JP5141030B2 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP5141030B2
JP5141030B2 JP2007029664A JP2007029664A JP5141030B2 JP 5141030 B2 JP5141030 B2 JP 5141030B2 JP 2007029664 A JP2007029664 A JP 2007029664A JP 2007029664 A JP2007029664 A JP 2007029664A JP 5141030 B2 JP5141030 B2 JP 5141030B2
Authority
JP
Japan
Prior art keywords
rotor
short
circuit
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007029664A
Other languages
English (en)
Other versions
JP2007252184A (ja
Inventor
祐一 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007029664A priority Critical patent/JP5141030B2/ja
Priority to US11/673,641 priority patent/US7671494B2/en
Priority to EP07102145.5A priority patent/EP1819030B1/en
Publication of JP2007252184A publication Critical patent/JP2007252184A/ja
Application granted granted Critical
Publication of JP5141030B2 publication Critical patent/JP5141030B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、回転電機の誘起電圧を低減する技術、特に、永久磁石の磁束を短絡させることにより回転電機のロータと回転電機のステータとの間で形成される磁気回路に流れる磁束を低減する技術に関するものである。
永久磁石を具えた回転電機は、ロータの高回転時に誘起電圧が高くなるため、ロータの高回転時には永久磁石の磁束を短絡して誘起電圧を抑制する技術として、例えば特許文献1に記載のごときものが知られている。
特許文献1に記載の永久磁石式回転電機は、複数の永久磁石を有するロータと、電流が通電される複数のコイルを有し、前記コイルと前記永久磁石との間で磁気回路を形成してロータを駆動するステータと、前記永久磁石の磁束を短絡させる短絡状態と短絡させない通常状態とを切替可能な短絡部材と、前記短絡部材を駆動して前記短絡状態と前記通常状態とを切替えるアクチュエータとを備える。
特開2001−314053号公報
しかし、上記従来技術では、前記短絡状態と前記通常状態とを切替えるためにアクチュエータを別途設ける必要があり、回転電機が大型化してしまうといった問題を生ずる。
本発明は、上述の実情に鑑み、アクチュエータを別途設けることなく永久磁石の磁束を短絡させることができる回転電機を提案するものである。
この目的のため本発明による回転電機は、ステータのコイルに複合電流を通電し、複合電流の第1電流成分でロータを駆動するとともに、複合電流の第2電流成分で短絡状態と通常状態を切替える構成とした。
かかる本発明の構成によれば、複合電流を回転電機のステータのコイルに通電するため、既存のステータによって永久磁石を短絡させることが可能となり、アクチュエータを別途設ける必要がなく、回転電機が大型化することを防止できる。
以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の一実施例になる回転電機の構造を模式的に示す斜視図である。また、図2は、図1のI−I断面を周方向に展開したときの模式図であり、図3は、図1のII−II断面を周方向に展開したときの模式図である。
この実施例は、ステータ3とロータ1とを径方向に配置し、これらステータ3とロータ1の間に径方向の空隙(ラジアルエアギャップ)4を設けたラジアルギャップ構造の回転電機である。
回転電機のロータ1は、複数の永久磁石8,8・・・を有する駆動ロータA(請求項1のロータに相当)と、永久磁石8,8・・・を短絡させるための短絡ロータB(請求項1の短絡部材に相当)から構成される。ここで、駆動ロータAは、第1駆動ロータA1(請求項6、7の第1ロータに相当)と第2駆動ロータA2(請求項6、7の第2ロータに相当)から構成される。
そして、詳しくは後述するが、これら駆動ロータAおよび短絡ロータBは、(1)通常、互いに同じ位相を保つよう、同じ速度で回転(一体回転)する。(2)所定の条件が成立すると、駆動ロータAと短絡ロータBの位相が所定量ずれるよう、駆動ロータAと短絡ロータBとの間に瞬間的に回転速度差が生じ、短絡ロータBが駆動ロータAに対して所定量だけ回転(相対回転)する。(3)相対回転後は、駆動ロータAおよび短絡ロータBは位相がずれた状態で一体回転する。
厚みを具えた円盤形状のロータ1の両面中央部にはロータ回転軸2を設ける。そしてロータ回転軸2の両端を図示しない軸受で回転可能に支持する。
ロータ1の外径方向には、回転電機のステータ3を配置し、外径側にあるステータ3と内径側にあるロータ1の間に空隙4を設けてラジアルギャップ構造の回転電機とする。ステータ3には複数のティース5を、周方向等間隔に配置する。図1には、このうち1個のティース5を断面にして示す。中空円筒形状のステータコア16内周面には、内径方向にティース5,5・・・を立設し、ティース5の先端を幅広形状にしてロータ1へ指向させる。径方向に延在するティース5の周囲にはコイル6を巻回する。
空隙4を挟んでステータ3(のティース5)と向かい合う駆動ロータA1のギャップ面7aには、複数の永久磁石8,8,8・・・を、周方向に配列する。
図1に示すように、ロータ1はその中央に環状体の短絡ロータBを具える。短絡ロータBの軸方向両側には円盤形状の第1駆動ロータA1と第2駆動ロータA2を具える。
換言すれば、駆動ロータAは、前記ステータ3との間の径方向の空隙4に面して、短絡ロータBの両隣に第1駆動ロータA1と第2駆動ロータA2を具える。
駆動ロータAのギャップ面7aには上述した永久磁石8,8,8・・・を設ける。ここで永久磁石8はN極が外径方向へ向き、これに隣接する永久磁石8はS極が外径方向へ向くよう、周方向に順次異極になるよう配列する。また軸方向にみた場合、両側の第1駆動ロータA1,第2駆動ロータA2には永久磁石8を同極に配置する。
短絡ロータBのギャップ面7bには更に、突出する複数の突極(磁極)9,9・・を設ける。突極9は、短絡ロータBのギャップ面7bに、周方向に複数配列される。短絡ロータBを磁性体で形成することから、突極9も磁性体で形成する。隣り合う突極9同士の間には空隙10を設ける。
換言すれば、短絡ロータBは、歯車形状を取ることによって、周方向に複数の突極9と空隙10とを具える。図4は、短絡ロータBを模式的に示す斜視図である。図4に示すように短絡ロータBには、突極9と空隙10とを、周方向に交互に配列する。突極9は全周に亘り8個設けられている。また空隙10も全周に亘り8個設けられている。そして、これら突極9の周方向長さと空隙10の周方向長さは同一である。
これに対し、永久磁石8は全周に亘り2倍の16個設けられている。つまり、第1駆動ロータA1と第2駆動ロータA2のそれぞれが全周に亘り16個ずつの永久磁石8を有している。
そして図1に示すように、これら永久磁石8の周方向長さは突極9(空隙10)の周方向長さと同一である。
図5は、回転軸を含む面でロータ1を断面にして示す縦断面図である。ロータ出力軸2には駆動ロータAを結合する。駆動ロータAのラジアルギャップ面7には内径方向に向けて凹部12を形成する。凹部12は駆動ロータAの全周に亘り、この凹部12には、環状体の短絡ロータB(図4)を収容する。
ここで付言すると、ロータ1を外径側から俯瞰した場合、図1に示すように、軸方向両側に2枚の駆動ロータA1,A2が配置されているように見えるものの、これら駆動ロータA1,A2は図5に示すように中央部で結合し、一体に形成されている。短絡ロータBは、軸受13を介して、駆動ロータAに相対回転可能に取り付けられる。
図5の下半分に示すように永久磁石8の径方向厚みは空隙10の径方向寸法よりも小さい。このように空隙10を永久磁石8の径方向厚みよりも大きくすることで、非短絡時には、永久磁石8,8の磁束が短絡ロータBに漏れることを回避する。
また図5に示す実施例の他、図6の縦断面図に示すように、予め第1駆動ロータA1,第2駆動ロータA2をそれぞれ別体で形成しておき、これら駆動ロータA1,A2をロータ回転軸2に一体に結合することによっても、上述した図5に示す実施例と同等の作用を奏することができる。この場合、ロータ回転軸2にまず軸受13および短絡ロータBを取り付け、次に両側から第1駆動ロータA1、第2駆動ロータA2を固設すればよく、組み立て性能が向上する。
次に、上述した本実施例の回転電機の駆動について説明する。
本実施例では、複合電流を用いることにより、駆動ロータAと短絡ロータBを別個に駆動することができる。つまり、駆動ロータAと短絡ロータBとが一体回転するよう駆動できるとともに、駆動ロータAと短絡ロータBとが相対回転するよう駆動することもできる。
駆動ロータAの駆動につき説明する。
電磁石のコイル6は、図示しないインバータおよびバッテリを具えた電気回路と接続する。この電気回路は、図1〜図3に示すコイル6に複合電流を通電する。そうすると、電磁石のティース5先端と永久磁石8との間に磁力が作用する。つまり、複合電流に含まれる第1電流成分が、ティース5を通過する径方向の磁束を発生させる。そして、あるティース5を通過する磁束が、このティース5の内径側で空隙4と一個の永久磁石8と駆動ロータA内部を通過し、他の永久磁石8と空隙4とを通過して、他のティース5に至る。さらに、他のティース5を通過する磁束が、このティース5の外径側でステータコア16を通過して元のティース5に戻って1周する第1磁気回路Φ1(図2参照)を形成する。
この結果、駆動ロータAはトルクを与えられて駆動される。また、駆動ロータAを具えたロータ1も駆動され、ロータ1に結合した回転軸2が当該トルクおよび外部からの負荷に応じて回転する。
短絡ロータBの駆動につき説明する。
コイル6に複合電流を通電すると、電磁石のティース5先端と突極9との間に磁力が発生する。つまり、複合電流に含まれる第2電流成分が、あるティース5を通過する径方向の磁束を発生させる。そして、あるティース5を通過する磁束が、このティース5の内径側で空隙4と一個の突極9と短絡ロータB内部を通過し、他の突極9と空隙4を通過して、他のティース5に至る。さらに、他のティース5を通過する磁束が、このティース5の外周側でステータコア16を通過して元のティースに戻って1周する第2磁気回路Φ2(図3参照)を形成する。
この結果、短絡ロータBはトルクを与えられて駆動される。
なお、複合電流については本出願人による特開平11−275826号公報に記載の技術を用いる。
上述したように複合電流を用いることで、駆動ロータAのトルクと、短絡ロータBのトルクを個別に制御することが可能であり、両トルクに差をつけたり、一方のトルクを0にしたりすることで、短絡ロータBを駆動ロータAに対して相対回転することができる。 例えば、駆動ロータAと短絡ロータBとを同じトルクで駆動すると、駆動ロータAと短絡ロータBの双方が一体回転し、短絡ロータBの相対回転はない。一方、駆動ロータAと短絡ロータBとを異なるトルクで駆動すると、駆動ロータAと短絡ロータBとが相対回転する。
ロータ1の回転数が、所定回転数未満である低回転時では、駆動ロータAおよび短絡ロータBの相対位置関係を、図9で示すように揃える。図9は、周方向に配列した永久磁石8と、突極9と、空隙10とを展開して示す説明図である。
ロータ1の低回転時では、突極9が隣接する2個の永久磁石8,8にまたがって位置しないよう、つまり突極9の周方向位置と永久磁石8の周方向位置とを揃えておく。
図9に示す状態では、突極9が、異極になるよう隣接する2個の永久磁石8,8にまたがって位置しないため、突極9がこれら永久磁石同士の磁束を短絡することがない(請求項1の通常状態に相当)。
したがって、上述した第1磁気回路Φ1の磁束は大きいものとなり、モータ効率を高めることができる。
所定回転数以上などの所定の条件が成立すると短絡ロータBを駆動して、駆動ロータAに対し相対回転させる。
つまりロータ1の回転数が、所定回転数以上である高回転時では、短絡ロータBを駆動して、駆動ロータAおよび短絡ロータBの相対位置関係を、図10中の紙の上で下向き矢に示すようにずらす。図10も、周方向に配列した永久磁石8と、突極9と、空隙10とを展開して示す説明図である。
ロータ1の高回転時では、突極9が隣接する2個の永久磁石8,8にまたがって位置するよう、短絡ロータBを駆動ロータAに対して回転させる。
図10に示す状態では、突極9が、異極になるよう隣接する2個の永久磁石8,8にまたがって位置するため、突極9が図10中の二点鎖線で示すように、これら永久磁石8同士の磁束を短絡する(請求項1の短絡状態に相当)。
したがって、上述した駆動ロータAを通過する第1磁気回路Φ1の磁束は小さいものとなり、コイル6の誘起電圧を低減することができる。
なお、上述した回転の他、図示はしなかったが、突極9をロータ軸方向に移動させて、これら永久磁石8同士の磁束を短絡してもよい。
ここで付言すると、突極9を2個の永久磁石8に広くまたがるよう配置する場合と、狭くまたがるよう(殆ど揃っているよう)配置する場合とで、2個の永久磁石同士で短絡される磁束量が異なること勿論である。
したがって図示はしなかったが、図9に示すように突極9と永久磁石8とを揃えた状態から、突極9を僅かにずらすと、隣接する2個の永久磁石8,8に狭くまたがって位置し、短絡される磁束量は少ない。
これに対し図示はしなかったが、図10に示すように突極9と永久磁石8とをずらした状態から、突極9を更にずらし、突極9の半分を一方の永久磁石8に重ね、突極9の残る半分を他方の永久磁石8に重ねると、隣接する2個の永久磁石8,8に最大限に広くまたがって位置し、短絡される磁束量は最大になる。
このように短絡ロータBのずれを調節することで、突極9が2個の永久磁石8,8にまたがる量を可変とすることができ、短絡される磁束量を変化させることができる。
上述した他、本実施例では、回転電機に電力を供給するバッテリの異常を検出した時や、これら回転電機およびバッテリ間を接続する電気回路の異常を検出した時に、複合電流を制御して、永久磁石の磁束を短絡する。
この結果、本実施例では、バッテリ異常時や電気回路の異常時には、ロータ1の回転数にかかわらず回転電機の誘起電圧を低減することができ、バッテリや電気回路の保全を図ることができる。
さらに本実施例では、ロータ1の回転数や、電気回路の異常の有無にかかわらず短絡される磁束量を可変とすることが可能であることから、従来の回転電機と比較して、運転領域を拡大することができる。
図14には、2種類の一般的な従来例および本実施例の運転領域(トルク領域および回転数領域)を比較して示す特性図である。
図14中、横軸はロータ回転数を表し、縦軸はロータトルクを表す。図14中に長い破線で示したトルク重視の従来例では、誘起電圧が高くならないよう、回転数領域を狭くし、トルク領域を広くして設計される。これに対し、図14中に短い破線で示したパワー重視の従来例では、高い誘起電圧を許容して回転数領域を広くし、定出力曲線を前記トルク重視のそれよりも大きく設計される反面、トルク領域が狭くなる。
したがって、これら2種類の一般的な従来例においては、回転数領域およびトルク領域の一方を広くすると他方が狭くなるというトレードオフの関係にあった。
しかしながら本実施例では、ロータ回転数に係わらず、短絡される磁束量を変化させることができるため、図14中に実線で示すように、回転数領域およびトルク領域の両方を広くすることが可能である。この結果、本実施例では、図14に示す横軸と縦軸と定出力曲線とで囲まれる運転領域を広くすることが可能となり、運転性能を格段に向上させることができる。
なお、上述した誘起電圧の低減中に、ロータ1回転数が所定回転数未満に戻る等の通常の状態に復帰すると、再度短絡ロータBを駆動して駆動ロータAに対し相対回転させる。そして図9に示すように、突極9の周方向位置を永久磁石8の周方向位置に揃えておく。
これにより、第1磁気回路Φ1の磁束は大きいものとなり、通常の状態で回転電機を運転することができる。
また図5および図6に示すロータ1の実施例の他、回転電機のロータは図5に示すようなものであってもよい。
図7は、ロータ11を軸直角平面で断面にして示す横断面図である。図8は、図7のIII−III断面図である。
図7、図8に示す他の実施例では、駆動ロータAと短絡ロータBが相対回転によって位相差を生じるとき、位相差を所定量以内に制限し、位相差が所定量を超える相対回転を防止するストッパを付加し、また、弾性体15を介して、短絡ロータBを駆動ロータAに相対回転可能に取り付けたものである。
ここで、上述した図5および図6に示すロータ1と同等の要素については、同一の符号を付して説明を省略し、異なる要素については、新たに符号を付して説明する。
図7に示すロータ11も、駆動ロータAと短絡ロータBから構成される。
駆動ロータAのギャップ面全周に亘って形成した凹部12には、短絡ロータBを収容する。
ただし、図7に示すように、凹部12の外周を全周に渡って星型多角形に形成し、駆動ロータA側ストッパ50Aとする。一方、短絡ロータBの内周も相似形となるよう星型多角形に形成し、短絡ロータB側ストッパ50Bとする。凹部12全周の外径側に短絡ロータBを同軸に配置して、これら凹部12の星型多角形と短絡ロータBの星型多角形との間に空隙14を設ける。短絡ロータBが駆動ロータAに対して所定量だけ相対回転すると、短絡ロータBの内周が凹部12に衝接し、短絡ロータBの回転量を所定量以内に制限する。つまり、駆動ロータA側ストッパ50Aと短絡ロータB側ストッパ50Bとでストッパ50を形成する。
したがって上記の衝接位置を設定することにより、図9に示すように突極9の周方向位置が永久磁石8と揃う状態と、図10に示すように突極9の周方向位置が異極に配置された永久磁石8,8にまたがる状態とを容易に達成することができる。
ここで、所定量は、通常状態から短絡状態に相対回転させるに際して、突極9が隣接する2個の永久磁石に最大限に広くまたがって位置する相対回転量、すなわち、短絡される磁束量が最大になる相対回転量以下の値である。
また、図7、図8に示すように、短絡ロータB内周と駆動ロータAの凹部12外周との間に、弾性体15を、周方向に複数等間隔に配設する。ここで好ましくは、各弾性体15の伸縮方向が略周方向となるよう設置し、弾性体15は短絡ロータBを周方向に付勢する。
また弾性体15の付勢方向を、図9に示すように突極9の周方向位置が永久磁石8と揃う状態に設定しておくことにより、ロータ1回転数の高回転時には、短絡ロータBを駆動して、図10に示すように突極9をずらしておき、ロータ1回転数が低回転数に戻る等の通常の状態に復帰すると、短絡ロータBの駆動を中止するのみで、短絡ロータB内周が多角形状の凹部12に衝接するまで弾性体15が短絡ロータBを周方向に付勢して、突極9の周方向位置を自動的に永久磁石8に揃えることが可能になる。
したがって、通常の状態に復帰する際に短絡ロータBを駆動する必要をなくして、復帰手順を容易にすることができる。
または弾性体15の付勢方向を、図10に示すように突極9の周方向位置が異極に配置された永久磁石8,8にまたがる状態に設定しておき、上述とは逆回転方向に短絡ロータBを駆動してもよい。
つまり、弾性体15の付勢方向を、図10に示すように突極9の周方向位置が永久磁石8とずれた状態に設定しておくことにより、ロータ1回転数の低回転時には、短絡ロータBを駆動して、図9に示すように突極9の周方向位置を永久磁石8と揃えておき、ロータ1回転数が高回転時に、短絡ロータBの駆動を中止するのみで、短絡ロータB内周が多角形状の凹部12に衝接するまで弾性体15が短絡ロータBを周方向に付勢して、突極9の周方向位置を自動的に永久磁石8とずらすことが可能になる。
次に本発明の別の実施例について説明する。
図11は、本発明の別の実施例になる回転電機の構造を、一部断面にして示す斜視図である。ここで、上述したロータ1およびステータ3と略同等の要素については、末尾の符号を統一してある。
この実施例は、ステータ103とロータ101,121とを軸方向に配置し、これらステータ103とロータ101,121の間に軸方向の空隙(アキシャルエアギャップ)104,104を設けたアキシャルギャップ構造の回転電機である。
図示しない回転電機ケースにはステータ103を取り付ける。ステータ103は、複数個のティース105を具える。複数個のティース105は、図11に一点鎖線で示すロータ回転軸Oの周方向に配列されるが、本図においては1個のティース105のみを断面にして示し、他を省略してある。ティース105の両端はそれぞれロータ101とロータ121とに対向する。ロータ回転軸O方向に延在するティース105の中央部には、コイル106を巻回し、これらティース105およびコイル106が電磁石を構成する。
ステータ103のロータ回転軸O方向の一方側にはロータ101を配置する。同様に、ステータ103のロータ回転軸O方向の他方側にはロータ121を配置する。そしてロータ101およびロータ121を共通するロータ回転軸で一体に結合する。これらロータ101およびロータ121は、図11紙面において上下に対称な構造であるため、一方のロータ101につき、代表して説明する。
ロータ101は、複数の永久磁石8,8・・・を有する駆動ロータAと、永久磁石8,8・・・を短絡させるための短絡ロータBから構成される。ここで、駆動ロータAは、第1駆動ロータA1(請求項6、7の第1ロータに相当)と第2駆動ロータA2(請求項6、7の第2ロータに相当)から構成される。そして、詳しくは後述するが、これら駆動ロータAおよび短絡ロータBは、通常一体となって回転し、所定の条件が成立すると短絡ロータBが駆動ロータAに対し相対回転する。ロータ101はロータ回転軸Oを中心とした環状体であるが、図11にはその一部分である略1/4を破断して示す。
駆動ロータAも短絡ロータBも、ロータ回転軸Oを中心とした環状体である。図11に示すように駆動ロータAには、同軸に環状の溝122を形成し、この環状溝122には環状の短絡ロータBを相対回転可能に取り付ける。換言すれば、前記ステータ3の間の軸方向の空隙104に面して短絡ロータBの両隣に第1駆動ロータA1と第2駆動ロータA2を具える。
図12は、この短絡ロータBの一部分(略1/3)を破断して示す。
空隙104と向き合う駆動ロータAのギャップ面には、永久磁石108を周方向に複数配列する。ここで永久磁石は、1個の永久磁石に係るN極を空隙104に向け、周方向で隣り合う他の1個の永久磁石108に係るS極を空隙104に向けて、周方向に順次異極となるよう配列し、周方向長さを等しくする。
短絡ロータBからみて内径側の永久磁石108と、外径側の永久磁石108とは、N極同士、若しくはS極同士のように同軸に配列し、ロータ回転軸Oを中心として占有する角度を等しくする。したがって、外径側の永久磁石108の周方向端と内径側の永久磁石108の周方向端とを直線で結び、この直線を内径方向に延長するとロータ回転軸Oと交差する。
ギャップ面にS極を向けた内径側の永久磁石108と、同じくギャップ面にS極を向けた外径側の永久磁石108との間には、突極109を設ける。通常は図11に示すように、突極109の周方向位置を両側の永久磁石108の周方向位置に揃えておく。周方向で隣り合う突極109同士の間には空隙110を設ける。通常は図11に示すように、空隙110の周方向位置を、ギャップ面にN極を向けた両側の永久磁石108の周方向位置に揃える。
つまり短絡ロータBには、図11および図12に示すように周方向長さが等しい突極109と空隙110とを、周方向に順次交互に配列する。
なお、図には示さなかったが、ギャップ面にN極を向けた径方向両側の永久磁石108,108間に、突極109を設けるよう、図11とは逆の配置であってもよいこと勿論である。
このように突極109と空隙110とを順次交互に配列すると、永久磁石108の周方向個数が、突極109の周方向個数の2倍となる。このように、永久磁石8の個数を突極9の個数の2倍にしたことにより、本実施例においても複合電流を用いて駆動ロータAと短絡ロータBとを別個に駆動することができる。
つまりロータ101の駆動にあっては、駆動ロータAのみを駆動することや、駆動ロータAと短絡ロータBとを同時に駆動することや、短絡短絡ロータBのみを駆動することが可能である。
通常は図9および前述したように、突極109の周方向位置を永久磁石108と揃えて、駆動ロータAを駆動する。これに対し、所定回転数以上などの所定の条件が成立すると、前述したように短絡ロータBを駆動する。そして短絡ロータBを図10中の矢の向きにずらし、突極109が異極となるよう隣接配置された2個の永久磁石108,108にまたがるようにしておく。
図9に示す状態では、突極109が、異極になるよう隣接する2個の永久磁石108,108にまたがって位置しないため、突極109がこれら永久磁石同士の磁束を短絡することがない。したがって、ロータ101,121およびステータ103間で形成される第1磁気回路Φ1の磁束は大きいものとなり、モータ効率を高めることができる。
図10に示す状態では、突極109が、異極になるよう隣接する2個の永久磁石108,108にまたがって位置するため、突極109が二点鎖線で示す様にこれら永久磁石同士の磁束を短絡する。
したがって、ロータ101,121およびステータ103間で形成される第1磁気回路Φ1の磁束は小さいものとなり、コイル106の誘起電圧を低減することができる。
これまで説明してきたように、アキシャルギャップ型の回転電機(図1)であっても、ラジアルギャップ型の回転電機(図11)であっても、短絡ロータBには突極9,109を設けたことを特徴とする。そして所定の条件が成立したときには複合電流を用いて短絡ロータBを駆動し、駆動ロータAに設けた永久磁石8,108の磁束を短絡する。
短絡ロータBは、上述した突極9,109と空隙10,110の組み合わせの他、以下に説明するような構成であってもよい。
図13は、短絡ロータBの複数実施例を対比して示す周方向展開図である。
ここで(a)は、上述した図1または図11の実施例における短絡ロータBを示す。
また(b)は、突極9(109)の内部に永久磁石16を設けた短絡ロータBを示す。
(b)に示す実施例では、永久磁石16の着磁方向を突極9の突出方向と同一、すなわちラジアルギャップ面またはアキシャルギャップ面と垂直にする。このように永久磁石16を設けても、複合電流を用いて短絡ロータBを別個に駆動することができる。
また(c)は、空隙10(110)を非磁性体で充填した短絡ロータBを示す。
(c)に示す実施例では、磁気抵抗の大きな樹脂17などの非磁性体で隣り合う突極9,9間を充填することにより、上述した(a)に示す実施例と同様、永久磁石8,108の磁束を短絡することができる。
また(d)は、突極9(109)と空隙10(110)を複数の永久磁石に置き換えた短絡ロータBを示す。
(d)に示す実施例では、突極9および空隙10を交互に配列する代わりに、永久磁石18を短絡ロータB内部に埋め込むようにして設ける。図13(d)中、突極9に相当する周方向位置には、磁性体で形成したフロントヨーク部19を設ける。そして、フロントヨークを挟むように、かつ、左右一対の永久磁石18aおよび18bを、複数対周方向に配置する。永久磁石18aと永久磁石18bとラジアルギャップ面(またはアキシャルギャップ面)とに囲まれるフロントヨーク部19を、磁性体で形成する。このフロントヨーク部19に向かうよう矢印で示すように、永久磁石18a,18bを一対同極に着磁する。
通常は図9に示すように、フロントヨーク部19の周方向位置を永久磁石8(108)の周方向位置に揃えておき、フロントヨーク部19が異極となるよう隣接した2個の永久磁石8,8(108,108)同士の磁束を短絡することがないようにする。
これに対しロータ1,101の高回転時など所定の条件が成立した時には、図13(d)に示す短絡ロータBを複合電流で駆動する。そしてフロントヨーク部19を、異極となるよう隣接した2個の永久磁石8,8(108,108)にまたがらせることにより、上述した図10に示す実施例と同様、永久磁石8,108の磁束を短絡することができる。
ところで上述した各実施例では、ステータ3のコイル6に複合電流を通電し、複合電流に含まれる第1電流成分によって第1磁気回路Φ1を形成して駆動ロータAを駆動するとともに、複合電流に含まれる第2電流成分によって第2磁気回路Φ2を形成して短絡ロータBを駆動し短絡状態と通常状態とを切替える。
これにより、アクチュエータ等の作動機構を別途設ける必要がなく、既存の電磁石6(ステータ3)によって永久磁石8を短絡させることが可能となり、回転電機が大型化することを防止できる。 さらに、上記実施例によれば、複合電流に含まれる他の電流成分を制御することによって、ロータ1の回転数とは無関係に短絡ロータBを作動させることが可能となる。したがって、ロータ1の回転数にかかわらず任意の運転状態で永久磁石8の磁束を短絡させることができ、バッテリの異常時や、電気回路に設けた機器の温度上昇等、必要な場合には任意に誘起電圧を抑制することができる。
さらに、上記実施例によれば、ロータ1の回転数とは無関係に短絡ロータBを作動させ得て、短絡される磁束量を可変とすることが可能であることから、図14に示すように従来の回転電機と比較して、運転領域を拡大することができる。
加えて、駆動ロータAは第1駆動ロータA1と第2駆動ロータA2を有し、これらの第1駆動ロータA1と第2駆動ロータA2がステータ3との間の径方向の空隙4または軸方向の空隙104に面して短絡ロータBの両隣に設けられることにより、ステータ3から駆動ロータAに作用する吸引反発力によって、ロータ回転軸に不要な力が作用することを防止できる。
すなわち、ラジアルギャップ構造の回転電機において、駆動ロータAを一つとした場合、駆動ロータAの軸方向中心がステータ3(ティース5)の軸方向中心に対してオフセットするため、ステータ3から駆動ロータAへの吸引反発力によって駆動ロータAに軸方向の力が作用し、ロータ回転軸に不要な力が作用することになる。しかしながら、短絡ロータBの両隣に第1駆動ロータA1と第2駆動ロータA2を配置することで、軸方向の力が相殺され、ロータ回転軸に不要な力が作用することがない。
同様に、アキシャルギャップ構造の回転電機において、駆動ロータAを一つとした場合、駆動ロータAの径方向中心がステータ3(ティース105)の径方向中心に対してオフセットするため、ステータ3から駆動ロータAへの吸引反発力によって駆動ロータAに径方向の力が作用し、ロータ回転軸に不要な力が作用することになる。しかしながら、短絡ロータBの両隣に第1駆動ロータA1と第2駆動ロータA2を配置することで、径方向の力が相殺され、ロータ回転軸に不要な力が作用することがない。
なお、永久磁石短絡機構として短絡ロータBは、図13(a)〜(d)に例示するいずれのものであってもよい。
具体的には、ロータ1の高回転時に永久磁石8の磁束を短絡するが、これに限られない。すなわち、電磁石のコイル6に電力を供給するバッテリ(図示せず)の異常検出時、または電磁石のコイル6とバッテリとを接続する電気回路の異常検出時の少なくともいずれかの時に、永久磁石8の磁束を短絡する。
これにより、ロータ1の低回転時であっても、バッテリを保護することができるし、電気回路の構成部品であるインバータや、インバータ内の半導体素子を保護することができる。
また上記実施例では、ロータ1には永久磁石8を、ロータ回転軸を中心として周方向に複数配設し、磁性体からなる突極9を複数具えた環状体である短絡ロータBを、ロータ1に取り付けたものとし、短絡ロータBを回転して突極9が永久磁石8,8同士を短絡することことから、回転電機のトルクを用いて短絡ロータBを作動させることができ、既存の回転電機と略同程度の大きさの回転電機で、誘起電圧の抑制を実現することができる。
また上記実施例では図1に示すように、ステータ3とロータ1とを径方向に配置し、これらステータ3とロータ1の間に空隙4を設けてラジアルギャップ構造とし、空隙4を挟んでステータ3と向かい合うロータ1のラジアルギャップ面7aには、複数の永久磁石8,8・・・を周方向に順次異極になるよう配列し、ロータ1の当該ラジアルギャップ面7bには更に、突極9,9・・・を周方向に複数配列するよう、短絡ロータBを取り付けたことから、
ラジアルギャップ型の回転電機において、本発明が目的とする誘起電圧の抑制を、必要な場合に実行することができる。
また上記実施例では図11に示すように、ステータ103とロータ101,121とを軸O方向に配置し、これらステータ103とロータ101,121との間に空隙104を設けてアキシャルギャップ構造とし、空隙104を挟んでステータ103と向かい合うロータ101(121)のアキシャルギャップ面には、複数の永久磁石108を周方向に順次異極になるよう配列し、ロータ101の当該アキシャルギャップ面には更に、突極109を周方向に複数配列するよう、ロータ101に短絡短絡ロータBを取り付けたことから、
アキシャルギャップ型の回転電機においても、本発明が目的とする誘起電圧の抑制を、必要な場合に実行することができる。
また上記実施例では、図13(b)および(d)に示すように、突極9の内部に永久磁石16や18aおよび18bを設けてもよい。短絡ロータBを図13(b)および(d)に示すような構造としても、本発明の目的である永久磁石8,8同士の磁束の短絡を達成することができる。
また上記実施例では図5に示すように、短絡ロータB内周および駆動ロータAの凹部12を多角形に構成して隙間14を設けたことにより、短絡ロータBと駆動ロータAとの相対回転を所定量以内に制限することが可能となる。したがって、図9に示すように突極9の周方向位置が永久磁石8と揃う状態と、図10に示すように突極9の周方向位置が異極に配置された永久磁石8,8にまたがる状態とを容易に達成することができる。
また上記実施例では図5に示すように、弾性体15を介して、短絡ロータBを駆動ロータAに相対回転可能に取り付けたことから、
短絡ロータBが駆動ロータAに対して無限に相対回転することがなく、短絡ロータBの駆動中は、短絡ロータBをずらしつつ、短絡ロータBに与えた駆動力を、弾性体15を介してロータ回転軸2から出力することができ、駆動力を無駄なく利用することができる。
また、弾性体15の付勢により、短絡ロータBの相対位置を、常態で図9に示すように永久磁石8と揃えておき、ロータ1回転数の高回転時には、弾性体15の付勢力に抗して短絡ロータBを駆動して図10に示すようにずらすよう設定することが可能になる。したがってこのような設定の下では、ロータ1回転数が低回転数に戻る等の通常の状態に復帰すると、短絡ロータBの駆動を中止するのみで、短絡ロータBが図9に示すように常態位置まで付勢されて、突極9の周方向位置を自動的に永久磁石8に揃えることが可能になる。
したがって、通常の状態に復帰する際に短絡ロータBを駆動する駆動をなくして、復帰手順を容易にすることができる。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨に逸脱しない範囲において種々変更が加えられうるものである。
図1および図11には、短絡ロータBの両側に駆動ロータAを配置するが、駆動ロータAに作用する力にアンバランスが生じることを許容しうるならば、例えば、短絡ロータBと駆動ロータAをそれぞれ片側に配置してもよい。
また、駆動ロータA,短絡ロータB間の相対回転量を所定値以内に制限するストッパは、図5に示すように凹部全周および短絡ロータB内周を多角形とする他、回転運動を所定範囲内に制限する機構であればよい。
本発明の一実施例になる回転電機の構造を模式的に示す斜視図であり、 図1のI−I断面を周方向に展開したときの模式図、 図1AのII−II断面を周方向に展開したときの模式図である。 同実施例の短絡ロータBを模式的に示す斜視図である。 同実施例のロータを、ロータ回転軸を含む面で断面にして示す縦断面図である。 他の実施例になるロータを、ロータ回転軸を含む面で断面にして示す縦断面図である。 他の実施例になるロータを、ロータ回転軸を含む面で断面にして示す縦断面図であり、 図7のIII−III断面図である。 ロータとステータとの相対位置関係を、周方向に展開して示す説明図であって、永久磁石の磁束を短絡していない状態を示す。 ロータとステータとの相対位置関係を、周方向に展開して示す説明図であって、永久磁石の磁束を短絡した状態を示す。 本発明の別の実施例になる回転電機の構造を、一部断面にして示す斜視図である。 同実施例の短絡ロータBの一部を、断面にして示す斜視図である。 短絡ロータBの複数実施例を対比して示す周方向展開図であって、(a)は図4および図12の実施例を、 (b)は実施例(a)に示す突極の内部に永久磁石を埋設した実施例を、 (c)は実施例(a)に示す空隙を非磁性体で充填した実施例を、(d)は短絡ロータBを永久磁石型ロータに置き換えた実施例である。 同実施例の運転領域を、一般的な従来例と比較して示す特性図である。
符号の説明
1 ロータ
A 駆動ロータA
B 短絡ロータB
2 ロータ回転軸
3 ステータ
4 空隙(アキシャルギャップ)
5 ティース
6 コイル
7 ロータ側のギャップ面
8 永久磁石
9 突極
10 空隙
12 凹部
50 ストッパ

Claims (7)

  1. ロータとステータと電気回路より構成される回転電機において、
    前記ロータは、
    複数の永久磁石を有する駆動部と、
    前記永久磁石の磁束を短絡させる短絡状態と、短絡させない通常状態とを切替可能な短絡部とを有し、
    前記ステータは、
    複合電流が通電される複数のコイルを有し、
    前記電気回路は、
    前記複合電流の第1電流成分によって前記コイルと前記駆動部との間で第1磁気回路を形成して前記ロータを駆動するために前記コイルに通電を行い、前記複合電流の第2電流成分によって前記コイルと前記短絡部との間で第2磁気回路を形成して前記短絡状態と前記通常状態とを切替えるために前記コイルに通電を行う
    とを特徴とする回転電機。
  2. 請求項1に記載の回転電機において、
    前記短絡部は、複数の磁極を有し、前記ロータに対して相対回転可能に隣接配置された環状体であり、相対回転によって前記磁極が周方向で前記永久磁石同士をまたぐとき前記短絡状態になり、またがらないとき前記通常状態になり、
    前記ステータは、前記第2電流成分によって前記コイルと前記磁極との間で前記第2磁気回路を形成して前記短絡状態と前記通常状態とを切替えることを特徴とする回転電機。
  3. 請求項2に記載の回転電機おいて、
    前記磁極の個数は、前記永久磁石の個数の1/2倍としたことを特徴とする回転電機。
  4. 請求項2または3に記載の回転電機において、
    前記環状体と前記ロータとの位相差を所定量以内に制限するストッパを備えたことを特徴とする回転電機。
  5. 請求項2〜4のいずれか1項に記載の回転電機において、
    前記環状体と前記ロータとの間に介在する弾性体を備えたことを特徴とする回転電機。
  6. 請求項2〜5のいずれか1項に記載の回転電機において、
    前記ステータは、径方向の空隙を介して前記ロータおよび前記短絡部と径方向で対面し、
    前記ロータは、前記径方向の空隙に面して前記短絡部の両隣に第1ロータと第2ロータとを有し、
    前記第1ロータと第2ロータは、機械的に結合して一体回転することを特徴とする回転電機。
  7. 請求項2〜5のいずれか1項に記載の回転電機において、
    前記ステータは、軸方向の空隙を介して前記ロータおよび前記短絡部と軸方向で対面し、
    前記ロータは、前記軸方向の空隙に面して前記短絡部の両隣に第1ロータと第2ロータとを有し、
    前記第1ロータと第2ロータは、機械的に結合して一体回転することを特徴とする回転電機。
JP2007029664A 2006-02-14 2007-02-08 回転電機 Active JP5141030B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007029664A JP5141030B2 (ja) 2006-02-14 2007-02-08 回転電機
US11/673,641 US7671494B2 (en) 2006-02-14 2007-02-12 Motor/generator
EP07102145.5A EP1819030B1 (en) 2006-02-14 2007-02-12 Motor/Generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006037075 2006-02-14
JP2006037075 2006-02-14
JP2007029664A JP5141030B2 (ja) 2006-02-14 2007-02-08 回転電機

Publications (2)

Publication Number Publication Date
JP2007252184A JP2007252184A (ja) 2007-09-27
JP5141030B2 true JP5141030B2 (ja) 2013-02-13

Family

ID=38709908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007029664A Active JP5141030B2 (ja) 2006-02-14 2007-02-08 回転電機

Country Status (4)

Country Link
US (1) US7671494B2 (ja)
EP (1) EP1819030B1 (ja)
JP (1) JP5141030B2 (ja)
CN (1) CN101022226B (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227136A (zh) * 2007-01-16 2008-07-23 林冈嵚 独立自主自由式积复激自动环聚同步磁能动力发电机
EP2211442B1 (en) * 2007-11-15 2020-04-29 Mitsubishi Electric Corporation Permanent magnet type rotating electrical machine and electric power steering device
GB2457342B (en) * 2008-02-15 2013-02-13 Power Ramps Ltd Improvements in and relating to apparatus for converting kinetic energy
US9018891B2 (en) 2009-07-09 2015-04-28 Clifford R. Rabal Direct current brushless motor
US8350502B2 (en) * 2009-07-09 2013-01-08 Rabal Clifford R Electromagnetic motor
US20110095636A1 (en) * 2009-10-27 2011-04-28 Chiu-Fa Lee Magnetic force based automatic power generation device
ITMI20110378A1 (it) * 2011-03-10 2012-09-11 Wilic Sarl Macchina elettrica rotante per aerogeneratore
CN103580411A (zh) * 2012-08-10 2014-02-12 杨荷 一种永磁无刷自适应变速驱动电机
CN103633799B (zh) * 2012-08-29 2017-11-03 杨世国 一种自动连续变速永磁无刷轮毂电机
JP6131691B2 (ja) * 2013-04-17 2017-05-24 株式会社ジェイテクト 回転電機
RU2545525C1 (ru) * 2013-10-16 2015-04-10 Олег Фёдорович Меньших Бесколлекторный мотор-генератор постоянного тока
CN104917315B (zh) * 2015-06-17 2017-09-19 重庆西伟迪磁电动力科技有限公司 一种具有多离心片组合式调速器的永磁无刷电机
US10186917B2 (en) * 2016-05-24 2019-01-22 Unison Industries, Llc Rotor assembly for a power generation system
CN106100271B (zh) * 2016-08-04 2019-02-19 浙江大学 轴径向磁通的调磁电机
GB201709455D0 (en) * 2017-06-14 2017-07-26 Rolls Royce Plc Electrical machine
LU100555B1 (en) * 2017-12-13 2019-06-28 Luxembourg Inst Science & Tech List Compact halbach electrical generator with coils arranged circumferentially
JP2020174492A (ja) * 2019-04-12 2020-10-22 パナソニックIpマネジメント株式会社 モータ
RU2751098C1 (ru) * 2020-12-18 2021-07-08 Николай Владимирович Конев Бесколлекторная электромашина постоянного тока
CN114389422B (zh) 2022-01-14 2023-12-22 无锡星驱科技有限公司 一种凸极式混合励磁电机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69102911T2 (de) 1990-03-16 1995-03-09 Satake Eng Co Ltd Synchronmotoren mit zwei Statoren.
JP3284712B2 (ja) * 1993-11-11 2002-05-20 トヨタ自動車株式会社 同期機のロータ構造および同期型モータ
JPH0993846A (ja) * 1995-07-14 1997-04-04 Meidensha Corp 永久磁石式同期電動機
JPH09308200A (ja) * 1996-05-13 1997-11-28 Toshiba Corp 永久磁石式回転電機
JP3480300B2 (ja) * 1998-03-25 2003-12-15 日産自動車株式会社 回転電機
EP0945963B1 (en) 1998-03-25 2003-11-05 Nissan Motor Co., Ltd. Motor/generator
JP3468726B2 (ja) * 1999-09-01 2003-11-17 株式会社日立製作所 ハイブリッド車及び回転電機
US6563246B1 (en) * 1999-10-14 2003-05-13 Denso Corporation Rotary electric machine for electric vehicle
JP2001119875A (ja) 1999-10-14 2001-04-27 Denso Corp 同期機及びそれを用いた電気自動車用回転電機
JP4254011B2 (ja) 2000-05-01 2009-04-15 株式会社デンソー 永久磁石界磁極型回転電機
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
JP3671884B2 (ja) * 2001-08-30 2005-07-13 日産自動車株式会社 回転電機
US6724115B2 (en) 2001-10-24 2004-04-20 Denso Corporation High electrical and mechanical response structure of motor-generator
US7064466B2 (en) * 2001-11-27 2006-06-20 Denso Corporation Brushless rotary electric machine having tandem rotary cores
JP4320552B2 (ja) * 2003-02-07 2009-08-26 株式会社デンソー 磁束量可変磁石型ロータ
US7202625B2 (en) * 2005-02-25 2007-04-10 Caterpillar Inc Multi-motor switched reluctance traction system

Also Published As

Publication number Publication date
EP1819030A1 (en) 2007-08-15
CN101022226B (zh) 2010-05-19
US20070188036A1 (en) 2007-08-16
JP2007252184A (ja) 2007-09-27
EP1819030B1 (en) 2013-04-10
CN101022226A (zh) 2007-08-22
US7671494B2 (en) 2010-03-02

Similar Documents

Publication Publication Date Title
JP5141030B2 (ja) 回転電機
US9071118B2 (en) Axial motor
US8294318B2 (en) Electric motor and rotor for rotating electric machine
WO2013047076A1 (ja) 回転電機
US7750527B2 (en) Motor/generator
WO2019064801A1 (ja) 永久磁石式回転電機
JP2005176424A (ja) 回転電機の回転子
JP4016341B2 (ja) 三相シンクロナスリラクタンスモータ
JP2007244027A (ja) 回転電機
JP2008252979A (ja) アキシャルギャップ型回転機
JPWO2017195263A1 (ja) 永久磁石型モータ
JP6201405B2 (ja) 回転電機
JP2007202333A (ja) 回転電機
JP2008271630A (ja) 2相同時励磁ブラシレスdcモータ
JP5114135B2 (ja) アキシャルギャップ型モータ
JP2017063594A (ja) ブラシレスモータ
JP2007259525A (ja) 永久磁石同期電動機/発電機
JP5324025B2 (ja) 回転電機
JP4767997B2 (ja) 回転電機用ロータおよび電動機
JP2008252976A (ja) アキシャルギャップ型回転機
JP3234564U (ja) Srモータ
JP5891428B2 (ja) アクチュエータ装置
JP5085875B2 (ja) 電動機
JP5515298B2 (ja) 可変特性回転電機
JP4392417B2 (ja) 回転子側面にコイルを有した永久磁石式回転電機

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130625