JP5144069B2 - 超臨界流体による処理装置 - Google Patents

超臨界流体による処理装置 Download PDF

Info

Publication number
JP5144069B2
JP5144069B2 JP2006348869A JP2006348869A JP5144069B2 JP 5144069 B2 JP5144069 B2 JP 5144069B2 JP 2006348869 A JP2006348869 A JP 2006348869A JP 2006348869 A JP2006348869 A JP 2006348869A JP 5144069 B2 JP5144069 B2 JP 5144069B2
Authority
JP
Japan
Prior art keywords
fluid
compression chamber
piston
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006348869A
Other languages
English (en)
Other versions
JP2008155159A (ja
Inventor
太郎 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2006348869A priority Critical patent/JP5144069B2/ja
Publication of JP2008155159A publication Critical patent/JP2008155159A/ja
Application granted granted Critical
Publication of JP5144069B2 publication Critical patent/JP5144069B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

この発明は、超臨界流体により洗浄、抽出、反応等の所定の処理を行う処理装置に関するものである。
物質には臨界点と呼ばれる各物質に固有の温度、圧力があり、この臨界点よりも高温、高圧の状態は超臨界状態と呼ばれていて、この状態において物質は気体と液体の性質を併せ持つ超臨界流体となる。超臨界流体は、表面張力がなく、微細な所にも入り込む拡散性(気体の性質)と、物質を容易に溶かし込む溶解性(液体の性質)を併せ持っていて、温度、圧力を変えることによって前記物性を連続的に変化させることができる特長を有している。
近年、この特長を生かし、超臨界流体を利用して、洗浄(精密機械部品の洗浄、半導体におけるレジスト剥離等)、抽出(カフェイン、香料等)、反応(有機物質の分解等)などの処理を行うことが考えられており、そのための装置も開発されている。
例えば、超臨界流体を利用した反応装置として、シリンダとピストンを備えた反応装置が知られている(例えば、特許文献1、特許文献2参照)。この反応装置では、シリンダ内に水蒸気と被反応物質を導入し、ピストンによって前記圧縮室内の水蒸気を圧縮することにより超臨界水として前記被反応物質と反応させ、その後、前記ピストンを逆方向へ移動して超臨界水の温度および圧力を下げることにより水蒸気に戻し、前記被反応物質の生成物が含まれた水蒸気を前記シリンダから取り出している。
特開2005−66484号公報 特開2002−263465号公報
しかしながら、前記従来の装置には以下のような課題があった。
水や二酸化炭素を超臨界状態にするには加圧とともに加熱が必要であり、また、処理後には減圧とともに降温が必要である。そして、加熱のためには予熱器が必要であり、降温のためには冷却器が必要であり、システムが複雑になった。
また、超臨界流体として二酸化炭素を利用した従来の技術で固形物を扱う場合は、固形物の取り出し時に、処理器を開放するため、取出しの度に、処理器内や処理器に連結されている加熱器や冷却器内の二酸化炭素を失うこととなる。
そこで、この発明は、構成が簡単で、超臨界流体の再利用も容易に行うことができる超臨界流体による処理装置を提供するものである。
この発明に係る超臨界流体による処理装置では、上記課題を解決するために以下の手段を採用した。
請求項1に係る発明は、シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、前記ピストンを駆動するアクチュエータと、前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、前記流体通路における流体の流通を制御する流体制御手段と、を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、前記ピストンは、該ピストンの前端に前記固体の処理対象物を着脱可能にする対象物着脱手段を備え、前記処理器は複数備えられ、単一の前記アクチュエータによって前記複数の処理器の各ピストンを駆動することを特徴とする超臨界流体による処理装置である。
このように構成することにより、ピストンを駆動し圧縮室内の流体を圧縮することによって流体を加温するので、予熱器が不要であり、システム構成が簡単になる。
処理後に、圧縮室の流体を該圧縮室の圧力さらにはピストン移動によりにより蓄圧器に返送するので、返送のための加圧手段(ポンプなど)が不要であり、減圧によって流体の温度を下げるためシステム構成が簡単になる。また、加熱器や冷却器を省略し、さらにピストンを移動させてから対象物を取出すことにより、処理器内のデッドボリュームが最小化されるので、超臨界流体を容易に再利用することが可能になり、廃棄される流体を減らすことができる。
そして、1つのアクチュエータで複数の処理器を作動することが可能になる。
請求項に係る発明は、請求項に記載の発明において、前記アクチュエータは、両端に作動部を有し往復運動を行う作動軸を備え、前記作動軸の各作動部に前記処理器のピストンが連結されていることを特徴とする。
このように構成することにより、2つの処理器を連動して操作することが可能になる。
請求項3に係る発明は、シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、前記ピストンを駆動するアクチュエータと、前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、前記流体通路における流体の流通を制御する流体制御手段と、を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、前記シリンダは開口が設けられたシリンダ本体と前記シリンダ本体の開口を閉塞するシリンダヘッドを含み、前記シリンダヘッドを前記シリンダ本体の開口から離反して、前記開口を介して前記固体の処理対象物を前記ピストンに対して着脱することを特徴とする。
このように構成することにより、開口を介して処理対象物をピストンに容易に着脱する
ことができる。
請求項4に係る発明は、シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、前記ピストンを駆動するアクチュエータと、前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、前記流体通路における流体の流通を制御する流体制御手段と、を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、前記シリンダには、該シリンダに対して前記固体の処理対象物を出し入れするためのバルブが設けられている。
このように構成することにより、バルブを介して処理対象物をシリンダに容易に出し入
れすることができる。
請求項1に係る発明によれば、処理装置の構成が簡単になる。また、超臨界流体を容易
に再利用することができ、流体の廃棄量を減らすことができる。そして、1つのアクチュエータで複数の処理器を作動することが可能になるので、処理効率を高めることができる。
請求項に係る発明によれば、2つの処理器を連動して操作することができるので、処理効率を高めることができる。
請求項に係る発明によれば、開口を介して処理対象物をピストンに容易に着脱することができる。
請求項に係る発明によれば、バルブを介して処理対象物をシリンダに容易に出し入れすることができる。
以下、この発明に係る超臨界流体による処理装置(以下、処理装置と略す)の実施例を図1から図15の図面を参照して説明する。
初めに、処理装置の構成を説明する。図1に示すように、この実施例における処理装置1は、2つの処理器10A,10B(以下、区別する必要がないときは処理器10と記す)と、処理器10A,10Bを駆動する油圧アクチュエータ30、超臨界流体にされる流体としての二酸化炭素(CO2)を高圧液体で貯蔵するボンベ60と、ガス化された二酸化炭素を所定の圧力に保持し貯蔵する蓄圧器40と、を主要構成として備えている。
処理器10は、シリンダ11と、シリンダ11内を摺動するピストン12とを備え、シリンダ11内においてシリンダ11とピストン12によって囲まれた空間が圧縮室13となっていて、図2に示すようにピストン12をシリンダ11の軸方向へ下死点から上死点側へ移動させることにより圧縮室13内の流体を圧縮することができる。また、シリンダ11は、シリンダ本体11aからシリンダヘッド11bを離反させることができるようになっており、シリンダヘッド11bは、通常時は図2において実線で示す定位置に配置されてシリンダ本体11aを密閉閉塞し、処理対象物Mを出し入れするときだけ図2において二点鎖線で示すようにシリンダ本体11aから離反させてシリンダ本体11aの先端を開口させる。シリンダヘッド11bは油圧等により自動開閉できることが好ましい。
