
Priority to JP2012111269A priority Critical patent/JP5246898B1/ja
Application granted granted Critical
Publication of JP5246898B1 publication Critical patent/JP5246898B1/ja
Publication of JP2013237065A publication Critical patent/JP2013237065A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)

Abstract

【課題】大径偏心部を有するとともに、両端を貫通する中空孔を有するクランクシャフトをより容易に製造する技術を提供する。
【解決手段】クランクシャフトは、軸部と、軸部よりも外径が大きく軸部から偏心した大径偏心部とを有し、両端を貫通する中空孔が設けられている。このクランクシャフトを製造するため、まず、両端を貫通する中空孔を有する中空パイプを準備する。次に、準備された中空パイプに据え込み鍛造を施すことにより、外周面および内周面が外向きに凸な凸部を形成する。そして、凸部に据え込み鍛造を施すことにより、中空孔を有する大径偏心部を形成する。
【選択図】図5

Description

この発明は、中空クランクシャフトの製造方法に関し、特に、ロータリ圧縮機構を有する圧縮機に使用される中空クランクシャフトの製造方法に関する。
近年、給湯器などのエネルギー効率の高い熱源として、大気の熱(空気熱)を移動させて熱源とするヒートポンプが注目されている。一般的に利用されている蒸気圧縮ヒートポンプ(以下、単に「ヒートポンプ」と呼ぶ)では、液化した熱媒体(「冷媒」とも呼ばれる)を蒸発器で気化させることにより熱を吸収し、気化した熱媒体を圧縮した後、圧縮された熱媒体を凝縮器で液化することにより熱を放出する一連の熱サイクルにより熱の移動が行われる。このようなヒートポンプでは熱媒体を圧縮するために種々の圧縮機が用いられているが、圧縮機はその方式ごとに異なる特性を有している。
例えば、ロータリ圧縮機は、押しのけ量を大きくすることが比較的容易であるとともに、動作時の摩擦ロスが小さいという利点を有している反面、圧縮機内での漏れやトルク変動を低減することが難しい。一方、スクロール圧縮機は、圧縮機内での漏れやトルク変動が小さいという利点を有している反面、動作時の摩擦ロスが比較的大きく、また、押しのけ量を大きくすると小型化が困難となる。そこで、小型で高性能な圧縮機を実現するため、ロータリ圧縮機により圧力を高めたガスをスクロール圧縮機によりさらに圧縮することが提案されている(例えば、特許文献1参照)。
図7は、このような多段圧縮機900の一例を示す概略断面図である。多段圧縮機900は、ロータリ式圧縮機構910と、スクロール式圧縮機構920と、モータ930と、モータ930の回転力をロータリ式圧縮機構910およびスクロール式圧縮機構920に伝達するクランクシャフト940とを、密閉されたハウジング902内に格納することにより構成されている。ハウジング902の底部は、潤滑油を貯留する潤滑油溜まりOTとなっている。
クランクシャフト940は、円筒状の軸部942と、軸部942よりも外径が小さいピン部944と、軸部942よりも外径が大きいクランク部946を有している。軸部942は、モータ930の回転子932に固定されており、ハウジング902に固定された固定子934に交流電力を供給することにより、軸部942の軸線A−Aを中心に回転する。なお、ピン部944は、外径が軸部942よりも小さく、その軸線が軸部942の軸線A−Aから偏心しているため、「小径偏心部」とも呼ぶことができる。一方、クランク部946は、外径が軸部942よりも大きく、その軸線が軸部942の軸線A−Aから偏心しているため、「大径偏心部」とも呼ぶことができる。
ロータリ式圧縮機構910は、ハウジング902に固定されたシリンダ本体912と、シリンダ本体912の上下に固定的に配置される上部軸受け914および下部軸受け916と、ロータ918とを有している。シリンダ本体912、上部軸受け914および下部軸受け916は、シリンダ室910aを形成する。ロータ918は、クランクシャフト940のクランク部946に嵌合されており、クランクシャフト940の回転に伴ってシリンダ室910a内で摺動回転する。
図7に示すように、クランク部946およびロータ918は、軸部942の軸線A−A(すなわち、クランクシャフト940の回転軸A−A)から偏心している。そのため、クランクシャフト940が回転すると、ロータ918と、シリンダ本体912に設けられたブレード(図示しない)とにより形成された空間の容積が変化する。これにより、吸気管904からシリンダ室910aに流入した低圧の冷媒ガスが圧縮され、中圧の冷媒ガスがハウジング902内に吐出される。
スクロール式圧縮機構920は、固定スクロール922と、旋回スクロール924と、オルダムリング926と、ハウジング902に固定されたフレーム928とを有している。スクロール式圧縮機構920の上部には、吐出カバー908が設けられており、この吐出カバー908と固定スクロール922とにより吐出チャンバ908aが形成される。固定スクロール922と旋回スクロール924とには、それぞれ対向する面に渦巻き状のラップ923,925が設けられている。旋回スクロール924は、フレーム928との間に挟まれたオルダムリング926により自転が規制されるとともに、クランクシャフト940に設けられたピン部944により駆動されることにより、フレーム928に固定された固定スクロール922に対して公転運動する。
旋回スクロール924が固定スクロール922に対して公転運動すると、固定スクロール922に設けられた吸気口922aから供給された冷媒ガスは、外周から内周に向かって移送されるとともに圧縮される。圧縮された冷媒ガスは、固定スクロール922の中央部に設けられた吐出口922bから吐出される。
ロータリ式圧縮機構910からハウジング902内に吐出された中圧の冷媒ガスは、フレーム928に設けられたガス通路928aを介してスクロール式圧縮機構920に供給される。スクロール式圧縮機構920に供給された中圧の冷媒ガスは、さらに圧縮され、高圧の冷媒ガスが吐出弁929を介して吐出チャンバ908aに吐出される。そして、吐出チャンバ908a内の高圧の冷媒ガスは、吐出カバー908に接続された吐出管906から吐出される。このようにして、小型で高性能な圧縮機が実現される。
図7に示す多段圧縮機900では、クランクシャフト940に一方の端から他方の端まで貫通する中空孔948が設けられている。中空孔948は、クランク部946側の端(以下、「下端」とも呼ぶ)からピン部944側に向かって伸びる孔948aと、ピン部944側の端(以下、「上端」とも呼ぶ)からクランク部946側に向かって伸びる孔948bとをクランクシャフト940内部で接続することにより形成される。このように、クランクシャフト940にその両端を貫通する中空孔948を設けることにより、潤滑油溜まりOTからスクロール式圧縮機構920まで潤滑油を供給することが可能となっている。スクロール式圧縮機構920に供給された潤滑油は、フレーム928に設けられた潤滑油通路928bを介して潤滑油溜まりOTまで落ちていく際に、多段圧縮機900の各部に行き渡る。
このようなクランクシャフト940は、通常、中実丸棒からの削り出しと、ドリルによる穿孔により形成される。具体的には、外径がクランク部946よりも大きい中実丸棒から、軸部942およびピン部944を削り出しにより形成する。次いで、下端から軸線A−A方向にドリルで穿孔して下端側の孔948aを形成し、上端から下端側の孔948aの上端に向かってドリルで穿孔して上端側の孔948bを形成する。これにより、中空孔948を有するクランクシャフト940が形成される。
特開平5−87084号公報 特開2009−226410号公報 特開2010−172926号公報
図7に示すように、一般的に、クランクシャフト940の軸部942は、クランクシャフト940の長さ方向において大部分を占めている。そのため、下端側の孔948aは、クランクシャフト940と同程度の長さとなる。このように長い孔948aをドリルで穿孔した場合、穿孔に要する時間が長くなるとともに、ドリルの消耗が早まる。また、状況によっては、ドリルが折損する可能性も高くなる。このように、クランクシャフト940の下端側の孔948aをドリルにより穿孔することは容易ではない。
さらに、クランクシャフト940の長さ方向において大部分を占める軸部942を外径がクランク部946よりも大きい中実丸棒から削り出すと、切削屑が大量に発生し、歩留まりが低下する。また、切削量が多くなるため、切削のためのバイトの消耗が早まる虞がある。なお、これらの問題は、多段圧縮機900用のクランクシャフト940のみならず、両端を貫通する中空孔を有するクランクシャフトであれば、小径偏心部と大径偏心部とを有するクランクシャフトや、小径偏心部を有さず大径偏心部を有するクランクシャフトにも共通する。
本発明は、上述した従来の課題を解決するためになされたものであり、大径偏心部を有するとともに、両端を貫通する中空孔を有するクランクシャフトをより容易に製造する技術を提供することを目的とする。
上記目的の少なくとも一部を達成するために、本発明は、以下の形態又は適用例として実現することが可能である。
本発明の一形態としてのクランクシャフトの製造方法は、軸部と、前記軸部よりも外径が大きく前記軸部から偏心した大径偏心部とを有し、両端を貫通する中空孔が設けられたクランクシャフトの製造方法であって、(a)両端を貫通する中空孔を有する中空パイプを準備する工程と、(b)芯材を挿入することなく前記中空パイプに据え込み鍛造を施すことにより、外周面および内周面が外向きに凸で、据え込み鍛造における加圧方向に向かって外径が大きくあるいは小さくなっているテーパー部を形成する工程と、(c)芯材を挿入することなく前記テーパー部に据え込み鍛造を施すことにより、前記中空孔を有する前記大径偏心部を形成する工程とを備えることを特徴とする。
一般に、据え込み鍛造で大径偏心部を形成する場合、部分的に内向きの応力が被加工材に加わり、大径偏心部が閉塞する虞がある。これに対し、本形態では、あらかじめ据え込み鍛造により外周面および内周面が外向きに凸で、据え込み鍛造における加圧方向に向かって外径が大きくあるいは小さくなっているテーパー部を形成し、さらに、テーパー部を据え込み鍛造することで大径偏心部を形成している。この場合、大径偏心部を形成する際、テーパー部では外向きの応力が発生するので、大径偏心部を形成する際の内面が狭窄が抑制される。そのため、芯材を挿入しない状態においても、素材である中空パイプが有する中空孔の狭窄がクランクシャフトの両端に渉って抑制されるので、大径偏心部を有し、両端を貫通する中空孔が設けられた、クランクシャフトの製造がより容易となる。
[適用例1]
軸部と、前記軸部よりも外径が大きく前記軸部から偏心した大径偏心部とを有し、両端を貫通する中空孔が設けられたクランクシャフトの製造方法であって、(a)両端を貫通する中空孔を有する中空パイプを準備する工程と、(b)前記中空パイプに据え込み鍛造を施すことにより、外周面および内周面が外向きに凸な凸部を形成する工程と、(c)前記凸部に据え込み鍛造を施すことにより、前記中空孔を有する前記大径偏心部を形成する工程とを備える、クランクシャフトの製造方法。
一般に、据え込み鍛造で大径偏心部を形成する場合、部分的に内向きの応力が被加工材に加わり、大径偏心部が閉塞する虞がある。これに対し、本適用例では、あらかじめ据え込み鍛造により外周面および内周面が外向きに凸な凸部を形成し、さらに、凸部を据え込み鍛造することで大径偏心部を形成している。この場合、大径偏心部を形成する際、凸部では外向きの応力が発生するので、大径偏心部を形成する際の内面が狭窄が抑制される。そのため、素材である中空パイプが有する中空孔の狭窄がクランクシャフトの両端に渉って抑制されるので、大径偏心部を有し、両端を貫通する中空孔が設けられた、クランクシャフトの製造がより容易となる
[適用例2]
適用例1記載のクランクシャフトの製造方法であって、前記凸部は、前記据え込み鍛造における加圧方向に向かって外径が大きくなっている、クランクシャフトの製造方法。
この適用例によれば、加圧側の金型を変更することにより、凸部の形成と大径偏心部の形成とを行うことができる。そのため、2回の据え込み鍛造を続けて行うことができ、大径偏心部の形成に要する時間を短縮することが可能となる。
[適用例3]
適用例1または2記載のクランクシャフトの製造方法であって、前記据え込み鍛造は、熱間で行われる、クランクシャフトの製造方法。
