JP5149627B2 - 静圧スライダ - Google Patents

静圧スライダ Download PDF

Info

Publication number
JP5149627B2
JP5149627B2 JP2007550232A JP2007550232A JP5149627B2 JP 5149627 B2 JP5149627 B2 JP 5149627B2 JP 2007550232 A JP2007550232 A JP 2007550232A JP 2007550232 A JP2007550232 A JP 2007550232A JP 5149627 B2 JP5149627 B2 JP 5149627B2
Authority
JP
Japan
Prior art keywords
movable body
motion guide
guide surface
static pressure
conductor layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007550232A
Other languages
English (en)
Other versions
JPWO2007069713A1 (ja
Inventor
猛 宗石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007550232A priority Critical patent/JP5149627B2/ja
Publication of JPWO2007069713A1 publication Critical patent/JPWO2007069713A1/ja
Application granted granted Critical
Publication of JP5149627B2 publication Critical patent/JP5149627B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • F16C33/748Sealings of sliding-contact bearings by means of a fluid flowing to or from the sealing gap, e.g. vacuum seals with differential exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、固定体と可動体との間に加圧流体により形成される静圧流体層を介在させた状態で、固定体に対して可動体を相対移動させる静圧スライダに関する。より詳細には、本発明は、真空チャンバ内においてワークを搬送するのに適合した静圧スライダに関するものである。
半導体製造装置においては、ウエハやマスク等のワークの搬送にはステージと呼ばれる搬送装置が用いられている。ステージは、可動体を一定方向に案内するガイドを有するものである。ガイドとしては、たとえば滑りガイド、複数個のローラや球を用いる転がりガイド、静圧流体を用いる静圧ガイドが代表的である。ガイドの構造は、ステージにおける可動体の移動精度、すなわちステージ案内精度(姿勢精度、真直精度)に影響を与えるものである。ステージ案内精度の面においては、静圧ガイドが最も優れているとされ、静圧ガイドを採用したステージが一般的に広く用いられている。
静圧ガイドを有するステージは、静圧スライダと呼ばれており、ガイドを構成する固定体と、ワークを載置するための可動体と、を備えた構造を有している。この静圧スライダでは、固定体と可動体との間に加圧流体を供給して流体層を形成することにより、その流体層によって、可動体を固定体に接触させることなく一定方向に運動させることができる。静圧スライダにおいては、流体層は、軸受け部として機能しており、一般的に、3〜5気圧の加圧流体を供給することにより厚みが5〜10μmに形成されている。
このように、静圧スライダは、流体層を軸受け部として機能させ、非接触で可動体を案内する構造であるために、接触方式を採用した他のガイド(滑りガイド、転がりガイド)を採用したステージのように、固定体の平面度や真直度の影響を受けにくい。そのため、静圧スライダは、接触式の他のガイドを有するステージよりも優れた案内精度を示す。そして、静圧スライダは、流体層の厚みを小さくすることにより、可動体の姿勢をより一層安定させ、ステージ案内精度を向上させることができる。
一方、半導体製造工程は多岐にわたり、そのために種々の装置が使用されている。それら装置の一部であるステージは、真空または減圧雰囲気とされたチャンバ(真空チャンバ)内において使用する必要がある。たとえば、真空チャンバ内において使用される装置の代表的なものとしては、電子ビームやイオンビーム等の荷電粒子、あるいはX線等の短波長電磁波によりワークを加工・検査する装置、たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置、X線露光装置がある。
上述のように、静圧スライダは、固定体と可動体の間に高圧の流体層(たとえば3〜5気圧)が介在するため、真空チャンバで使用するステージとして用いる場合には、流体が可動体の外部、すなわち真空チャンバ内に漏洩するのを抑制できる構造とする必要がある。このような静圧スライダは、真空エアスライダと呼ばれており、たとえば図14に示すようなものが知られている(たとえば特許文献1参照)。
図14に示した真空エアスライダ9は、固定体90および可動体91を備えたものであり、可動体91において、エア供給および排気が可能なように構成されたものである。可動体91は、固定体90との間に加圧流体を供給するためのエア供給部92、および供給されたエアを排気するための排気部93を備えている。エア供給部92は、固定体90と可動体91との間に、厚みが5〜10μm程度の流体層を形成するためのものであり、供給流路94および絞り部95を有している。絞り部95は、供給流体の流量を制限するためのものであり、オリフィス絞り、表面絞り、あるいは多孔質絞りとして構成されている。一方、排気部93は、排気口96および排気流路97を有しており、図外のポンプに接続されることにより、供給流体を排気することができるように構成されている。
上述のように、真空エアスライダ9をはじめとする静圧スライダでは、流体層の厚みを小さくすることで可動体91の姿勢が安定し、案内精度が向上する。その一方で、真空エアスライダ9では、固定体90や可動体91の平面度を大きく確保するには限界があり、また固定体90の自重撓み等による曲げが発生する。そのため、流体層の厚みを不当に小さくすれば、可動体91が移動する際に可動体91が固定体90に接触し、かじり等が発生しうる。このような不具合を回避するためには、流体層の厚みを一定以上確保する必要があり、真空エアスライダ9では、流体層の厚みは8μm程度が限界とされていた。
そこで、かじり等の発生を抑制するために、図15に示した真空エアスライダ9′も提案されている(たとえば特許文献2参照)。同図に示した真空エアスライダ9′は、基本構成が図13に示した真空エアスライダ9と同様であり、固定体(ガイドバー)90′および可動体91′を備えている。そして、真空エアスライダ9′では、可動体91′におけるラビリンス隔壁98′を、絞り部(多孔質パッド)95′と同一の耐磨耗性多孔質材により形成することにより、固定体90′と可動体91′との間での金属どうしの接触を抑制し、かじり等の発生を回避しようとしている。この真空エアスライダ9′では、流体層の厚みを5μm程度とし、可動体91′の姿勢を安定させて案内精度を向上させることができる。
図15に示した真空エアスライダ9′では、確かに図14の真空エアスライダ9に比べれば流体層の厚みを小さくすることができる。しかしながら、真空チャンバ内に漏洩する流体量に最も影響を与える流体層の厚み、すなわち固定体90′と可動体91′との間の隙間を5μm程度しかできない。そのため、真空エアスライダ9′からの加圧流体の漏洩を防ぐために、真空チャンバを排気する真空ポンプ、あるいは可動体91′における排気流路97′に接続された真空ポンプは、大きな排気速度をもって駆動する必要がある。その上、真空エアスライダ9′に供給する加圧流体の量も依然として多く、このことが真空エアスライダ9′を使用する装置のランニングコストを押し上げていた。