ピストン12の先端面には、処理対象物Mを着脱することができるように取付具(対象物着脱手段)14が設けられている。また、シリンダ11とピストン12には、圧縮室13の温度調節を行うための温度調節器15,16が設けられており、温度調節器15,16は制御装置50によって制御される。なお、温度調節器15,16としては、例えば、電気ヒータや、水などの熱媒が流通するジャケット式などが採用可能である。
また、シリンダ11には、圧縮室13と蓄圧器40とを連通可能にする流体通路17と、圧縮室13と大気とを連通可能にするブロー通路18が接続されている。ブロー通路18にはブロー弁(大気連通手段)19が設けられており、ブロー弁19は制御装置50によって開閉制御される。さらに、シリンダ11には、圧縮室13内の温度を検出するための温度センサ(温度検出手段)51が設けられており、流体通路17には、圧縮室13内の圧力を検出するための圧力センサ(圧力検出手段)52が設けられていて、これらセンサ51,52は検出値に応じた電気信号を制御装置50に出力する。
処理器10A,10Bの各ピストン12は油圧アクチュエータ30の作動軸32に連結されている。
油圧アクチュエータ30は、シリンダ31と、シリンダ31を貫通し軸方向へ移動可能な作動軸32とを備え、作動軸32の中央に設けられたピストン部33がシリンダ31内を2つの油室34a,34bに区画し、一方の油室に作動油を供給し、他方の油室から作動油を排出することにより、ピストン部33を軸方向へ摺動させ、これにより作動軸32を往復直線運動させることができるように構成されている。そして、作動軸32の両端がそれぞれ作動部35になっていて、各作動部35に処理器10A,10Bのピストン12が連結されている。
したがって、この実施例の処理装置では、1つの油圧アクチュエータ30によって2つの処理器10A,10Bを連動して作動させることができる。ただし、油圧アクチュエータ30の作動軸32を図1において左方へ移動させたときには、処理器10Aにおいては圧縮室13の容積を縮小する方向へピストン12が移動することになるが、処理器10Bにおいては圧縮室13の容積を拡大する方向へピストン12が移動することになる。逆に、油圧アクチュエータ30の作動軸32を図1において右方へ移動させたときには、処理器10Aにおいては圧縮室13の容積を拡大する方向へピストン12が移動することになり、処理器10Bにおいては圧縮室13の容積を縮小する方向へピストン12が移動することになる。
シリンダ31の油室34a,34bは、流路切替弁38を備えた油路36によって電動油圧ポンプ37に接続されており、流路切替弁38を切り換えることにより、油室34aと油室34bのいずれか一方の油室の作動油を電動油圧ポンプ37のサクションに供給し、電動油圧ポンプ37によって昇圧された作動油を他方の油室に供給することが可能である。流路切替弁38と電動油圧ポンプ37は制御装置50によって制御される。
圧縮室13と蓄圧器40とを接続する流体通路17には、吸排気弁20と絞り弁21が設けられている。絞り弁21は吸排気弁20よりも蓄圧器40に近い部位に配置されており、予め所定の開度に調整されて常時開状態に保持される。吸排気弁20は制御装置50によって開閉制御される。前述した圧力センサ52は吸排気弁20よりもシリンダ11に近い部位に配置されている。
また、流体通路17は絞り弁21よりも蓄圧器40に近い部位において供給路22と帰還路23に分岐され、それぞれ蓄圧器40に接続されている。供給路22にはフィルター24と逆止弁25aが設けられており、帰還路23にはフィルター24と逆止弁25bが設けられている。
フィルター24は流体である二酸化炭素ガスに混入している異物を除去するものであり、例えば、濾過膜、燒結金属、活性炭、シリカゲル、ゼオライト等の単独、あるいは複数の組み合わせで構成することができる。なお、供給路22と帰還路23に設けられたフィルター24は同一の構成からなる。
供給路22に設けられた逆止弁25aは、流体が蓄圧器40からシリンダ11へ向かって流通するのを許可し、シリンダ11から蓄圧器40へ向かって流通するのを阻止する。これに対し、帰還路23に設けられた逆止弁25bは、流体がシリンダ11から蓄圧器40へ向かって流通するのを許可し、蓄圧器40からシリンダ11へ向かって流通するのを阻止する。この実施例において、吸排気弁20と逆止弁25a,25bは、流体通路17における流体の流通を制御する流体制御手段を構成する。
蓄圧器40には、蓄圧器40内の二酸化炭素を管理する管理器41が取り付けられている。二酸化炭素の管理とは、具体的にはCO濃度、粒子数もしくは有機物濃度を測定・監視することである。
ボンベ60と蓄圧器40は、減圧弁43を備えた供給通路42によって接続されており、減圧弁43の上流および下流に圧力計44a,44bが設けられている。ボンベ60内に貯蔵された高圧液体の二酸化炭素は、減圧弁43で減圧されて二酸化炭素ガスとなり蓄圧器40に供給され、減圧弁43によって蓄圧器40内は常時所定の圧力(例えば、0.9MPa)に保持される。
次に、この処理装置1を用いて処理対象物であるシリコンウエハーを洗浄処理する場合を例にして、処理装置1の作用を説明する。前述したようにこの実施例の処理装置1では、1つの油圧アクチュエータ30によって2つの処理器10A,10Bを連動して作動させている。図3は2つの処理器10A,10Bのタイムスケジュールであり、図中A系とは処理器10Aに対応し、B系とは処理器10Bに対応する。
図3のタイムスケジュールから明らかなように、一連の工程は、時間的なずれがあるだけで、処理器10A,10Bとも同じである。
以下、図4〜図14を参照して、処理器10A,10Bの工程について順番に説明する。なお、各工程の内容は処理器10A,10Bとも同じであるので、各工程の内容は処理器10Aにおいて説明し、処理器10Bについては同時期にどの工程を行っているかを記するに留める。なお、図4〜図14において、ブロー弁19と吸排気弁20は白抜き表示が開状態を示し、黒塗り表示が閉状態を示している。また、対象物設置工程では、実際には前述したように処理器10A,10Bのシリンダヘッド11bはシリンダ本体11aから離脱して行うのであるが、図ではこれを省略している。また、蓄圧器40には常に、減圧弁43により所定圧力(例えば0.9MPa)に調整された二酸化炭素ガスが充填されているものとする。
まず、ステップ1では、図4に示すように、A系のブロー弁19を開き、吸排気弁20を閉じて、処理器10Aのピストン12を上死点に移動し、圧縮室13のデッドスペースを最小にする。そして、処理器10Aのシリンダヘッド11bをシリンダ本体11aから離反させることによりシリンダ本体11aの先端を開口させ、ここからシリコンウエハーMをシリンダ本体11a内に挿入して、取付具14によりピストン12の先端に取り付ける(A系:対象物設置工程)。シリコンウエハーMの取り付け完了後、処理器10Aのシリンダヘッド11bを定位置に戻してシリンダ本体11aを閉塞する。この間、B系はブロー弁19を開き、吸排気弁20を閉じて待機させる。
次に、ステップ2に進み、図5に示すように、A系のブロー弁19と吸排気弁20を共に開き、蓄圧器40に貯蔵されている二酸化炭素ガスを、フィルタ24、逆止弁25a、流体通路17、絞り弁21、吸排気弁20を介して処理器10Aの圧縮室13に供給する。これにより、圧縮室13内に残留している空気をブロー弁19から完全に排出し、二酸化炭素ガスに置換することができる(A系:COパージ工程)。このときB系は従前の待機状態を継続する。
次に、ステップ3に進み、図6に示すように、A系のブロー弁19を閉じ、処理器10Aの圧縮室13内の二酸化炭素ガスの圧力が蓄圧器40の内圧(0.9MPa)と同一圧力になるように二酸化炭素ガスを導入しながら、油圧アクチュエータ30を作動して処理器10Aのピストン12を下死点まで移動する(A系:CO圧入工程)。このときB系は、処理器10Aのピストン12の移動に伴って処理器10Bのピストン12が上死点に移動するが、それ以外は従前の待機状態を継続する。
次に、ステップ4に進む。ステップ4ではA系についてはCO圧入工程を継続し、B系は対象物設置工程に移行する(図6参照)。
次に、ステップ5に進む。ステップ5では、図7に示すように、A系については前記CO圧入工程を継続し、B系はCOパージ工程に移行する。この時点で、処理器10Aの圧縮室13内の二酸化炭素ガスの圧力は0.9MPaに保持されており、二酸化炭素ガスの温度は室温(常温)である。
次に、ステップ6に進み、図8に示すように、A系のブロー弁19と吸排気弁20を共に閉じ、油圧アクチュエータ30を作動して処理器10Aのピストン12を上死点に接近する方向へ移動して、処理器10Aの圧縮室13内の二酸化炭素ガスを圧縮し、予め設定した所定圧力(例えば、20MPa)、所定温度(例えば、80゜C)の超臨界状態とすることによって、二酸化炭素を超臨界流体にする(A系:加圧工程)。このときに、処理器10Aに設けられた温度センサ51と圧力センサ52によって圧縮室13内の温度と圧力を検出し、その検出結果に基づいて、圧縮室13内の流体温度が圧縮熱によって前記所定温度に加温されるようにピストン12の移動速度(圧縮速度)を制御する。このピストン12の移動速度の制御は、制御装置50が電動油圧ポンプ37の回転数を制御することによって行うことができる。そして、圧縮室13内の圧力が前記所定圧力となったときに、ピストン12の移動を停止する。この実施例において、電動油圧ポンプ37と制御装置50はピストン制御手段を構成する。
なお、理論的には、二酸化炭素(γ=4/3)の場合には、断熱圧縮では、圧縮前のガス温度T1=20゜C、ガス圧力P1=0.9MPaを、圧縮してガス圧力P2=20MPaとすると、圧縮後のガス温度はT2=362゜Cとなり、このときの圧縮比(圧縮前のガス体積V1/圧縮後のガス体積V2)は約10倍となる。同じ条件で等温圧縮では、圧縮比は約22倍となる。ここで、例えば、圧縮室13の内径をID=330mm、圧縮前における圧縮室13の長さL=500mmとすると、圧縮熱のみでガス温度を設定温度まで加温する場合には、その設定温度に応じて、圧縮後の圧縮室13の長さは50〜23mmとなる。
なお、圧縮室13内が過大な圧力となるのを防止するために、圧縮室13内が前記所定圧力以上となった場合には、吸排気弁20を開いて圧縮室13内の圧力を蓄圧器40に逃がすようにしてもよいし、ブロー弁19を開いて大気に逃がすようにしてもよい。あるいは、図示を省略するがシリンダ11に安全弁を設けておき、前記所定圧力を越えたときに余分な圧力を安全弁から大気に逃がすようにしてもよい。あるいは、シリンダ11に位置センサを設けておき、この位置センサによってピストン12が上死点に達したのを検出したときにピストン12を停止させるようにしてもよい。
また、圧縮室13内の二酸化炭素ガスを圧縮する際の圧縮速度が予め決められていて、圧縮熱だけで温度を管理することが困難な場合には、処理器10Aに設けられている温度調節器15,16を制御することにより所望の温度にすることができる。
また、圧縮室13内を所定時間の間、前記所定の超臨界状態に保持するときにも、温度調節器15,16を制御することにより圧縮室13内の超臨界流体の温度を所定温度に保持することができる。
そして、処理器10Aの圧縮室13内を超臨界状態に所定時間維持することで、圧縮室13内の超臨界流体によりシリコンウエハーMの洗浄が行われる。このときB系はCO圧入工程に移行する。また、このときに必要に応じて、処理器10Aの圧縮室13内の超臨界状態を保持しつつ、油圧アクチュエータ30により処理器10Aのピストン12を往復動させ、圧縮室13内の超臨界流体に圧力振動を加えて、洗浄効果を高めるようにしてもよい。
次に、ステップ7に進み、図9に示すように、吸排気弁20を開き、処理器10Aの圧縮室13内の二酸化炭素ガスをそのガス圧力によって、蓄圧器40に戻す。詳述すると、処理器10Aの圧縮室13内の二酸化炭素ガスはそのガス圧力によって、吸排気弁20、流体通路17、絞り弁21、逆止弁25b、フィルター24を通って、蓄圧器40へ移送される。なお、ステップ6において圧縮室13内で超臨界流体とされていた二酸化炭素は、ステップ6において吸排気弁20を開くと同時に圧力低下するので超臨界状態から脱し、二酸化炭素ガスとなる。特にこの実施例では、流体通路17における吸排気弁20と逆止弁25bとの間に絞り弁21が設けられているので、フィルター24に流入する前の段階で二酸化炭素ガスを確実に超臨界状態から解除することができる。この後さらに油圧アクチュエータ30を作動して処理器10Aのピストン12を上死点まで移動することにより、二酸化炭素ガスの蓄圧器40への移送を推進し、圧縮室13内に残存する二酸化炭素ガス量を最小限にする(A系:CO返送工程)。
二酸化炭素ガスは圧縮室13から蓄圧器40に戻される際にフィルター24を通過するので、シリコンウエハーMを洗浄したときなどに二酸化炭素ガスに混入した異物等をフィルター24で捕捉することができ、蓄圧器40に異物等が流入するのを防止することができる。したがって、蓄圧器40内の二酸化炭素ガスの純度低下を防止することができる。
このときB系はCO圧入工程を継続する。
次に、ステップ8に進み、図10に示すように、A系の吸排気弁20を閉じ、ブロー弁19を開いて、圧縮室13内に残存する二酸化炭素ガスをそのガス残圧によってブロー弁19から排出し、圧縮室13の圧力を大気圧にする(A系:COブロー工程)。このときB系はCO圧入工程を継続する。
次に、ステップ9に進む。ステップ9では、A系は対象物設置工程に移行し、B系はCO圧入工程を継続する(図10参照)。
次に、ステップ10に進む。ステップ10では、図11に示すように、A系はCOパージ工程に移行し、B系はCO圧入工程を継続する。
次に、ステップ11に進む。ステップ11では、図12に示すように、A系はCO圧入工程に移行し、B系は加圧工程に移行する。
次に、ステップ12に進む。ステップ12では、図13に示すように、A系はCO圧入工程を継続し、B系はCO返送工程に移行する。
次に、ステップ13に進む。ステップ13では、図14に示すように、A系はCO圧入工程を継続し、B系はCOブロー工程に移行する。
このあと、再びステップ4に戻り(図6参照)、ステップ4〜13の工程を繰り返す。
なお、図1に示すように、吸排気弁20よりも処理器10A寄りの流体通路17に、所定の添加剤(例えば、界面活性剤やアルコールなど)を添加する添加手段を予め接続しておき、CO圧入工程のときに必要に応じて前記添加剤を二酸化炭素ガスともに圧縮室13へ供給してもよい。このようにすると、加圧工程のときに洗浄効果を高めることができる。
以上説明するように、この実施例の処理装置1によれば、ピストン12を駆動し圧縮室13内の二酸化炭素ガスを圧縮したときの圧縮熱によって二酸化炭素ガスを加温するので、予熱器が不要であり、システム構成が簡単になる。
また、シリコンウエハーMの洗浄後に、圧縮室13の二酸化炭素ガスをそのガス圧力により蓄圧器40に返送するので、返送のための加圧手段(ポンプなど)が不要であり、システム構成が簡単になる。また、超臨界流体の素である二酸化炭素ガスを容易に再利用することが可能になり、二酸化炭素ガスの廃棄量を低減することができ、経済的である。
また、この実施例では処理対象物が固体のシリコンウエハーMであるので、処理対象物と二酸化炭素ガスとの分離が容易にでき、洗浄後に圧縮室13内の二酸化炭素ガスのみを容易に蓄圧器40に返送することができる。
また、この実施例では、流体を二酸化炭素としているので、臨界温度、臨界圧力が比較的に低く、そのため操作温度、操作圧力を比較的に低くでき、設計温度、設計圧力を比較的に低く設定することができるので、経済的な装置設計が可能である。
また、1つの油圧アクチュエータ30で2つの処理器10A,10Bを連動して操作することができるので、処理効率が極めて高い。
〔他の実施例〕
前述した実施例では、処理対象物Mを出し入れするためにシリンダヘッド11bをシリンダ本体11aから離反することができるようにしたが、シリンダ11に対する処理対象物Mの出し入れ方法はこれに限るものではない。
例えば、シリンダヘッド11bとシリンダ本体11aとを分離不能とし、シリンダ本体11aに処理対象物Mを出し入れするための開口を設けてもよい。
あるいは、図15に示すように、シリンダ11において圧縮室13に面して径方向に対向する位置に投入通路71Aと排出通路71Bを設け、投入通路71Aに投入弁72Aを設け、排出通路71Bに排出弁72Bを設け、例えば、投入弁72Aを開き,投入弁72Aを介して、処理対象物Mが挿入された試料ホルダ73を圧縮室13内に挿入し、挿入後に投入弁72Aと排出弁72Bを閉じて前述実施例と同様に所定の処理(洗浄等)を行った後、投入弁72Aと排出弁72Bを開き、排出弁72Bを介して圧縮室13内の試料ホルダ73を取り出すとともに、投入弁72Aを介して、新たな処理対象物Mが挿入された試料ホルダ73を圧縮室13内に挿入するようにしてもよい。
また、処理器10を2つ連結せず、単一の処理器10で構成した場合には、シリンダ11の下死点側の一端を開口させておき、この開口からピストン12をシリンダ11から取り外して、シリンダ11内に処理対象物Mを挿入し、あるいは、ピストン12に処理対象物Mを取り付け、その後、再びピストン12をシリンダ11に挿入してもよい。この場合には、シリンダ11の前記開口側端部を開口端に進むにしたがって拡径するテーパー状に形成しておくと、ピストン12をシリンダ11に挿入し易くなる。また、シリンダ11はストレートに形成しておき、ピストン12の先端側を先端に進むにしたがって縮径させても、同様の効果がある。
また、処理器10A,10Bの圧縮室13に通じるドレン弁を設けておくと、圧縮室13内の残留物を排出することができて便利である。
前述した実施例では、浄化手段としてフィルターを用いたが、活性炭、フィルター、有機溶剤槽、気液分離器、あるいはこれらを組み合わせて構成することも可能である。
また、実施例ではピストンを駆動するアクチュエータを油圧アクチュエータとしているが、電動式アクチュエータなど他の駆動方式のアクチュエータであってもよい。
また、複数の処理器を連動させる手段として、内燃機関のようにクランクシャフトに連結された複数のピストンロッドの先に処理器のピストンを設けるように構成してもよい。
また、処理装置1により行われる処理対象物に対する処理は、洗浄に限るものではなく、抽出、反応等であってもよい。
流体は二酸化炭素に限るものではなく、アンモニアやプロパンなどを使うことも可能である。
この発明に係る超臨界流体による処理装置の一実施例における構成図である。 前記実施例における処理器の拡大図である。 前記実施例における処理装置のタイムスケジュールである。 ステップ1を説明する図である。 ステップ2を説明する図である。 ステップ3,4を説明する図である。 ステップ5を説明する図である。 ステップ6を説明する図である。 ステップ7を説明する図である。 ステップ8,9を説明する図である。 ステップ10を説明する図である。 ステップ11を説明する図である。 ステップ12を説明する図である。 ステップ13を説明する図である。 この発明に係る超臨界流体による処理装置の他の実施例における要部構成図である。
符号の説明
1 超臨界流体による処理装置
10A,10B 処理器
11 シリンダ
12 ピストン
13 圧縮室
14 取付具(対象物着脱手段)
15,16 温度調節器(温度調節手段)
17 流体通路
19 ブロー弁(大気連通手段)
20 吸排気弁(流体制御手段)
24 フィルター(浄化手段)
25a,25b 逆止弁(流体制御手段)
30 油圧アクチュエータ(アクチュエータ)
32 作動軸
35 作動部
37 電動油圧ポンプ(ピストン制御手段)
40 蓄圧器
50 制御装置(ピストン制御手段)
51 温度センサ(温度検出手段)
52 圧力センサ(圧力検出手段)
72A 投入弁(バルブ)
72B 排出弁(バルブ)
M シリコンウエハー(処理対象物)

Claims (4)

  1. シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、
    前記ピストンを駆動するアクチュエータと、
    前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、
    前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、
    前記流体通路における流体の流通を制御する流体制御手段と、
    を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、
    前記ピストンは、該ピストンの前端に前記固体の処理対象物を着脱可能にする対象物着脱手段を備え、
    前記処理器は複数備えられ、単一の前記アクチュエータによって前記複数の処理器の各ピストンを駆動することを特徴とする超臨界流体による処理装置。
  2. 前記アクチュエータは、両端に作動部を有し往復運動を行う作動軸を備え、前記作動軸の各作動部に前記処理器のピストンが連結されていることを特徴とする請求項1に記載の超臨界流体による処理装置。
  3. シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、
    前記ピストンを駆動するアクチュエータと、
    前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、
    前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、
    前記流体通路における流体の流通を制御する流体制御手段と、
    を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、
    前記ピストンは、該ピストンの前端に前記固体の処理対象物を着脱可能にする対象物着脱手段を備え、前記シリンダは開口が設けられたシリンダ本体と前記シリンダ本体の開口を閉塞するシリンダヘッドを含み、前記シリンダヘッドを前記シリンダ本体の開口から離反し、前記開口を介して前記固体の処理対象物を前記ピストンに対して着脱することを特徴とする超臨界流体による処理装置。
  4. シリンダ内を摺動するピストンによって該シリンダ内に形成された圧縮室の流体を加減圧可能な処理器と、
    前記ピストンを駆動するアクチュエータと、
    前記圧縮室に供給される流体を所定の圧力で貯留する蓄圧器と、
    前記蓄圧器と前記圧縮室との間で前記流体の流通を可能にする流体通路と、
    前記流体通路における流体の流通を制御する流体制御手段と、
    を備え、前記蓄圧器に貯蔵された流体を前記流体通路を介して前記圧縮室に導入し、前記アクチュエータで前記ピストンを駆動し前記圧縮室内の流体を圧縮して該流体を超臨界状態とし、この超臨界状態の流体によって前記圧縮室内の固体の処理対象物に対し所定の処理を行い、この処理後に前記圧縮室の流体を該圧縮室の圧力により前記流体通路を介して前記蓄圧器に返送する超臨界流体による処理装置であって、
    前記シリンダには、該シリンダに対して前記固体の処理対象物を出し入れするためのバルブが設けられていることを特徴とする超臨界流体による処理装置。
JP2006348869A 2006-12-26 2006-12-26 超臨界流体による処理装置 Active JP5144069B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348869A JP5144069B2 (ja) 2006-12-26 2006-12-26 超臨界流体による処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348869A JP5144069B2 (ja) 2006-12-26 2006-12-26 超臨界流体による処理装置

Publications (2)

Publication Number Publication Date
JP2008155159A JP2008155159A (ja) 2008-07-10
JP5144069B2 true JP5144069B2 (ja) 2013-02-13

Family

ID=39656663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348869A Active JP5144069B2 (ja) 2006-12-26 2006-12-26 超臨界流体による処理装置

Country Status (1)

Country Link
JP (1) JP5144069B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926620B2 (ja) * 2012-06-04 2016-05-25 有限会社ヨコタテクニカ 半田付け方法
JP6687571B2 (ja) * 2017-08-09 2020-04-22 卓宏 伊藤 処理装置
KR102455950B1 (ko) * 2022-04-26 2022-10-18 (주)빅텍스 초임계 상태의 스노우젯 분사장치
KR102455951B1 (ko) * 2022-05-09 2022-10-18 (주)빅텍스 초임계 상태의 스노우젯 분사장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123961A (ja) * 1999-10-25 2001-05-08 Ishikawajima Inspection & Instrumentation Co 加圧供給方法及び装置
AU2001290171A1 (en) * 2000-07-26 2002-02-05 Tokyo Electron Limited High pressure processing chamber for semiconductor substrate
JP2003117510A (ja) * 2001-10-16 2003-04-22 Mitsubishi Materials Corp 洗浄装置
JP4296060B2 (ja) * 2003-08-25 2009-07-15 ヤンマー株式会社 超臨界流体又は亜臨界流体による有機物質等の反応装置
US20060130966A1 (en) * 2004-12-20 2006-06-22 Darko Babic Method and system for flowing a supercritical fluid in a high pressure processing system

Also Published As

Publication number Publication date
JP2008155159A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5144069B2 (ja) 超臨界流体による処理装置
PT1355716E (pt) Metodo e sistema permitindo a extraccao do dioxido de carbono por anti-sublimacao
JP2005517125A (ja) 油噴射スクリュー式圧縮機における油再循環を制御する方法と、該方法を使用する圧縮機
CN103857923A (zh) 快速释放真空泵
JP2005501694A (ja) フィルタの加圧バックフラッシュ・システム
JP4649322B2 (ja) 超臨界流体洗浄装置
EP2202009A1 (en) Cleaning apparatus
JP2003062403A (ja) 膜脱気装置の運転方法
JP2009279117A (ja) 洗浄装置
EP2521812B1 (en) System and method for washing articles employing a densified cleaning solution, and use of a fluid displacement device therein.
JP6492108B2 (ja) 加圧プロセスへ粒状固体を連続的に供給する、あるいは当該プロセスから粒状固体を連続的に抽出する装置
JP3765941B2 (ja) 有機物酸化処理システム
JP2008248846A (ja) ガス昇圧圧縮装置
JP2011104505A (ja) Voc除去装置及びその方法
JP2022504613A (ja) 液体から空気を分離するシステム及び方法
JP2006508307A (ja) クリーンルーム内の容器を閉じる高圧装置
JP3654106B2 (ja) 液体注入方法および液体注入装置
JP2008248798A (ja) ガス昇圧装置
JP7418821B2 (ja) 洗浄機
JP2008101545A (ja) ポンプ装置
JP2005066484A (ja) 超臨界流体又は亜臨界流体による有機物質等の反応装置
CN112105451B (zh) 用于生产和分配反应混合物的设备和方法
CA2949892A1 (en) Treatment method and device using a supercritical fluid and a discharge storage volume
JP2006037759A (ja) 圧縮装置
JP2004074081A (ja) 水熱反応処理方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250