据え込み鍛造を熱間で行うことにより、大径偏心部を形成する際の成形荷重を低減することができる。
[適用例4]
適用例3記載のクランクシャフトの製造方法であって、前記据え込み鍛造は、前記中空パイプを部分的に加熱することにより行われる、クランクシャフトの製造方法。
この適用例によれば、非加熱部分における変形抵抗が増大し、軸部の内径が縮小することを抑制することができる。
[適用例5]
適用例1ないし4のいずれか記載のクランクシャフトの製造方法であって、前記クランクシャフトは、さらに、前記軸部よりも外径が小さく前記軸部から偏心した小径偏心部が一方の端部に形成されたクランクシャフトであり、前記工程(b)に先だって、前記中空パイプの前記一方の端部を前記小径偏心部の偏心方向に絞ることにより閉塞部を形成するとともに、前記中空パイプの他方の端部からマンドレルを挿入して前記閉塞部の形成の際に狭窄される前記中空パイプの内面を前記一方の端部側にしごくことにより閉塞孔を形成し、前記工程(c)の後に、前記閉塞部の前記一方の端部から前記閉塞孔の先端に向けて穿孔することにより前記中空孔を有する前記小径偏心部を形成する、クランクシャフトの製造方法。
この適用例によれば、小径偏心部に対応する閉塞部の一方の端から穿孔することにより、両端を貫通するクランクシャフトの中空孔が形成される。一般に、クランクシャフトの小径偏心部は、軸部よりも長さが短いので、閉塞部を穿孔することは容易である。そのため、より容易に両端を貫通する中空孔が設けられたクランクシャフトを製造することが可能となる。
なお、本発明は、種々の態様で実現することが可能である。例えば、クランクシャフトの製造方法、その製造方法で製造されたクランクシャフト、そのクランクシャフトを利用したロータリ圧縮機、そのクランクシャフトを利用しロータリ式圧縮機構とスクロール式圧縮機構とを有する多段圧縮機、それらの圧縮機を利用したヒートポンプ等の態様で実現することができる。
本発明を適用して製造されるクランクシャフトの一例を示す外形図。 クランクシャフトの製造方法の概略を示す工程図。 クランクシャフトの製造方法の概略を示す工程図。 中空パイプを閉塞する閉塞工程の具体例を示す工程図。 中間材に大径偏心部を形成する据え込み工程の具体例を示す工程図。 中間材に大径偏心部を形成する据え込み工程の具体例を示す工程図。 多段圧縮機の一例を示す概略断面図。
本発明の実施の形態を実施例に基づいて以下の順序で説明する。
A.実施例:
A1.クランクシャフトの形状:
A2.製造方法の概略:
A3.閉塞部の形成:
A4.大径偏心部の形成:
B.変形例:
A1.クランクシャフトの形状:
図1は、本発明を適用して製造されるクランクシャフト100(図7の940に相当する)の一例を示す外形図である。図1(a)は、クランクシャフト100の長さ方向の外形を示している。図1(b)は、クランクシャフト100を一方の端(先端)から見た外形を示し、図1(c)は、クランクシャフト100を他方の端(後端)から見た外形を示している。
図1に示すように、クランクシャフト100は、円筒状の軸部110(図7の942に相当する)と、先端側に形成されたピン部120(図7の944に相当する)と、後端側寄りの軸部110の中間に形成されたクランク部130(図7の946に相当する)とを有している。但し、クランク部130の位置は、必ずしも後端側寄りにある必要はなく、クランクシャフト100が使用される装置の構成によって適宜変更される。
外径が軸部110よりも小さいピン部120は、その外径の中心(外径中心)が軸部110の軸線A−A(図1(b)および(c)では、十字で示す)から所定の偏心方向(図1の例では図の右方向)にずれるように形成されている。外径が軸部110よりも大きいクランク部130は、クランク主部132と、クランク主部132の先端側および後端側に設けられたフランジ部134と、クランク主部132とフランジ部134との間に設けられ中間的な形状を有する中間部136とにより構成されている。
クランク主部132は、その外径中心がピン部120の偏心方向と同一方向にずれるように形成されている。図1の例では、ピン部120とクランク主部132との偏心方向を同一方向としているが、ピン部120とクランク主部132との偏心方向は、必ずしも同一である必要はない。なお、クランクシャフト100としては、外径が軸部110よりも小さく、偏心したピン部120と、外径が軸部110よりも大きく、偏心したクランク主部132とが設けられておればよく、その形状は種々変更することが可能である。
フランジ部134は、上部軸受け914および下部軸受け916(図7)と接触する部分であり、クランクシャフト100の回転を円滑にするため、その外径中心がクランクシャフト100の回転中心である軸部110の軸線A−Aと一致するように形成されている。また、フランジ部134の半径は、ロータ918(図7)をクランク主部132と嵌合させる際の干渉を避けるため、クランク主部132の外周面と軸線A−Aとの最短距離以下に設定される。但し、クランクシャフト100の回転を円滑にするためには、上部軸受け914および下部軸受け916と接触するフランジ部134の外径を大きくするのが好ましい。そのため、図1の例では、フランジ部134の半径をクランク主部132の外周面と軸線A−Aとの最短距離としている。
クランクシャフト100には、また、先端と後端とを貫通する中空孔140(図7の948に相当する)が設けられている。中空孔140は、軸線A−Aに沿って後端から先端に向かって穿孔された中空孔142(図7の948aに相当する)と、先端から中空孔142の先端部に向かって穿孔された中空孔144(図7の948bに相当する)とがクランクシャフト100内で接続されることにより構成されている。
A2.製造方法の概略:
図2および図3は、クランクシャフトの製造方法の概略を示す工程図である。図2(a)ないし図3(b)は、クランクシャフト100を製造する各工程における部材の断面形状を示しており、図中の二点鎖線は、次の工程における部材の断面形状を示している。
本実施例では、まず、クランクシャフト100の素材として中空パイプ100aが準備される(図2(a))。中空パイプ100aは、外径がクランクシャフト100の軸部110よりもやや大きく、両端を貫通する中空孔140aの内径が軸部110に設けられた中空孔142(図7の948aに相当する)と同径の円筒状の金属部材である。準備される中空パイプ100aの長さは、クランクシャフト100よりも長く設定される。なお、中空パイプ100aの材質は、製造工程に対する適性や最終的なクランクシャフト100の強度等を考慮して適宜選択される。後述するように、本実施例では、製造工程において熱間鍛造を行うため、熱間鍛造に適し強度の高い構造用クロム鋼(SCR450B)を用いている。
次いで、詳細については後述するが、熱間鍛造を行うことにより、中空パイプ100aの先端をピン部120の偏心方向に絞ることにより閉塞する(図2(b))。本実施例では、絞られた先端側における軸線A−Aに垂直な面の断面形状(絞り形状)を円形としている。これにより、クランクシャフト100の中空孔142と略同形状の閉塞孔142bが設けられた軸部110bと、外径中心が軸線A−Aからずれた略円柱形状の閉塞部120bとを有する略円筒状の中間材100bが得られる。なお、絞り形状は、必ずしも円形である必要はなく、楕円や多角形等、種々の形状とすることができる。
閉塞部120bの円柱部分の外径(絞り径)は、クランクシャフト100のピン部120の形状や、中空パイプ100aの形状等により決定される。具体的には、ピン部120は、閉塞部120bの外周を切削することにより形成されるので、絞り径の下限は、ピン部120の外径となる。また、先端側を十分に閉塞させるため、絞り径の上限は、円柱部分の断面積が中空パイプ100aの断面積よりも小さくなる外径となる。なお、ここで断面積とは、軸線A−Aに垂直な面における断面積をいう。一般に、絞り径は、これらの上限および下限の間で適宜設定できるが、絞り径を小さくするほど、先端側が十分に閉塞されるが、成形荷重が大きくなる。絞り径は、このような特性を考慮して決定される。
詳細については後述するが、閉塞部120bが形成された中間材100bに、さらに、熱間据え込み鍛造を施すことにより、クランク部130の荒地となる大径偏心部130cを有する中間材100cが得られる(図3(a))。なお、据え込み鍛造で大径偏心部130cを形成した場合、大径偏心部130cの内面は、若干変形する。但し、後述する大径偏心部130cの形成方法を用いることにより、内面の変形量を十分に小さくすることができる。
ピン部120の荒地となる閉塞部120bと、大径偏心部130cとを有する中間材100cに機械加工を施すことにより、最終的なクランクシャフト100が得られる(図3(b))。具体的には、部材が充満していない閉塞部120bの先端を切断して除去した後、閉塞部120bの先端側から閉塞孔142cの先端に向かってドリルで穿孔することにより中空孔144を形成する。そして、軸部110c、閉塞部120b、および大径偏心部130cのそれぞれの外周を切削して、クランクシャフト100の軸部110とピン部120とクランク部130とを形成する。これにより、最終的なクランクシャフト100を得ることができる。但し、中間材100cの外周の切削を行った後、ピン部120の先端側の中心から閉塞孔142cの先端に向かってドリルで穿孔して中空孔144を形成することも可能である。この場合、中空孔144が形成される前のピン部120に相当する部分は、内部が閉塞された状態であるので、閉塞部とも呼ぶことができる。なお、目的とするクランクシャフトの形状が鍛造で得られる場合には、機械加工を省略することも可能である。
A3.閉塞部の形成:
図4は、中空パイプ100aを閉塞する閉塞工程(図2(b))の具体例を示す工程図である。図4(a)および(b)は、各工程における部材および金型の断面図である。図示を省略するが、閉塞工程では、まず、中空パイプ100aの先端を加熱する。中空パイプ100aの加熱は、誘導加熱によって行われる。加熱温度は、中空パイプ100aの再結晶化温度よりも十分高い温度(例えば、1000℃)に設定される。
先端部分が加熱された中空パイプ100aは、アンビル(図示しない)上に配置された下部金型200に、先端部分を下に挿入される(図4(a))。下部金型200は、中空パイプ100aが挿通される挿通孔210が設けられている。挿通孔210よりも先端側の内面には、中空パイプ100aを偏心方向に絞って中間材100bの閉塞部120bを形成するための絞り部220が設けられている。なお、図4では、下部金型200を一体のものとして描いているが、下部金型200を、中空パイプ100aの先端を絞るためのダイスと、中空パイプ100aの外径を拘束するためのコンテナーとを含む複数の金型により構成することも可能である。
中空パイプ100aを下部金型200に挿入した後、中空パイプ100aの後端に上部金型300が配置される。上部金型300は、略円筒形状のパンチ310と、閉塞孔142b(図2(b))と略同形状のマンドレル320とから構成されている。マンドレル320の後端には、マンドレル320の落下を防止するため、外径が大きい大径部322が設けられている。パンチ310は、外径が中空パイプ100aと略同一の部材で、マンドレル320を挿通するための挿通孔312が設けられている。挿通孔312は、パンチ310の後端がマンドレル320の後端と同一面となるように、マンドレル320の後端側の形状に合わせた形状となっている。但し、パンチ310の後端がマンドレル320の後端とは、必ずしも同一面となる必要はない。
中空パイプ100aの後端に上部金型300を配置した後、プレス機のスライド(図示しない)をアンビルに向かって降下させることにより、中空パイプ100aが先端方向に押し出される。これにより中空パイプ100aの先端が絞られ、図4(b)に示すように、中間材100bが形成される。このとき、中空パイプ100aの先端部分では、内向きの応力が加わるため内径が縮小する(内面が狭窄する)が、マンドレル320がパンチ310の移動とともに先端方向に移動するので、内径が縮小した領域では中空パイプ100aの内面が先端方向にしごかれる。このように、マンドレル320の先端付近では、中空パイプ100aの内面が先端方向にしごかれることにより、内向きの応力が増大して内径の縮小が促進され、先端部が確実に閉塞される。
A4.大径偏心部の形成:
図5および図6は、中間材100bに大径偏心部130cを形成する据え込み工程(図3(a))の具体例を示す工程図である。図5(a)ないし図6(b)は、各工程における部材および金型の断面図である。図示を省略するが、据え込み工程では、まず、中間材100bにおいて大径偏心部130cを形成する中間部分を加熱する。中間材100bの加熱は、誘導加熱によって行われる。加熱温度は、中間材100b(中空パイプ100a)の再結晶化温度よりも十分高い温度(例えば、1000℃)に設定される。
中間部分が加熱された中間材100bは、アンビル(図示しない)上に配置された下部金型400に、先端部分を下に挿入される(図5(a))。下部金型400は、中間材100bの先端形状に合わせた形状となっている。また、下部金型400の上面の位置は、大径偏心部130cの先端側の位置に設定される。なお、閉塞工程において用いた下部金型200(図4)が、中空パイプ100aの先端を絞るためのダイスと、中空パイプ100aの外径を拘束するためのコンテナーとを含む複数の金型から構成されている場合、当該ダイスと、閉塞工程で用いたコンテナーよりも短いコンテナーとから据え込み工程で使用する下部金型400を構成することができる。
据え込み鍛造を行うための上部金型500には、その内面に、パイプ挿入部510と、パイプ挿入部510よりも先端側に形成されたテーパー部520とが設けられている。パイプ挿入部510は、中空パイプ100aと同一形状の中間材100bの後端部分が挿入可能なように、内径が中間材100bの後端側の外径と同径(すなわち、中空パイプ100aの外径と同径)に形成されている。テーパー部520は、内径が先端側に行くに従って増大し、その先端側が上部金型500の開口をなしている。なお、図5の例では、上部金型500を一体の部材として図示しているが、上部金型500を複数の部材で構成することも可能である。
この上部金型500を中間材100bの後端側に配置した後、プレス機のスライドをアンビルに向かって降下させると、中間材100bの後端が先端方向に押し出される。これにより、中間材100bは、軸線A−A方向に潰れるとともに、下部金型400の上面において外周方向に広げられる(図5(b))。これにより、中間材100bには、先端側に行くに従って外径が増大するテーパー部150bが形成される。なお、本実施例では、上部金型500が据え込み成型のための空間(キャビティ)を有する金型(パンチ)となっている。本明細書等においては、このパンチの移動方向を、「加圧方向」と呼ぶ。
大径偏心部130cは、中間材100bに形成されたテーパー部150bに対して据え込み鍛造を行うことにより形成される。テーパー部150bの据え込み鍛造は、中間材100bが下部金型400に挿入された状態で、形状の異なる上部金型600を用いて行われる(図6(a))。この上部金型600には、その内面に、上部金型500のパイプ挿入部510(図5)と同形状のパイプ挿入部610と、パイプ挿入部610よりも先端側に形成され、大径偏心部130cに対応した形状の大径部620とが設けられている。なお、図6の例では、上部金型600を一体の部材として図示しているが、上部金型600を複数の部材で構成することも可能である。
そして、上部金型600を中間材100bの後端側に配置した後、プレス機のスライドをアンビルに向かって降下させると、テーパー部150bが先端方向に押し出され、中間材100bに形成されたテーパー部150bは軸線A−A方向に潰れるとともに、テーパー部150bを形成していた部材が外周方向に押し出される(図6(b))。これにより、大径偏心部130cが形成された中間材100cを得ることができる。
本実施例によれば、据え込み鍛造により先端方向(加圧方向)に向かって外径が大きくなるテーパー部150bを形成した後、さらにテーパー部150bに対して据え込み鍛造を行うことにより、大径偏心部130cを形成することができる。このとき、図6(a)に示すように、1回目の据え込み鍛造で形成されるテーパー部150bは、その外周面および内周面が外向きに凸な形状となる。そのため、2回目の据え込み鍛造で大径偏心部130cを形成する際、テーパー部150bには、外向きの応力が発生する。このように、テーパー部150bに外向きの応力が発生することにより、大径偏心部130cの内面が狭窄することを抑制することができる。
一般的に、据え込み鍛造により中空パイプに大径偏心部を形成すると、軸からの距離が短い領域で内向きの応力が発生し、大径偏心部の内面が狭窄する。そのため、中空パイプに大径偏心部を形成する場合には、パイプに芯材を挿入して内面の狭窄を抑制することが行われる。しかしながら、芯材を挿入した場合、パイプの内面が芯材に食いつき芯材を抜くことが困難となる虞がある。また、芯材として低融点金属やゴム等を挿入することも行われている。しかしながら、この場合には、据え込み鍛造の際の温度が常温程度に限定されるので、より適した条件で据え込み鍛造を行うことが困難となる。
これに対し、本実施例では、据え込み鍛造により加圧方向に向かって外径が大きくなるテーパー部150bを形成した後、さらにテーパー部150bに対して据え込み鍛造を行って大径偏心部130cを形成している。テーパー部150bは、外周面および内周面が外向きに凸な形状となっているため、大径偏心部130cを形成する際、テーパー部150bには外向きの応力が発生する。そのため、芯材を挿入することなく大径偏心部130cの内面の狭窄を抑制することができ、大径偏心部130cを有する中間材100cをより容易に得ることが可能となる。そして、このように得られた中間材100cに機械加工を施すことにより、軸部110よりも外径が大きく偏心したクランク部130と、両端を貫通する中空孔140とを有するクランクシャフト100をより容易に製造することが可能となる。
一般的に、中空のクランクシャフトの製造に本発明が適用されたか否かは、製造されたクランクシャフトの断面を観察することにより判断することができる。具体的には、クランクシャフトの断面に現れるフローラインと、本発明を適用して製造されたクランクシャフト100のフローラインもしくはシミュレーションにより求められるクランクシャフト100のフローラインとを比較することにより、中空のクランクシャフトの製造に本発明が適用されたか否かを判断することができる。
B.変形例:
本発明は実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
B1.変形例1:
上記実施例では、ピン部120と、クランク部130と、両端を貫通する中空孔140とを有するクランクシャフト100の製造に本発明を適用しているが、本発明は、クランク部130と、中空孔140とを有するクランクシャフトの製造に適用することも可能である。この場合、中空パイプ100aの先端を閉塞する閉塞工程(図2(b))は省略される。また、据え込み鍛造を行う際の下部金型には、その先端側が閉塞されたものが使用される。この場合には、中空パイプ100aに据え込み鍛造を施すことにより、テーパー部150bが形成される。
B2.変形例2:
上記実施例では、単一のクランク部130を有するクランクシャフト100の製造に本発明を適用しているが、本発明は、複数のクランク部を有するクランクシャフトの製造に適用することも可能である。
具体的には、上記実施例と同様に大径偏心部を形成した後、先に形成された大径偏心部の外面を拘束するための割型を下部金型400(図5および図6)の後端面上に配置する。このようにして、先に形成された大径偏心部および当該大径偏心部より先端側の外面を拘束した状態で、パイプ挿入部510とテーパー部520とを有する上部金型を用いて中空パイプ部分に据え込み鍛造を施すことにより、テーパー部(図5および図6の150bに相当する)を形成する。その後、パイプ挿入部610と大径部620とを有する上部金型を用いてテーパー部に据え込み鍛造を施すことにより、2つの大径偏心部を有する中間材を形成することができる。
任意数の大径偏心部を有する中間材は、このような加工を繰り返して行うことにより形成することができる。なお、複数の大径偏心部を形成する場合、大径偏心部を所定の方向(例えば、後端方向)に向かって順次形成するのが好ましい。大径偏心部を所定の方向に向かって順次形成すれば、下部金型および上部金型の双方で割型を使用することを避けることができ、テーパー部および大径偏心部を形成する際の据え込み鍛造をより容易に行うことができる。
複数のクランク部を有するクランクシャフトは、このようにして得られた中間材を切削加工することにより形成される。なお、複数のクランク部を設ける場合には、それぞれのクランク部の偏心方向が異なる方向に設定されるのが通例である。この場合、テーパー部から大径偏心部を形成する際の上部金型に設けられる大径部620を、それぞれのクランク部の偏心方向に偏心させればよい。
B3.変形例3:
上記実施例では、加圧方向に向かって外径が増大するテーパー部150bを形成し、テーパー部150bを据え込み鍛造することにより大径偏心部130cを形成しているが、据え込み鍛造により加圧方向に向かって外径が縮小するテーパー部を形成し、そのテーパー部を据え込み鍛造することにより大径偏心部を形成することも可能である。一般的には、内周面および外周面が外向きに凸な形状の凸部を形成し、当該凸部を据え込み鍛造することによって大径偏心部を形成するものとしても良い。これらの場合においても、大径偏心部を形成する際にテーパー部や凸部に外向きの応力が発生するので、大径偏心部の内面が狭窄することを抑制することができる。
但し、上記実施例のように、据え込み鍛造により加圧方向に向かって外径が増大するテーパー部150bを形成し、テーパー部150bを据え込み鍛造する場合には、同一の下部金型400で2回の据え込み鍛造を行うことができる(1ダイ・2ブロー)。この場合、1回目の据え込み鍛造に引き続き2回目の据え込み鍛造を行うことができるので、大径偏心部130cの形成に要する時間を短縮することができる。また、中間材100bの加熱も1回目の据え込み鍛造の前に行うのみで済むので、加熱に要するエネルギーの消費量を低減することが可能となる。
B4.変形例4:
上記実施例では、中空パイプ100aの閉塞やテーパー部150bおよび大径偏心部130cの形成を熱間鍛造によって行っているが、これらの工程は、温間鍛造や冷間鍛造によって行うことも可能である。但し、成形荷重を低減することができる点で、熱間鍛造によって中空パイプ100aの閉塞やテーパー部150bおよび大径偏心部130cの形成を行うのが好ましい。
また、上記実施例では、熱間鍛造に際して、中空パイプ100aや中間材100bの一部分のみを加熱しているが、中空パイプ100aや中間材100bの全体を加熱して熱間鍛造を行うことも可能である。但し、非加熱部分における変形抵抗が増大し、中間材100b,100c(図2(b),図3(a))の軸部110b,110cの内径が縮小することを抑制できる点で、中空パイプ100aや中間材100bの一部分のみを加熱して熱間鍛造するのが好ましい。
B5.変形例5:
上記実施例では、本発明をロータリ式圧縮機構910を有する圧縮機においてロータ918を駆動するためのクランクシャフト100に適用しているが、本発明は、一端に大径偏心部が形成され、両端を貫通する中空孔が設けられたクランクシャフトであれば、種々のクランクシャフトに適用することができる。本発明は、例えば、大径偏心部に往復運動が可能な部材を接触させ、外部機構を往復駆動するクランクシャフトにも適用することができる。
100…クランクシャフト
100a…中空パイプ
100b,100c…中間材
110,110b,110c…軸部
120…ピン部
120b…閉塞部
130…クランク部
130c…大径偏心部
132…クランク主部
134…フランジ部
136…中間部
140…中空孔
142…中空孔
142b,142c…閉塞孔
144…中空孔
150b…テーパー部
200…下部金型
210…挿通孔
220…絞り部
300…上部金型
310…パンチ
312…挿通孔
320…マンドレル
322…大径部
400…下部金型
500…上部金型
510…パイプ挿入部
520…テーパー部
600…上部金型
610…パイプ挿入部
620…大径部
900…多段圧縮機
902…ハウジング
904…吸気管
906…吐出管
908…吐出カバー
908a…吐出チャンバ
910…ロータリ式圧縮機構
910a…シリンダ室
912…シリンダ本体
918…ロータ
920…スクロール式圧縮機構
922…固定スクロール
922a…吸気口
922b…吐出口
923,925…ラップ
924…旋回スクロール
926…オルダムリング
928…フレーム
928a…ガス通路
928b…潤滑油通路
929…吐出弁
930…モータ
932…回転子
934…固定子
940…クランクシャフト
942…軸部
944…ピン部
946…クランク部
948…中空孔
948a…孔
948b…孔

Claims (7)

  1. 軸部と、前記軸部よりも外径が大きく前記軸部から偏心した大径偏心部とを有し、両端を貫通する中空孔が設けられたクランクシャフトの製造方法であって、
    (a)両端を貫通する中空孔を有する中空パイプを準備する工程と、
    (b)芯材を挿入することなく前記中空パイプに据え込み鍛造を施すことにより、外周面および内周面が外向きに凸で、据え込み鍛造における加圧方向に向かって外径が大きくあるいは小さくなっているテーパー部を形成する工程と、
    (c)芯材を挿入することなく前記テーパー部に据え込み鍛造を施すことにより、前記中空孔を有する前記大径偏心部を形成する工程と
    を備える、
    クランクシャフトの製造方法。
  2. 請求項1記載のクランクシャフトの製造方法であって、
    前記据え込み鍛造は、熱間で行われる、
    クランクシャフトの製造方法。
  3. 請求項記載のクランクシャフトの製造方法であって、
    前記据え込み鍛造は、前記中空パイプを部分的に加熱することにより行われる、
    クランクシャフトの製造方法。
  4. 請求項1ないしのいずれか記載のクランクシャフトの製造方法であって、
    前記クランクシャフトは、さらに、前記軸部よりも外径が小さく前記軸部から偏心した小径偏心部が一方の端部に形成されたクランクシャフトであり、
    前記工程(b)に先だって、前記中空パイプの前記一方の端部を前記小径偏心部の偏心方向に絞ることにより閉塞部を形成するとともに、前記中空パイプの他方の端部からマンドレルを挿入して前記閉塞部の形成の際に狭窄される前記中空パイプの内面を前記一方の端部側にしごくことにより閉塞孔を形成し、
    前記工程(c)の後に、前記閉塞部の前記一方の端部から前記閉塞孔の先端に向けて穿孔することにより前記中空孔を有する前記小径偏心部を形成する、
    クランクシャフトの製造方法。
  5. 請求項1ないしのいずれか記載の製造方法によって製造された、クランクシャフト。
  6. 請求項記載のクランクシャフトであって、
    前記大径偏心部は、ロータリ圧縮機においてロータを駆動する、
    クランクシャフト。
  7. 請求項記載の製造方法によって製造されたクランクシャフトであって、
    前記クランクシャフトは、ロータリ式圧縮機構とスクロール式圧縮機構とを有する多段圧縮機において使用されるクランクシャフトであり、
    前記大径偏心部は、ロータリ式圧縮機構においてロータを駆動し、
    前記小径偏心部は、スクロール圧縮機構において旋回スクロールを公転駆動する、
    クランクシャフト。
JP2012111269A 2012-05-15 2012-05-15 クランクシャフトの製造方法およびクランクシャフト Expired - Fee Related JP5246898B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111269A JP5246898B1 (ja) 2012-05-15 2012-05-15 クランクシャフトの製造方法およびクランクシャフト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111269A JP5246898B1 (ja) 2012-05-15 2012-05-15 クランクシャフトの製造方法およびクランクシャフト

Publications (2)

Publication Number Publication Date
JP5246898B1 true JP5246898B1 (ja) 2013-07-24
JP2013237065A JP2013237065A (ja) 2013-11-28

Family

ID=49041846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111269A Expired - Fee Related JP5246898B1 (ja) 2012-05-15 2012-05-15 クランクシャフトの製造方法およびクランクシャフト

Country Status (1)

Country Link
JP (1) JP5246898B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833017A (zh) * 2021-03-22 2021-05-25 广东美芝精密制造有限公司 钢曲轴制造方法、钢曲轴和旋转压缩机
CN112935721A (zh) * 2021-02-02 2021-06-11 宁波甬微集团有限公司 一种空调压缩机曲轴的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309090B6 (cs) * 2016-08-30 2022-01-26 Mitsubishi Electric Corporation Kompresor a zařízení chladicího cyklu
CN108971252A (zh) * 2018-06-29 2018-12-11 浙江百达精工股份有限公司 旋转式压缩机曲轴坯件制造方法
JP7295721B2 (ja) * 2019-06-28 2023-06-21 日東精工株式会社 鍔付き部品およびその圧造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810879A (ja) * 1994-06-29 1996-01-16 Sango Co Ltd 管端の成形方法とこれに使用する成形型
JPH0929362A (ja) * 1995-07-19 1997-02-04 Nippon Air-Tec Kk パイプの接続端部の成形装置及びパイプの接続端部の成形方法
JP2000015381A (ja) * 1998-06-26 2000-01-18 Honda Motor Co Ltd 軸付き円盤部品の成形方法
JP2000312946A (ja) * 1999-04-30 2000-11-14 Aida Eng Ltd 各種シャフト及びその塑性加工方法
JP2002001462A (ja) * 2000-06-21 2002-01-08 Masaki Seisakusho:Kk 管継手製造方法及び管継手製造装置
JP2004167587A (ja) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd 偏肉金属管の製造方法およびその加工用ダイス
JP2009085404A (ja) * 2007-10-02 2009-04-23 Honda Motor Co Ltd 中空クランク軸の製造方法及び中空クランク軸
JP2009172663A (ja) * 2008-01-28 2009-08-06 Shoda Seisakusho:Kk 中空シャフトの内径スプライン成形方法および成形装置
JP2010105031A (ja) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd 偏肉金属管の製造方法及び製造装置並びに偏肉金属管
JP2010131609A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp 連続中空部を有するクランクシャフトの成形方法
JP2010172926A (ja) * 2009-01-29 2010-08-12 Toyota Motor Corp 中空部品の製造方法
JP2011240362A (ja) * 2010-05-18 2011-12-01 Jatco Ltd プーリの成形方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810879A (ja) * 1994-06-29 1996-01-16 Sango Co Ltd 管端の成形方法とこれに使用する成形型
JPH0929362A (ja) * 1995-07-19 1997-02-04 Nippon Air-Tec Kk パイプの接続端部の成形装置及びパイプの接続端部の成形方法
JP2000015381A (ja) * 1998-06-26 2000-01-18 Honda Motor Co Ltd 軸付き円盤部品の成形方法
JP2000312946A (ja) * 1999-04-30 2000-11-14 Aida Eng Ltd 各種シャフト及びその塑性加工方法
JP2002001462A (ja) * 2000-06-21 2002-01-08 Masaki Seisakusho:Kk 管継手製造方法及び管継手製造装置
JP2004167587A (ja) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd 偏肉金属管の製造方法およびその加工用ダイス
JP2009085404A (ja) * 2007-10-02 2009-04-23 Honda Motor Co Ltd 中空クランク軸の製造方法及び中空クランク軸
JP2009172663A (ja) * 2008-01-28 2009-08-06 Shoda Seisakusho:Kk 中空シャフトの内径スプライン成形方法および成形装置
JP2010105031A (ja) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd 偏肉金属管の製造方法及び製造装置並びに偏肉金属管
JP2010131609A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp 連続中空部を有するクランクシャフトの成形方法
JP2010172926A (ja) * 2009-01-29 2010-08-12 Toyota Motor Corp 中空部品の製造方法
JP2011240362A (ja) * 2010-05-18 2011-12-01 Jatco Ltd プーリの成形方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935721A (zh) * 2021-02-02 2021-06-11 宁波甬微集团有限公司 一种空调压缩机曲轴的制造方法
CN112833017A (zh) * 2021-03-22 2021-05-25 广东美芝精密制造有限公司 钢曲轴制造方法、钢曲轴和旋转压缩机

Also Published As

Publication number Publication date
JP2013237065A (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5246898B1 (ja) クランクシャフトの製造方法およびクランクシャフト
DE112014005641T5 (de) Schneckentyp-Fluidmaschine
CN104819155B (zh) 用于旋转式压缩机的曲轴、旋转式压缩机及制冷循环装置
JP2007132292A (ja) 圧縮機のクランクシャフトおよび往復動型圧縮機
JP2008044010A (ja) テーパ付ピストンピンの形成方法
JP2014185639A (ja) アキシァルピストン機械用のピストン
CN103620223A (zh) 滑片式压缩机
EP2871365B1 (en) Scroll compressor and air conditioner including the same
CN109441940B (zh) 旋转式压缩机曲轴坯件制造方法
JP5081667B2 (ja) 気体圧縮機
WO2005028864A1 (ja) 圧縮機用シュー及びその製造方法
KR101302392B1 (ko) 압축기용 중공형 샤프트의 제조 방법
CN104895787A (zh) 气体压缩机
EP3636929B1 (en) Rotary compressor
CN106715913A (zh) 旋转式压缩机及冷冻循环装置
JP4382852B2 (ja) ベーン形圧縮機
JP2016017438A (ja) シングルスクリュー圧縮機
JP5083925B1 (ja) クランクシャフトの製造方法およびクランクシャフト
JP4877746B2 (ja) スクリューロータの製造方法
KR101934761B1 (ko) 자동차 압축기용 풀리 제조방법
JP5781355B2 (ja) 密閉型ロータリ圧縮機
JP2006125456A (ja) シェル型ニードル軸受の製造方法
KR102112211B1 (ko) 압축기의 유분리 장치의 가공 방법
CN102840135A (zh) 多缸旋转式压缩机
JP7476417B1 (ja) 圧縮機および冷凍空気調和機器

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 5246898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees