JP5178507B2 - 静圧スライダ、これを備えた搬送装置および処理装置 - Google Patents

静圧スライダ、これを備えた搬送装置および処理装置 Download PDF

Info

Publication number
JP5178507B2
JP5178507B2 JP2008506272A JP2008506272A JP5178507B2 JP 5178507 B2 JP5178507 B2 JP 5178507B2 JP 2008506272 A JP2008506272 A JP 2008506272A JP 2008506272 A JP2008506272 A JP 2008506272A JP 5178507 B2 JP5178507 B2 JP 5178507B2
Authority
JP
Japan
Prior art keywords
static pressure
conductor
conductor layer
movable body
pressure slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008506272A
Other languages
English (en)
Other versions
JPWO2007108399A1 (ja
Inventor
猛 宗石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008506272A priority Critical patent/JP5178507B2/ja
Publication of JPWO2007108399A1 publication Critical patent/JPWO2007108399A1/ja
Application granted granted Critical
Publication of JP5178507B2 publication Critical patent/JP5178507B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0404Electrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • F16C33/748Sealings of sliding-contact bearings by means of a fluid flowing to or from the sealing gap, e.g. vacuum seals with differential exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Electron Beam Exposure (AREA)

Description

本発明は、固定体と可動体との間に加圧流体により形成される静圧流体層を介在させた状態で、固定体に対して可動体を相対移動させる静圧スライダに関する。より詳細には、本発明は、真空チャンバなどの容器内においてワークを搬送するのに適合した静圧スライダに関するものである。本発明はさらに、前記静圧スライダを備えた搬送装置および処理装置に関する。
半導体製造装置においては、ウエハやマスク等のワークの搬送にはステージと呼ばれる搬送装置が用いられている。ステージは、可動体を一定方向に案内するガイドを有するものである。ガイドの代表的なものとしては、たとえば滑りガイド、複数個のローラや球を用いる転がりガイド、および静圧流体を用いる静圧ガイドを挙げることができる。ガイドの構造は、ステージにおける可動体の移動精度、すなわちステージ案内精度(姿勢精度、真直精度)に影響を与えるものである。ステージ案内精度の面においては、静圧ガイドが最も優れているとされ、静圧ガイドを採用したステージが一般的に広く用いられている。
静圧ガイドを有するステージは、静圧スライダと呼ばれており、ガイドを構成する固定体と、ワークを載置するための可動体と、を備えた構造を有している。この静圧スライダでは、固定体と可動体との間に加圧流体を供給して流体層を形成することにより、その流体層によって、可動体を固定体に接触させることなく一定方向に運動させることができる。静圧スライダにおける流体層は、軸受け部として機能しており、一般的に、3〜5気圧の加圧流体を供給することにより厚みが5〜10μmに形成されている。
このように、静圧スライダは、流体層を軸受け部として機能させ、非接触で可動体を案内する構造であるために、接触方式を採用した他のガイド(滑りガイドや転がりガイド)を採用したステージのように、固定体の平面度や真直度の影響を受けにくい。そのため、静圧スライダは、接触式の他のガイドを有するステージよりも優れた案内精度を示す。そして、静圧スライダは、流体層の厚みを小さくすることにより、可動体の姿勢をより一層安定させ、ステージ案内精度を向上させることができる。
一方、半導体製造工程は多岐にわたり、そのために種々の装置が使用されている。それら装置の一部であるステージは、真空または減圧雰囲気とされたチャンバ(真空チャンバ)内において使用する必要がある。たとえば、真空チャンバ内において使用される装置の代表的なものとしては、電子ビームやイオンビーム等の荷電粒子、あるいはX線等の短波長電磁波によりワークを加工・検査する装置(たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置、およびX線露光装置)がある。
上述のように、静圧エアスライダは、固定体と可動体の間に高圧の流体層(たとえば3〜5気圧)が介在するため、真空チャンバで使用するステージとして用いる場合には、流体が可動体の外部、すなわち真空チャンバ内に漏洩するのを抑制できる構造とする必要がある。このような静圧スライダは、真空エアスライダと呼ばれており、たとえば図17に示すようなものが知られている(たとえば特許文献1参照)。
図17に示した真空エアスライダ9は、固定体90および可動体91を備えたものであり、可動体91において、エア供給および排気が可能なように構成されたものである。可動体91は、固定体90との間に加圧流体を供給するためのエア供給部92、および供給されたエアを排気するための排気部93を備えている。エア供給部92は、固定体90と可動体91との間に、厚みが5〜10μm程度の流体層を形成するためのものであり、供給流路94および絞り部95を有している。絞り部95は、供給流体の流量を制限するためのものであり、オリフィス絞り、表面絞り、あるいは多孔質絞りとして構成されている。一方、排気部93は、排気口96および排気流路97を有しており、図外のポンプに接続されることにより、供給流体を排気することができるように構成されている。
上述のように、真空エアスライダ9をはじめとする静圧スライダでは、流体層の厚みを小さくすることで可動体91の姿勢が安定し、案内精度が向上する。その一方で、真空スライダ9では、固定体90や可動体91の平面度を大きく確保するには限界があり、また固定体90の自重撓み等による曲げが発生する。そのため、流体層の厚みを不当に小さくすれば、可動体91が移動する際に可動体91が固定体90に接触し、かじり等が発生しうる。このような不具合を回避するためには、流体層の厚みを一定以上確保する必要があり、真空スライダ9では、流体層の厚みは8μm程度が限界とされていた。
そこで、かじり等の発生を抑制するために、図18に示した真空エアスライダ9′も提案されている(たとえば特許文献2参照)。同図に示した真空エアスライダ9′は、基本構成が図17に示した真空エアスライダ9と同様であり、固定体(ガイドバー)90′および可動体91′を備えている。そして、真空エアスライダ9′では、可動体91′におけるラビリンス隔壁98′を、絞り部(多孔質パッド)95′と同一の耐磨耗性多孔質材により形成することにより、固定体90′と可動体91′との間での金属どうしの接触を抑制し、かじり等の発生を回避しようとしている。この真空エアスライダ9′では、流体層の厚みを5μm程度とし、可動体91′の姿勢を安定させて案内精度を向上させることができる。
図18に示した真空エアスライダ9′では、確かに図17の真空エアスライダ9に比べれば流体層の厚みを小さくすることができる。しかしながら、真空チャンバ内に漏洩する流体量に最も影響を与える流体層の厚み、すなわち固定体90′と可動体91′との間の隙間を5μm程度しかできない。そのため、真空エアスライダ9′からの加圧流体の漏洩を防ぐために、真空チャンバを排気する真空ポンプ、あるいは可動体91′における排気流路97′に接続された真空ポンプは、大きな排気速度をもって駆動する必要がある。その上、真空エアスライダ9′に供給する加圧流体の量も依然として多く、このことが真空エアスライダ9′を使用する装置のランニングコストを押し上げていた。
真空エアスライダとしてはさらには、図19Aないし図19Cに示したように、可動体91″に支持されたラビリンス部98″と固定体90″のガイド面90A″との間の隙間をセンサ99A″によって検知し、その検知結果に基づいて隙間調整機構を制御して隙間を調整するように構成されたものもある(たとえば特許文献3参照)。センサ99A″としては、たとえば静電容量型変位計、渦電流型変位計あるいは光ピックアップなどの非接触型の変位計が用いられている。一方、隙間調整機構は、たとえばピエゾ素子、超磁歪素子あるいは電磁石などのアクチュエータ99B″を用いて、ラビリンス部98″を移動させるように構成されたものである。
しかしながら、図19Aないし図19Cに示した真空エアスライダ9″は、センサ99A″が可動体91″の側方に位置した状態で可動体91″に支持されており、この状態においてラビリンス部98″の隙間の変動量を監視している。すなわち、真空エアスライダ9″では、ラビリンス部98″から離れた位置において、しかも固定体90″のガイド面90A″とラビリンス部98″におけるガイド面90A″との対向面98A″との間の距離を監視するように構成されている。このように、真空エアスライダ9″では、ガイド面90A″とラビリンス部98″との間の隙間の距離Hrを直接測定するものではなく、ラビリンス部98″とは異なる箇所においてラビリンス部98″とガイド面90A″との間の変動量ΔHrを監視するようにしているために正確な測定が困難であり、ラビリンス部98″がガイド面90A″に接触した事実を即座に把握することができず、依然として、かじりが発生しやすいという問題を有していた。
米国特許第4749283号明細書 特開平2−212624号公報 特開2002−3495569号公報
本発明は、静圧スライダにおいて、固定体に対する可動体のかじり等の発生および静圧スライダの外部への加圧流体の漏洩を抑制しつつ、流体層の厚みをより小さくすることにより、可動体の姿勢安定性を向上させるとともに加圧流体の供給量を小さくしてランニングコストを低減することを課題としている。
本発明の第1の側面では、固定体と、前記固定体との間に加圧流体により形成される静圧流体層を介在させた状態で、前記固定体に対して相対移動可能とされた可動体と、を備えた静圧スライダにおいて、前記固定体に形成された第1導体層と、前記第1導体層との間に作用する静電気力により、少なくとも一部における前記第1導体層との距離が変化可能とされた第2導体層と、を備えており、前記第1および第2導体層のうちの一方の導体層は、他方の導体層に対面する対面導体膜と、非対面導体膜との間に誘電体を介在させた構成とされており、かつ、前記第1導体層と前記第2導体層との間には、各々の導体層における前記対面導体膜と前記非対面導体膜との間に電位差を与えてそれぞれの対面導体膜の表面に電荷を帯電させることによって、静電気力が作用させられる、静圧スライダが提供される。
本発明の静圧スライダは、たとえば第1および第2導体層の間の静電容量に基づいて、第1および第2導体層の間に作用させる静電気力の大きさを調整するように構成される。
第1導体層と第2導体層との間には、それらの間に電位差を与えることにより、静電気力が作用させられる。
可動体は、たとえば可動体本体と、可動体本体に支持され、かつ固定体に対する距離が変化可能とされた変位体と、を備えており、第2導体層は、変位体と一体的に第1導体層に対する距離が変化可能とされる。
本発明の静圧スライダは、たとえば可動体本体と変位体との間を封止するためのシール部材をさらに備えたものとされる。この場合、シール部材は、たとえば変位体により付勢された状態で配置される。
第2導体層は、たとえば弾性体を介して可動体に固定されており、かつ弾性体が弾性変形することにより、第1導体層に対する距離が変化可能とされている。
第2導体層は、たとえばその周囲がホルダによって囲まれているとともに、可動体とは分離された独立部材とされている。
可動体には、たとえばホルダが接触する部分に弾性体が固定されている。
前記第1および第2導体層の表面は、たとえば最大高さRzが1μm以下の滑面に形成される。
第1および第2導体層は、たとえば導電性材料により厚膜に形成される。
第1および第2の導体層は、たとえば非磁性材料により形成される。
本発明の第2の側面では、本発明の第1の側面に係るものであり、かつ前記可動体に支持させたワークを移動させる静圧スライダと、前記静圧スライダを収容した容器と、を備えている、搬送装置が提供される。
本発明の第3の側面では、本発明の第1の側面に係るものであり、かつ前記可動体に支持させたワークを移動させる静圧スライダと、前記静圧スライダを収容した容器と、前記ワークに対して目的とする検査を行い、または加工を施すための処理要素と、を備えている、処理装置が提供される。
前記処理要素は、たとえば走査型電子顕微鏡、電子線描画装置、フーカスイオンビーム描画装置、またはX線露光装置である。
本発明に係る静圧スライダでは、第1および第2導体層に作用する静電気力により、第2導体層の少なくとも一部を第2導体層に対する距離を変化させるものであるため、第1および第2導体層の間の隙間を応答性良く調整することが可能となる。すなわち、第1および第2導体層の距離は、たとえば第1および第2導体層の間に作用する電位差、あるいは第1および第2導体層の対向導体膜の帯電させた電荷(対向導体層と非対向導体層との間の電位差)により調整することができるため、電源を制御することにより、第1および第2導体層の距離を応答性良く制御することが可能である。
そして、本発明の静圧スライダにおいて、第1および第2導体層における対面導体膜と非対面導体膜との間に電位差を与えてそれぞれの対面導体膜の表面に電荷を帯電させることによって、静電気力を作用させるように構成すれば、第1および第2導体層のそれぞれにおける対面導体膜と非対面導体膜との間に作用する電位差により、第1導体層と第2導体層との間に作用する静電気力が調整されるため、上述のように第1導体層と第2導体層との間の距離を、応答性良く調整することが可能となる。また、第1および第2導体層を利用して、これらの導体層の間の距離を静電容量として測定する構成では、第1および第2導体層によって、静電容量の測定(第1および第2導体層の距離)と電位差の調整(第1および第2導体層に作用する静電気力)との双方を行うことができる。そのため、第1および第2導体層の距離を測定するための機構を別途設ける場合に比べて装置構成が簡易であり製造コスト的にも有利なものとなる。
本発明の静圧スライダにおいて、第1および第2導体層の間の静電容量に基づいて、第1および前記第2導体層の間に作用させる静電気力の大きさを調整するように構成すれば、固定体と可動体との距離を間接的に把握する方法に比べて、固定体と可動体との距離を、第1および第2導体層の間の静電容量として直接測定できるため、固定体と可動体との距離を正確に把握することが可能となる。
また、正確に測定された距離に基づいて可動体(変位体)を変位させるようにすれば、固定体と可動体との間の距離を適正に維持することができるようになり、固定体が可動体に対して必要以上に近づき過ぎてしまうことを抑制することができる。これにより、固定体に対して可動体が接触するのを防止できるため、固定体に可動体が接触することに起因するかじりなどの発生を防止し、固定体および可動体が損傷してしまうことを抑制できる。とくに、固定体から離間する方向に付勢した状態で変位体を支持した構成を採用すれば、アクチュエータなどによって変位体を位置変位させるときに、変位体を応答性良く固定体から退避させることができる。そのため、本発明の静圧スライダでは、かじりなどの発生を防止するために必要な固定体と可動体との間の距離を小さく設定できるようになり、固定体と可動体との間に形成すべき流体層の厚みを小さくすることができる。
その結果、本発明の静圧スライダでは、固定体に対する可動体の姿勢精度を向上させることができるとともに、固定体と可動体との距離を常時僅かな一定量に保持可能となり、固定体と可動体との間に供給すべき加圧流体の量を少なくできるようになる。また、固定体に対して可動体が接触したとしても、測定手段において測定される静電容量などに基づいて、接触時には静電容量がゼロとなることから静電容量に大きな変位点が生じ、可動体が固定体に接触した事実を即座に把握することができため、接触により生じる不具合を最小限に留めることができる。さらに、固定体から離間する方向に変位体を付勢した状態としておけば、変位体を固定体から応答性良く退避させることができるため、接触により生じる不具合を最小限に留めることができる。
このように固定体と可動体との距離を常時僅かな一定量に保持できることから、固定体と可動体との隙間の外部への加圧流体の漏洩を抑制できる。これにより、静圧スライダから加圧流体を排気するための真空ポンプは、排気速度をより小さくできるとともに消費電力も抑制できる。その結果、加圧流体を排気するためのコストを低減することが可能となる。また、静圧スライダからの加圧流体の漏洩を抑制することにより、真空チャンバにおける真空度の悪化を抑制できるために、真空チャンバの真空度を維持するための真空ポンプの排気速度、消費電力を小さくできるために、この点においても、ランニングコストを低減できるようになる。
本発明の静圧スライダにおいて、第1導体層と第2導体層との間に電位差を与えることにより、静電気力を作用させるように構成すれば、第1導体層と第2導体層との間に作用する電位差により、それらの導体層の間に作用する静電気力が調整されるため、第1導体層と第2導体層との間の距離を、応答性良く調整することが可能となる。また、第1および第2導体層を利用して、これらの導体層の間の距離を静電容量として測定する構成では、第1および第2導体層によって、静電容量の測定(第1および第2導体層の距離)と電位差の調整(第1および第2導体層に作用する静電気力)との双方を行うことができる。そのため、第1および第2導体層の距離を測定するための機構を別途設ける場合に比べて装置構成が簡易であり製造コスト的にも有利なものとなる。
本発明の静圧スライダにおいて、第2導体層が変位体と一体的に、第1導体層に対する距離を変化可能な構成とすれば、可動体の全体を固定体に対する距離を変化させる構成に比べれば、可動体(第2導体層)と固定体(第1導体層)との間の距離を、応答性良く調整することが可能となる。
本発明の静圧スライダにおいて、可動体本体と変位体との間に、変位体により付勢されたシール部材をさらに備えた構成とすれば、シール部材によって、可動体本体と変位体との間から流体層を形成するための加圧流体が漏洩することを抑制できる。とくに、可動体本体に対して変位体を位置変位させる構成を採用する場合には、シール部材により加圧流体の漏洩を抑制することの利点は大きい。
本発明の静圧スライダにおいて、弾性体を介して可動体に第2導体層を固定した構成とすれば、第2導体層と可動体との間に弾性体が介在しているため、弾性体が伸縮することによって第2導体層が可動体に対して相対動することが許容されるとともに、第2導体層と可動体との間に隙間が生じることが抑制される。そのため、弾性体を設けることによって、第2導体層の位置変位を許容しつつ、第2導体層と可動体との間から流体層を形成するための加圧流体が漏洩することを抑制できる。
本発明の静圧スライダにおいて、第2導体層を、周囲がホルダによって囲まれた独立部材とすれば、ホルダの材質や寸法を適宜選択することにより、独立部材としての剛性および耐久性を確保することが容易となる。これにより、製造時における独立部材(第2導体層)のハンドリング性が向上し、また使用時における耐久性を確保することができる。その一方で、第2導体層を独立部材として構成すれば、第2導体層を可動体に固定する工程が必要ないために、製造時の作業性が改善される。
本発明の静圧スライダにおいて、可動体におけるホルダが接触する部分に弾性体が固定された構成とすれば、ホルダと可動体との間に弾性体が介在しているため、弾性体が伸縮することによって第2導体層が可動体に対して相対動することが許容されるとともに、第2導体層と可動体との間に隙間が生じることが抑制される。そのため、弾性体を設けることによって、第2導体層の位置変位を許容しつつ、第2導体層と可動体との間から流体層を形成するための加圧流体が漏洩することを抑制できる。
本発明の静圧スライダにおいて、第1および第2導体層の表面を、最大高さRzが1μm以下の滑面に形成すれば、それらの導体層が粗面として形成された場合に比べて、第1および第2導体層が接触する可能性、すなわち固定体に対して可動体が接触する可能性を低減でき、固定体および可動体表面の空孔を削減でき、第1導体層および第2導体層間の静電容量を正確に測定することができるとともに、加圧流体の漏洩をより確実に抑制することが可能となる。すなわち、かじりなどの発生を防止するために必要な固定体と可動体との間の距離を小さく設定できるようになり、固定体と可動体との間に形成すべき流体層の厚みをより一層小さくすることが可能となる。
本発明の静圧スライダにおいて、第1および第2導体層を導電性材料により厚膜に形成すれば、第1および第2導体層の表面を研磨などすることなく、容易に滑面とすることができる。
本発明の搬送装置および処理装置では、本発明の第1の側面に係る静圧スライダを備えているため、固定体と可動体との間に供給すべき加圧流体の量を少なくでき、固定体と可動体との距離を常時僅かな一定量に保持できることから、固定体と可動体との隙間から容器の内部への加圧流体の漏洩を抑制されている。これにより、容器における真空度の悪化を抑制できるために、真空チャンバの真空度を維持するための真空ポンプの排気速度、消費電力を小さくできるために、この点においても、ランニングコストを低減できるようになる。
静圧スライダの第1および第2の導体層を非磁性材料により形成すれば、処理装置を、たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置などの荷電粒子を用いるものとして構成した場合であっても、第1および第2導体層がそれらの装置の動作に悪影響を与えることもない。
本発明の第1の実施の形態における真空エアスライダを示す斜視図である。 図1のII−II線に沿う断面図である。 図1のIII−III線に沿う断面図である。 図1に示した真空エアスライダにおける可動体の一部を分解して示した斜視図である。 図4のV−V線に沿う断面図である。 図3のVI−VI線に沿う断面図である。 図1のVII−VII線に沿う断面図である。 図6の要部を拡大して示した断面図である。 可動体における板材の端部を分解して示した要部斜視図である。 図1に示した真空エアスライダにおける検知回路を説明するための回路図である。 本発明の第1の実施の形態における処理装置を説明するための断面図である。 本発明の第2の実施の形態に係る真空エアスライダを説明するための要部を拡大して示した断面図である。 図12に示した真空エアスライダにおける第2導体層を説明するための斜視図である。 本発明の第3の実施の形態に係る真空エアスライダを説明するための要部を拡大して示した断面図である。 本発明の第4の実施の形態に係る真空エアスライダを説明するための要部を拡大して示した断面図である。 図15に示した真空エアスライダにおける第2導体層を説明するための斜視図である。 従来の静圧スライダの一例を示す断面図である。 従来の静圧スライダの他の例を示す断面図である。 図19Aは従来の静圧スライダのさらに他の例を示す断面図、図19Bはその底面図、図19Cは図19BのXIXC−XIXC線に沿う断面図である。
符号の説明
1 真空エアスライダ(静圧スライダ)
2 固定体
21〜24 運動案内面
25〜28 (固定体の)第1導体層
3 可動体
30 本体部(可動体本体)
31〜34 変位体
31A〜34A 第2導体層
63 パッキン(シール部材)
8 処理装置
80 真空容器
81 搬送装置
86 処理要素
8A,8B,8C 真空エアスライダ(静圧スライダ)
80B,80C (固定体の)第1導体層
80Ba,80Ca (第1導体層の)対向導体膜
80Bb,80Cb (第1導体層の)非対向導体膜
80Bc,80Cc (第1導体層の)誘電体層
81B,81C 第2導体層
81Ba,81Ca (第2導体層の)対向導体膜
81Bb,81Cb (第2導体層の)非対向導体膜
81Bc,81Cc (第2導体層の)誘電体層
82B ホルダ
83C 弾性体
以下、本発明について、第1ないし第4の実施の形態として、図面を参照しつつ具体的に説明する。
まず、本発明の第1の実施の形態について、図1ないし図10を参照しつつ説明する。
図1に示した真空エアスライダ1は、本発明に係る静圧スライダの一例に相当するものであり、真空チャンバ内においてワークを搬送するために使用されるものである。この真空エアスライダ1は、固定体2および可動体3を備えており、加圧流体により形成される流体層を介在させた状態で、固定体2に対して可動体3をD1,D2方向に相対移動可能なように構成されている。
図1ないし図3に示したように、固定体2は、可動体3の運動を案内するためのものであり、4つの運動案内面21,22,23,24を有する角柱状に形成されている。この固定体2は、たとえばアルミナあるいは炭化珪素を主成分とするセラミックスにより形成されている。
各運動案内面21〜24は、可動体3の移動経路を規定するためのものである。これらの運動案内面21〜24は、図1のD1,D2方向に延びており、たとえば滑面に仕上げられている。各運動案内面21〜24には、第1導体層25,26,27,28が形成されている。詳細については後述するが、各第1導体層25〜28は、可動体3の端部(後述する変位体31〜35)と固定体2との間の距離の大きさを測定するために利用されるものであり、運動案内面21〜24の略全域を覆うように固定体2の軸方向に延びる帯状に形成されている。
図1に示したように、可動体3は、固定体2を外套した状態で固定体2の運動案内面21〜24に沿ってD1,D2方向に移動させられるものであり、図1ないし図4に示したように、本体部30および変位体31,32,33,34を備えている。
本体部30は、4枚の板材35,36,37,38を含んでおり、それらの板材35〜38を互いに連結することにより、固定体2を外套しうるように、矩形断面の貫通孔30Aを有する筒状に形成されている。
板材35〜38は、平面視において長矩形状を有しており、サイズの大きな水平板材35,36と、サイズの小さな垂直板材37,38とを含んでいる。図2および図4に示したように、各板材35〜38は、エアパッド部40A,40B,40C,40D、環状排気溝50A,50B,50C,50D,51A,51B,51C,51Dおよび直線状排気溝52A,52B,52C,52Dを有しており、固定体2と同様に、たとえばアルミナあるいは炭化珪素を主成分とするセラミックスにより形成されている。また、各板材35〜38を接合する接合面には真空グリスが塗布されていることが好ましく、この場合には接合面から流体が漏洩するのを防止することができる。
エアパッド部40A〜40Dは、供給流体の流量を制限するための絞りとして機能するものであり、たとえばオリフィス絞り、表面絞り、あるいは多孔質絞りとして構成されている。図2に良く表れているように、エアパッド部40A〜40Dは、供給流路41A,41B,41C,41Dを有しており、これらの供給流路41A〜41Dは、垂直板材37において給気管42が接続された周回供給流路43に連通している。そのため、各エアパッド40A〜40Dからは、給気管42、周回供給流路43および供給流路41A〜41Dを流通してきた加圧流体を噴出させることができる。
環状排気溝50A〜50D,51A〜51Dは、エアパッド部40A〜40Dを介して供給された加圧流体を回収するために利用されるものであり、図2および図4から分かるようにエアパッド部40A〜40Dを囲むように形成されている。これらの環状排気溝50A〜50D,51A〜51Dは、図面上には表されていないが、排気管を介して真空チャンバ(図示略)の外部に連通しており、加圧流体を真空チャンバの外部に排気できるように構成されている。
図4ないし図6から分かるように、直線状排気溝52A〜52Dは、各板材35〜38を連結した状態において互いに連通させられ、本体部30の全体としては環状の排気溝を構成するものである。これらの直線状排気溝52A〜52Dは、図4および図6に良く表れているように板材35〜38における長手方向D1,D2の端部において、幅方向に延びるように形成されている。垂直板材37,38においては、直線状排気溝52B,52Dが側縁にまで至るように形成されおり、幅方向において開放している。これに対して、水平板材35,36においては、直線状排気溝52A,52Cが側縁部を除いた部分に形成されており、端部が閉じたものとされている。図5および図6に示したように、水平板材35の直線状排気溝52Aは、それぞれ排気流路53,54に連通している。これらの排気流路53,54は、共通流路55および排気管56を介して、真空チャンバ外に配置された真空ポンプ(図示略)に接続されている。すなわち、各直線状排気溝52A〜52Dからは、真空ポンプを駆動させることにより、排気流路53,54、共通流路55および排気管56を介して、加圧流体を真空チャンバの外部に排気できる。
図3ないし図5に示したように、変位体31〜34は、可動体3の端部と固定体2との間の隙間を小さく維持しつつも、可動体3が固定体2と接触するのを回避するためのものであり、矩形断面を有する棒状に形成されている。これらの変位体31〜34は、板材35〜38におけるD1,D2の端部においてボルト60を介して支持されているとともに、アクチュエータ61によって板材35〜38の厚み方向に変位可能なように構成されている。
図7および図8に示したように、変位体31〜34は、板材35〜38の端部において、直線状排気溝52A〜52Dに隣接して設けられた凹部39に収容された状態で、ボルト60によって板材35〜38に対して一体化されている。この状態では、変位体31〜34は、直線状排気溝52A〜52Dに隣接した位置において、可動体3の本体部30から若干(1〜10μm程度)突出した状態で、端面31A,32A,33A,34Aが固定体2の運動案内面21〜24(導体層25〜28の表面)に対して略平行な状態で対面させられている。すなわち、変位体31〜34を可動体3の本体部30から突出させることにより、可動体3の外部へ加圧流体が漏洩するのを抑制し、直線状排気溝52A〜52Dに対して適切に加圧流体を導くことができる。なお、直線状排気溝52A〜52Dが、可動体3の本体部30の端面より中央寄りに設けられている場合には変位体31〜34も直線状排気溝52A〜52Dの近傍に設ければよく、さらには、直線状排気溝52A〜52Dに隣接する端面側に設けることが好ましい。
図7に示したように、ボルト60は、ヘッド部60Aと板材35〜38の表面との間にコイルバネ62を介在させた状態で、ネジ部60Bが板材35〜38の貫通孔35A、36A,37A,38Aに挿通されている。コイルバネ62は自然状態よりも圧縮されており、貫通孔35A〜38Aはボルト60のネジ部60Bよりも大径とされている。そのため、変位体31〜34は、コイルバネ62の弾発力によってヘッド部60Aに向けた方向に付勢されているとともに、板材35〜38に対して、板材35〜38の厚み方向に相対動可能とされている。
図7および図8に示したように、変位体31〜34と本体部30との間には、シール部材としてのパッキン63が配置されている。このパッキン63は、図9から分かるように、矩形枠状の形態を有するとともに、図7および図8から分かるように断面円形状に形成されている。このパッキン63は、ゴムなどにより弾性を有するものとされており、図7ないし図9に示したように、板材35〜38の凹部39に設けられた環状溝39Aに配置されている。この環状溝39Aは、変位体31〜34の端面31a,32a,33a,34aに対面するとともに、変位体31〜34の端面31a〜34aの縁に沿って延びている。この環状溝39Aにパッキン63を収容させた状態では、パッキン63は、板材35〜38(環状溝39A)と変位体31〜34の端面31a〜34aの双方に接触した状態で、それらの間に介在しているとともに、板材35〜38の貫通孔35A〜38Aの端部を囲んでいる。そのため、図8Aおよび図8Bに示したように、変位体31〜34を変位させた場合には、パッキン63は、自身が有する弾性により、変位体31〜34の変位に追従して伸縮することで、板材35〜38と変位体31〜34との間に生じる隙間を封止することができる。その結果、板材35〜38と変位体31〜34の端面31a〜34aとの隙間から加圧流体が真空エアスライダ1の外部に流体が漏洩するのを防止し、また、板材35〜38の貫通孔35A〜38Aから加圧流体が真空エアスライダ1の外部に流体が漏洩するのを防止することができる。
もちろん、シール部材としては、矩形枠状のパッキン63に限らず、他の形態の弾性体を使用することもできる。
図3、図4、図7および図8に示したように、変位体31〜34の端面31b,32b,33b,34bには、固定体2の第1導体層25〜28に対面させられた第2導体層31A,32A,33A,34Aが設けられている。これらの第2導体層31A〜34Aは、固定体2の第1導体層25〜28とともに、可動体3の端部と固定体2との間の距離を把握するために利用されるものである。すなわち、第1導体層25〜28および第2導体層31A〜34Aは、後述する検知回路70の可変容量コンデンサ72E(図10参照)を構成しており、それらの導体層25〜28,31A〜34Aの間には、後述する直流電源VDC(図10参照)によって静電気力が作用させられる。第2導体層31A〜34Aは、平面視において長矩形状に形成されており、長さ寸法が固定体2の第1導体層25〜28の幅寸法と同程度とされ、幅寸法が変位体31〜34の幅寸法と同程度とされている。第2導体層31A〜34Aは、第1導体層25〜28との間に作用する静電気力により、固定体2と可動体3の端部(変位体31〜34)との間に形成された隙間の大きさを可変するように、第1導体層25〜28に対する距離が変化し、その隙間の大きさを均一にすることが可能である。
固定体2の第1導体層25〜28および変位体31〜34の第2導体層31A〜34Aは、滑面に形成するのが好ましく、その表面粗さは、たとえば最大高さRz(JIS B0601−2001に準拠)が1μm以下となるように形成される。第1導体層25〜28および第2導体層31A〜34Aを滑面として形成することにより、それらの導体層25〜28,31A〜34Aが粗面として形成された場合に比べて、第1導体層25〜28および第2導体層31A〜34Aが相互に接触する可能性、すなわち固定体2に対して可動体3の端部(変位体31〜34)が接触する可能性を低減できる。また、固定体2と変位体31〜34とが接触したとしても、その事実を即座に把握することができ、さらには、固定体2と変位体31〜34との間に形成された隙間が均一となるため、加圧流体が漏洩するのを抑制することができる。すなわち、かじりなどの発生を防止するために必要な固定体2と可動体3との間の距離を小さく設定できるようになり、固定体2と可動体3との間に形成する流体層の厚みをより一層小さくすることが可能となる。
第1導体層25〜28および第2導体層31A〜34Aは、研磨などにより滑面に形成してもよいが、単結晶により形成することにより滑面としてもよい。また、第1導体層25〜28および第2導体層31A〜34Aは、金属により厚膜に形成することで、固定体2の運動案内面21〜24および変位体31〜34の端面31b〜34bにおける表面凹凸や空孔を吸収し、平滑性を確保するようにしてもよい。例えば、固定体2および変位体31〜34がセラミックスから成る場合には、研削加工後の表面粗さ、算術平均高さRa(JIS B0601−2001に準拠)が数μm〜数十μmとなるため、表面の凹凸や空孔を効果的に吸収するためには、第1導体層25〜28および第2導体層31A〜34Aの厚みは、たとえば0.1mm以上に設定される。
第1導体層25〜28および第2導体層31A〜34Aは、これらが接触したときにかじり等が発生しにくいように、硬質膜として形成してもよい。第1導体層25〜28および第2導体層31A〜34Aの接触時におけるかじり等の不具合を低減することにより、固定体2と可動体3との間に形成する流体層の厚みをより一層小さくすることが可能となる。
第1導体層25〜28および第2導体層31A〜34Aの硬さは、たとえばビッカース硬度Hvを基準として1200以上に設定するのが好ましい。このような硬度を有する硬質膜(導体層25〜28,31A〜34A)は、たとえばTiN、TiC、サーメット、AlTiC、WCにより形成することができる。なお、ビッカース硬度Hvは、JIS R1610に準拠して測定する。
第1導体層25〜28および第2導体層31A〜34Aはまた、非磁性体として形成するのが好ましい。第1導体層25〜28および第2導体層31A〜34Aを非磁性体として形成すれば、真空エアスライダ1を、たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置などの荷電粒子を用いる装置に適用する場合に、第1導体層25〜28および第2導体層31A〜34Aがそれらの装置の荷電粒子制御に悪影響を与えることもない。そのため、本発明に係る真空エアスライダ1は、荷電粒子を用いる装置に対して問題なく適用できる。
真空エアスライダ1は、固定体2および可動体3の他に、図10に示したように直流電源VDC、検知回路70、および制御部71をさらに備えている。
直流電源VDCは、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間に電位差を与えて静電気力を作用させるためのものである。
検知回路70は、第1導体層25(26〜28)と第2導体層31A(32A〜34A)(図7参照)との間の静電容量を測定するためのものであり、交流ブリッジ72、2つの整流器73,74、および差分アンプ75を含んでいる。
交流ブリッジ72は、交流発振器72A、静電容量が既知の3つのコンデンサ72B,72C,72D、および可変容量コンデンサ72Eを含むものであり、交流発信器72Aによって交流電圧を印加することにより、可変容量コンデンサ72Eの容量に応じた電位差を出力するものである。ここで、可変容量コンデンサ72Eは、固定体2の第1導体層25(26〜28)と可動体3の第2導体層31A(32A〜34A)によって構成されている。すなわち、交流ブリッジ72は、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間の静電容量に応じた電位差を出力するように構成されている。また、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間の静電容量は、これらの導体層25(26〜28),31A(32A〜34A)の間の距離により変動するものであるため、交流ブリッジ72からの出力によって、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間の距離、ひいては変位体31〜34の端面31b〜34bと固定体2の運動案内面21〜24との間の距離を把握することができる(図8参照)。
整流器73,74は、交流ブリッジ72から出力された交流電圧を直流電圧とするためのものであるとともに、ノイズ成分の影響を抑制するためのものである。整流器73,74としては、半波整流器および全波整流器のいずれをも使用することができる。
差分アンプ75は、整流器73,74によって直流電圧とされた交流ブリッジ72からの出力を増幅して検知回路70から出力させるためのものである。
制御部71は、検知回路70(差分アンプ75)からの出力に基づいて直流電源VDCを制御するためのものである。この制御部71は、たとえばPID制御により直流電源VDCを制御するように構成されたものであり、演算部76、増幅アンプ77、および電源制御部78を備えている。演算部76は、差分アンプ75の出力と予め定められた目標値との差分から直流電源VDCに対する制御量を演算するためのものである。ここで目標値は、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間の目標距離(適正距離)に対応した値として設定される。増幅アンプ77は、演算部76において演算された制御量を増幅し、それを電源制御部78に入力させるためのものである。電源制御部78は、入力された制御量に応じて直流電源VDCによって印加する電圧値を調整するためのものである。すなわち、電源制御部78によって直流電源VDCでの印加電圧を調整することにより、第1導体層25(26〜28)と第2導体層31A(32A〜34A)との間の距離が調整される。
上述の演算部76および電源制御部78は、たとえばCPU、RAMおよびROMを組み合わせ、ROMに格納したプログラムを、RAMを使用しつつCPUに実行させることにより構築することができる。また、演算部76および電源制御部78は、1つの変位体31〜34に対して個別に設けてもよく、全ての変位体31〜34について、1つの演算部76および電源制御部78により対応するようにしてよく、1つの変位体31〜34について演算部76を個別に設ける一方で、全ての変位体31〜34について1つの電源制御部76に対応するようにしてもよい。さらに、演算部76および電源制御部78は、真空エアスライダ1に設けずに、真空エアスライダ1とは別に設けてもよい。たとえば、真空エアスライダ1を組み込んで使用する装置において、その装置の演算部および制御部によって真空エアスライダ1の変位体31〜34における位置を制御するようにしてもよい。
次に、真空エアスライダ1を備えた処理装置8について、図11を参照しつつ説明する。
図11に示した処理装置8は、真空容器80の内部に搬送装置81を収容したものである。
真空容器80は、角筒または円筒により構成された側壁82、蓋83およびテーブル84を含んでいる。側壁82の端面82C,82Dと、蓋83およびテーブル84との間は、シール材85Aにより封止されている。側壁82には、排気口82Eが形成されている。この排気口84Eは、側壁82に接続された排気管85の内部に連通している。排気管85は、図外の真空ポンプに接続されており、排気管85および排気口82Eを介して真空容器80の内部を排気して、高真空を得ることができる。
蓋83は、側壁82の上部開口82Aを閉鎖する役割を果すものであるとともに、処理要素86を支持するためのものである。処理要素86は、後述する支持台88に載置させたワークWを検査あるいは加工するためのものである。処理要素86としては、たとえば走査型電子顕微鏡、電子線描画装置、フーカスイオンビーム描画装置、またはX線露光装置を挙げることができる。
テーブル84は、側壁82の下部開口82Bを閉鎖する役割を果すとともに、搬送装置81の真空エアスライダ1を支持するためのものである。
搬送装置81は、処理要素86において検査・加工すべきワークWをD1,D2方向に搬送させるためのものである。ワークWとしては、たとえば半導体ウエハやマスクなどを挙げることができる。搬送装置81は、上述の真空エアスライダ1、および支持機構87を備えたものである。支持機構87は、一対のベース87A、一対の連結部87Bおよび一対の支持脚87Cを有している。一対のベース87Aは、D1,D2方向に一定距離離間した状態で、石定盤89に対して支持されている。これらのベース87Aはさらに、テーブル84の貫通孔84Aに挿通されている。ベース87Aの周面87Aaと貫通孔84Aとの間は、封止部材85Bにより封止されている。連結部87Bは、真空エアスライダ1の固定体2の端部と支持脚87Cとの間の連結するものである。支持脚87Cは、テーブル84および石定盤89の上方位置において真空エアスライダ1を支持するためのものである。
次に、処理装置8の動作について説明する。
処理装置8では、排気口82Eおよび排気管85を介して、容器80の内部の気体を排出することにより、容器80の内部が真空とされる。一方、真空エアスライダ1の支持台88には、検体あるいは加工対象となるワークWが載置される。
真空エアスライダ1は、たとえば図外のアクチュエータによって、固定体2に沿って可動体3が相対動させられる。これにより、ワークWの目的部位が処理要素86に対面させられる。このとき、可動体3は、固定体2との間に流体層を介在させた状態で移動させられる。
流体層は、図外のポンプを利用して、加圧流体を、給気管42、周回供給流路43および供給流路41A〜41Dに流通させて各エアパッド40A〜40Dから噴出させることにより形成される。その一方で、加圧流体は、各板材35〜38の環状排気溝50A〜50D,51A〜51D、図外の排気管を介して容器80の外部に排気される。環状排気溝50A〜50D,51A〜51Dにおいて排気できない加圧流体については、各板材35〜38の直線状排気溝52A〜52Dによって形成される環状の排気溝を利用して排気される。この環状の排気溝(52A〜52D)の加圧流体は、排気流路53,54、共通流路55および排気管56を介して、容器80外に配置された真空ポンプ(図示略)によって吸引・排気される。
一方、検知回路70においては、固定体2と可動体3の端部との間の距離が、固定体2の第1導体層25〜28と可動体3における変位体31〜34の第2導体層31A〜34Aとの間の静電容量として直接的に測定される。第1導体層25〜28と第2導体層31A〜34Aとの間の静電容量は、この量に対応する電位差として交流ブリッジ72から出力された後に整流器73,74において直流成分とされ、それが差分アンプ75に増幅されてから検知回路70から出力される。
検知回路70(差分アンプ75)からの出力は、制御部71に入力される。制御部71では、差分アンプ75からの出力と目標値とを比較し、直流電源VDCに対する制御量を演算する。すなわち、制御部71では、第1導体層25〜28と第2導体層31A〜34Aとの間の適正距離からのズレ量を、演算部76において差分アンプ75からの出力と目標値とに基づいて把握するとともに先のズレ量に対応する制御量を演算する。演算部76での演算結果は、増幅アンプ77において増幅された後、電源制御部78に入力される。電源制御部78では、先に演算された制御量に基づいて直流電源VDCを制御する。すなわち、電源制御部78は、直流電源VDCを制御して第1導体層25〜28と第2導体層31A〜34Aとの間の電位差を調整することにより、第1導体層25〜28と第2導体層31A〜34Aとの間に作用する静電気力(距離)を調整する。
たとえば、第1導体層25〜28と第2導体層31A〜34Aとの間の距離が適正距離よりも小さい場合、すなわち変位体31〜34(可動体3の端部)が固定体2に近づき過ぎている場合には、直流電源VDCによって印加する電圧(静電気力)を大きくして固定体2から離れる方向に変位体31〜34を移動させる。それとは逆に、第1導体層25〜28と第2導体層31A〜34Aとの間の距離が適正距離よりも大きい場合、すなわち変位体31〜34(可動体3の端部)が固定体2から離れ過ぎている場合には、直流電源VDCによって印加する電圧を小さくして固定体2に近づく方向に変位体31〜34を移動させる。
このような検知回路70での静電容量(距離)の検知、制御部71での制御量の演算、および電源制御部78での静電気力(距離)の調整は、少なくとも固定体2に対して可動体3を相対移動させている間においては、連続的に行なわれる。
処理装置8においては、ワークWにおける処理要素86に対面させられた部分が検査あるいは加工される。
処理装置8では、真空エアスライダ1において、固定体2と可動体3の端部(変位体31〜34)との間の距離を、これらが対面する部分において静電容量として直接測定できるように構成されているため、固定体2と可動体3の端部(変位体31〜34)との間の距離を正確に把握することができる。たとえば、固定体2と可動体3の端部(変位体31〜34)との間の距離を、それらが対面する部分以外の距離として測定した上で、この測定結果に基づいて間接的に把握する方法に比べれば、測定精度は著しく改善される。
また、正確に測定された距離に基づいて可動体3の端部(変位体31〜34)を変位させるようにすれば、固定体2と可動体3との間の距離を微小量に維持することができるようになるとともに、固定体2が可動体3に対して必要以上に近づき過ぎてしまうことを抑制することができる。これにより、固定体2に対して可動体3が接触するのを防止できるため、固定体2に可動体3が接触することに起因するかじりなどの発生を防止できる。とくに、変位体31〜34を固定体2から離れる方向に付勢した状態で支持しておくことにより、第1導体層25〜28と第2導体層31A〜34Aとの間に作用する静電気力を変動させたときに、応答性良く変位体31〜34を固定体2から退避させることができる。そのため、かじりなどの発生を防止するために必要な固定体2と可動体3との間の距離を小さく設定できるようになり、固定体2と可動体3との間に形成すべき流体層の厚みを小さくすることができる。その結果、真空エアスライダ1では、固定体2に対する可動体3の姿勢精度を向上させることができ、固定体2と可動体3との間に供給すべき加圧流体の量を少なくできるようになる。そして、供給すべき加圧流体の量を少なくできれば、真空エアスライダ1の外部(容器80の内部)への加圧流体の漏洩を抑制できる。これにより、真空エアスライダ1から加圧流体を排気するための真空ポンプは、排気速度をより小さくでき消費電力も抑制できる。その結果、加圧流体を排気するためのコストを低減することが可能となる。また、静圧スライダからの加圧流体の漏洩を抑制することにより、容器80における真空度の悪化を抑制できるために、容器80の真空度を維持するための真空ポンプの排気速度、消費電力を小さくできるために、この点においても、ランニングコストを低減できるようになる。
さらに、固定体2に対して可動体3が接触したとしても、検知回路70において把握される静電容量に基づいて、可動体3が固定体2に接触した事実を即座に把握することができる。すなわち、可動体3が固定体2に接触した場合には、第1導体層25〜28と第2導体層31A〜34Aとが接触するために、検知回路70において把握される静電気力は著しく変化するために、可動体3が固定体2に接触した事実を即座に把握することができる。また、可動体3が固定体2に接触した事実を即座に把握できるようになれば、第1導体層25〜28と第2導体層31A〜34Aとの間の電位差を調整して、それらの導体層25〜28,31A〜34Aに作用する静電気力を調整し、固定体2から変位体31〜34を退避させることにより、接触により生じる不具合を最小限に留めることができる。
その一方で、固定体2と可動体3との間の距離を適正に維持できれば、固定体2と可動体3との間に必要以上に大きな隙間が形成されるのを抑制できるために、真空エアスライダ1の外部(容器80の内部)に加圧流体が漏洩するのを抑制できる。このことは同時に、真空エアスライダ1から加圧流体を排気するためコスト、容器80の真空度を維持するためのコストを低減できることを意味している。
静圧スライダ1ではさらに、第1導体層25〜28と第2導体層31A〜34Aとの間に与える電位差(静電気力)により、それらの導体層25〜28,31A〜34Aの距離を、応答性良く調整することが可能となる。また、第1および第2導体層25〜28,31A〜34Aを利用して、静電容量の測定(第1および第2導体層25〜28,31A〜34Aの距離)と電位差の調整(第1および第2導体層25〜28,31A〜34Aに作用する静電気力)との双方を行うようにすれば、第1および第2導体層25〜28,31A〜34Aの距離を測定するための機構を別途設ける場合に比べて装置構成が簡易であり製造コスト的にも有利なものとなる。
次に、本発明の第2の実施の形態について、図12および図13を参照しつつ説明する。これらの図面においては、先に説明した第1の実施の形態に係る静圧スライダ1(図1ないし図10参照)と同様な部材および要素などについては同一の符号を付してあり、重複説明は省略する。
図12および図13に示した静圧スライダ8Aは、その基本構成において先に説明した第1の実施の形態に係る静圧スライダ1(図1ないし図9参照)と同様であるが、この静圧スライダ1とは、第2導体層81Aの構成が異なっている。
第2導体層81Aは、可動体3における板材35(36〜38)の端部において、板材35(36〜38)の幅方向に延びるように形成されている。この第2導体層81Aは、板バネなどの薄板として形成されたものであり、固定部81Aaおよび非固定部81Abを有している。固定部81Aaは、第2導体層81Aを可動体3に固定するためのものである。非固定部81Abは、自由端とされたものであり、直線状の部分を有している。すなわち、非固定部81Abは、直線状の部分を有することにより、第1および第2導体層25(26〜28),81Aの間に作用する静電気力を大きく確保するのが容易となるとともに、第2導体層81Aが第1導体層25(26〜28)に接触したときの接触面積(接触抵抗)を大きく確保できるようになっている。
静圧スライダ8Aでは、第2導体層81Aの非固定部81Abが自由端とされているために、第1導体層25(26〜28)と第2導体層81Aとの間に作用する静電気力の大きさを調整することにより、第1導体層25(26〜28)と非固定部81Abとの間の距離を調整することができる。
静圧スライダ8Aでは、第2導体層81Aの固定部81Aaにおいて、第2導体層81Aと固定部81Aaとの間に隙間が生じることが抑制されるとともに、非固定部81Abにおいて、第2導体層81Aと固定体2(第1導体層25(26〜28))との間の隙間を調整することができる。その結果、変位体31(32〜34)(図7および図8参照)を省略できるとともに、変位体31(32〜34)と可動体本体30との間にシール部材63(図7および図8参照)を設ける必要もなくなる。そのため、第2導体層81Aを固定部81Aaおよび非固定部81Abを有する構成とすれば、簡易かつ製造コスト的に有利に可動体3と固定体2の隙間を調整しつつ、その隙間から加圧流体が漏洩するのを抑制することができる。
また、第2導体層81Aを板バネなどの薄板として構成すれば、金属などの導体板にプレス加工を施すなどして簡易に第2導体層81Aを形成することができるため、製造コスト的にさらに有利なものとなる。
次に、本発明の第3の実施の形態について、図14を参照しつつ説明する。これらの図面においては、先に説明した第1の実施の形態に係る静圧スライダ1(図1ないし図10参照)と同様な部材および要素などについては同一の符号を付してあり、重複説明は省略する。
図14に示した静圧スライダ8Bは、第1および第2導体層80B,81Bの構成が第1の実施の形態に係る静圧スライダ1(図1ないし図9参照)とは異なっている。
第1および第2導体層80B,81Bのそれぞれは、対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbとの間に誘電体層80Bc,81Bcを介在させた構成を有している。第1および第2導体層80B,81Bにおける対向導体膜80Ba,81Baおよび非対向導体膜80Bb,81Bbは、第1の実施の形態に係る静圧スライダ1の第1および第2導体層25〜28,31A〜34Aと同様な材料により形成することができ、その膜厚は、たとえば0.01〜5μmとされる。一方、誘電体層80BC,81Bcは、チタン酸バリウムなどの公知の誘電材料により形成することができ、その膜厚は、たとえば1〜500μmとされる。
静圧スライダ8Bでは、各導体層80B,81Bにおける対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbとの間に直流電圧を印加することにより、対向導体層80Ba,81Baの表面に電荷を帯電させ、第1導体層80Bの対向導体膜80Baと第2導体層81Bの対向導体膜81Baとの間に静電気力を作用させるように構成されている。対向導体膜80Baと対向導体膜81Baとの間に静電気力を作用させ、それらの導体膜80Ba,81Baの間を初期設定距離とした状態では、変位体31〜34は、変位体31〜34が変位可能な範囲の中心または略中心に位置しているのが好ましい。
このような静圧スライダ8Bでは、第1導体層80Bおよび第2導体層81Bのうちの一方の導体層80B,81Bにおける対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbの間の電位差を固定化する一方で、他方の導体層80B,81Bにおける対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbの間の電位差を可変とし、第1導体層80Bおよび第2導体層81Bで1つの可変容量コンデンサとして取り扱うことにより、図10に示した回路と同種の回路によって第1および第2導体層80B,81Bとの間に作用する静電気力ひいてはそれらの導体層80B,81Bの間の距離を調整することが可能となる。もちろん、第1導体層80Bおよび第2導体層81Bの双方における対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbの間の電位差を可変とし、各々の対向導体膜80Ba,81Baと非対向導体膜80Bb,81Bbとの間の電位差を調整して第1および第2導体層80B,81Bとの間に作用する静電気力ひいてはそれらの導体層80B,81Bの間の距離を調整するようにしてもよい。
静圧スライダ8Bでは、第1および第2導体層80B,81Bのそれぞれにおける対面導体膜80Ba,81Baと非対面導体膜80Bb,81Bbとの間に作用する電位差により、第1導体層80Bと第2導体層81Bとの間に作用する静電気力が調整されるため、第1導体層80Bと第2導体層81Bとの間の距離を、応答性良く調整することが可能となる。とくに、変位体31〜34が変位可能な範囲の中心または略中心において、パッキン63が変位体31〜34に作用させる力(弾性復元力)とコイルバネ62が変位体31〜34に作用させる力(弾性復元力)とが釣り合うようにすれば、パッキン63の厚みが大きくなる弾性変形およびパッキン63の厚みが小さくなる弾性変形のいずれも容易に行なえる。そのため、静圧スライダ8Bでは、変位体31〜34の応答性良く変位させることが可能となるため、第1導体層80Bと第2導体層81Bとの間の距離を、応答性良く調整することが可能となる。
また、第1および第2導体層80B,81Bを利用して、これらの導体層80B,81Bの間の距離を静電容量として測定する構成では、第1および第2導体層80B,81Bによって、静電容量の測定(第1および第2導体層80B,81Bの距離)と電位差の調整(第1および第2導体層80B,81Bに作用する静電気力)との双方を行うことができる。そのため、第1および第2導体層80B,81Bの距離を測定するための機構を別途設ける場合に比べて装置構成が簡易であり製造コスト的にも有利なものとなる。
次に、本発明の第4の実施の形態について、図15および図16を参照しつつ説明する。これらの図面においては、先に説明した第1の実施の形態に係る静圧スライダ1(図1ないし図9参照)と同様な部材および要素などについては同一の符号を付してあり、重複説明は省略する。
図15および図16に示した静圧スライダ8Cは、第2導体層81Cの構成が先に説明した第3の実施の形態に係る静圧スライダ8B(図13参照)とは異なっている。
第1および第2導体層80C,81Cは、対向導体膜80Ca,81Caと非対向導体膜80Cb,81Cbとの間に誘電体層80Cc,81Ccを介在させた構成を有している。対向導体膜80Ca,81Ca、非対向導体膜80Cb,81Cb、および誘電体層80Cc,81Ccを形成するための材料としては、第3の実施の形態に係る静圧スライダ8B(図13参照)と同様なものを使用することができ、膜厚についても同様なものとされる。
第2導体層81Cさらには、その周囲がホルダ82Cによって囲まれているとともに、可動体3(板材35(36〜38))に固定されておらず、可動体3(板材35(36〜38))とは完全に分離されたものとなっている。
ここで、ホルダ82Cは、第2導体層81Cの剛性を確保するためのものであり、絶縁材料により枠状に形成されている。ホルダ82Cを形成するための材料としては、たとえばエポキシ樹脂やポリイミド樹脂を使用することができる。
第2導体層81Cの周囲を囲むようにホルダ82Cを設け、第2導体層81Cを可動体3とは独立した部材とすれば、製造時における第2導体層81Cのハンドリング性が向上し、また使用時における第2導体81Cおよびホルダ82Cを含めた部材の耐久性を確保することができる。その一方で、第2導体層81Cを独立した部材とすれば、第2導体層81Cを可動体3に固定する工程が必要ないために、製造時の作業性が改善される。
静圧スライダ8Cはさらに、各板材35(36〜38)の端部において、ホルダ82Cが接触する部分にシール材83Cが配置されている。このシール材83Cは、第1の実施の形態に係る静圧スライダ1におけるシール部材63(図8参照)と同様な機能を果すものである。すなわち、シール材83Cは、第2導体層81Cの変位を許容しつつも、第2導体層81Cと板材35(36〜38)の端部との間に隙間が形成されるのを防止するためのものである。
静圧スライダ8Cでは、第1および第2導体層80C,81Cの対向導体膜80Ca,81Caと非対向導体膜80Cb,81Cbとの間に直流電圧を印加することにより対向導体層80Ca,81Caの表面に電荷を帯電させ、第1および第2導体層80C,81C(対向導体層80Ca,81Ca)の間に静電気力が作用するように構成されている。すなわち、静圧スライダ8Cは、第3の実施の形態に係る静圧スライダ8B(図13参照)と同様な作用により、第1導体層80Cと第2導体層81Cとの間の隙間が調整されるように構成されており、第3の実施の形態に係る静圧スライダ8B(図13参照)の効果を享受することができる。
本発明に係る静圧スライダは、上述した実施の形態には限定されず、種々に変更可能である。たとえば、第1および第3の実施の形態に係る静圧スライダ1,8Bのように変位体31〜34を有する構成では、第1導体層25〜28,80Bと第2導体層31A〜34A,81Bとが接触したときにそれらの導体層25〜28,80B,31A〜34A,81Bの間に電位差を与える一方で、第1導体層25〜28,80Bと第2導体層31A〜34A,81Bとが接触していないときには、それらの導体層25〜28,80B,31A〜34A,81Bの間に電位差を与えないようなオン・オフ制御も可能である。
また、第1および第2導体層の間の静電気力を引力として付与する構成では、これらの導体層の間に放電が生じた場合の誤作動を回避するために、第1および第2導体層の表面に絶縁薄膜を設けても良い。その場合の絶縁薄膜は、公知の材料により形成すればよく、その厚みは、たとえば0.1μm以下とされる。
本発明は、上述した形態の静圧スライダには限定されず、他の形態の静圧スライダにも適用することができる。たとえば、本発明は、固定体が円柱状に形成されている一方で可動体が円筒状に形成されたもの、あるいは可動体が平板状に形成された単純浮上式の静圧スライダにも適用できる。

Claims (14)

  1. 固定体と、
    前記固定体との間に加圧流体により形成される静圧流体層を介在させた状態で、前記固定体に対して相対移動可能とされた可動体と、
    を備えた静圧スライダにおいて、
    前記固定体に形成された第1導体層と、
    前記第1導体層との間に作用する静電気力により、少なくとも一部における前記第1導体層との距離が変化可能とされた第2導体層と、
    をさらに備えており、
    前記第1および第2導体層のうちの一方の導体層は、他方の導体層に対面する対面導体膜と、非対面導体膜との間に誘電体を介在させた構成とされており、かつ、
    前記第1導体層と前記第2導体層との間には、各々の導体層における前記対面導体膜と前記非対面導体膜との間に電位差を与えてそれぞれの対面導体膜の表面に電荷を帯電させることによって、静電気力が作用させられる、静圧スライダ。
  2. 前記第1および第2導体層の間の静電容量に基づいて、前記第1および前記第2導体層の間に作用させる静電気力の大きさを調整するように構成されている、請求項1に記載の静圧スライダ。
  3. 前記第1導体層と前記第2導体層との間には、それらの間に電位差を与えることにより、静電気力が作用させられる、請求項1に記載の静圧スライダ。
  4. 前記可動体は、可動体本体と、前記可動体本体に支持され、かつ前記固定体に対する距離が変化可能とされた変位体と、を備えており、
    前記第2導体層は、前記変位体と一体的に前記第1導体層に対する距離が変化可能とされている、請求項1に記載の静圧スライダ。
  5. 前記可動体本体と前記変位体との間を封止するためのシール部材をさらに備えており、
    前記シール部材は、前記変位体により付勢された状態で配置されている、請求項に記載の静圧スライダ。
  6. 前記第2導体層は、弾性体を介して前記可動体に固定されており、かつ前記弾性体が弾性変形することにより、前記第1導体層に対する距離が変化可能とされている、請求項1に記載の静圧スライダ。
  7. 前記第2導体層は、その周囲がホルダによって囲まれているとともに、前記可動体とは分離された独立部材とされている、請求項に記載の静圧スライダ。
  8. 前記可動体には、前記ホルダが接触する部分に弾性体が固定されている、請求項に記載の静圧スライダ。
  9. 前記第1および第2導体層の表面は、最大高さRzが1μm以下の滑面に形成されている、請求項1に記載の静圧スライダ。
  10. 前記第1および第2導体層は、導電性材料により厚膜に形成されている、請求項1に記載の静圧スライダ。
  11. 前記第1および第2導体層は、非磁性材料により形成されている、請求項1に記載の静圧スライダ。
  12. 請求項1ないし11いずれかに記載のものであり、かつ前記可動体に支持させたワークを移動させる静圧スライダと、
    前記静圧スライダを収容した容器と、
    を備えている、搬送装置。
  13. 請求項1ないし11のいずれかに記載のものであり、かつ前記可動体に支持させたワークを移動させる静圧スライダと、
    前記静圧スライダを収容した容器と、
    前記ワークに対して目的とする検査を行い、または加工を施すための処理要素と、
    を備えている、処理装置。
  14. 前記処理要素は、走査型電子顕微鏡、電子線描画装置、フーカスイオンビーム描画装置、またはX線露光装置である、請求項13に記載の処理装置。
JP2008506272A 2006-03-22 2007-03-15 静圧スライダ、これを備えた搬送装置および処理装置 Expired - Fee Related JP5178507B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506272A JP5178507B2 (ja) 2006-03-22 2007-03-15 静圧スライダ、これを備えた搬送装置および処理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006079694 2006-03-22
JP2006079694 2006-03-22
PCT/JP2007/055249 WO2007108399A1 (ja) 2006-03-22 2007-03-15 静圧スライダ、これを備えた搬送装置および処理装置
JP2008506272A JP5178507B2 (ja) 2006-03-22 2007-03-15 静圧スライダ、これを備えた搬送装置および処理装置

Publications (2)

Publication Number Publication Date
JPWO2007108399A1 JPWO2007108399A1 (ja) 2009-08-06
JP5178507B2 true JP5178507B2 (ja) 2013-04-10

Family

ID=38522429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008506272A Expired - Fee Related JP5178507B2 (ja) 2006-03-22 2007-03-15 静圧スライダ、これを備えた搬送装置および処理装置

Country Status (5)

Country Link
US (1) US20100092113A1 (ja)
JP (1) JP5178507B2 (ja)
KR (2) KR20100090313A (ja)
TW (1) TWI334191B (ja)
WO (1) WO2007108399A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046636B4 (de) * 2008-09-09 2014-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aerostatische Lageranordnung mit zugeordneter elektrostatischer Vorspanneinheit, insbesondere für die Vakuumanwendung
CN101769336B (zh) * 2009-01-05 2013-02-13 鸿富锦精密工业(深圳)有限公司 空气导轨
JP5166510B2 (ja) * 2009-03-23 2013-03-21 株式会社アドバンテスト ステージ装置及びステージクリーニング方法
CN102678748B (zh) * 2011-03-07 2014-07-16 上海微电子装备有限公司 分体式气足
TWI458586B (zh) * 2012-08-21 2014-11-01 Ind Tech Res Inst 複合式可變流阻液靜壓滑塊模組
US10612589B2 (en) * 2017-06-14 2020-04-07 Nickoloas Sotiropoulos Pneumatic bearing assembly for a linear guide rail
DE102017212675A1 (de) * 2017-07-24 2019-01-24 Festo Ag & Co. Kg Lagervorrichtung und Beförderungssystem
TWI696767B (zh) 2018-11-29 2020-06-21 財團法人工業技術研究院 液靜壓軸承總成

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749283A (en) * 1985-09-12 1988-06-07 Canon Kabushiki Kaisha Static pressure bearing
JPH02212624A (ja) * 1989-02-14 1990-08-23 Canon Inc 真空用エアーベアリング
JPH02139043U (ja) * 1989-04-27 1990-11-20
JPH04145220A (ja) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd 移動体支持装置
JPH05272536A (ja) * 1992-03-27 1993-10-19 Toshiba Corp 軸受装置
JPH1162965A (ja) * 1997-08-19 1999-03-05 Nippon Steel Corp 静圧案内装置及び移動体
JPH11260898A (ja) * 1998-03-10 1999-09-24 Nippon Steel Corp 被吸着体
JP2001295843A (ja) * 2000-04-17 2001-10-26 Toto Ltd 静圧気体軸受
JP2002349569A (ja) * 2001-05-25 2002-12-04 Canon Inc 静圧軸受装置及びそれを用いたステージ装置
JP2004350489A (ja) * 2003-05-19 2004-12-09 Seagate Technology Llc 多層電極スタックを有する静電駆動器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238308A (en) * 1992-05-04 1993-08-24 Rockwell International Corporation Adjustable gap hydrostatic element
JP3356683B2 (ja) * 1998-04-04 2002-12-16 東京エレクトロン株式会社 プローブ装置
US6499880B2 (en) * 1999-02-19 2002-12-31 Nikon Corporation Static pressure air bearing
JP2005005394A (ja) * 2003-06-10 2005-01-06 Canon Inc ステージ装置、露光装置、およびデバイス製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749283A (en) * 1985-09-12 1988-06-07 Canon Kabushiki Kaisha Static pressure bearing
JPH02212624A (ja) * 1989-02-14 1990-08-23 Canon Inc 真空用エアーベアリング
JPH02139043U (ja) * 1989-04-27 1990-11-20
JPH04145220A (ja) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd 移動体支持装置
JPH05272536A (ja) * 1992-03-27 1993-10-19 Toshiba Corp 軸受装置
JPH1162965A (ja) * 1997-08-19 1999-03-05 Nippon Steel Corp 静圧案内装置及び移動体
JPH11260898A (ja) * 1998-03-10 1999-09-24 Nippon Steel Corp 被吸着体
JP2001295843A (ja) * 2000-04-17 2001-10-26 Toto Ltd 静圧気体軸受
JP2002349569A (ja) * 2001-05-25 2002-12-04 Canon Inc 静圧軸受装置及びそれを用いたステージ装置
JP2004350489A (ja) * 2003-05-19 2004-12-09 Seagate Technology Llc 多層電極スタックを有する静電駆動器

Also Published As

Publication number Publication date
JPWO2007108399A1 (ja) 2009-08-06
WO2007108399A1 (ja) 2007-09-27
KR20080110633A (ko) 2008-12-18
US20100092113A1 (en) 2010-04-15
KR20100090313A (ko) 2010-08-13
TW200805551A (en) 2008-01-16
KR101009320B1 (ko) 2011-01-18
TWI334191B (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5149627B2 (ja) 静圧スライダ
JP5178507B2 (ja) 静圧スライダ、これを備えた搬送装置および処理装置
JP4767251B2 (ja) 光学検査装置を平坦な対象物の接面に対して焦点合わせする方法
US6756751B2 (en) Multiple degree of freedom substrate manipulator
JP3825737B2 (ja) 精密位置決め装置及びこれを用いた加工機
EP1260720B1 (en) Hydrostatic bearing and stage apparatus using same
US20180023624A1 (en) Static pressure gas bearing
JP4491364B2 (ja) 非接触支持装置
CN109211171B (zh) 门式移动装置和三维测量仪
JP4535991B2 (ja) 静圧スライダ
US10962053B2 (en) Air bearing
Zhong et al. Modeling and verification of a contactless air film conveyor using a viscous traction principle
JP7000965B2 (ja) 荷電粒子装置、計測システム、及び、荷電粒子ビームの照射方法
CN113424018A (zh) 用于定位物体的定位系统
WO2023042741A1 (ja) 基板塗布装置および基板塗布方法
JP2002110523A (ja) 露光装置
US7550743B1 (en) Chamberless substrate handling
JP3898380B2 (ja) 真空用スライド装置
JP2023043964A (ja) 基板塗布装置および基板塗布方法
JP2005307993A (ja) 可変絞り静圧軸受を用いたステージ装置のキャリブレーション方法
JP2021168372A (ja) ステージ装置及び半導体製造装置
JP4273743B2 (ja) 位置決め装置
Shinozaki et al. Development of step-and-scan-type XY-stage system for electron beam systems
Woo Contact-free handling using actively controlled electrostatic levitating fields
US20050002012A1 (en) Stage apparatus, static pressure bearing apparatus, positioning method, exposure apparatus and method for manufacturing device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees