JP5178970B2 - アンテナ装置及び無線通信装置 - Google Patents

アンテナ装置及び無線通信装置 Download PDF

Info

Publication number
JP5178970B2
JP5178970B2 JP2012549200A JP2012549200A JP5178970B2 JP 5178970 B2 JP5178970 B2 JP 5178970B2 JP 2012549200 A JP2012549200 A JP 2012549200A JP 2012549200 A JP2012549200 A JP 2012549200A JP 5178970 B2 JP5178970 B2 JP 5178970B2
Authority
JP
Japan
Prior art keywords
radiator
capacitor
conductor
antenna device
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012549200A
Other languages
English (en)
Other versions
JPWO2012124248A1 (ja
Inventor
健一 浅沼
山本  温
勉 坂田
堅一 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012549200A priority Critical patent/JP5178970B2/ja
Application granted granted Critical
Publication of JP5178970B2 publication Critical patent/JP5178970B2/ja
Publication of JPWO2012124248A1 publication Critical patent/JPWO2012124248A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Description

本発明は、主として携帯電話機などの移動体通信用のアンテナ装置とそれを備えた無線通信装置に関するものである。
携帯電話機等の携帯無線通信装置の小型化、薄型化が急速に進んでいる。また、携帯無線通信装置は、従来の電話機として使用されるのみならず、電子メールの送受信やWWW(ワールドワイドウェブ)によるウェブページの閲覧などを行うデータ端末機に変貌を遂げている。取り扱う情報も従来の音声や文字情報から写真や動画像へと大容量化を遂げており、通信品質のさらなる向上が求められている。このような状況にあって、複数の無線通信方式をサポートするマルチバンドアンテナ装置や、小型のアンテナ装置が提案されている。さらに、これらのアンテナ装置を複数配置した場合において電磁結合を低減し、高速無線通信が可能なアレーアンテナ装置が提案されている。
特許文献1の発明は、2周波共用アンテナにおいて、誘電体基板の表面にプリント化して形成された給電線路、該給電線路に接続する内側放射素子、および外側放射素子と、誘電体基板表面にプリント化して形成された内側放射素子と外側放射素子との間隙で両放射素子を接続するインダクタと、誘電体基板の裏面にプリント化して形成された給電線路、該給電線路に接続する内側放射素子、および外側放射素子と、誘電体基板裏面にプリント化して形成された内側放射素子と外側放射素子との間隙で両放射素子を接続するインダクタとを備えることを特徴とする。特許文献1の2周波共用アンテナによれば、放射素子間に設けられたインダクタと放射素子間の所定の容量とが並列共振回路を形成し、マルチバンドで動作することができる。
特許文献2の発明は、マルチバンドアンテナにおいて、LC並列共振回路の両端に第1及び第2の放射エレメントを接続したアンテナ素子を備えてなるマルチバンドアンテナにおいて、前記LC並列共振回路はインダクタ自身の自己共振によって構成されていることを特徴とする。特許文献2のマルチバンドアンテナによれば、ホイップアンテナのインダクタ自身の自己共振によって構成されるLC並列共振回路によりマルチバンドで動作することができる。
特開2001−185938号公報 特開平11−55022号公報 特許第4003077号公報 特許第4141645号公報 特開2005−026742号公報 特開2005−229365号公報
近年、携帯電話機によるデータ伝送の高速化のニーズが高まり、次世代携帯電話規格である3G−LTE(3rd Generation Partnership Project Long Term Evolution)が検討されてきた。3G−LTEでは、無線伝送の高速化を実現するための新技術として、複数のアンテナを用いて複数のチャンネルの無線信号を空間分割多重により同時に送受信するMIMO(Multiple Input Multiple Output)アンテナ装置の採用が決定している。MIMOアンテナ装置は、送信機側と受信機側で複数のアンテナを備え、空間的にデータストリームを多重することで伝送速度の高速化を可能にする。MIMOアンテナ装置は複数のアンテナを同一の周波数で同時に動作させるので、小型な携帯電話機内にアンテナが近接して実装される状況下ではアンテナ間の電磁結合が非常に強くなる。アンテナ間の電磁結合が強くなるとアンテナの放射効率が劣化する。それに伴い、受信電波が弱くなり伝送速度の低下を招く。そのため、複数のアンテナを近接配置した状態で低結合なアレーアンテナが必要となる。また、MIMOアンテナ装置は、空間分割多重を実現するために、指向性又は偏波特性などを相違させることにより、互いに低相関である複数の無線信号の送受信を同時に実行する必要がある。さらに、通信の高速化のためアンテナの広帯域化技術が求められている。
特許文献1の2周波共用アンテナでは、低域の動作周波数を低くするには、放射素子が大きくなってしまう。また、内側放射素子と外側放射素子との間のスリットは放射に寄与しない。
特許文献2のマルチバンドアンテナでは、低域動作させるためには放射エレメントの素子長を長くしなければならない。また、LC並列共振回路は放射に寄与できない。
従って、マルチバンド化と小型化との両方を達成することができるアンテナ装置を提供することが望まれる。
本発明の目的は、以上の問題点を解決し、マルチバンド化と小型化との両方を達成することができるアンテナ装置を提供し、また、そのようなアンテナ装置を備えた無線通信装置を提供することにある。
本発明の第1の態様に係るアンテナ装置は、
少なくとも1つの放射器を備えたアンテナ装置において、
上記各放射器は、
ループ状の放射導体と、
上記放射導体のループに沿って所定位置に挿入された少なくとも1つのキャパシタと、
上記放射導体のループに沿って、上記キャパシタの位置とは異なる所定位置に挿入された少なくとも1つのインダクタと、
上記放射導体上に設けられた給電点とを備え、
上記放射導体は、少なくとも第1の放射導体と第2の放射導体とを含み、
上記少なくとも1つのキャパシタのうちの第1のキャパシタは、上記第1及び第2の放射導体の間に生じる容量によって形成され、上記第1及び第2の放射導体の間に生じる容量は、上記第1及び第2の放射導体が互いに近接した部分における上記第1及び第2の放射導体上の位置に応じて変化し、
上記各放射器は、
上記インダクタ及び上記キャパシタを含み、上記放射導体のループに沿う当該放射器の部分が第1の周波数で共振し、
上記放射導体のループに沿った区間であって、上記少なくとも1つのキャパシタのうちの少なくとも1つを含み、上記インダクタを含まず、上記給電点と上記インダクタとの間に延在する区間を含む当該放射器の部分が、上記第1の周波数より高い第2の周波数で共振するように構成されたことを特徴とする。
上記アンテナ装置の上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体が互いに近接して重なりあう部分における上記第1及び第2の放射導体の少なくとも一方はテーパー形状を有し、上記第1及び第2の放射導体が互いに近接して重なりあう部分の区分的な面積は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする。
上記アンテナ装置の上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の間の距離は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする。
上記アンテナ装置の上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の間に誘電体が設けられ、上記誘電体の誘電率は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする。
上記アンテナ装置の上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の少なくとも一方はテーパー形状を有することを特徴とする。
上記アンテナ装置は整合回路をさらに備えたことを特徴とする。
上記アンテナ装置において、上記各放射器は、上記放射導体のループに沿って、上記第1のキャパシタよりも上記給電点に近接した位置に挿入された第2のキャパシタをさらに備え、上記第2のキャパシタの容量は上記第1のキャパシタの容量よりも大きいことを特徴とする。
上記アンテナ装置において、
上記各放射器は、上記第1及び第2のキャパシタの間において上記放射導体のループの外周に接続された延長導体をさらに備え、
上記各放射器は、
上記インダクタ及び上記第1及び第2のキャパシタを含み、上記放射導体のループに沿う当該放射器の部分が上記第1の周波数で共振し、
上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間を含む当該放射器の部分が、上記第2の周波数で共振し、
上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間と、上記延長導体とを含む当該放射器の部分が、上記第1及び第2の周波数の間の第3の周波数で共振するように構成されたことを特徴とする。
上記アンテナ装置において、
上記各放射器は、上記第1及び第2のキャパシタの間において上記放射導体のループの内周に設けられたスリットをさらに備え、
上記各放射器は、
上記インダクタ及び上記第1及び第2のキャパシタを含み、上記スリットを含み、上記放射導体のループに沿う当該放射器の部分が上記第1の周波数で共振し、
上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間を含む当該放射器の部分が、上記第2の周波数で共振し、
上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間と、上記スリットとを含む当該放射器の部分が、上記第1及び第2の周波数の間の第3の周波数で共振するように構成されたことを特徴とする。
上記アンテナ装置において、上記放射導体は少なくとも1カ所で折り曲げられていることを特徴とする。
上記アンテナ装置において、上記少なくとも1つのインダクタはチップ型アンテナ素子を含み、上記チップ型アンテナ素子は、棒状の誘電体部材と、上記誘電体部材の長手方向に沿った面上に螺線状に形成された放射素子と、上記誘電体部材の両端で上記放射素子にそれぞれ接続された第1及び第2の電極とを備えたことを特徴とする。
上記アンテナ装置において、上記少なくとも1つのインダクタはストリップ導体で構成されたインダクタを含むことを特徴とする。
上記アンテナ装置において、上記少なくとも1つのインダクタはメアンダ状導体で構成されたインダクタを含むことを特徴とする。
上記アンテナ装置は接地導体をさらに備えたことを特徴とする。
上記アンテナ装置は、上記接地導体と、上記給電点に接続された給電線路とを備えたプリント配線基板を備え、
上記放射器は上記プリント配線基板上に形成されたことを特徴とする。
上記アンテナ装置は、少なくとも一対の放射器を含むダイポールアンテナであることを特徴とする。
上記アンテナ装置は複数の放射器を備え、上記複数の放射器は、互いに異なる複数の第1の周波数と、互いに異なる複数の第2の周波数とを有することを特徴とする。
上記アンテナ装置は、互いに異なる信号源に接続された複数の放射器を備えたことを特徴とする。
上記アンテナ装置は、所定の基準軸に対して互いに対称に構成された放射導体をそれぞれ有する第1の放射器及び第2の放射器を備え、
上記第1及び第2の放射器の各給電点は、上記基準軸に対して対称な位置に設けられ、
上記第1及び第2の放射器の各放射導体は、上記基準軸に沿って上記第1の放射器の給電点及び上記第2の放射器の給電点から遠ざかるにつれて上記第1及び第2の放射器の間の距離が次第に増大する形状を有することを特徴とする。
上記アンテナ装置は、第1の放射器及び第2の放射器を備え、上記第1及び第2の放射器の各放射導体のループは所定の基準軸に対して互いに実質的に対称に構成され、
上記第1及び第2の放射器の上記互いに対称な各放射導体のループに沿って上記各給電点から対応する向きに進むとき、上記第1の放射器では上記給電点、上記インダクタ、上記キャパシタが順に位置し、上記第2の放射器では上記給電点、上記キャパシタ、上記インダクタが順に位置することを特徴とする。
本発明の第2の態様に係る無線通信装置によれば、第1の態様に係るアンテナ装置を備えたことを特徴とする。
本発明のアンテナ装置によれば、小型かつ簡単な構成でありながら、マルチバンドで動作可能なアンテナ装置を提供することができる。また、本発明のアンテナ装置は、複数の放射器を備えた場合には、アンテナ素子間で互いに低結合であり、複数の無線信号を同時に送受信するように動作可能である。また、本発明によれば、そのようなアンテナ装置を備えた無線通信装置を提供することができる。
本発明の第1の実施形態に係るアンテナ装置を示す概略図である。 図1のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図1のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 図1のアンテナ装置の等価回路を示す図である。 本発明の動作原理を説明するための第1の比較例に係るアンテナ装置を示す概略図である。 図5のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図5のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 図5のアンテナ装置が低域共振周波数f1で動作するときのインダクタL1及びキャパシタC1による整合効果を説明するための図である。 図5のアンテナ装置が高域共振周波数f2で動作するときのインダクタL1及びキャパシタC1による整合効果を説明するための図である。 本発明の第1の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第6の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。 複数のキャパシタを設けることの効果を説明するための本発明の第2の比較例に係るアンテナ装置を示す概略図であって、アンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図17のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 本発明の第1の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。 本発明の第2の実施形態に係るアンテナ装置を示す概略図である。 図22のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図22のアンテナ装置が中域共振周波数f3で動作するときの電流経路を示す図である。 図22のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 本発明の第2の実施形態の変形例に係るアンテナ装置を示す概略図である。 図26のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図26のアンテナ装置が中域共振周波数f3で動作するときの電流経路を示す図である。 図26のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 本発明の第3の実施形態に係るアンテナ装置を示す概略図である。 本発明の第3の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。 比較例に係るアンテナ装置を示す概略図である。 本発明の第3の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。 図30のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図30のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 図33のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図33のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 本発明の第4の実施形態に係るアンテナ装置を示す斜視図である。 図38の放射器110Aの放射導体1dの展開図である。 図38の放射器110Aの放射導体2の展開図である。 図38のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。 図38のアンテナ装置の反射係数を表すSパラメータS11の周波数特性を示す表である。 図38のアンテナ装置の放射効率を示す表である。 本発明の第4の実施形態の変形例に係るアンテナ装置を示す斜視図である。 図44の放射器111Aの放射導体1eの展開図である。 図44の放射器111Aの放射導体2の展開図である。 図44のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。 図44のアンテナ装置の反射係数を表すSパラメータS11の周波数特性を示す表である。 図44のアンテナ装置の放射効率を示す表である。 本発明の第4の実施形態の比較例に係るアンテナ装置を示す斜視図である。 図50のアンテナ装置の放射器220Aの詳細構成を示す展開図である。 図50のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。 本発明の第5の実施形態に係るアンテナ装置を示す斜視図である。 図53の放射器131の回路を示す展開図である。 図53の放射器131の放射導体41,42,43,44,45の詳細構成を示す展開図である。 図53の放射器131の等価回路を示す図である。 図53の放射器132の回路を示す展開図である。 図53の放射器132の放射導体51,52,53,54の詳細構成を示す展開図である。 図53の放射器132の等価回路を示す図である。 図53の放射器131,132のVSWRを示す表である。 図53の放射器131,132の放射効率を示す表である。 本発明の第1の実施形態の第11の変形例に係るアンテナ装置を示す概略図である。 本発明の第1の実施形態の第12の変形例に係るアンテナ装置を示す概略図である。 本発明の第6の実施形態に係る無線通信装置であって、図1のアンテナ装置を備えた無線通信装置の構成を示すブロック図である。
以下、本発明の実施形態について図面を参照しながら説明する。なお、同様の構成要素については同一の符号を付している。
第1の実施形態.
図1は、本発明の第1の実施形態に係るアンテナ装置を示す概略図である。図1のアンテナ装置は、単一の放射器100をデュアルバンド動作させる。
図1において、放射器100は、所定幅及び所定の電気長を有する第1の放射導体1と、所定幅及び所定の電気長を有する第2の放射導体2とを含む、実質的にループ状の放射導体を備える。放射器100はさらに、放射導体のループに沿った所定の位置で放射導体1,2を互いに接続するインダクタL1を有する。放射器100はさらに、放射導体1,2間に生じる容量によって形成されたキャパシタを有する。従って、放射器100において、放射導体1,2とインダクタL1と放射導体1,2間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。言い換えると、ループ状の放射導体の所定の位置にキャパシタが挿入され、キャパシタが挿入された位置とは異なる位置においてインダクタL1が挿入されている。放射導体1,2間に生じる容量は、放射導体1,2が互いに近接した部分における放射導体1,2上の位置に応じて変化する。図2〜図4では、この位置に応じて変化する容量を、説明のために仮想的なキャパシタC1a〜C1cとして示すが、実際には、放射導体1,2間には、位置に応じて連続的に変化する容量を有する無数の仮想的なキャパシタが存在するとみなすことができる。低域共振周波数f1及び高域共振周波数f2の高周波信号を発生する信号源Q1は、放射導体1上の給電点P1に接続されるとともに、放射器100に近接して設けられた接地導体G1上の接続点P2に接続される。信号源Q1は、図1のアンテナ装置に接続された無線通信回路を概略的に示し、低域共振周波数f1及び高域共振周波数f2のいずれかで放射器100を励振させる。必要に応じて、アンテナ装置と無線通信回路との間にさらに整合回路(図示せず)が接続されてもよい。放射器100において、低域共振周波数f1で励振するときの電流経路は、高域共振周波数f2で励振するときの電流経路とは異なり、これにより、効果的にデュアルバンド動作を実現することができる。
まず、図5〜図9を参照して、図1のアンテナ装置の動作原理を説明する。図5は、本発明の動作原理を説明するための第1の比較例に係るアンテナ装置を示す概略図である。図5のアンテナ装置の放射器200は、図1の放射導体1,2間に生じる容量によって形成されたキャパシタに代えて、ディスクリートなキャパシタC1を備える。放射器200は、所定幅及び所定の電気長を有する第1の放射導体201と、所定幅及び所定の電気長を有する第2の放射導体202と、所定の位置で放射導体201,202を互いに接続するキャパシタC1と、キャパシタC1とは異なる位置で放射導体201,202を互いに接続するインダクタL1とを有する。放射器200において、放射導体201,202とキャパシタC1とインダクタL1とにより、中央の中空の部分を包囲するループが形成される。言い換えると、ループ状の放射導体の所定の位置にキャパシタC1が挿入され、キャパシタC1が挿入された位置とは異なる位置においてインダクタL1が挿入されている。信号源Q1は、放射導体201上の給電点P1に接続されるとともに、放射器200に近接して設けられた接地導体G1上の接続点P2に接続される。
図6は、図5のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。低い周波数成分を有する電流は、インダクタは通過できる(低インピーダンス)がキャパシタは通過しづらい(高インピーダンス)という性質がある。このため、アンテナ装置が低域共振周波数f1で動作するときの電流I1は、インダクタL1を含み、ループ状の放射導体に沿う経路を流れる。詳しくは、電流I1は、放射導体201において給電点P1からインダクタL1に接続された点まで流れ、インダクタL1を通り、放射導体202においてインダクタL1に接続された点からキャパシタC1に接続された点まで流れる。さらに、キャパシタC1の両端の電位差に起因して放射導体201においてキャパシタC1に接続された点から給電点P1まで電流が流れて、電流I1に接続される。このため、実質的には、電流I1はキャパシタC1も通るとみなすことができる。電流I1は、ループ状の放射導体において、中央の中空の部分に近接した内側エッジを強く流れる。また、接地導体G1上の放射器200に近接した部分において、接続点P2に向かって電流I0が流れる。放射器200は、アンテナ装置が低域共振周波数f1で動作するとき、図に示すような電流経路で電流I1が流れ、ループ状の放射導体及びインダクタL1及びキャパシタC1を含む当該放射器200の部分が低域共振周波数f1で共振するように構成される。詳しくは、放射器200は、放射導体201において給電点P1からインダクタL1に接続された点までの電気長と、給電点P1からキャパシタC1に接続された点までの電気長と、インダクタL1の電気長と、キャパシタC1の電気長と、放射導体202においてインダクタL1に接続された点からキャパシタC1に接続された点までの電気長との和が、低域共振周波数f1で共振する電気長になるように構成される。この共振する電気長は、例えば、低域共振周波数f1の動作波長λ1の0.2〜0.25倍である。アンテナ装置が低域共振周波数f1で動作するとき、図に示すような電流経路で電流I1が流れることにより、放射器200はループアンテナモードで、すなわち磁流モードで動作する。
図7は、図5のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。高い周波数成分を有する電流は、キャパシタは通過できる(低インピーダンス)がインダクタは通過しづらい(高インピーダンス)という性質がある。このため、アンテナ装置が高域共振周波数f2で動作するときの電流I2は、ループ状の放射導体に沿った区間であって、キャパシタC1を含み、インダクタL1を含まず、給電点とインダクタとの間に延在する区間にわたって流れる。すなわち、電流I2は、放射導体201において給電点P1からキャパシタC1に接続された点まで流れ、キャパシタC1を通り、放射導体202においてキャパシタC1に接続された点から所定位置(例えば、インダクタL1に接続された点)まで流れる。このとき、電流I2はループ状の放射導体の外周を強く流れる。接地導体G1上の放射器200に近接した部分において、接続点P2に向かって(すなわち電流I2とは逆向きに)電流I0が流れる。放射器200は、アンテナ装置が高域共振周波数f2で動作するとき、図に示すような電流経路で電流I2が流れ、ループ状の放射導体のうちの電流I2が流れる部分とキャパシタC1とを含む当該放射器200の部分が高域共振周波数f2で共振するように構成される。詳しくは、放射器200は、放射導体201において給電点P1からキャパシタC1に接続された点までの電気長と、キャパシタC1の電気長と、放射導体202において電流I2が流れる部分の電気長(例えばキャパシタC1に接続された点からインダクタL1に接続された点までの電気長)との和が、高域共振周波数f2で共振する電気長になるように構成される。この共振する電気長は、例えば、高域共振周波数f2の動作波長λ2の0.25倍である。アンテナ装置が高域共振周波数f2で動作するとき、図に示すような電流経路で電流I2が流れることにより、放射器200はモノポールアンテナモードで、すなわち電流モードで動作する。
このように、図5のアンテナ装置は、低域共振周波数f1で動作するときにはインダクタL1を通る電流経路を形成し、高域共振周波数f2で動作するときにはキャパシタC1を通る電流経路を形成し、これにより効果的にデュアルバンド動作を実現する。放射器200は、ループ状の電流経路を形成することで磁流モードで動作し、低域共振周波数f1で共振する。一方、放射器200は、非ループ状の電流経路(モノポールアンテナモード)を形成することで電流モードで動作し、高域共振周波数f2で共振する。
図8は、図5のアンテナ装置が低域共振周波数f1で動作するときのインダクタL1及びキャパシタC1による整合効果を説明するための図である。図9は、図5のアンテナ装置が高域共振周波数f2で動作するときのインダクタL1及びキャパシタC1による整合効果を説明するための図である。低域共振周波数f1及び高域共振周波数f2は、インダクタL1及びキャパシタC1による整合効果(特にキャパシタC1による整合効果)を用いて調整可能である。アンテナ装置が低域共振周波数f1で動作するとき、放射導体202においてインダクタL1に接続された点からキャパシタC1に接続された点まで流れる電流I1bと、放射導体201においてキャパシタC1に接続された点から給電点P1まで流れる電流I1cとは、放射導体201において給電点P1からインダクタL1に接続された点まで流れる電流I1aと接続され、これにより、ループ状の電流経路が形成される。キャパシタC1の両端(放射導体201の側及び放射導体202の側)には電位差が生じるので、キャパシタC1の容量によりアンテナ装置の入力インピーダンスのリアクタンス成分を制御する効果がある。キャパシタC1の容量が大きいほど、放射器200の共振周波数が低下する。一方、アンテナ装置が高域共振周波数f2で動作するとき、電流は、放射導体201において給電点P1からキャパシタC1に接続された点まで流れ(電流I2a)、キャパシタC1を通り、放射導体202においてキャパシタC1に接続された点からインダクタL1に接続された点まで流れる(電流I2b)。キャパシタC1は高い周波数成分を通過させるので、キャパシタC1の容量を小さくすると、電気長が短くなり放射器200の共振周波数が高い周波数にシフトする。放射器200において給電点P1の電圧が最小であるので、キャパシタC1を装荷する位置を給電点P1から離すことで、放射器200の共振周波数を下げることができる。
一方、図1のアンテナ装置は、図5のアンテナ装置のキャパシタC1に代えて、位置に応じて変化する容量を有するキャパシタを備え、これにより、アンテナ装置の動作帯域幅を広帯域化する。
図2は、図1のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。図4は、図1のアンテナ装置の等価回路を示す図である。アンテナ装置が低域共振周波数f1で動作するときの電流I1は、インダクタL1を含み、ループ状の放射導体に沿う経路を流れる。詳しくは、電流I1は、放射導体1において給電点P1からインダクタL1に接続された点まで流れ、インダクタL1を通り、放射導体2においてインダクタL1に接続された点から放射導体1,2間に所定容量を生じる位置(例えば仮想的なキャパシタC1aが形成される位置)まで流れる。さらに、その位置における放射導体1,2間の電位差に起因して放射導体1上の対応する位置から給電点P1まで電流が流れて、電流I1に接続される。このため、実質的には、電流I1は放射導体1,2間のキャパシタ(例えば仮想的なキャパシタC1a〜C1cのいずれか1つ)も通るとみなすことができる。電流I1は、ループ状の放射導体において、中央の中空の部分に近接した内側エッジを強く流れる。また、接地導体G1上の放射器100に近接した部分において、接続点P2に向かって電流I0が流れる。放射器100は、アンテナ装置が低域共振周波数f1で動作するとき、図2に示すような電流経路(ただし、仮想的なキャパシタC1a〜C1cのいずれか1つを通る電流経路)で電流I1が流れ、ループ状の放射導体及びインダクタL1及び放射導体1,2間のキャパシタを含む当該放射器100の部分が低域共振周波数f1で共振するように構成される。詳しくは、放射器100は、放射導体1において給電点P1からインダクタL1に接続された点までの電気長と、インダクタL1の電気長と、放射導体1,2上の所定位置間に生じる容量によって形成されるキャパシタの電気長と、放射導体2においてインダクタL1に接続された点から当該キャパシタの位置までの電気長と、放射導体1において給電点P1から当該キャパシタの位置までの電気長との和が、低域共振周波数f1で共振する電気長になるように構成される。この共振する電気長は、例えば、低域共振周波数f1の動作波長λ1の0.2〜0.25倍である。
アンテナ装置が低域共振周波数f1で動作するとき、図2に示すような電流経路で電流I1が流れることにより、放射器100はループアンテナモードで、すなわち磁流モードで動作する。放射器100がループアンテナモードで動作することによって、小型形状でありながら長い共振長を確保できるので、アンテナ装置が低域共振周波数f1で動作するときでも良好な特性を実現できる。また、放射器100はループアンテナモードで動作するとき、高いQ値を有する。ループ状の放射導体において、中央の中空の部分が広がるほど(すなわち、ループの径が大きくなるほど)、アンテナ装置の放射効率が向上する。
さらに、放射導体1,2間のキャパシタ、すなわち、位置に応じて変化する容量を有するキャパシタが共振することにより、放射器100の低域周波数帯における動作帯域幅が増大する。
図3は、図1のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。アンテナ装置が高域共振周波数f2で動作するときの電流I2は、ループ状の放射導体に沿った区間であって、放射導体1,2間のキャパシタを含み、インダクタL1を含まず、給電点P1とインダクタL1との間に延在する区間にわたって流れる。詳しくは、電流I2は、放射導体1において給電点P1から放射導体1,2間に所定容量を生じる位置(例えば仮想的なキャパシタC1aが形成される位置)まで流れ、その位置において放射導体1,2間のキャパシタを通って放射導体2まで流れ、放射導体2において所定位置(例えば、放射導体2のコーナーの点)まで流れる。このとき、電流I2はループ状の放射導体の外周を強く流れる。接地導体G1上の放射器100に近接した部分において、接続点P2に向かって(すなわち電流I2とは逆向きに)電流I0が流れる。放射器100は、アンテナ装置が高域共振周波数f2で動作するとき、図3に示すような電流経路(ただし、仮想的なキャパシタC1a〜C1cのいずれか1つを通る電流経路)で電流I2が流れ、ループ状の放射導体のうちの電流I2が流れる部分と放射導体1,2間のキャパシタとを含む当該放射器100の部分が高域共振周波数f2で共振するように構成される。詳しくは、放射器100は、放射導体1,2上の所定位置間に生じる容量によって形成されるキャパシタの電気長と、放射導体1において給電点P1から当該キャパシタの位置までの電気長と、放射導体2において電流I2が流れる部分の電気長(例えば当該キャパシタの位置から放射導体2のコーナーの点までの電気長)との和が、高域共振周波数f2で共振する電気長になるように構成される。この共振する電気長は、例えば、高域共振周波数f2の動作波長λ2の0.25倍である。
アンテナ装置が高域共振周波数f2で動作するとき、図3に示すような電流経路で電流I2が流れることにより、放射器100はモノポールアンテナモードで、すなわち電流モードで動作する。さらに、放射導体1,2間のキャパシタ、すなわち、位置に応じて変化する容量を有するキャパシタが共振することにより、放射器100の高域周波数帯における動作帯域幅が増大する。
このように、図1のアンテナ装置は、低域共振周波数f1で動作するときにはインダクタL1を通る電流経路を形成し、高域共振周波数f2で動作するときには放射導体1,2間のキャパシタを通る電流経路を形成し、これにより効果的にデュアルバンド動作を実現する。放射器100は、ループ状の電流経路を形成することで磁流モードで動作し、低域共振周波数f1で共振する。一方、放射器100は、非ループ状の電流経路(モノポールアンテナモード)を形成することで電流モードで動作し、高域共振周波数f2で共振する。
また、図1のアンテナ装置は、低域周波数帯及び高域周波数帯のいずれにおいても、広帯域で動作することができるという格別の効果がある。
アンテナ装置の共振周波数の調整方法を以下のようにまとめることができる。低域共振周波数f1を低くするためには、放射導体1,2間のキャパシタの容量を大きくすること、インダクタL1のインダクタンスを大きくすること、放射導体1の電気長を長くすること、放射導体2の電気長を長くすること、などが有効である。高域共振周波数f2を低くするためには、放射導体2の電気長を長くすること、放射導体1,2間のキャパシタを給電点P1から離すこと、などが有効である。
なお、アンテナ装置が磁流モード及び電流モードのいずれで動作するのかを確実に切り換えるためには、アンテナ装置が低域共振周波数f1及び高域共振周波数f2のそれぞれで動作するときの各電流経路の電気長を明確に相違させる必要がある。このためには、放射導体1の電気長より放射導体2の電気長が長いほうが好ましい。また、放射導体1上における給電点P1からインダクタL1までの電気長及び給電点P1から放射導体1,2間のキャパシタまでの電気長を短くすると、アンテナ装置が低域共振周波数f1で動作するときには給電点P1からインダクタL1に向かって電流が流れやすくなり、アンテナ装置が高域共振周波数f2で動作するときには給電点P1からキャパシタに向かって電流が流れやすくなり、余分な方向へ向かって流れる電流が生じにくくなる。
従来技術では、低域共振周波数f1(動作波長λ1)で動作するときに(λ1)/4程度のアンテナ素子長が必要であったところ、図1のアンテナ装置では、ループ状の電流経路を形成することにより、放射器100の縦横の長さを(λ1)/15程度まで小型化することができる。
また、図1のアンテナ装置では、図5のアンテナ装置のキャパシタC1が不要になるので、部品点数を削減できるという効果がある。
ループ状の放射導体と、放射導体のループに沿って所定位置に挿入されたキャパシタ及びインダクタとを備えたアンテナ装置として、例えば特許文献3の発明があった。しかしながら、特許文献3の発明は、キャパシタ及びインダクタにより並列共振回路を構成し、この並列共振回路は、周波数に応じて基本モードと高次モードとのいずれかで動作する。一方、本願発明は、放射器100を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させるというまったく新規な原理に基づく。
放射器100においてインダクタL1と放射導体1,2間のキャパシタとの間の距離を離して大きなループを形成すると、アンテナ装置の放射効率が向上する。
図1のアンテナ装置は、低域共振周波数f1として800MHz帯の周波数(例えば880MHz)を使用し、高域共振周波数f2として2000MHz帯の周波数(例えば2170MHz)を使用することができるが、これらの周波数に限定されるものではない。
図1等では、図示の簡単化のために、接地導体G1を小さなサイズで示しているが、図38等に示すように、所望性能に応じて十分な大きさを有する接地導体G1を使用することは当業者には理解されるであろう。図1のアンテナ装置及び他の実施形態及び変形例のアンテナ装置は、プリント配線基板上に形成されてもよい。このとき、放射器100及び接地導体G1は、誘電体基板上の導体パターンとして形成される。図1のアンテナ装置では、放射器100を含む面と接地導体G1を含む面とが同一平面内にあるように示しているが、放射器100及び接地導体G1の配置はこのようなものに限定されない。例えば、放射器100を含む面が、接地導体G1を含む面に対して所定角度を有していてもよい。また、放射器100の放射導体1,2が少なくとも1カ所で折り曲げられていてもよい。
図1のアンテナ装置によれば、放射器100を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。また、図1のアンテナ装置は、低域周波数帯及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
放射導体1,2間に生じる容量を、放射導体1,2が互いに近接した部分における放射導体1,2上の位置に応じて変化させるために、図10〜図12に示すようなさまざまな方法を用いることができる。
図10は、本発明の第1の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。図10のアンテナ装置の放射器101において、放射導体1,2は距離d1を有して互いに平行に設けられ、互いに近接して重なりあう部分を有する。この部分における放射導体1,2の少なくとも一方(図10では放射導体1)はテーパー形状を有し、放射導体1,2が互いに近接して重なりあう部分のY方向の区分的な面積は、放射導体1,2上のY方向の位置に応じて変化する。放射導体1,2間に生じる容量は、この区分的な面積が変化するので、放射導体1,2が互いに近接した部分における放射導体1,2上の位置に応じて変化する。
図11は、本発明の第1の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。図11のアンテナ装置の放射器102は、図1の放射導体1に代えて放射導体1aを備え、放射導体1a,2の間の距離は放射導体1a,2のY方向の位置に応じて変化する(−Y側の端部で距離d2、+Y側の端部で距離d3)。図11では放射導体1aは平面として示したが、曲面であってもよい。放射導体1a,2間に生じる容量は、この距離が変化するので、放射導体1a,2が互いに近接した部分における放射導体1a,2上の位置に応じて変化する。
図12は、本発明の第1の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。図12のアンテナ装置の放射器103は、図1の放射導体1に代えて放射導体1bを備え、放射導体1b,2は距離d1を有して互いに平行に設けられる。放射導体1b,2間には、異なる誘電率を有する誘電体D1,D2,D3が設けられ、各誘電体D1,D2,D3の誘電率は、放射導体1b,2上のY方向の位置に応じて変化する(例えば、D1<D2<D3)。異なる誘電率を有する誘電体の個数は3つに限定されず、2つ、又は4つ以上であってもよい。放射導体1b,2間に生じる容量は、この誘電率が変化するので、放射導体1b,2が互いに近接した部分における放射導体1b,2上の位置に応じて変化する。
放射導体1,2間の容量を変化させるために、図10〜図12に示す方法を組み合わせてもよい。
インダクタL1は、例えばディスクリートな回路素子を使用可能であるが、それに限定されるものではない。図13は、本発明の第1の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。図13のアンテナ装置の放射器104は、図1のインダクタL1に代えて、ストリップ導体によって形成されるインダクタL1aを備える。図14は、本発明の第1の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。図14のアンテナ装置の放射器105は、図1のインダクタL1に代えて、メアンダ状導体によって形成されるインダクタL1bを備える。インダクタL1a,L1bを形成する導体の幅を細くするほど、また、導体の長さを長くするほど、インダクタL1a,L1bのインダクタンスは増加する。図13及び図14のアンテナ装置によれば、キャパシタ及びインダクタの両方を誘電体基板上の導体パターンとして形成することができるので、コストの削減や、製造ばらつきの低減といった効果がある。
図15は、本発明の第1の実施形態の第6の変形例に係るアンテナ装置を示す概略図である。図15のアンテナ装置の放射器106において、放射導体1c,2とインダクタL1と放射導体1c,2間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。放射器106は、整合回路M1を介して給電点P1に接続されている。整合回路M1は、例えば、少なくとも1つのキャパシタ、少なくとも1つのインダクタ、又はそれらの組み合わせを含む。図15のアンテナ装置は、整合回路M1を備えたことにより放射効率を向上できるという効果がある。
図16は、本発明の第1の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。図16のアンテナ装置の放射器107において、放射導体1c,2とインダクタL1とキャパシタC2と放射導体1c,2間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。従って、放射器107は、2つのキャパシタを備えている。キャパシタC2は、ループ状の放射導体に沿って、放射導体1c,2間のキャパシタよりも給電点P1に近接した位置に挿入される。
ここで、ループ状の放射導体に複数のキャパシタを備えることの効果について説明する。
図5のアンテナ装置においてキャパシタC1の容量を小さくしたとき、アンテナ装置が低域共振周波数f1で動作するときの帯域は広帯域化されるが、アンテナ装置の高域共振周波数f2が高い周波数へシフトするので、アンテナ装置が所望の高域共振周波数(又は第2の実施形態で説明する中域共振周波数)で動作するときの効率は低下する。別の観点から説明すると、キャパシタC1の容量を小さくしたとき、給電点P1からはキャパシタC1のインピーダンスZ1=1/(j・ω・C1)が大きく見えるので、アンテナ装置が高域共振周波数f2で動作するときの電流I2が流れにくくなり、高域共振周波数f2における効率が低下する。ここで、キャパシタC1の容量をC1で表し、キャパシタC1を流れる電流の角周波数をωで表す。一方、キャパシタC1の容量を大きくしたとき、アンテナ装置の高域共振周波数f2は低い周波数へシフトし、アンテナ装置が所望の高域共振周波数(又は中域共振周波数)で動作するときの効率は向上するが、アンテナ装置が低域共振周波数f1で動作するときの帯域は狭帯域化され、かつ低い周波数帯にシフトする。従って、アンテナ装置が所望の低域共振周波数で動作するときの効率が低下する。このように、キャパシタC1の容量に応じて、アンテナ装置が低域共振周波数f1で動作するときの効率と、アンテナ装置が高域共振周波数f2で動作するときの効率との間にトレードオフがある。
図17は、複数のキャパシタを設けることの効果を説明するための本発明の第2の比較例に係るアンテナ装置を示す概略図であって、アンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。図18は、図17のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。図17のアンテナ装置の放射器210において、放射導体211,212,213とインダクタL1とキャパシタC1,C2により、中央の中空の部分を包囲するループが形成される。図17のように複数のキャパシタC1,C2を備えた場合、給電点P1に近いキャパシタC2の容量を、給電点P1から遠いキャパシタCの容量よりも大きくする(C2>C1)。特に、キャパシタC2の容量は、アンテナ装置が高域共振周波数f2(又は中域共振周波数)で動作するときにキャパシタC2のインピーダンスZ2=1/(j・ω・C2)が小さくなるように設定される。これにより、アンテナ装置が高域共振周波数f2(又は中域共振周波数)で動作するときの電流I2は、給電点P1からキャパシタC2を通過して、少なくともキャパシタC1までは流れやすくなる。このとき、放射導体211の放射抵抗により、アンテナ装置が高域共振周波数f2(又は中域共振周波数)で動作するときの効率が向上する。一方、キャパシタC1の容量は、アンテナ装置が低域共振周波数f1で動作するとき、キャパシタC1,C2の合成インピーダンスZ≒1/(j・ω・C1)+1/(j・ω・C2)=1/(j・ω・C)が所望の大きさになるように設定される。ここで、Cは、直列接続されたキャパシタC1,C2の合成容量C=C1×C2/(C1+C2)を表す。これにより、アンテナ装置が低域共振周波数f1及び高域共振周波数f2のいずれで動作するときであっても、アンテナ装置の効率を向上することができる。
図16のアンテナ装置では、図17及び図18を参照して説明した原理に従って、キャパシタC2の容量は、放射導体1c,2間のキャパシタの容量よりも大きくされる。キャパシタC2を備えることにより、アンテナ装置が低域共振周波数f1及び高域共振周波数f2のいずれで動作するときであっても、アンテナ装置の効率を向上することができる。
本実施形態のアンテナ装置は、図1のように単一のキャパシタ(放射導体1,2間の1つのキャパシタ)及び単一のインダクタを備えることに限定されず、例えば、図16のアンテナ装置のように2つのキャパシタを備えてもよい。放射器が、ループ状の放射導体に沿って所定位置に挿入された少なくとも1つのキャパシタ及び/又は少なくとも1つのインダクタを備える場合、放射器は、インダクタ及びキャパシタを含み、ループ状の放射導体に沿う当該放射器の第1の部分が低域共振周波数f1で共振し、ループ状の放射導体に沿った区間であって、少なくとも1つのキャパシタのうちの少なくとも1つ(例えば図16のキャパシタC2)を含み、インダクタを含まず、給電点とインダクタとの間に延在する区間を含む当該放射器の第2の部分が高域共振周波数f2で共振するように構成される。放射器上の電流分布を考慮してキャパシタ及びインダクタを3つ以上の異なる位置に挿入することで、設計の際に低域共振周波数f1及び高域共振周波数f2の微調整が容易になるという効果がある。
ループ状の放射導体において、キャパシタ及びインダクタをさまざまな位置に挿入することができる。キャパシタがインダクタよりも接地導体G1に近接している場合、アンテナ装置が低域共振周波数f1で動作するときの電流I1は、給電点P1から、ループ状の放射導体における接地導体G1に近接した位置まで流れ、アンテナ装置が高域共振周波数f2で動作するときの電流I2は、給電点P1から、ループ状の放射導体における接地導体G1から遠隔した位置まで流れる。すなわち、電流I1の開放端が接地導体G1に近接しているのに対して、電流I2の開放端は接地導体G1から離れている。従って、アンテナ装置が高域共振周波数f2で動作するときのVSWRは、アンテナ装置が低域共振周波数f1で動作するときのVSWRよりも低くなり、アンテナ装置の整合がとりやすくなる。
また、インダクタがキャパシタよりも接地導体G1に近接している場合、アンテナ装置が低域共振周波数f1で動作するときの電流I1は、給電点P1から、ループ状の放射導体における接地導体G1から遠隔した位置まで流れ、アンテナ装置が高域共振周波数f2で動作するときの電流I2は、給電点P1から、ループ状の放射導体における接地導体G1に近接した位置まで流れる。すなわち、電流I2の開放端が接地導体G1に近接しているのに対して、電流I1の開放端は接地導体G1から離れている。従って、アンテナ装置が低域共振周波数f1で動作するときのVSWRは、アンテナ装置が高域共振周波数f2で動作するときのVSWRよりも低くなり、アンテナ装置の整合がとりやすくなる。
また、放射器のインダクタとキャパシタとを、ループ状の放射導体に沿って、放射導体と接地導体G1とが互いに近接した部分にそれぞれ設けて、給電点P1を、インダクタとキャパシタとの間に設けることができる。インダクタとキャパシタとの両方が接地導体G1に近接していると、給電点P1が設けられる放射導体は、図1の放射導体1と比較して短くなる。給電点P1が設けられる放射導体が短いことにより、アンテナ装置が低域共振周波数f1で動作するときの電流経路と高域共振周波数f2で動作するときの電流経路とが分離しやすくなる。また、インダクタとキャパシタとの両方が接地導体G1に近接している場合、アンテナ装置が低域共振周波数f1で動作するときの電流I1は、給電点P1から、ループ状の放射導体における接地導体G1から遠隔した位置まで流れ、アンテナ装置が高域共振周波数f2で動作するときの電流I2もまた、給電点P1から、ループ状の放射導体における接地導体G1から遠隔した位置まで流れる。すなわち、電流I1及び電流I2の開放端の両方が接地導体G1から離れている。従って、アンテナ装置が低域共振周波数f1で動作するときのVSWR及び高域共振周波数f2で動作するときのVSWRの両方が低くなり、アンテナ装置の整合がとりやすくなる。
システム要件に応じてループ状の放射導体におけるインダクタ及びキャパシタの位置を選択することで、所望の無線通信装置に最適なマルチバンドアンテナを設計することができる。
図19は、本発明の第1の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。図19は、マイクロストリップ線路の給電線路を備えたアンテナ装置を示す。図19のアンテナ装置は、接地導体G1と、接地導体G1上に誘電体基板B1を介して設けられたストリップ導体S1とからなるマイクロストリップ線路の給電線路を備える。図19のアンテナ装置は、アンテナ装置を低姿勢化するために平面構成を有してもよく、すなわち、プリント配線基板(図示せず)の裏面に接地導体G1を形成し、その表面にストリップ導体S1及び放射器100を一体的に形成してもよい。給電線路はマイクロストリップ線路に限らず、コプレーナ線路、同軸線路などでもよい。
図20は、本発明の第1の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。図20は、ダイポールアンテナとして構成されたアンテナ装置を示す。図20の左側の放射器100Aは、図1の放射器100と同様に構成される。図20の右側の放射器100Bもまた、図1の放射器100と同様に構成され、第1の放射導体11と、第2の放射導体12と、インダクタL11と、放射導体11,12間のキャパシタとを有する。信号源Q1は、放射器100Aの給電点P1と放射器100Bの給電点P11とにそれぞれ接続される。図20のアンテナ装置は、ダイポール構成を有することでバランスモードで動作することができ、不要輻射を抑圧することができる。
図21は、本発明の第1の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。図21は、4バンドのマルチバンドで動作可能なアンテナ装置を示す。図21の左側の放射器100Cは、図1の放射器100と同様に構成される。図21の右側の放射器100Dもまた、図1の放射器100と同様に構成され、第1の放射導体21と、第2の放射導体22と、インダクタL21と、放射導体21,22間のキャパシタとを有する。ただし、放射器100Dにおいて放射導体21,22とインダクタL21と放射導体21,22間のキャパシタとにより形成されるループの電気長は、放射器100Cにおいて放射導体1,2とインダクタL1と放射導体1,2間のキャパシタとにより形成されるループの電気長とは異なる。信号源Q21は、放射導体1上の給電点P1及び放射導体21上の給電点P21に接続されるとともに、接地導体G1上の接続点P2に接続される。信号源Q21は、低域共振周波数f1及び高域共振周波数f2の高周波信号を発生するとともに、低域共振周波数f1とは異なる別の低域共振周波数f21と、高域共振周波数f2とは異なる別の高域共振周波数f22との高周波信号を発生する。放射器100Cは、低域共振周波数f1においてループアンテナモードで動作し、高域共振周波数f2においてモノポールアンテナモードで動作する。また、放射器100Dは、低域共振周波数f21においてループアンテナモードで動作し、高域共振周波数f22においてモノポールアンテナモードで動作する。これにより、図21のアンテナ装置は、4バンドのマルチバンドで動作することができる。図21のアンテナ装置によれば、さらに放射器を設けることにより、さらなるマルチバンド化が可能である。
放射導体1,2のそれぞれは、インダクタL1と放射導体1,2間のキャパシタとの間に所定の電気長を確保することができるのであれば、図1等に示す形状に限らず任意の形状を有していてもよい。例えば、図62は、本発明の第1の実施形態の第11の変形例に係るアンテナ装置を示す概略図である。図62のアンテナ装置の放射器108において、放射導体1f,2aとインダクタL1と放射導体1f,2a間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。図63は、本発明の第1の実施形態の第12の変形例に係るアンテナ装置を示す概略図である。図63のアンテナ装置の放射器109において、放射導体1,2aとインダクタL1と放射導体1,2a間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。図1、図62、及び図63に示すように、2つの放射導体が互いに近接した部分における少なくとも一方の放射導体がテーパー形状を有してもよい。
また、さらなる変形例として、例えば板状又は線状の放射導体を含む放射器を接地導体と平行に設けて、放射器の一部を接地導体に短絡することにより、本実施形態に係るアンテナ装置を逆F型アンテナ装置として構成することもできる(図示せず)。放射器の一部を接地導体と短絡することで放射抵抗を高くする効果があるが、本実施形態に係るアンテナ装置の基本的な動作原理を損なうものではない。
第2の実施形態.
図22は、本発明の第2の実施形態に係るアンテナ装置を示す概略図である。図22のアンテナ装置は、ループ状の放射導体の外周に接続された延長導体1daをさらに備え、これにより、低域共振周波数f1及び高域共振周波数f2に加えて、その間の中域共振周波数f3で動作する。
図22において、放射器110は、所定幅及び所定の電気長を有する第1の放射導体1dと、所定幅及び所定の電気長を有する第2の放射導体2とを含む、実質的にループ状の放射導体を備える。放射器110はさらに、放射導体のループに沿った所定の位置で放射導体1d,2を互いに接続するキャパシタC2及びインダクタL1,L2を有する。キャパシタC2及びインダクタL,Lはこの順序で直列接続され、インダクタL1,L2間に給電点P1が設けられる。放射器110はさらに、放射導体1d,2間に生じる容量によって形成されたキャパシタを有する。従って、放射導体1d,2とインダクタL1,L2とキャパシタC2と放射導体1d,2間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。放射導体1d,2間のキャパシタの容量は、図1の放射導体1,2間のキャパシタと同様に、放射導体1d,2が互いに近接した部分における放射導体1d,2上の位置に応じて変化する。図23〜図25では、この位置に応じて変化する容量を、図2〜図4と同様に仮想的なキャパシタC1a〜C1cとして示す。放射器110は、放射導体1dに接続された延長導体1daをさらに備える。延長導体1daは、キャパシタC2と放射導体1d,2間のキャパシタとの間においてループ状の放射導体の外周に接続されている。低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2の高周波信号を発生する信号源Q11は、放射器110上の給電点P1に接続されるとともに、放射器110に近接して設けられた接地導体G1上の接続点P2に接続される。キャパシタC2及びインダクタL2は、低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2の微調整を行うための整合回路として動作する。インダクタL2は特に、高域共振周波数f2の整合のために設けられている。放射器110において、低域共振周波数f1で励振するときの電流経路と、中域共振周波数f3で励振するときの電流経路と、高域共振周波数f2で励振するときの電流経路とは互いに異なり、これにより、効果的にトリプルバンド動作を実現することができる。
例えば、図22のアンテナ装置は、低域共振周波数f1として800MHz帯の周波数を使用し、中域共振周波数f3として1.5GHz帯の周波数を使用し、高域共振周波数f2として2GHz帯の周波数を使用することができるが、これらの周波数に限定されるものではない。
なお、図22では、給電点P1は、放射導体1d,2上ではなく、インダクタL1,L2間の導体上に位置するように示しているが、本明細書では、この位置もループ状の放射導体の一部とみなす。放射器110は、インダクタL1,L2間に図16の放射導体3と同様の追加の放射導体を備えてもよく、この追加の放射導体上に給電点P1を設けてもよい。
図23は、図22のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。放射器110は、アンテナ装置が低域共振周波数f1で動作するとき、図23に示すような電流経路(ただし、仮想的なキャパシタC1a〜C1cのいずれか1つを通る電流経路)で電流I1が流れ、ループ状の放射導体及びインダクタL1,L2及びキャパシタC2及び放射導体1d,2間のキャパシタを含む当該放射器110の部分が低域共振周波数f1で共振するように構成される。アンテナ装置が低域共振周波数f1で動作するとき、図23に示すような電流経路で電流I1が流れることにより、放射器110はループアンテナモードで動作する。
図24は、図22のアンテナ装置が中域共振周波数f3で動作するときの電流経路を示す図である。放射器110は、アンテナ装置が中域共振周波数f3で動作するとき、図24に示すような電流経路で電流I3が流れ、ループ状の放射導体に沿った区間であって、キャパシタC2を含み、インダクタL1を含まず、給電点P1と放射導体1d,2間のキャパシタとの間に延在する区間と、延長導体1daとを含む当該放射器110の部分が、中域共振周波数f3で共振するように構成される。電流I3が放射導体1dを流れるとき、ループ状の放射導体の内側エッジを強く流れる。アンテナ装置が中域共振周波数f3で動作するとき、図24に示すような電流経路で電流I3が流れることにより、放射器110はモノポールアンテナモード(第1のモノポールアンテナモード)で動作する。
図25は、図22のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。放射器110は、アンテナ装置が高域共振周波数f2で動作するとき、図25に示すような電流経路で電流I2が流れ、ループ状の放射導体に沿った区間であって、キャパシタC2を含み、インダクタL1を含まず、給電点P1と放射導体1d,2間のキャパシタとの間に延在する区間を含む当該放射器110の部分(ただし延長導体1daを含まない)が、高域共振周波数f2で共振するように構成される。電流I2が放射導体1dを流れるとき、ループ状の放射導体の外周に沿って、すなわち接地導体G1に近接した部分を強く流れる。アンテナ装置が高域共振周波数f2で動作するとき、図25に示すような電流経路で電流I2が流れることにより、放射器110はモノポールアンテナモード(第2のモノポールアンテナモード)で動作する。
図22のアンテナ装置は、延長導体1daを備えたことにより、アンテナ装置が中域共振周波数f3で動作するときの電流I3に沿った電気長を増大させている。従って、延長導体1daは、アンテナ装置が中域共振周波数f3で動作するときの放射器110の放射抵抗を増大させる効果がある。
図22のアンテナ装置では、図17及び図18を参照して説明した原理に従って、キャパシタC2の容量は、放射導体1d,2間のキャパシタの容量よりも大きくされる。キャパシタC2を備えることにより、アンテナ装置が低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2のいずれで動作するときであっても、アンテナ装置の効率を向上させることができる。
図22のアンテナ装置によれば、放射器110を動作周波数に応じてループアンテナモードと第1及び第2のモノポールアンテナモードとのいずれかとして動作させることで、効果的にトリプルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。また、図22のアンテナ装置は、低域周波数帯、中域周波数帯、及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
図26は、本発明の第2の実施形態の変形例に係るアンテナ装置を示す概略図である。図26のアンテナ装置は、図22の延長導体1daに代えて、ループ状の放射導体の内周に設けられたスリット1eaを備え、これにより、低域共振周波数f1及び高域共振周波数f2に加えて、その間の中域共振周波数f3で動作する。
図26において、放射器111は、所定幅及び所定の電気長を有する第1の放射導体1eと、所定幅及び所定の電気長を有する第2の放射導体2とを含む、実質的にループ状の放射導体を備える。放射器111はさらに、放射導体のループに沿った所定の位置で放射導体1e,2を互いに接続するキャパシタC2及びインダクタL1を有する。キャパシタC2及びインダクタL1は直列接続され、その間に給電点P1が設けられる。放射器111はさらに、放射導体1e,2間に生じる容量によって形成されたキャパシタを有する。従って、放射導体1e,2とインダクタL1とキャパシタC2と放射導体1e,2間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。放射導体1e,2間のキャパシタの容量は、図1の放射導体1,2間のキャパシタと同様に、放射導体1e,2が互いに近接した部分における放射導体1e,2上の位置に応じて変化する。図27〜図29では、この位置に応じて変化する容量を、図2〜図4と同様に仮想的なキャパシタC1a〜C1cとして示す。放射器111は、放射導体1eに設けられたスリット1eaをさらに備える。スリット1eaは、キャパシタC2と放射導体1e,2間のキャパシタとの間においてループ状の放射導体の内周に開口を有するように設けられている。低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2の高周波信号を発生する信号源Q11は、放射器111上の給電点P1に接続されるとともに、放射器111に近接して設けられた接地導体G1上の接続点P2に接続される。給電点P1はさらに、インダクタL3を介して接地導体G1に接続される。キャパシタC2及びインダクタL3は、低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2の微調整を行うための整合回路として動作する。インダクタL3は特に、低域共振周波数f1の整合のために設けられている。放射器111において、低域共振周波数f1で励振するときの電流経路と、中域共振周波数f3で励振するときの電流経路と、高域共振周波数f2で励振するときの電流経路とは互いに異なり、これにより、効果的にトリプルバンド動作を実現することができる。
なお、図2では、給電点P1は、放射導体1e,2上ではなく、インダクタL1及びキャパシタC2間の導体上に位置するように示しているが、本明細書では、この位置もループ状の放射導体の一部とみなす。放射器111は、インダクタL1及びキャパシタC2間に図16の放射導体3と同様の追加の放射導体を備えてもよく、この追加の放射導体上に給電点P1を設けてもよい。
図27は、図26のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。放射器111は、アンテナ装置が低域共振周波数f1で動作するとき、図27に示すような電流経路(ただし、仮想的なキャパシタC1a〜C1cのいずれか1つを通る電流経路)で電流I1が流れ、ループ状の放射導体及びインダクタL1及びキャパシタC2及び放射導体1e,2間のキャパシタ及びスリット1eaを含む当該放射器111の部分が低域共振周波数f1で共振するように構成される。アンテナ装置が低域共振周波数f1で動作するとき、図27に示すような電流経路で電流I1が流れることにより、放射器111はループアンテナモードで動作する。
図28は、図26のアンテナ装置が中域共振周波数f3で動作するときの電流経路を示す図である。放射器111は、アンテナ装置が中域共振周波数f3で動作するとき、図28に示すような電流経路で電流I3が流れ、ループ状の放射導体に沿った区間であって、キャパシタC2を含み、インダクタL1を含まず、給電点P1と放射導体1e,2間のキャパシタとの間に延在する区間と、スリット1eaとを含む当該放射器111の部分が、中域共振周波数f3で共振するように構成される。電流I3が放射導体1eを流れるとき、ループ状の放射導体の内側エッジを強く流れる。アンテナ装置が中域共振周波数f3で動作するとき、図28に示すような電流経路で電流I3が流れることにより、放射器111はモノポールアンテナモード(第1のモノポールアンテナモード)で動作する。
図29は、図26のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。放射器111は、アンテナ装置が高域共振周波数f2で動作するとき、図29に示すような電流経路で電流I2が流れ、ループ状の放射導体に沿った区間であって、キャパシタC2を含み、インダクタL1を含まず、給電点P1と放射導体1e,2間のキャパシタとの間に延在する区間を含む当該放射器111の部分(ただしスリット1eaを含まない)が、高域共振周波数f2で共振するように構成される。電流I2が放射導体1eを流れるとき、ループ状の放射導体の外周に沿って、すなわち接地導体G1に近接した部分を強く流れる。アンテナ装置が高域共振周波数f2で動作するとき、図29に示すような電流経路で電流I2が流れることにより、放射器111はモノポールアンテナモード(第2のモノポールアンテナモード)で動作する。
図26のアンテナ装置は、スリット1eaを備えたことにより、アンテナ装置が中域共振周波数f3で動作するときの電流I3に沿った電気長を増大させている。従って、スリット1eaは、図22の延長導体1daと同様に、アンテナ装置が中域共振周波数f3で動作するときの放射器111の放射抵抗を増大させる効果がある。
図26のアンテナ装置では、図17及び図18を参照して説明した原理に従って、キャパシタC2の容量は、放射導体1e,2間のキャパシタの容量よりも大きくされる。キャパシタC2を備えることにより、アンテナ装置が低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2のいずれで動作するときであっても、アンテナ装置の効率を向上させることができる。
図26のアンテナ装置によれば、放射器111を動作周波数に応じてループアンテナモードと第1及び第2のモノポールアンテナモードとのいずれかとして動作させることで、効果的にトリプルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。また、図26のアンテナ装置は、低域周波数帯、中域周波数帯、及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
第3の実施形態.
図30は、本発明の第3の実施形態に係るアンテナ装置を示す概略図である。図30のアンテナ装置は、第1の実施形態の放射器(例えば図16の放射器107)と同様の原理で構成された2つの放射器120A,120Bを備え、これらの放射器120A,120Bは別個の信号源Q31,Q32によって独立に励振される。
図30において、放射器120Aは、所定の電気長を有する第1の放射導体31と、所定の電気長を有する第2の放射導体32と、所定の電気長を有する第3の放射導体33とを含む、実質的にループ状の放射導体を備える。放射器100はさらに、所定の位置で放射導体31,32を互いに接続するインダクタL31と、所定の位置で放射導体31,33を互いに接続するキャパシタC31とを有する。放射器100はさらに、放射導体32,33間に生じる容量によって形成されたキャパシタを有する。放射器120Aにおいて、放射導体31,32,33とキャパシタC31とインダクタL31と放射導体32,33間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。放射導体32,33間に生じる容量は、放射導体32,33が互いに近接した部分における放射導体32,33上の位置に応じて変化する。信号源Q31は、放射導体31上の給電点P31に接続されるとともに、放射器120Aに近接して設けられた接地導体G1上の接続点P32に接続される。放射器120Bは、放射器120Aと同様に構成され、第1の放射導体34と、第2の放射導体35と、第3の放射導体36と、キャパシタC32と、インダクタL32と、放射導体35,36間に生じる容量によって形成されたキャパシタとを有する。放射器120Bにおいて、放射導体34,35,36とキャパシタC32とインダクタL32と放射導体35,36間のキャパシタとにより、中央の中空の部分を包囲するループが形成される。信号源Q2は、放射導体34上の給電点P33に接続されるとともに、放射器120Bに近接して設けられた接地導体G1上の接続点P34に接続される。信号源Q31,Q32は、例えばMIMO通信方式の送信信号である高周波信号を発生し、同じ低域共振周波数f1の高周波信号を発生するとともに、同じ高域共振周波数f2の高周波信号を発生する。
放射器120A,120Bは、好ましくは、所定の基準軸A5に対して対称に構成された放射導体をそれぞれ有する。この基準軸A5に近接して放射導体31,34及び給電部(給電点P31,P33、接続点P32,P3)が設けられ、この基準軸A5から遠隔して放射導体32,33,35,36が設けられる。給電点P31,P33は、基準軸A5に対して対称な位置に設けられる。放射器120A,120Bの放射導体の形状を、給電点P31,P33から遠ざかるにつれて放射器120A,120B間の距離が次第に増大するように構成することで、放射器120A,120B間の電磁結合を低減することができる。さらに、2つの給電点P31,P33間の距離が小さいので、無線通信回路(図示せず)から引き回される給電線路を設置する面積を最小化することができる。また、アンテナ装置のサイズを削減するために、放射導体31〜36のいずれかを少なくとも1カ所で折り曲げてもよく、例えば、放射導体31,32,34,35上の点線A1〜A4の位置で放射導体31,32,34,35を折り曲げてもよい。
図30のアンテナ装置では、キャパシタC31及び放射導体32,33間のキャパシタはインダクタL31よりも接地導体G1に近接して設けられ、キャパシタC32及び放射導体35,36間のキャパシタはインダクタL32よりも接地導体G1に近接して設けられているが、キャパシタ及びインダクタの位置は、図30に示すものに限定されない。例えば、インダクタがキャパシタよりも接地導体G1に近接して設けられてもよく、キャパシタ及びインダクタが、ループ状の放射導体に沿って、放射導体と接地導体G1とが互いに近接した部分にそれぞれ設けられてもよい。
図31は、本発明の第3の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。本変形例のアンテナ装置では、放射器120A,120Bを対称に配置するのではなく、同じ向きで(すなわち非対称に)配置している。放射器120A,120Bの配置を非対称にすることでそれらの指向性を非対称にし、各放射器120A,120Bで送受信される信号間の相関を下げる効果がある。ただし、送信信号間及び受信信号間に電力差が生じるので、MIMO通信方式に係る受信性能を最大化することはできない。なお、本変形例のアンテナ装置と同様に3つ以上の放射器を配置してもよい。
図32は、比較例に係るアンテナ装置を示す概略図である。図32のアンテナ装置では、給電点を設けていない放射導体32,33,35,36が互いに近接するように配置している。給電点P31,P33間の距離を離すことで、各放射器120A,120Bで送受信される信号間の相関を低減できる。ただし、各放射器120A,120Bの開放端(すなわち放射導体32,33,35,36の端部)が対向しているので、放射器120A,120B間の電磁結合は大きくなってしまう。
図33は、本発明の第3の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。本変形例のアンテナ装置は放射器120A,120Cを備え、放射器120Cは、インダクタL32がキャパシタC32及び放射導体3,3間のキャパシタよりも接地導体G1に近接して設けられていることのほかは、図30の放射器120Bと同様に構成されている。本変形例のアンテナ装置は、低域共振周波数f1で動作するときの放射器120A,120C間の電磁結合を低減するために、放射器120Cのキャパシタ及びインダクタの位置を、放射器120Aのキャパシタ及びインダクタの位置に対して非対称に構成している。
図34は、図30のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。図30のアンテナ装置が低域共振周波数f1で動作するとき、例えば一方の信号源Q31のみを動作させる場合を考える。信号源Q31から入力される電流I1により放射器120Aがループアンテナモードで動作すると、放射器120Aによって発生される磁界により、放射器120Bにおいて、電流I1と同じ向きの誘導電流である電流I11が流れ、この電流I11は信号源Q32まで流れる。接地導体G1上において、接続点P34から接続点P32にも電流I12が流れる。大きな電流I11が流れることにより、放射器120A,120B間の電磁結合が高くなる。図35は、図30のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。放射器120Aにおいて、信号源Q31から入力される電流Iは、放射器120Bからは遠隔した方向に流れ、従って、放射器120A,120B間の電磁結合は小さく、放射器120Bや信号源Q32に流れる誘導電流も小さい。
図33のアンテナ装置では、放射器120A,120Cの各放射導体のループは所定の基準軸A5に対して互いに実質的に対称に構成されている。放射器120A,120Cの互いに対称な各放射導体のループに沿って各給電点から対応する向きに進むとき(すなわち、放射器120Aでは反時計回りに進み、放射器120Cでは時計回りに進むとき)、放射器120Aでは給電点P31、インダクタL31、放射導体32,33間のキャパシタ、キャパシタC31が順に位置し、放射器120Cでは給電点P33、キャパシタC32、放射導体3,3間のキャパシタ、インダクタL32が順に位置する。結果として、図33のアンテナ装置では、放射器120Aにおいて、キャパシタC31及び放射導体32,33間のキャパシタはインダクタL31よりも接地導体G1に近接して設けられる一方、放射器120において、インダクタL32はキャパシタC32及び放射導体3,3間のキャパシタよりも接地導体G1に近接して設けられる。このように、放射器120A,120C間でキャパシタ及びインダクタの位置を非対称に構成したことにより、放射器120A,120C間の電磁結合を低減する。
図36は、図33のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。前述のように、低い周波数成分を有する電流は、インダクタは通過できるがキャパシタは通過しづらいという性質がある。従って、信号源Q31から入力される電流I1により放射器120Aがループアンテナモードで動作しても、放射器120Cにおいて誘導される電流I11は小さくなり、また、放射器120Cから信号源Q32に流れる電流も小さくなる。このように、図33のアンテナ装置が低域共振周波数f1で動作するときの放射器120A,120C間の電磁結合は小さくなる。図37は、図33のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。この場合は、図35と同様に、放射器120A,120C間の電磁結合は小さい。
本実施形態のアンテナ装置によれば、2つの放射器を独立に励振しながら、動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。また、本実施形態のアンテナ装置は、低域周波数帯及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
第4の実施形態.
図38は、本発明の第4の実施形態に係るアンテナ装置を示す斜視図である。図38のアンテナ装置は、図22の放射器110と同様の原理で構成された2つの放射器110A,110Bを備え、これらの放射器110A,110Bは別個の信号源Q11,Q12によって独立に励振される。
図38の放射器110Aは、図22の放射器110と同様に構成される。図38では、図22のインダクタL1,L2及びキャパシタC2は、図示の簡単化のために省略した。また、図38では、図22の給電点P1、接続点P2、及び信号源Q1をまとめて、信号源Q11の符号により示す。図39は、図38の放射器110Aの放射導体1dの展開図であり、図40は、図38の放射器110Aの放射導体2の展開図である。放射器110Aの小型化のために、放射導体1dを図39のA11−A11’線及びA12−A12’線の位置で直角に折り曲げ、放射導体2を図40のA13−A13’線の位置で直角に折り曲げる。図39の放射導体1dの下端にチップ型のキャパシタC2及びインダクタL2を接続し、図40の放射導体2の下端にチップ型のインダクタL1を接続し、さらにインダクタL1,L2間に給電点P1を設ける。図38の放射器110Bもまた、放射器110Aと同様かつ対称に構成される。信号源Q1,Q2は、例えばMIMO通信方式の送信信号である高周波信号を発生し、同じ低域共振周波数f1の高周波信号、同じ中域共振周波数f3の高周波信号、及び同じ高域共振周波数f2の高周波信号をそれぞれ発生する。
本実施形態のアンテナ装置についてシミュレーションを行った。シミュレーションで用いたソフトウェアは「CST Microwave Studio」であり、これを用いてトランジェント解析を行った。給電点の反射エネルギーが入力エネルギーに対して−50dB以下となる点をしきい値として収束判定を行った。サブメッシュ法により電流が強く流れる部分は細かくモデリングした。
まず、図50〜図52を参照して、比較例のアンテナ装置のシミュレーション結果を示す。図50は、本発明の第4の実施形態の比較例に係るアンテナ装置を示す斜視図であり、図51は、図50のアンテナ装置の放射器220Aの詳細構成を示す展開図である。図50のアンテナ装置は、図5の放射器200に対応する2つの放射器220A,220B、すなわち、放射導体間に生じる容量によって形成されたキャパシタに代えて、ディスクリートなキャパシタC1を備えた放射器を備えている。図51の放射器220Aにおいて、放射導体221,222とキャパシタC1とインダクタL1とにより、中央の中空の部分を包囲するループが形成される。キャパシタC1は2pFの容量を有し、インダクタL1は1.5nHのインダクタンスを有するものを用いた。放射器20Aの小型化のために、放射導体221を図51のA22−A22’線の位置で直角に折り曲げ、放射導体222を図51のA21−A21’線の位置で直角に折り曲げた。図50では、図示の簡単化のために、放射器220A,220B上の給電点、接地導体G1上の接続点、及び信号源Q1,Q2をまとめて、信号源Q1,Q2の符号で示す。放射器220Bもまた、放射器220Aと同様かつ対称に構成した。
図52は、図50のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。低域共振周波数f1=870MHz及び高域共振周波数f2=2400MHzの両方においてS11が低下し、デュアルバンド動作を実現していることがわかる。しかしながら、中域共振周波数f3=1500MHzではS11が高くなっている。
図41は、図38のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。シミュレーションにおいて、インダクタL1は28nHのインダクタンスを有し、インダクタL2は3nHのインダクタンスを有し、キャパシタC2は4pFの容量を有するものを用い、インダクタL1,L2及びキャパシタC2の寸法は無視した。図41によれば、低域共振周波数f1=900MHz及び高域共振周波数f2=1800MHzにおいてS11が低下し、さらに中域共振周波数f3=1500MHzでは、図52の場合に比較してS11が低下している。図42は、図38のアンテナ装置の反射係数を表すSパラメータS11の周波数特性を示す表である。図42は、図41のグラフ上のいくつかの値を示す。図43は、図38のアンテナ装置の放射効率を示す表である。放射効率は、「出力電力/入力電力」を表す。図43によれば、低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2のいずれにおいても、高い放射効率のMIMOアンテナ装置を実現できていることがわかる。
図44は、本発明の第4の実施形態の変形例に係るアンテナ装置を示す斜視図である。図44のアンテナ装置は、図26の放射器111と同様の原理で構成された2つの放射器111A,111Bを備え、これらの放射器111A,111Bは別個の信号源Q11,Q12によって独立に励振される。
図44の放射器111Aは、図26の放射器111と同様に構成される。図44では、図26のインダクタL1,L3及びキャパシタC2は、図示の簡単化のために省略した。また、図44では、図26の給電点P1、接続点P2、及び信号源Q1をまとめて、信号源Q11の符号により示す。図45は、図44の放射器111Aの放射導体1eの展開図であり、図46は、図44の放射器111Aの放射導体2の展開図である。放射器111Aの小型化のために、放射導体1eを図45のA14−A14’線及びA15−A15’線の位置で直角に折り曲げ、放射導体2を図4のA16−A16’線の位置で直角に折り曲げる。図45の放射導体1eの下端にチップ型のキャパシタC2を接続し、図46の放射導体2の下端にチップ型のインダクタL1を接続し、さらにインダクタL1及びキャパシタC2の間に給電点P1を設ける。給電点P1はさらに、インダクタL3を介して接地導体G1に接続される。図44の放射器111Bもまた、放射器111Aと同様かつ対称に構成される。図44のアンテナ装置は、図38のアンテナ装置のように放射器から突出した延長導体を持たないので、アンテナ装置を小型化することができる。
図47は、図44のアンテナ装置の反射係数及び通過係数を表すSパラメータS11,S21の周波数特性を示すグラフである。シミュレーションにおいて、インダクタL1は39nHのインダクタンスを有し、インダクタL3は3.9nHのインダクタンスを有し、キャパシタC2は2.5pFの容量を有するものを用い、インダクタL1,L3及びキャパシタC2の寸法は無視した。図47によれば、低域共振周波数f1=800MHz及び高域共振周波数f2=1900MHzにおいてS21はやや高くなっているが(−6dB程度)、S11は低下し、さらに中域共振周波数f3=1500MHzでは、図52の場合に比較してS11が低下している。図48は、図44のアンテナ装置の反射係数を表すSパラメータS11の周波数特性を示す表である。図48は、図47のグラフ上のいくつかの値を示す。図49は、図44のアンテナ装置の放射効率を示す表である。図49によれば、低域共振周波数f1、中域共振周波数f3、及び高域共振周波数f2のいずれにおいても、高い放射効率のMIMOアンテナ装置を実現できていることがわかる。
第5の実施形態.
図53は、本発明の第5の実施形態に係るアンテナ装置を示す斜視図である。図53のアンテナ装置130は、接地導体G2上に互いに所定距離を有して設けられた2つの放射器131,132を備え、USBプラグU1によりUSBソケット(図示せず)に接続するように構成されている。
図54は、図53の放射器131の回路を示す展開図である。誘電体基板40上に放射導体41,42,43,44,45が形成される。放射導体43上に給電点P41が設けられ、給電点P41は信号源Q41及びインダクタL41に接続される。放射導体43,44間にインダクタL42が設けられ、放射導体43,42間にインダクタL43が設けられ、放射導体41,45間にインダクタL44が設けられる。放射導体41,44間にチップアンテナANT1が設けられる。放射器131はさらに、放射導体41,42間に生じる容量によって形成されたキャパシタを有する。放射導体41,42間に生じる容量は、放射導体41,42が互いに近接した部分における放射導体41,42上の位置に応じて変化する。図54及び図56では、この位置に応じて変化する容量を、説明のために仮想的なキャパシタC41a〜C41cとして示す。放射器131は、図54のA31−A31’線の位置で直角に折り曲げられる。放射器131が低域共振周波数f1で動作するとき、給電点P41から放射導体41に向かって電流が流れ、放射器131が高域共振周波数f2で動作するとき、給電点P41から放射導体42に向かって電流が流れる。
チップアンテナANT1は、例えば特許文献4〜6に開示されている。チップアンテナANT1は、棒状の誘電体部材と、誘電体部材の長手方向に沿った面上に螺線状に形成された放射素子と、誘電体部材の両端で放射素子にそれぞれ接続された第1及び第2の電極とを備える。特許文献5によれば、チップアンテナの先端に頂冠導体部を設けることで広帯域化できることが示されている。図1等のアンテナ装置にさらにチップアンテナANT1を組み合わせることにより、図1等のアンテナ装置の効果に加えて、さらなる広帯域化を実現することができる。
図55は、図53の放射器131の放射導体41,42,43,44,45の詳細構成を示す展開図である。放射導体41の先端部分61はテーパー形状を有し、図55では上に向かって広がっている。放射導体41がこの形状を有することにより、放射導体42との電磁結合量を段階的に調整し、広帯域化を実現できるという効果がある。また、放射導体41,42間のキャパシタにおいて、放射導体41,42間に所定の長さのギャップ62を設ける。放射導体41,42間の距離を小さくすると結合が強くなり、特にアンテナ装置が低域共振周波数f1で動作するときのVSWRの帯域幅が狭くなる。放射導体41,42間に緩やかにギャップ62を設けることで、VSWRが広帯域化される。また、放射器131が高域共振周波数f2で動作するときに電流が流れる放射導体42の周には、くし状構造部分63,64が設けられる。くし状構造部分63,64を設けることにより、寸法が制限された放射導体42の周の長さを増大させ、高域共振周波数f2を下げる効果がある。また、放射導体45を設けることにより、放射導体42のくし状構造部分64に流れる電流量を微調整し、高域共振周波数f2の共振する帯域幅を微調整することができる。また、放射導体45には、放射導体41との距離を離して放射導体41との結合を低下させるように、C面形状を有する折り曲げ部を設ける。放射導体45に折り曲げ部を設けることにより、帯域幅及び効率の劣化を抑えることができる。また、放射導体45の幅d11は、放射導体41との結合を緩和するように、かつ、放射導体45自体の共振の帯域幅を最適化するように決定される。放射導体45の幅d11は、例えば、0.8〜3.2mmの範囲から選択され、好ましくは1.6mmにされる。また、放射導体42,45間の距離d12は、放射器131が高域共振周波数f2で動作するときの特性を微調整するように決定され、例えば、0.5〜1mmの範囲から選択される。
図56は、図53の放射器131の等価回路を示す図である。放射器131は、図1のアンテナ装置と同様に動作可能である。また、チップアンテナANT1は、インダクタンスLを持っているが、アンテナとしての特性もあるので、放射抵抗Rを有する。そのため、放射器131全体の寸法を劇的に小型化しつつも、高い放射効率を確保できるという効果がある。また、チップアンテナANT1による電気長の短縮効果によって、放射導体41におけるテーパー形状の部分の面積を大きくできるので、テーパー形状の部分を含む設計の自由度が向上し、広帯域化がしやすくなる。
図57は、図53の放射器132の回路を示す展開図である。誘電体基板50上に放射導体51,52,53,54が形成される。放射導体53上に給電点P51が設けられ、給電点P51は、信号源Q51、インダクタL51、及びキャパシタC52に接続される。放射導体53,54間にインダクタL52が設けられ、放射導体53,52間にインダクタL53が設けられる。放射導体51,54間にチップアンテナANT2が設けられる。チップアンテナANT2は、図54のチップアンテナANT1と同様に構成される。放射器132はさらに、放射導体51,52間に生じる容量によって形成されたキャパシタを有する。放射導体51,52間に生じる容量は、放射導体51,52が互いに近接した部分における放射導体51,52上の位置に応じて変化する。図57及び図59では、この位置に応じて変化する容量を、説明のために仮想的なキャパシタC51a〜C51cとして示す。放射器132は、図5のA32−A32’線の位置で直角に折り曲げられる。放射器132が低域共振周波数f1で動作するとき、給電点P51から放射導体51に向かって電流が流れ、放射器132が高域共振周波数f2で動作するとき、給電点P51から放射導体52に向かって電流が流れる。
図58は、図53の放射器132の放射導体51,52,53,54の詳細構成を示す展開図である。放射導体51の先端部分67はテーパー形状を有し、図58では左に向かって広がっている。放射導体51がこの形状を有することにより、放射導体52との電磁結合量を段階的に調整し、広帯域化を実現できるという効果がある。また、図53の接地導体G2に近接する部分において、すなわち、放射導体51のコーナー部分66及び放射導体52のコーナー部分68において、接地導体G2との距離を離して接地導体G2との結合を低下させるように、C面形状を有する折り曲げ部を設ける。放射導体51,52と接地導体G2との距離を離すことにより、放射効率の低下を防止している。また、放射器132は図57のA32−A32’線の位置において2つに折り曲げられるが、折り曲げられた2つの部分のうちで面積の大きい側に、放射器132が低域共振周波数f1で動作するときに電流が流れる放射導体51を設けて、面積の小さい側に、放射器132が高域共振周波数f2で動作するときに電流が流れる放射導体52を設ける。放射導体51,52をこのように配置することにより、低域周波数帯における帯域幅が最も広くとれるようになる。
図59は、図53の放射器132の等価回路を示す図である。放射器132は、図1のアンテナ装置と同様に動作可能である。
次に、図53の放射器131,132のシミュレーション結果について示す。放射器131において、インダクタL41は27nHのインダクタンスを有し、インダクタL42は1.0nHのインダクタンスを有し、インダクタL43は3.3nHのインダクタンスを有し、インダクタL44は6.8nHのインダクタンスを有するものを用いた。チップアンテナANT1は、パナソニック株式会社のチップアンテナ「EBMGHAG」を用いた。チップアンテナANT1の寸法は、2.2×2.2×10mmである。信号源Q41から見た放射器131のインピーダンスは50Ωであった。放射器132において、キャパシタC52は0.5pFの容量を有し、インダクタL51は12nHのインダクタンスを有し、インダクタL52は1.0nHのインダクタンスを有し、インダクタL53は1.0nHのインダクタンスを有するものを用いた。チップアンテナANT2は、パナソニック株式会社のチップアンテナ「EBMGHAG」を用いた。信号源Q51から見た放射器132のインピーダンスは50Ωであった。
図60は、図53の放射器131,132のVSWRを示す表である。図61は、図53の放射器131,132の放射効率を示す表である。放射器131,132のいずれも、動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置130の小型化を達成することができる。また、アンテナ装置130は、低域周波数帯及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
アンテナ装置130は、2つの放射器131,132を備えたことにより、MIMOアンテナ装置として動作可能である。
第6の実施形態.
図64は、本発明の第6の実施形態に係る無線通信装置であって、図1のアンテナ装置を備えた無線通信装置の構成を示すブロック図である。本発明の実施形態に係る無線通信装置は、例えば図64に示すように携帯電話機として構成されてもよい。図64の無線通信装置は、図1のアンテナ装置と、無線送受信回路71と、無線送受信回路71に接続されたベースバンド信号処理回路72と、ベースバンド信号処理回路72に接続されたスピーカ73及びマイクロホン74とを備える。アンテナ装置の放射器100の給電点P1及び接地導体G1の接続点P2は、図1の信号源Q1に代えて、無線送受信回路71に接続される。なお、無線通信装置として、ワイヤレスブロードバンドルータ装置や、M2M(マシン・ツー・マシン)目的の高速無線通信装置などを実施する場合には、スピーカ及びマイクロホンなどは必ずしも設けなくてもよく、無線通信装置による通信状況を確認するためにLED(発光ダイオード)などを用いることができる。図1他のアンテナ装置を適用可能な無線通信装置は、以上に例示したものに限定されない。
本実施形態の無線通信装置によれば、放射器100を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、無線通信装置の小型化を達成することができる。また、図64の無線通信装置は、低域周波数帯及び高域周波数帯のいずれにおいても、広帯域で動作することができる。
以上説明した各実施形態及び各変形例を組み合わせてもよい。
以上説明したように、本発明のアンテナ装置は、小型かつ簡単な構成でありながら、マルチバンドで動作可能である。また、本発明のアンテナ装置は、複数の放射器を備えた場合には、アンテナ素子間で互いに低結合であり、複数の無線信号を同時に送受信するように動作可能である。
本発明のアンテナ装置及びそれを用いた無線通信装置によれば、例えば携帯電話機として実装することができ、あるいは、無線LAN用の装置、PDA等として実装することもできる。このアンテナ装置は、例えばMIMO通信を行うための無線通信装置に搭載することができるが、MIMOに限らず、複数のアプリケーションのための通信を同時に実行可能(マルチアプリケーション)なアダプティブアレーアンテナや最大比合成ダイバーシチアンテナ、フェーズドアレーアンテナといったアレーアンテナ装置に搭載することも可能である。
1,1a〜1f,2,2a,3,11,12,21,22,31〜38,41〜45,51〜54,201,202,211〜213,221,222…放射導体、
1da…延長導体、
1ea…スリット、
40,50,B1…誘電体基板、
71…無線送受信回路、
72…ベースバンド信号処理回路、
73…スピーカ、
74…マイクロホン、
100〜111,100A〜100D,110A,110B,111A,111B,120A〜120C,131,132,200,210,220A,220B…放射器、
130…アンテナ装置、
ANT1,ANT2…チップアンテナ、
C1a,C1b,C1c…仮想的なキャパシタ、
C1,C2,C31,C32,C52…キャパシタ、
D1〜D3…誘電体、
G1,G2…接地導体、
L1〜L3,L1a,L1b,L11,L21,L31,L32,L41〜L44,L51〜L53…インダクタ、
M1…整合回路、
P1,P11,P21,P31,P33,P41,P51…給電点、
P2,P32,P34…接続点、
Q1,Q2,Q11,Q12,Q21,Q31,Q32,Q41,Q51…信号源、
S1…ストリップ導体、
U1…USBプラグ。

Claims (21)

  1. 少なくとも1つの放射器を備えたアンテナ装置において、
    上記各放射器は、
    ループ状の放射導体と、
    上記放射導体のループに沿って所定位置に挿入された少なくとも1つのキャパシタと、
    上記放射導体のループに沿って、上記キャパシタの位置とは異なる所定位置に挿入された少なくとも1つのインダクタと、
    上記放射導体上に設けられた給電点とを備え、
    上記放射導体は、少なくとも第1の放射導体と第2の放射導体とを含み、
    上記少なくとも1つのキャパシタのうちの第1のキャパシタは、上記第1及び第2の放射導体の間に生じる容量によって形成され、上記第1及び第2の放射導体の間に生じる容量は、上記第1及び第2の放射導体が互いに近接した部分における上記第1及び第2の放射導体上の位置に応じて変化し、
    上記各放射器は、
    上記インダクタ及び上記キャパシタを含み、上記放射導体のループに沿う当該放射器の部分が第1の周波数で共振し、
    上記放射導体のループに沿った区間であって、上記少なくとも1つのキャパシタのうちの少なくとも1つを含み、上記インダクタを含まず、上記給電点と上記インダクタとの間に延在する区間を含む当該放射器の部分が、上記第1の周波数より高い第2の周波数で共振するように構成されたことを特徴とするアンテナ装置。
  2. 上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体が互いに近接して重なりあう部分における上記第1及び第2の放射導体の少なくとも一方はテーパー形状を有し、上記第1及び第2の放射導体が互いに近接して重なりあう部分の区分的な面積は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする請求項1記載のアンテナ装置。
  3. 上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の間の距離は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする請求項1記載のアンテナ装置。
  4. 上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の間に誘電体が設けられ、上記誘電体の誘電率は上記第1及び第2の放射導体上の位置に応じて変化することを特徴とする請求項1記載のアンテナ装置。
  5. 上記各放射器の上記第1のキャパシタにおいて、上記第1及び第2の放射導体の少なくとも一方はテーパー形状を有することを特徴とする請求項1〜4のうちのいずれか1つに記載のアンテナ装置。
  6. 上記アンテナ装置は整合回路をさらに備えたことを特徴とする請求項1〜5のうちのいずれか1つに記載のアンテナ装置。
  7. 上記各放射器は、上記放射導体のループに沿って、上記第1のキャパシタよりも上記給電点に近接した位置に挿入された第2のキャパシタをさらに備え、上記第2のキャパシタの容量は上記第1のキャパシタの容量よりも大きいことを特徴とする請求項1〜6のうちのいずれか1つに記載のアンテナ装置。
  8. 上記各放射器は、上記第1及び第2のキャパシタの間において上記放射導体のループの外周に接続された延長導体をさらに備え、
    上記各放射器は、
    上記インダクタ及び上記第1及び第2のキャパシタを含み、上記放射導体のループに沿う当該放射器の部分が上記第1の周波数で共振し、
    上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間を含む当該放射器の部分が、上記第2の周波数で共振し、
    上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間と、上記延長導体とを含む当該放射器の部分が、上記第1及び第2の周波数の間の第3の周波数で共振するように構成されたことを特徴とする請求項7記載のアンテナ装置。
  9. 上記各放射器は、上記第1及び第2のキャパシタの間において上記放射導体のループの内周に設けられたスリットをさらに備え、
    上記各放射器は、
    上記インダクタ及び上記第1及び第2のキャパシタを含み、上記スリットを含み、上記放射導体のループに沿う当該放射器の部分が上記第1の周波数で共振し、
    上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間を含む当該放射器の部分が、上記第2の周波数で共振し、
    上記放射導体のループに沿った区間であって、上記第2のキャパシタを含み、上記インダクタを含まず、上記給電点と上記第1のキャパシタとの間に延在する区間と、上記スリットとを含む当該放射器の部分が、上記第1及び第2の周波数の間の第3の周波数で共振するように構成されたことを特徴とする請求項7記載のアンテナ装置。
  10. 上記放射導体は少なくとも1カ所で折り曲げられていることを特徴とする請求項1〜9のいずれか1つに記載のアンテナ装置。
  11. 上記少なくとも1つのインダクタはチップ型アンテナ素子を含み、上記チップ型アンテナ素子は、棒状の誘電体部材と、上記誘電体部材の長手方向に沿った面上に螺線状に形成された放射素子と、上記誘電体部材の両端で上記放射素子にそれぞれ接続された第1及び第2の電極とを備えたことを特徴とする請求項1〜10のいずれか1つに記載のアンテナ装置。
  12. 上記少なくとも1つのインダクタはストリップ導体で構成されたインダクタを含むことを特徴とする請求項1〜11のいずれか1つに記載のアンテナ装置。
  13. 上記少なくとも1つのインダクタはメアンダ状導体で構成されたインダクタを含むことを特徴とする請求項1〜11のいずれか1つに記載のアンテナ装置。
  14. 上記アンテナ装置は接地導体をさらに備えたことを特徴とする請求項1〜13のいずれか1つに記載のアンテナ装置。
  15. 上記アンテナ装置は、上記接地導体と、上記給電点に接続された給電線路とを備えたプリント配線基板を備え、
    上記放射器は上記プリント配線基板上に形成されたことを特徴とする請求項14記載のアンテナ装置。
  16. 上記アンテナ装置は、少なくとも一対の放射器を含むダイポールアンテナであることを特徴とする請求項1〜13のいずれか1つに記載のアンテナ装置。
  17. 上記アンテナ装置は複数の放射器を備え、上記複数の放射器は、互いに異なる複数の第1の周波数と、互いに異なる複数の第2の周波数とを有することを特徴とする請求項1〜16のいずれか1つに記載のアンテナ装置。
  18. 上記アンテナ装置は、互いに異なる信号源に接続された複数の放射器を備えたことを特徴とする請求項1〜17のいずれか1つに記載のアンテナ装置。
  19. 上記アンテナ装置は、所定の基準軸に対して互いに対称に構成された放射導体をそれぞれ有する第1の放射器及び第2の放射器を備え、
    上記第1及び第2の放射器の各給電点は、上記基準軸に対して対称な位置に設けられ、
    上記第1及び第2の放射器の各放射導体は、上記基準軸に沿って上記第1の放射器の給電点及び上記第2の放射器の給電点から遠ざかるにつれて上記第1及び第2の放射器の間の距離が次第に増大する形状を有することを特徴とする請求項18記載のアンテナ装置。
  20. 上記アンテナ装置は、第1の放射器及び第2の放射器を備え、上記第1及び第2の放射器の各放射導体のループは所定の基準軸に対して互いに実質的に対称に構成され、
    上記第1及び第2の放射器の上記互いに対称な各放射導体のループに沿って上記各給電点から対応する向きに進むとき、上記第1の放射器では上記給電点、上記インダクタ、上記キャパシタが順に位置し、上記第2の放射器では上記給電点、上記キャパシタ、上記インダクタが順に位置することを特徴とする請求項18又は19記載のアンテナ装置。
  21. 請求項1〜20のうちのいずれか1つに記載のアンテナ装置を備えたことを特徴とする無線通信装置。
JP2012549200A 2011-03-16 2012-01-31 アンテナ装置及び無線通信装置 Active JP5178970B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549200A JP5178970B2 (ja) 2011-03-16 2012-01-31 アンテナ装置及び無線通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011057555 2011-03-16
JP2011057555 2011-03-16
PCT/JP2012/000615 WO2012124248A1 (ja) 2011-03-16 2012-01-31 アンテナ装置及び無線通信装置
JP2012549200A JP5178970B2 (ja) 2011-03-16 2012-01-31 アンテナ装置及び無線通信装置

Publications (2)

Publication Number Publication Date
JP5178970B2 true JP5178970B2 (ja) 2013-04-10
JPWO2012124248A1 JPWO2012124248A1 (ja) 2014-07-17

Family

ID=46830344

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013504530A Active JP5826823B2 (ja) 2011-03-16 2012-01-26 アンテナ装置及び無線通信装置
JP2012549200A Active JP5178970B2 (ja) 2011-03-16 2012-01-31 アンテナ装置及び無線通信装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013504530A Active JP5826823B2 (ja) 2011-03-16 2012-01-26 アンテナ装置及び無線通信装置

Country Status (4)

Country Link
US (2) US20140002320A1 (ja)
JP (2) JP5826823B2 (ja)
CN (1) CN102893455A (ja)
WO (2) WO2012124247A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070980B2 (en) * 2011-10-06 2015-06-30 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency
JP5958820B2 (ja) * 2012-09-28 2016-08-02 三菱マテリアル株式会社 アンテナ装置
JP6032001B2 (ja) * 2012-12-27 2016-11-24 三菱マテリアル株式会社 アンテナ装置
TWI531124B (zh) * 2013-07-30 2016-04-21 宏碁股份有限公司 通訊裝置
KR102017491B1 (ko) 2013-08-01 2019-09-04 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 기기
CN104377448A (zh) * 2013-08-12 2015-02-25 宏碁股份有限公司 通信装置
JP6149621B2 (ja) * 2013-09-05 2017-06-21 富士通株式会社 アンテナ装置
JP6198049B2 (ja) * 2013-09-12 2017-09-20 三菱マテリアル株式会社 アンテナ装置
CN104836029A (zh) * 2014-02-12 2015-08-12 宏碁股份有限公司 移动通信装置
CN105990677B (zh) * 2015-01-29 2019-10-08 速码波科技股份有限公司 天线模块
CN104716432A (zh) * 2015-03-13 2015-06-17 昆山睿翔讯通通信技术有限公司 可切换频段的带开关天线
TWI632736B (zh) 2016-12-27 2018-08-11 財團法人工業技術研究院 多天線通訊裝置
WO2019003683A1 (ja) 2017-06-27 2019-01-03 株式会社村田製作所 デュアルバンド対応アンテナ装置
JP7140145B2 (ja) * 2018-02-02 2022-09-21 Agc株式会社 アンテナ装置、車両用窓ガラス及び窓ガラス構造
TWI668913B (zh) * 2018-03-21 2019-08-11 啟碁科技股份有限公司 天線結構
CN108894769A (zh) * 2018-04-18 2018-11-27 中国石油天然气股份有限公司 一体化差压式气液两相流量井口监测装置
US11342949B2 (en) * 2018-06-25 2022-05-24 Sonova Ag Transmission system for a body-worn electronic device
CN110224216B (zh) * 2019-06-08 2020-11-10 西安电子科技大学 基于crlh-tl结构的mimo阵列5g手机天线
CN114667642A (zh) * 2019-10-30 2022-06-24 株式会社村田制作所 天线装置和具备该天线装置的无线通信器件
CN113328233B (zh) * 2020-02-29 2022-11-08 华为技术有限公司 电子设备
US11835636B2 (en) * 2020-05-11 2023-12-05 Cisco Technology, Inc. Low-profile angle of arrival antennas
WO2023054734A1 (ko) * 2021-09-28 2023-04-06 엘지전자 주식회사 차량에 배치되는 안테나 모듈

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111999A (ja) * 2007-10-10 2009-05-21 Hitachi Metals Ltd マルチバンドアンテナ
JP2010050548A (ja) * 2008-08-19 2010-03-04 Samsung Electronics Co Ltd アンテナ装置
JP2011515977A (ja) * 2008-03-26 2011-05-19 ビディテック・アクチェンゲゼルシャフト 改良されたループアンテナ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185938A (ja) * 1999-12-27 2001-07-06 Mitsubishi Electric Corp 2周波共用アンテナ、多周波共用アンテナ、および2周波または多周波共用アレーアンテナ
JP2001267841A (ja) * 2000-03-23 2001-09-28 Sony Corp アンテナ装置および携帯無線機
US6836248B2 (en) * 2001-03-15 2004-12-28 Matsushita Electric Industrial Co., Ltd. Antenna device
JP2004179952A (ja) * 2002-11-27 2004-06-24 Matsushita Electric Ind Co Ltd 多共振チップアンテナ
JP2005229365A (ja) * 2004-02-13 2005-08-25 Matsushita Electric Ind Co Ltd チップアンテナ
JP4003077B2 (ja) * 2004-04-28 2007-11-07 株式会社村田製作所 アンテナ及び無線通信機
CN101641827B (zh) * 2007-03-23 2016-03-02 株式会社村田制作所 天线以及无线通信机
JP2008258821A (ja) * 2007-04-03 2008-10-23 Nippon Soken Inc アンテナモジュール
JP2008270876A (ja) * 2007-04-16 2008-11-06 Alps Electric Co Ltd アンテナ装置
JP4389275B2 (ja) * 2007-08-24 2009-12-24 株式会社村田製作所 アンテナ装置及び無線通信機
ES2397123T3 (es) * 2007-08-31 2013-03-04 Sensormatic Electronics, LLC Antena dipolar de gran escala plegada para aplicaciones RFID de campo próximo
JP4649486B2 (ja) * 2008-02-28 2011-03-09 原田工業株式会社 携帯端末用アンテナ
JP2009239463A (ja) * 2008-03-26 2009-10-15 Konica Minolta Holdings Inc アンテナ装置及び電子機器
JP5063521B2 (ja) * 2008-08-05 2012-10-31 株式会社フジクラ 多周波アンテナ
US20100048266A1 (en) * 2008-08-19 2010-02-25 Samsung Electronics Co., Ltd. Antenna device
WO2010137061A1 (ja) * 2009-05-26 2010-12-02 株式会社 東芝 アンテナ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111999A (ja) * 2007-10-10 2009-05-21 Hitachi Metals Ltd マルチバンドアンテナ
JP2011515977A (ja) * 2008-03-26 2011-05-19 ビディテック・アクチェンゲゼルシャフト 改良されたループアンテナ
JP2010050548A (ja) * 2008-08-19 2010-03-04 Samsung Electronics Co Ltd アンテナ装置

Also Published As

Publication number Publication date
US20130057443A1 (en) 2013-03-07
JPWO2012124247A1 (ja) 2014-07-17
CN102893455A (zh) 2013-01-23
WO2012124247A1 (ja) 2012-09-20
JPWO2012124248A1 (ja) 2014-07-17
US20140002320A1 (en) 2014-01-02
WO2012124248A1 (ja) 2012-09-20
JP5826823B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5178970B2 (ja) アンテナ装置及び無線通信装置
US10819031B2 (en) Printed circuit board antenna and terminal
US9019163B2 (en) Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth
JP5260811B1 (ja) アンテナ装置及び無線通信装置
US7760150B2 (en) Antenna assembly and wireless unit employing it
WO2011102143A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
US7170456B2 (en) Dielectric chip antenna structure
WO2009130887A1 (ja) アンテナ装置及び無線通信装置
US10622716B1 (en) Balanced antenna
US9070980B2 (en) Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency and increasing bandwidth including high-band frequency
JP4858860B2 (ja) マルチバンドアンテナ
KR20030004388A (ko) 안테나 장치
WO2008000175A1 (en) Miniature balanced antenna with differential feed
WO2013051187A1 (ja) アンテナ装置及び無線通信装置
US20110254747A1 (en) System for radiating radio frequency signals
US10320057B2 (en) Antenna device, wireless communication device, and band adjustment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350