真空エアスライダとしてはさらには、図16Aないし図16Cに示したように、可動体91″に支持されたラビリンス部98″と固定体90″のガイド面90A″との間の隙間をセンサ99A″によって検知し、その検知結果に基づいて隙間調整機構を制御して隙間を調整するように構成されたものもある(たとえば特許文献3参照)。センサ99A″としては、たとえば静電容量型変位計、渦電流型変位計あるいは光ピックアップなどの非接触型の変位計が用いられている。一方、隙間調整機構は、たとえばピエゾ素子、超磁歪素子あるいは電磁石などのアクチュエータ99B″を用いて、ラビリンス部98″を移動させるように構成されたものである。
米国特許第4749283号明細書 特開平2−212624号公報 特開2002−3495569号公報
しかしながら、図16Aないし図16Cに示した真空エアスライダ9″は、センサ99A″が可動体91″の側方に位置した状態で可動体91″に支持されており、この状態においてラビリンス部98″の隙間の変動量を監視している。すなわち、真空エアスライダ9″では、ラビリンス部98″から離れた位置において、しかも固定体90″のガイド面90A″とラビリンス部98″におけるガイド面90A″との対向面98A″との間の距離を監視するように構成されている。このような真空エアスライダ9″では、ガイド面90A″とラビリンス部98″との間の隙間hrの距離を直接測定するものではなく、ラビリンス部98″とは異なる箇所においてラビリンス部98″とガイド面90A″との間の変動量を監視するようにしているために正確な測定が困難であり、ラビリンス部98″がガイド面90A″に接触した事実を即座に把握することができず、依然として、かじりが発生しやすいという問題を有していた。
本発明は、静圧スライダにおいて、固定体に対する可動体のかじり等の発生および静圧スライダの外部への加圧流体の漏洩を抑制しつつ、流体層の厚みをより小さくすることにより、可動体の姿勢安定性を向上させるとともに加圧流体の供給量を小さくしてランニングコストを低減することを課題としている。
第1の本発明においては、運動案内面を有する固定体と、前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、を備えた静圧スライダにおいて、前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子と、弾性変形可能とされた伝達部材とを備えており、前記複数の圧電素子は、前記伝達部材に固定された、静圧スライダが提供される。
第2の本発明においては、運動案内面を有する固定体と、前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、を備えた静圧スライダにおいて、前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子と、前記複数の圧電素子の周囲を囲む保護樹脂とを備えている、静圧スライダが提供される。
第3の本発明においては、運動案内面を有する固定体と、前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、を備えた静圧スライダにおいて、前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子を備えており、前記測定手段は、前記運動案内面に形成された第1導体層と、前記対向面に形成された第2導体層と、を含んでおり、前記第1および第2導体層のうちの少なくとも一方は、前記複数の圧電素子に対応した位置に形成された複数の個別電極を含んでおり、前記測定手段は、前記複数の個別電極を利用して、前記第1および第2導体層の間の静電容量を測定するように構成されている、静圧スライダが提供される。
測定手段は、たとえば運動案内面と対向面との間の静電容量を測定するように構成される。この測定手段は、たとえば運動案内面に形成された第1導体層と、対向面に形成された第2導体層と、を含んだものとされ、第1および第2導体層を利用して、これらの導体層の間の静電容量を測定するように構成される。
第1および第2導体層の表面は、最大高さRzが1μm以下の滑面に形成するのが好ましい。第1および第2導体層は、たとえば金属または単結晶により形成される。第1および第2導体層は、これらを金属により形成する場合には厚膜に形成するのが好ましい。この場合の第1および第2導体層の厚みは、0.1μm以上0.1mm以下に設定するのが好ましい。第1および第2の導体層は、非磁性材料により形成してもよい。
前記可動体本体は、たとえば前記加圧流体を外部に排気するための排気溝を備えている。前記変位体は、前記排気溝に隣接する端部側に備えられている。
前記伝達部材は、たとえば前記圧電素子が固定される複数の厚肉部と、隣接する厚肉部の間に設けられた薄肉部と、を有するものとされる。
本発明に係る静圧スライダでは、固定体と可動体との距離を、固定体と可動体とが相対移動している間、運動案内面と対面する対向面との距離を測定手段により直接測定できるように構成されているため、固定体と可動体との距離を正確に把握することが可能となる。たとえば、固定体と可動体との距離を、運動案内面に対面する対向面以外の部分の距離として変位センサを用いて測定した上で、この測定結果に基づいて、固定体と可動体との距離を間接的に把握する方法に比べて、本発明の静圧スライダでは固定体と可動体との距離の測定精度が著しく改善される。
また、正確に測定された距離に基づいて可動体(変位体)を変位させるようにすれば、固定体と可動体との間の距離を適正に維持することができるようになり、可動体が固定体に対して必要以上に近づき過ぎてしまうことを抑制することができる。これにより、固定体に対して可動体が接触するのを防止できるため、固定体に可動体が接触することに起因するかじりなどの発生を防止し、固定体および可動体が損傷してしまうことを抑制できる。とくに、固定体から離間する方向に付勢した状態で変位体を支持した構成を採用すれば、変位体を位置変位させるアクチュエータによって、変位体を応答性良く固定体から退避させることができる。そのため、本発明の静圧スライダでは、かじりなどの発生を防止するために必要な固定体と可動体との間の距離を小さく設定できるようになり、固定体と可動体との間に形成すべき流体層の厚みを小さくことができる。
その結果、本発明の静圧スライダでは、固定体に対する可動体の姿勢精度を向上させることができるとともに、固定体と可動体との距離を常時僅かな一定量に保持可能となり、固定体と可動体との間に供給すべき加圧流体の量を少なくできるようになる。また、固定体に対して可動体が接触したとしても、接触時には静電容量がゼロとなることから静電容量に大きな変位点が生じる。そのため、測定手段において測定される静電容量などに基づいて、可動体が固定体に接触した事実を即座に把握することができため、接触により生じる不具合を最小限に留めることができる。また、固定体から離間する方向に変位体を付勢した状態としておけば、変位体を固定体から応答性良く退避させることができるため、接触により生じる不具合を最小限に留めることができる。
このように固定体と可動体との距離を常時僅かな一定量に保持できることから、固定体と可動体との隙間の外部への加圧流体の漏洩を抑制できる。これにより、静圧スライダから加圧流体を排気するための真空ポンプは、排気速度をより小さくできるとともに消費電力も抑制できる。その結果、加圧流体を排気するためのコストを低減することが可能となる。また、静圧スライダからの加圧流体の漏洩を抑制することにより、真空チャンバ(図示略)における真空度の悪化を抑制できるために、真空チャンバの真空度を維持するための真空ポンプの排気速度、消費電力を小さくできるために、この点においても、ランニングコストを低減できるようになる。
また、測定手段の第1および第2導体層を滑面として形成すれば、それらの導体層が粗面として形成された場合に比べて、第1および第2導体層が接触する可能性、すなわち固定体に対して可動体が接触する可能性を低減でき、固定体および可動体表面の空孔を削減でき、第1導体層および第2導体層間の静電容量を正確に測定することができるとともに、加圧流体の漏洩をより確実に抑制することが可能となる。すなわち、かじりなどの発生を防止するために必要な固定体と可動体との間の距離を小さく設定できるようになり、固定体と可動体との間に形成する流体層の厚みをより一層小さくすることが可能となる。
さらに、第1および第2導体層を非磁性材料により形成すれば、本発明の静圧スライダを、たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置などの荷電粒子を用いる装置に適用する場合に、第1および第2導体層がそれらの装置の動作に悪影響を与えることもない。そのため、本発明に係る静圧スライダは、荷電粒子を用いる装置に対して問題なく適用できる。
また、可動体本体と変位体との間にシール部材を配置すれば、可動体本体と変位体との間から流体層を形成するための加圧流体が漏洩することを抑制できる。とくに、可動体本体に対して変位体を位置変位させる構成を採用する場合には、シール部材により加圧流体の漏洩を抑制することの利点は大きい。
変位体が複数の圧電素子を備えたものとすれば、複数の圧電素子を個別に伸縮させることにより、各圧電素子により隙間の調整が可能となる。たとえば、弾性変形可能な伝達部材に複数の圧電素子を固定した場合には、圧電素子の伸縮より伝達部材を変形させることにより、変位体(可動体)と固定体との間の距離を微小な調整が可能となる。
本発明に係る真空エアスライダの第1の実施の形態を説明するための全体斜視図である。 図1のII−II線に沿う断面図である。 図1のIII−III線に沿う断面図である。 図1に示した真空エアスライダにおける可動体の一部を分解して示した斜視図である。 図4のV−V線に沿う断面図である。 図3のVI−VI線に沿う断面図である。 図3のVII−VI線に沿う断面図である。 図6の要部を拡大して示した断面図である。 図1に示した真空エアスライダのブロック図である。 本発明に係る真空エアスライダの第2の実施の形態を説明するための全体斜視図である。 図10のXI−XI線に沿う断面図である。 図11のXII−XII線に沿う断面図である。 図11の要部を拡大して示した断面図である。 従来の静圧スライダの一例を示す断面図である。 従来の静圧スライダの他の例を示す断面図である。 図16Aは従来の静圧スライダのさらに他の例を示す断面図、図16Bはその底面図、図16Cは図16BのXVIC−XVIC線に沿う断面図である。
符号の説明
1,1′ 真空エアスライダ(静圧スライダ)
2 固定体
21〜24 運動案内面
25〜28, 25′〜28′(固定体の)第1導体層
25A′〜28A′ 個別電極
3,3′ 可動体
30 本体部(可動体本体)
31〜34,31′〜34′ 変位体
31B′〜34B′ (変位体の)伝達部材
31Ba′〜34Ba′ (伝達部材の)厚肉部
31Bb′〜34Bb′ (伝達部材の)薄肉部
31C′〜34C′ (変位体の)圧電素子
31D′〜34D′ (変位体の)保護樹脂
31A〜34A (変位体の)第2導体層
31b〜34b (変位体の)下方端面
61 圧電素子
63 パッキン(シール部材)
70 測定部(測定手段)
72 制御部(制御手段)
以下においては、本発明に係る静圧スライダについて、真空エアスライダを例にとって、第1および第2の実施の形態として、図面を参照しつつ説明する。
まず、本発明の第1の実施の形態の真空エアスライダについて、図1ないし図9を参照して説明する。
図1に示した真空エアスライダ1は、本発明に係る静圧スライダの一例に相当するものであり、真空チャンバ内においてワークを搬送するために使用されるものである。この真空エアスライダ1は、固定体2および可動体3を備えており、加圧流体により形成される流体層を介在させた状態で、固定体2に対して可動体3をD1,D2方向に相対移動可能させるように構成されている。
図1ないし図3に示したように、固定体2は、可動体3の運動を案内するためのものであり、4つの運動案内面21,22,23,24を有する角柱状に形成されている。この固定体2は、たとえばアルミナあるいは炭化珪素を主成分とするセラミックスにより形成されている。
各運動案内面21〜24は、可動体3の移動経路を規定するためのものである。これらの運動案内面21〜24は、図1のD1,D2方向に延びており、たとえば滑面に仕上げられている。各運動案内面21〜24には、第1導体層25,26,27,28が形成されている。詳細については後述するが、各第1導体層25〜28は、可動体3の端部(後述する変位体31〜35)と固定体2との間の距離の大きさを測定するために利用されるものであり、運動案内面21〜24の略全域を覆うように固定体2の軸方向に延びる帯状に形成されている。
図1に示したように、可動体3は、固定体2を外套した状態で固定体2の運動案内面21〜24に沿ってD1,D2方向に移動させられるものであり、図2ないし図4に示したように、本体部30および変位体31,32,33,34を備えている。
本体部30は、4枚の板材35,36,37,38を含んでおり、それらの板材35〜38を互いに連結することにより、固定体2を外套しうるように、矩形断面の貫通孔30Aを有する筒状に形成されている。
板材35〜38は、平面視において長矩形状を有しており、サイズの大きな水平板材35,36と、サイズの小さな垂直板材37,38を含んでいる。各板材35〜38は、エアパッド部40A,40B,40C,40D、環状排気溝50A,50B,50C,50D,51A,51B,51C,51Dおよび直線状排気溝52A,52B,52C,52Dを有しており、固定体2と同様に、たとえばアルミナあるいは炭化珪素を主成分とするセラミックスにより形成されている。また、各板材35〜38を接合する接合面には真空グリスが塗布されていることが好ましく、この接合面から流体が漏洩するのを防止することができる。
エアパッド部40A〜40Dは、供給流体の流量を制限するためのものであり、絞りとして機能するものであり、たとえばオリフィス絞り、表面絞り、あるいは多孔質絞りとして構成されている。図2に良く表れているように、エアパッド部40A〜40Dは、供給流路41A,41B,41C,41Dを有しており、これらの供給流路41A〜41Dは、垂直板材37において給気管42が接続された周回供給流路43に連通している。そのため、各エアパッド40A〜40Dからは、給気管42、周回供給流路43および供給流路41A〜41Dを流通してきた加圧流体を噴出させることができる。
環状排気溝50A〜50D,51A〜51Dは、エアパッド部40A〜40Dを介して供給された加圧流体を回収するために利用されるものであり、図2および図4から分かるようにエアパッド部40A〜40Dを囲むように形成されている。これらの環状排気溝50A〜50D,51A〜51Dは、図面上には表されていないが、排気管を介して真空チャンバ(図示略)の外部に連通しており、加圧流体を真空チャンバの外部に排気できるように構成されている。
図4および図5から分かるように、直線状排気溝52A〜52Dは、各板材35〜38を連結した状態において互いに連通させられ、本体部30の全体としては環状の排気溝を構成するものである。これらの直線状排気溝52A〜52Dは、図4に良く表れているように板材35〜38における長手方向D1,D2の端部において、幅方向に延びるように形成されている。垂直板材37,38においては、直線状排気溝52B,52Dが側縁にまで至るように形成されおり、幅方向において開放している。これに対して、水平板材35,36においては、直線状排気溝52A,52Cが側縁部を除いた部分に形成されており、端部が閉じたものとされている。図5に示したように、水平板材35の直線状排気溝52Aは、それぞれ排気流路53,54に連通している。これらの排気流路53,54は、共通流路55および排気管56を介して、真空チャンバ外に配置された真空ポンプ(図示略)に接続されている。すなわち、各直線状排気溝52A〜52Dからは、真空ポンプを駆動させることにより、排気流路53,54、共通流路55および排気管56を介して、加圧流体を真空チャンバの外部に排気できる。
図1、図3および図4に示したように、変位体31〜34は、可動体3の端部と固定体2との間の隙間を小さく維持しつつも、可動体3が固定体2と接触するのを回避するためのものであり、矩形断面を有する棒状に形成されている。これらの変位体31〜34は、板材35〜38におけるD1,D2の端部においてボルト60を介して支持されているとともに、アクチュエータ61によって板材35〜38の厚み方向に変位可能なように構成されている。
図3および図5から図7に示したように、変位体31〜34は、板材35〜38の端部において、直線状排気溝52A〜52Dに隣接して設けられた凹部39に収容された状態で、ボルト60によって板材35〜38に対して一体化されている。この状態では、図6および図7に示したように変位体31〜34は、直線状排気溝52A〜52Dに隣接した位置において、可動体3の本体部30から若干(1〜10μm程度)突出した状態で、下方端面31b,32b,33b,34bが固定体2の運動案内面21〜24(導体層25〜28の表面)に対して略平行な状態で対面させられている。すなわち、変位体31〜34を可動体3の本体部30から突出させることにより、可動体3の外部へ加圧流体が漏洩するのを抑制し、直線状排気溝52A〜52Dに対して適切に加圧流体を導くことができる。なお、直線状排気溝52A〜52Dが、可動体3の本体部30の端面より中央寄りに設けられている場合には変位体31〜34も直線状排気溝52A〜52Dの近傍に設けられればよく、さらには、直線状排気溝52A〜52Dに隣接する端面側に設けることが好ましい。
ボルト60は、ヘッド部60Aと板材35〜38の表面との間にコイルバネ62を介在させた状態で、ネジ部60Bが板材35〜38の貫通孔35A、36A,37A,38Aに挿通されている。コイルバネ62は自然状態よりも圧縮されており、貫通孔35A〜38Aはボルト60のネジ部60Bよりも大径とされている。そのため、変位体31〜34は、コイルバネ62の弾発力によってヘッド部60Aに向けた方向に付勢されているとともに、板材35〜38に対して、板材35〜38の厚み方向に相対動可能とされている。
図3および図7に示したように、各板材35〜38にはさらに、変位体31〜34を板材35〜38の厚み方向に変位させるためのアクチュエータ61が設けられている。1つの変位体31〜34に対しては、2つアクチュエータ61が担当しており、それらのアクチュエータ61は、変位体31〜34における長手方向の両端部に対して負荷を作用させるように構成されている。アクチュエータ61は、圧電素子を含むものであり、後述する制御部72(図9参照)によって伸縮させられることにより変位体31〜34に負荷を作用させ、変位体31〜34を板材35〜38に対して相対動させるように構成されている。
アクチュエータ61としては、圧電素子に限らず、超磁歪素子、電磁石などの公知の種々のものを適用してもよい
図6ないし図8に示したように、変位体31〜34と本体部30との間には、シール部材としてのパッキン63が配置されている。このパッキン63は、図面上には明確に表れされていないが、平面視において矩形枠状の形態を有するとともに、断面円形状に形成されている。このパッキン63は、ゴムなどにより弾性を有するものとされており、板材35〜38の凹部39に設けられた環状溝39Aに配置されている。この環状溝39Aは、変位体31〜34の上方端面31a,32a,33a,34aに対面するとともに、変位体31〜34の上方端面31a〜34aの縁に沿って延びている。この環状溝39Aにパッキン63を収容させた状態では、パッキン63は、板材35〜38(環状溝39A)と変位体31〜34の上方端面31a〜34aの双方に接触した状態で、それらの間に介在しているとともに、板材35〜38の貫通孔35A〜38Aの端部を囲んでいる。そのため、図8Aおよび図8Bに示したように、変位体31〜34を変位させた場合には、パッキン63は、自身が有する弾性により、変位体31〜34の変位に追従して伸縮することで、板材35〜38と変位体31〜34との間に生じる隙間を封止することができる。その結果、板材35〜38と変位体31〜34の上方端面31a〜34aとの隙間から加圧流体が真空エアスライダ1の外部に流体が漏洩するのを防止し、また、板材35〜38の貫通孔35A〜38Aから加圧流体が真空エアスライダ1の外部に漏洩するのを防止することができる。
もちろん、シール材としては、矩形枠状のパッキン63に限らず、他の形態の弾性体を使用することもできる。
図3、図4、図6および図7に示したように、変位体31〜34の端面31b,32b,33b,34bには、固定体2の第1導体層25〜28に対面させられた第2導体層31A,32A,33A,34Aが設けられている。これらの第2導体層31A〜34Aは、固定体2の第1導体層25〜28とともに、可動体3の端部と固定体2との間の距離を測定するために利用されるものであり、後述する測定部70(図9参照)を構成している。第2導体層31A〜34Aは、平面視において長矩形状に形成されており、長さ寸法が固定体2の第1導体層25〜28の幅寸法と同程度とされ、幅寸法が変位体31〜34の幅寸法と同程度とされている。
固定体2および変位体31〜34の第1導体層25〜28,第2導体層31A〜34Aは、滑面に形成するのが好ましく、その表面粗さは、たとえば最大高さRzが1μm以下となるように形成される。導体層25〜28および第2導体層31A〜34Aを滑面とすることにより、第1導体層25〜28および第2導体層31A〜34Aが粗面とし形成された場合に比べて、第1導体層25〜28および第2導体層31A〜34Aが相互に接触する可能性、すなわち固定体2に対して可動体3の端部(変位体31〜34)が接触する可能性を低減できる。また、固定体2と変位体31〜34とが接触したとしても、その事実を即座に把握することができ、さらには、固定体2と変位体31〜34との間に形成された隙間が均一となるため、加圧流体が漏洩するのを抑制することができる。すなわち、かじりなどの発生を防止するために必要な固定体2と可動体3との間の距離を小さく設定できるようになり、固定体2と可動体3との間に形成する流体層の厚みをより一層小さくすることが可能となる。
第1導体層25〜28,第2導体層31A〜34Aは研磨などにより滑面に形成してもよいが、単結晶により形成することにより滑面としてもよい。また、第1導体層25〜28,第2導体層31A〜34Aを金属により厚膜に形成することで、固定体2の運動案内面21〜24および変位体31〜34の下方端面31b〜34bにおける表面凹凸や空孔を吸収し、固定体2および変位体31〜34の平滑性を確保するようにしてもよい。例えば、固定体2、変位体31〜34がセラミックスから成る場合には、研削加工後の表面粗さは、最大高さRzが数μm〜数十μmとなるため、表面の凹凸や空孔を効果的に吸収するためには、第1導体層25〜28および第2導体層31A〜34Aの厚みは、たとえば0.1μm以上0.1mm以下に設定される。なお、表面粗さ(最大高さRz、算術平均高さRa)は、JIS B0601−2001(ISO 24287−1997に準拠)に準じて測定した値である。
第1導体層25〜28,第2導体層31A〜34Aは、これらが接触したときにかじり等が発生しにくいように、硬質膜として形成してもよい。第1導体層25〜28,第2導体層31A〜34Aの接触時におけるかじり等の不具合を低減することにより、固定体2と可動体3との間に形成する流体層の厚みをより一層小さくすることが可能となる。
第1導体層25〜28,第2導体層31A〜34Aの硬さは、たとえばビッカース硬度Hvを基準として1200以上に設定するのが好ましい。このような硬度を有する硬質膜(導体層25〜28,31A〜34A)は、たとえばTiN、TiC、サーメット、AlTiC、WCにより形成することができる。なお、ビッカース硬度Hvは、JIS R1610−2003(ISO 14705−2000に準拠)に準じて測定した値である。
第1導体層25〜28および第2導体層31A〜34Aはまた、非磁性体として形成するのが好ましい。第1導体層25〜28,第2導体層31A〜34Aを非磁性体として形成すれば、真空エアスライダ1を、たとえば走査型電子顕微鏡(SEM)、電子線(EB)描画装置、フォーカスイオンビーム(FIB)描画装置などの荷電粒子を用いる装置に適用する場合に、第1導体層25〜28,第2導体層31A〜34Aがそれらの装置の荷電粒子制御に悪影響を与えることもない。そのため、本発明に係る真空エアスライダ1は、荷電粒子を用いる装置に対して問題なく適用できる。
真空エアスライダ1は、固定体2および可動体3の他に、図9に示したように測定部70、演算部71および制御部72をさらに備えている。
測定部70は、固定体2および可動体3の第1導体層25〜28,第2導体層31A〜34Aを含んでいるとともに、第1導体層25〜28,第2導体層31A〜34Aに電位差を与えるための交流電源(図示略)をさらに含んでいる。この測定部70は、交流電源(図示略)によって、たとえば周波数が500kHz、5Vの高周波電圧を第1導体層25〜28,第2導体層31A〜34Aの間に印加する一方で、第1導体層25〜28,第2導体層31A〜34Aの間の静電容量を測定するものである。第1導体層25〜28,第2導体層31A〜34Aの間の静電容量は、第1導体層25〜28,第2導体層31A〜34Aの間の距離に相関するものであるため、第1導体層25〜28,第2導体層31A〜34Aの間の静電容量を測定することにより、第1導体層25〜28,第2導体層31A〜34Aの間の距離、ひいては変位体31〜34の下方端面31b〜34bと固定体2の運動案内面21〜24との間の距離を把握することができる。
演算部71は、測定部70において測定された静電容量に基づいて、変位体31〜34の制御量を演算するものである。すなわち、第1導体層25〜28,第2導体層31A〜34Aの間の距離(変位体31〜34の下方端面31b〜34bと固定体2の運動案内面21〜24との間の距離)が基準値からズレている場合には、そのズレ量に応じた制御量を演算するものである。より具体的には、演算部71は、変位体31〜34を変位させるためのアクチュエータ(圧電素子)61に入力する制御量を、第1導体層25〜28および第2導体層31A〜34Aの間の距離を基準値とするために必要な変位量(ズレ量)に相関させて演算する。たとえば変位体31〜34を変位させるためのアクチュエータ(圧電素子)61として圧電素子を用いる場合には、演算部71においては、変位量に対応する圧電素子の伸縮量(歪み量)を、圧電素子に印加する電圧値として演算される。
なお、演算部71の機能を測定部70に担保させることにより、演算部71を省略することもできる。
制御部72は、演算部71において演算された制御量に基づいて、変位体31〜34を変位させるものである。たとえばアクチュエータ61(圧電素子)として圧電素子を使用する場合には、圧電素子に印加する電圧を制御して圧電素子を伸縮させ、変位体31〜34を変位させる役割を果すものである。
上述の演算部71および制御部72は、たとえばCPU、RAMおよびROMを組み合わせ、ROMに格納したプログラムを、RAMを使用しつつCPUに実行させることにより構築することができ、また、演算部71および制御部72は、1つの変位体31〜34に対して個別に設けてもよく、全ての変位体31〜34について、1つの演算部71および制御部72により対応するようにしてよく、1つの変位体31〜34について演算部71を個別に設ける一方で、全ての変位体31〜34について1つの制御部72に対応するようにしてもよい。また、演算部71および制御部72は、真空エアスライダ1に設けずに、真空エアスライダ1とは別に設けてもよい。たとえば、真空エアスライダ1を組み込んで使用する装置において、その装置の演算部および制御部によって真空エアスライダ1の変位体31〜34における位置を制御するようにしてもよい。
次に、真空エアスライダ1の動作について説明する。ただし、以下においては、変位体31〜34を変位させるためのアクチュエータ61としては、圧電素子が使用されているものとする。
真空エアスライダ1では、たとえば図外のアクチュエータによって、固定体2に沿って可動体3が相対動させられる。このとき、可動体3は、固定体2との間に流体層を介在させた状態で移動させられる。
流体層は、図外のポンプを利用して、加圧流体を、給気管42、周回供給流路43および供給流路41A〜41Dを流通させて各エアパッド40A〜40Dから噴出させることにより形成される。その一方で、加圧流体は、各板材35〜38の環状排気溝50A〜50D,51A〜51D、図外の排気管を介して真空チャンバ(図示略)の外部に排気される。環状排気溝50A〜50D,51A〜51Dにおいて排気できない加圧流体については、各板材35〜38の直線状排気溝52A〜52Dによって形成される環状の排気溝を利用して排気される。この環状の排気溝(52A〜52D)の加圧流体は、排気流路53,54、共通流路55および排気管56を介して、真空チャンバ外に配置された真空ポンプ(図示略)によって吸引・排気される。
一方、測定部70においては、固定体2と可動体3の端部との間の距離が、固定体2の第1導体層25〜28と可動体3における変位体31〜34の第2導体層31A〜34Aとの間の静電容量として直接的に測定される。
また、演算部71においては、測定部70において測定される静電容量に基づいて、基準値に対する第1導体層25〜28,第2導体層31A〜34Aの間の距離(変位体31〜34の端面31b〜34bと固定体2の運動案内面21〜24との間の距離)のズレ量を把握し、そのズレ量に応じた制御量が演算される。この制御量の演算結果は、制御部72によって変位体31〜34の位置として反映される。すなわち、演算部71は制御量を印加電圧値として演算する一方で、制御部72は演算部71において演算された印加電圧値となるように測定部70の交流電源(図示略)を制御し、圧電素子61の伸縮量を制御する。
たとえば、第1導体層25〜28,第2導体層31A〜34Aの距離が基準値よりも小さい場合、すなわち変位体31〜34(可動体3の端部)が固定体2に近づき過ぎている場合には、圧電素子61に印加する電圧を小さくして圧電素子61を縮ませて固定体2から離れる方向に変位体31〜34を移動させる。それとは逆に、第1導体層25〜28,第2導体層31A〜34Aの距離が基準値よりも大きい場合、すなわち変位体31〜34(可動体3の端部)が固定体2から離れ過ぎている場合には、圧電素子61に印加する電圧を大きくして圧電素子61を伸ばして固定体2に近づく方向に変位体31〜34を移動させる。
真空エアスライダ1では、固定体2と可動体3の端部(変位体31〜34)との間の距離を、これらが対面する部分において直接測定できるように構成されているため、固定体2と可動体3の端部(変位体31〜34)との間の距離を正確に把握することができる。たとえば、固定体2と可動体3の端部(変位体31〜34)との間の距離を、それらが対面する部分以外の距離として測定した上で、この測定結果に基づいて間接的に把握する方法に比べれば、測定精度は著しく改善される。
また、正確に測定された距離に基づいて可動体3の端部(変位体31〜34)を変位させるようにすれば、固定体2と可動体3との間の距離を微小量に維持することができるようになるとともに、固定体2が可動体3に対して必要以上に近づき過ぎてしまうことを抑制することができる。これにより、固定体2に対して可動体3が接触するのを防止できるため、固定体2に可動体3が接触することに起因するかじりなどの発生を防止できる。とくに、変位体31〜34を固定体2から離れる方向に付勢した状態で支持しておくことにより、圧電素子61を縮めたときに応答性良く変位体31〜34を固定体2から退避させることができる。そのため、かじりなどの発生を防止するために必要な固定体2と可動体3との間の距離を小さく設定できるようになり、固定体2と可動体3との間に形成すべき流体層の厚みを小さくことができる。その結果、真空エアスライダ1では、固定体2に対する可動体3の姿勢精度を向上させることができ、固定体2と可動体3との間に供給すべき加圧流体の量を少なくできるようになる。そして、供給すべき加圧流体の量を少なくできれば、真空エアスライダ1の外部への加圧流体の漏洩を抑制できる。これにより、真空エアスライダ1から加圧流体を排気するための真空ポンプは、排気速度をより小さくでき消費電力も抑制できる。その結果、加圧流体を排気するためのコストを低減することが可能となる。また、静圧スライダからの加圧流体の漏洩を抑制することにより、真空チャンバ(図示略)における真空度の悪化を抑制できるために、真空チャンバの真空度を維持するための真空ポンプの排気速度、消費電力を小さくできるために、この点においても、ランニングコストを低減できるようになる。
また、固定体2に対して可動体3が接触したとしても、測定部70において測定される静電容量に基づいて、可動体3が固定体2に接触した事実を即座に把握することができる。また、変位体31〜34は、固定体2から離間する方向に付勢されているのは上述した通りである。そのため、制御部72によって変位体31〜34を退避させることにより、接触により生じる不具合を最小限に留めることができる。
その一方で、固定体2と可動体3との間の距離を適正に維持できれば、固定体2と可動体3との間に必要以上に大きな隙間が形成されるのを抑制できるために、真空エアスライダ1の外部に加圧流体が漏洩するのを抑制できる。このことは同時に、真空エアスライダ1から加圧流体を排気するためのコスト、真空チャンバ(図示略)の真空度を維持するためのコストを低減できることを意味している。
次に、本発明の第2の実施の形態について、図10ないし図13を参照して説明する。これらの図面においては、図1ないし図9を参照して先に説明した第1の実施の形態における真空エアスライダ1と同一の要素については同一の符号を付してあり、以下における重複説明は省略する。
図10ないし図13に示した真空エアスライダ1′は、変位体31′,32′,33′,34′および第1導体層25′,26′,27′,28′の構成が先に説明した静圧スライダ1(図1ないし図9参照)とは異なっている。
変位体31′〜34′は、可動体3′の端部と固定体2との間の隙間を小さく維持しつつも、可動体3が固定体2と接触するのを回避するためのものであり、伝達部材31B′,32B′,33B′,34B′および複数の圧電素子31C′,32C′,33C′,34C′を備えている。
伝達部材31B′〜34B′は、可動体3′の端部(変位体31′〜34′)と固定体2との間の隙間を調整するためのものであり、弾性変形可能な板状に形成されている。この伝達部材31B′〜34B′は、圧電素子31C′〜34C′が固定される複数の肉厚部31Ba′,32Ba′,33Ba′,34Ba′と、隣接する厚肉部31Ba′〜34Ba′の間に設けられた薄肉部31Bb′,32Bb′,33Bb′,34Bb′と、を有しており、板バネ様の弾性を有するものとされている。伝達部材31B′〜34B′は、その端部においてエポキシ樹脂などの接着剤31E′を介して固定されている(図13参照)。このような伝達部材31B′〜34B′は、たとえばジルコニア、サファイヤ、窒化珪素などの靭性に優れた材料により形成することができる。なお、接着剤31E´は圧電素子31C′〜34C′の上下面にも設けられてもよく、圧電素子31C′〜34C′と伝達部材31B′〜34B′、圧電素子31C′〜34C′と板材35〜38も接着剤31E′を介して固定されている。
複数の圧電素子31C′〜34C′は、伝達部材31B′〜34B′を弾性変形させるためのものであり、伝達部材31B′〜34B′の厚肉部31Ba′〜34Ba′にエポキシ系樹脂等の接着剤を介して固定されている。すなわち、複数の圧電素子31C′〜34C′は、伝達部材31B′〜34B′において列状に並ぶように固定されている。各圧電素子31C′〜34C′は、図外の制御部(図9参照)によって個別に伸縮可能とされている。このようにして各圧電素子31C′〜34C′を個別に伸縮可能とすることにより、伝達部材31B′〜34B′を所望の部位において変形させ、可動体3′の端部(変位体31′〜34′)と固定体2との間の隙間を調整することができる。
複数の圧電素子31C′〜34C′の周囲は、保護樹脂31D′,32D′,33D′,34D′により囲まれている。このような保護樹脂31D′〜34D′としては、圧電素子31C′〜34C′の伸縮を阻害しないように、弾性変形可能な材料、たとえばシリコン系樹脂あるいはフッ素系樹脂などを用いることができる。保護樹脂31D′〜34D′により圧電素子31C′〜34C′の周囲を囲むことにより、真空のリークを防ぐことができ、さらに圧電素子31C′〜34C′を保護することができる。
このような変位体31′〜34′は、板材35〜38の端部において、直線状排気溝52A〜52Dに隣接して設けられた凹部39に対して、エポキシ系樹脂等の接着剤を介して固定されている。この状態では、変位体31′〜34′は、直線状排気溝52A〜52Dに隣接した位置において、可動体3′の本体部30から若干(1〜10μm程度)突出した状態で、第2導体層31A″〜34B″が固定体2の運動案内面21〜24(第1導体層25′〜28′の表面)に対して略平行な状態で対面させられている。すなわち、変位体31′〜34′を可動体3′の本体部30から突出させることにより、可動体3′の外部へ加圧流体が漏洩するのを抑制し、直線状排気溝52A〜52Dに対して適切に加圧流体を導くことができる。なお、直線状排気溝52A〜52Dが、可動体3′の本体部30の端面より中央寄りに設けられている場合には変位体31′〜34′も直線状排気溝52A〜52Dの近傍に設けられればよく、さらには、直線状排気溝52A〜52Dに隣接する端面側に設けることが好ましい。
第1導体層25′〜28′は、可動体3′の端部(変位体31′〜35′)と固定体2との間の距離の大きさを測定するために利用されるものであり、複数の個別電極25A′,26A′,27A′,28A′を含んでいる。各個別電極25A′〜28A′は、圧電素子31C′〜34C′に対応させた位置において、固定体2の軸方向に延びる帯状に形成されている。
このような真空エアスライダ1′では、各個別電極25A′〜28A′と第2導体層31A〜34Aとの間の静電容量を個別に測定することにより、各圧電素子31C′〜34C′に対応する部分において、固定体2と可動体3′との間の距離を直接測定することができる。このような静電容量(距離)に関する情報は、図外の制御部(図9参照)において処理され、各圧電素子31C′〜34C′の伸縮状態が個別に制御される。各圧電素子31C′〜34C′は、弾性変形可能とされた伝達部材31B′〜34B′の厚肉部31Ba′〜34a′に固定されるため、変位体31′〜34′における複数の箇所において、個別に固定体2に対する距離が調整される。その結果、真空エアスライダ1′では、可動体3′の移動方向D1,D2に直交する直交方向において、変位体31′〜34′と固定体2との間の隙間を微調整でき、前記直交方向での隙間を一様なものとすることができる。
真空エアスライダ1′においては、第1導体層25′〜28′が複数の個別電極25A′〜28A′を含む構成に代えて、あるいは第1導体層25′〜28′が複数の個別電極25A′〜28A′を含む構成に加えて、第2導体層31A〜34Aが複数の個別電極を含む構成を採用してもよい。
また、真空エアスライダ1′では、伝達部材31B′〜34B′を、導電性を有するものとして形成し、伝達部材31B′〜34B′に対して第2導体層31A″〜34B″の機能を付与してもよい。この場合の伝達部材31B′〜34B′は、たとえば銅およびチタンなどの金属、あるいは炭化珪素、Al−TiC(アルティック:アルミナと炭化チタンの複合材料)、およびサーメットなどの導電性セラミックにより形成される。
本発明に係る静圧スライダは、上述した実施の形態には限定されず、種々に変更可能である。たとえば、固定体と可動体との間の距離を測定する手段は、これらの距離を直接測定できるものであればよいため、必ずしもスライダに造り込む必要はなく、たとえば固定体や可動体とは別体として公知の変位計を可動体に一体化させる構成を採用してもよい。この場合に使用することができる変位計としては、たとえば静電容量型変位計、渦電流型変位計、あるいは光ピックアップなどの光学的手法を利用した光学変位計を挙げることができる。
また、変位体を省略し、可動体の全体を固定体に対して変位させる構成を採用したものであってもよい。
本発明は、上述した形態の静圧スライダには限定させず、他の形態の静圧にスライダにも適用することができる。たとえば、本発明は、固定体が円柱状に形成されている一方で可動体が円筒状に形成されたもの、あるいは可動体が平板状に形成された単純浮上式の静圧スライダにも適用できる。

Claims (12)

  1. 運動案内面を有する固定体と、
    前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、
    を備えた静圧スライダにおいて、
    前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、
    前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、
    前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、
    前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子と、弾性変形可能とされた伝達部材とを備えており、
    前記複数の圧電素子は、前記伝達部材に固定されている、静圧スライダ。
  2. 運動案内面を有する固定体と、
    前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、
    を備えた静圧スライダにおいて、
    前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、
    前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、
    前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、
    前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子と、前記複数の圧電素子の周囲を囲む保護樹脂とを備えている、静圧スライダ。
  3. 運動案内面を有する固定体と、
    前記運動案内面との間に加圧流体により形成される静圧流体層を介在させた状態で、前記運動案内面に沿って前記固定体に対して相対移動可能とされた可動体と、
    を備えた静圧スライダにおいて、
    前記運動案内面と、前記可動体の端部における前記運動案内面に対する対向面との間の距離を直接測定するための測定手段をさらに備えており、
    前記可動体は、可動体本体と、前記可動体の移動方向に直交する方向に、前記可動体本体に対して相対的に変位可能であり、かつ、その端面が前記対向面を構成する変位体と、を備えており、
    前記測定手段での測定結果に基づいて、前記運動案内面と前記対向面との間の距離を調整するために、前記変位体の位置を制御する制御手段をさらに備えており、
    前記変位体は、前記可動体の移動方向に直交する方向に並んだ複数の圧電素子を備えており、
    前記測定手段は、前記運動案内面に形成された第1導体層と、前記対向面に形成された第2導体層と、を含んでおり、
    前記第1および第2導体層のうちの少なくとも一方は、前記複数の圧電素子に対応した位置に形成された複数の個別電極を含んでおり、
    前記測定手段は、前記複数の個別電極を利用して、前記第1および第2導体層の間の静電容量を測定するように構成されている、静圧スライダ。
  4. 前記測定手段は、前記運動案内面と前記対向面との間の静電容量を測定するように構成されている、請求項1〜3のいずれか1項に記載の静圧スライダ。
  5. 前記測定手段は、前記運動案内面に形成された第1導体層と、前記対向面に形成された第2導体層と、を含んでおり、前記第1および第2導体層を利用して、これらの導体層の間の静電容量を測定するように構成されている、請求項に記載の静圧スライダ。
  6. 前記第1および第2導体層の表面は、最大高さRzが1μm以下の滑面に形成されている、請求項に記載の静圧スライダ。
  7. 前記第1および第2導体層は、金属または単結晶により形成されている、請求項に記載の静圧スライダ。
  8. 前記第1および第2導体層は、金属により厚膜に形成されている、請求項に記載の静圧スライダ。
  9. 前記第1および第2導体層の厚みは、0.1μm以上0.1mm以下である、請求項に記載の静圧スライダ。
  10. 前記第1および第2の導体層は、非磁性材料により形成されている、請求項に記載の静圧スライダ。
  11. 前記可動体本体は、前記加圧流体を外部に排気するための排気溝を備えており、
    前記変位体は、前記排気溝に隣接する端部側に備えられている、請求項1〜10のいずれか1項に記載の静圧スライダ。
  12. 前記伝達部材は、前記圧電素子が固定される複数の厚肉部と、隣接する厚肉部の間に設けられた薄肉部と、を有している、請求項に記載の静圧スライダ。
JP2007550232A 2005-12-15 2006-12-15 静圧スライダ Expired - Fee Related JP5149627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007550232A JP5149627B2 (ja) 2005-12-15 2006-12-15 静圧スライダ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005362396 2005-12-15
JP2005362396 2005-12-15
PCT/JP2006/325020 WO2007069713A1 (ja) 2005-12-15 2006-12-15 静圧スライダ
JP2007550232A JP5149627B2 (ja) 2005-12-15 2006-12-15 静圧スライダ

Publications (2)

Publication Number Publication Date
JPWO2007069713A1 JPWO2007069713A1 (ja) 2009-05-28
JP5149627B2 true JP5149627B2 (ja) 2013-02-20

Family

ID=38163015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007550232A Expired - Fee Related JP5149627B2 (ja) 2005-12-15 2006-12-15 静圧スライダ

Country Status (5)

Country Link
US (1) US20090297075A1 (ja)
EP (1) EP1975431A4 (ja)
JP (1) JP5149627B2 (ja)
KR (1) KR100976994B1 (ja)
WO (1) WO2007069713A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769336B (zh) * 2009-01-05 2013-02-13 鸿富锦精密工业(深圳)有限公司 空气导轨
WO2010109574A1 (ja) * 2009-03-23 2010-09-30 株式会社アドバンテスト ステージ装置及びステージクリーニング方法
DE102009041801A1 (de) * 2009-09-18 2011-03-24 Festo Ag & Co. Kg Luftlagereinrichtung
DE112010005364T5 (de) * 2010-03-10 2013-03-28 Kuroda Precision Industries Ltd. Parallelschiebevorrichtung mit einer Druckluftlinearführung, Steuerverfahren dafür und Messvorrichtung, welche diese verwendet
TWI458586B (zh) * 2012-08-21 2014-11-01 Ind Tech Res Inst 複合式可變流阻液靜壓滑塊模組
FR2996737B1 (fr) * 2012-10-12 2015-08-07 Commissariat Energie Atomique Recipient pour le stockage d'un fluide destine a interagir avec un utilisateur
DE102013102924B3 (de) * 2013-03-21 2014-04-24 AeroLas GmbH Aerostatische Lager- Lasertechnik Gasdrucklagerelement und Verfahren zur Herstellung eines Gasdrucklagerelements sowie Gasdrucklager mit einem solchen Gasdrucklagerelement
DE102013216175A1 (de) * 2013-08-14 2015-02-19 Hyprostatik Schönfeld Gmbh Führung und Führungselement
CN104806633B (zh) * 2015-04-13 2017-12-15 河南科技大学 一种分体式静压滑动轴承滑移装置
US10364842B2 (en) 2016-10-04 2019-07-30 New Way Machine Components, Inc. Long travel air bearing linear stage
TWI642858B (zh) * 2017-09-06 2018-12-01 友達光電股份有限公司 氣浮軸承模組
CN115401471A (zh) * 2018-06-22 2022-11-29 中国机械总院集团海西(福建)分院有限公司 一种四腔薄膜反馈式静压导轨滑块
CN111486176B (zh) * 2019-01-25 2021-08-31 上银科技股份有限公司 液静压线性滑轨
US10704598B1 (en) * 2019-03-05 2020-07-07 Hiwin Technologies Corp. Hydrostatic linear guideway
CN111649067B (zh) * 2020-05-29 2021-07-20 北京理工大学 一种气体轴承装配检测装置、方法和系统
JP7465243B2 (ja) 2021-06-28 2024-04-10 日本電子株式会社 ステージ装置および電子ビーム描画装置
CN113944857B (zh) * 2021-09-13 2023-09-12 深圳市乐其网络科技有限公司 摄影固定夹和摄影设备
KR102651827B1 (ko) * 2023-09-26 2024-03-27 주식회사 태경정반 양압영역과 음압영역이 구비된 에어베어링 방식의 리니어 스테이지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609621A (ja) * 1983-06-28 1985-01-18 Miyoutoku:Kk エア−スライド及び静止用支持台
JPH04145220A (ja) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd 移動体支持装置
JPH04357321A (ja) * 1991-06-03 1992-12-10 Toshiba Corp 静圧流体支持装置
JPH0650339A (ja) * 1992-04-13 1994-02-22 Tokyo Seimitsu Co Ltd 直動式エアベアリングのロック機構
JPH07103236A (ja) * 1993-10-01 1995-04-18 Koyo Seiko Co Ltd 静圧軸受装置
JPH07305724A (ja) * 1994-05-10 1995-11-21 Canon Inc 能動静圧軸受装置
JP2002349569A (ja) * 2001-05-25 2002-12-04 Canon Inc 静圧軸受装置及びそれを用いたステージ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238308A (en) * 1992-05-04 1993-08-24 Rockwell International Corporation Adjustable gap hydrostatic element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609621A (ja) * 1983-06-28 1985-01-18 Miyoutoku:Kk エア−スライド及び静止用支持台
JPH04145220A (ja) * 1990-10-08 1992-05-19 Toshiba Ceramics Co Ltd 移動体支持装置
JPH04357321A (ja) * 1991-06-03 1992-12-10 Toshiba Corp 静圧流体支持装置
JPH0650339A (ja) * 1992-04-13 1994-02-22 Tokyo Seimitsu Co Ltd 直動式エアベアリングのロック機構
JPH07103236A (ja) * 1993-10-01 1995-04-18 Koyo Seiko Co Ltd 静圧軸受装置
JPH07305724A (ja) * 1994-05-10 1995-11-21 Canon Inc 能動静圧軸受装置
JP2002349569A (ja) * 2001-05-25 2002-12-04 Canon Inc 静圧軸受装置及びそれを用いたステージ装置

Also Published As

Publication number Publication date
EP1975431A4 (en) 2010-01-20
US20090297075A1 (en) 2009-12-03
JPWO2007069713A1 (ja) 2009-05-28
KR100976994B1 (ko) 2010-08-19
EP1975431A1 (en) 2008-10-01
KR20080078061A (ko) 2008-08-26
WO2007069713A1 (ja) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5149627B2 (ja) 静圧スライダ
JP5178507B2 (ja) 静圧スライダ、これを備えた搬送装置および処理装置
US20040211285A1 (en) Multiple degree of freedom substrate manipulator
KR101267442B1 (ko) 정압 베어링 장치 및 정압 베어링 장치를 구비한 스테이지
JP2004144196A (ja) 精密位置決め装置及びこれを用いた加工機
US8530857B2 (en) Stage device
JP5084580B2 (ja) 移動装置
US20180023624A1 (en) Static pressure gas bearing
CN109211171B (zh) 门式移动装置和三维测量仪
JP2021036223A (ja) 厚さ測定装置
US10663273B2 (en) Profile measuring machine and movement mechanism
TWI522543B (zh) Platform device and platform control system
EP3921598B1 (en) Positioning system for positioning an object
JP2007146995A (ja) 静圧スライダ
US10962053B2 (en) Air bearing
JP2005221305A (ja) スロットダイ測定装置
WO2023042741A1 (ja) 基板塗布装置および基板塗布方法
KR102004015B1 (ko) 직동 부상 장치
JP2013142433A (ja) すべり案内装置
JP2002110523A (ja) 露光装置
JP2003343561A (ja) 直線案内装置
JPS61278913A (ja) 磁気浮上式位置決め装置
JP2020131108A (ja) 両面塗布装置
Heywang et al. Piezoelectric Positioning
JPH084767A (ja) スラスト軸受

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees