JP5139375B2 - 光インターフェースモジュールの製造方法、及び、光インターフェースモジュール - Google Patents

光インターフェースモジュールの製造方法、及び、光インターフェースモジュール Download PDF

Info

Publication number
JP5139375B2
JP5139375B2 JP2009147899A JP2009147899A JP5139375B2 JP 5139375 B2 JP5139375 B2 JP 5139375B2 JP 2009147899 A JP2009147899 A JP 2009147899A JP 2009147899 A JP2009147899 A JP 2009147899A JP 5139375 B2 JP5139375 B2 JP 5139375B2
Authority
JP
Japan
Prior art keywords
core
interface module
core part
optical interface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009147899A
Other languages
English (en)
Other versions
JP2010026508A (ja
Inventor
博明 児玉
健作 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Publication of JP2010026508A publication Critical patent/JP2010026508A/ja
Application granted granted Critical
Publication of JP5139375B2 publication Critical patent/JP5139375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Description

本発明は、光インターフェースモジュールの製造方法、及び、光インターフェースモジュールに関する。
近年、高速信号の伝送に適している、対ノイズ設計が容易である等の点から、基板上に銅からなる導体回路が形成されたプリント配線板に代えて、基板上に発光素子や受光素子等の光学素子が実装されるとともに、光導波路が形成され、この光導波路を介して信号伝送を行う光インターフェースモジュールを使用することが提案されている。
このような光インターフェースモジュールでは、光信号の伝送損失を低減し、確実に光信号を伝送するために、発光素子や受光素子と光導波路との位置合わせを正確に行う必要がある。
そこで、例えば、特許文献1には、光学素子と光導波路との結合損失を低減するために、光学素子と光導波路のいずれかを位置ズレ量に応じて機械的に移動させ、両者の位置あわせを行う技術が開示されている。
特開平8−36122号公報
特許文献1に開示された技術のように、光導波路(光学素子を含む)を機械的に移動させて、位置合わせを行う場合、設計が複雑になり、さらに部品点数が多くなるという問題があった。
本願発明は、上述した課題を解決するためになされたものであり、その目的とするところは、発光素子や受光素子と光導波路とを、容易に、且つ、確実に接続する光インターフェースモジュールの製造方法と、発光素子や受光素子と光導波路とが確実に接続された光インターフェースモジュールを提供することにある。
上記目的を達成するため、本願発明の光インターフェースモジュールの製造方法は、
第1面と、第1面とは反対側の第2面とを有する基板の前記第1面上に、下層クラッド層を形成する工程と、
前記下層クラッド層上にコア層を形成する工程と、
前記コア層の一部に2本の溝を設け、この2本の溝で挟まれ、一端と他端とを有する第1コア部を形成する工程と、
前記コア層上及び前記溝内に、上層クラッド層を形成する工程と、
前記基板の第1面上に、発光素子を実装する工程と、
前記基板の第1面上に、受光素子を実装する工程と、
前記発光素子と前記第1コア部の一端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記発光素子及び前記第1コア部の一端のそれぞれと光学的に接続している第2コア部を形成する工程と、
前記受光素子と前記第1コア部の他端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記受光素子及び前記第1コア部の他端のぞれぞれと光学的に接続している第3コア部を形成する工程と、
を有することを特徴とする。
また、上記目的を達成するため、本願発明の光インターフェースモジュールの製造方法は、
フレキシブル基板上に、下層クラッド層を形成する工程と、
前記下層クラッド層上にコア層を形成する工程と、
前記コア層の一部に2本の溝を設け、この2本の溝で挟まれ、一端と他端とを有する第1コア部を形成する工程と、
前記コア層上及び前記溝内に、上層クラッド層を形成する工程と、
第1リジッド基板上に、発光素子を実装する工程と、
第2リジッド基板上に、受光素子を実装する工程と、
前記フレキシブル基板に前記第1リジッド基板と前記第2リジッド基板とを接着する工程と、
前記発光素子と前記第1コア部の一端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記発光素子及び前記第1コア部の一端のそれぞれと光学的に接続している第2コア部を形成する工程と、
前記受光素子と前記第1コア部の他端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記受光素子及び前記第1コア部の他端のそれぞれと光学的に接続している第3コア部を形成する工程と、
を有することを特徴とする。
また、上記目的を達成するため、本願発明の光インターフェースモジュールは、
基板と、
前記基板上に形成されている下層クラッド層と、
前記下層クラッド層上に形成され、第1の側壁と前記第1の側壁とは反対側の第2の側壁を有する3次元のコア部と、
前記コア部の前記第1の側壁に沿って、かつ、前記第1の側壁から離間して前記下層クラッド層上に形成されている第1の樹脂層と、
前記コア部の前記第2側壁に沿って、かつ、前記第2側壁から離間して前記下層クラッド層上に形成されている第2の樹脂層と、
前記コア部上と、前記第1の樹脂層上と、前記第2の樹脂層上と、前記コア部と前記第1の樹脂層との間隙の少なくとも一部と、前記コア部と前記第2の樹脂層との間隙の少なくとも一部とに形成されている上層クラッドと、
前記基板上に実装され、前記コア部と光学的に接続されている発光素子と、
前記基板上に実装され、前記コア部と光学的に接続されている受光素子と、
からなる光インターフェースモジュールであって、
前記コア部は、第1コア部と第2コア部と第3コア部とからなり、
前記第1コア部は、前記第2コア部と前記第3コア部とに挟まれており、
前記第1コア部の単位長さあたりの伝送損失は、前記第2コア部及び前記第3コア部の単位長さあたりの伝送損失より小さいことを特徴とする。
また、上記目的を達成するため、本願発明の光インターフェースモジュールは、
フレキシブル基板と、
前記フレキシブル基板上に形成されている下層クラッド層と、
前記下層クラッド層上に形成され、第1の側壁と前記第1の側壁とは反対側の第2の側壁を有する3次元のコア部と、
前記コア部の前記第1の側壁に沿って、かつ、前記第1の側壁から離間して前記下層クラッド層上に形成されている第1の樹脂層と、
前記コア部の前記第2の側壁に沿って、かつ、前記第2の側壁から離間して前記下層クラッド層上に形成されている第2の樹脂層と、
前記コア部上と、前記第1の樹脂層上と、前記第2の樹脂層上と、前記コア部と前記第1の樹脂層との間隙の少なくとも一部と、前記コア部と前記第2の樹脂層との間隙の少なくとも一部とに形成されている上層クラッドと、
第1リジッド基板と、
前記第1リジッド基板上に実装されている発光素子と、
第2リジッド基板と、
前記第2リジッド基板上に実装されている受光素子と、
からなる光インターフェースモジュールであって、
前記フレキシブル基板は、前記第1リジッド基板と前記第2リジッド基板に接着され、前記光学素子と前記受光素子とは、前記コア部と光学的に接続されており、
前記コア部は第1コア部と第2コア部と第3コア部とからなり、
前記第1コア部は、前記第2コア部と第3コア部とに挟まれており、
前記第1コア部の単位長さあたりの伝送損失は、前記第2コア部及び前記第3コア部の単位長さあたりの伝送損失より小さいことを特徴とする。
なお、本願発明において、「光学的に接続している」とは、互いに光学的に接続しているもの同士(例えば、第1コア部及び第2コア部や、発光素子及び第2コア部等)が、両者の間で光信号を伝送することができる状態にあることをいう。従って、光信号を伝送することができれば、両者は接触していてもよいし、接触していなくてもよい。
本願発明の光インターフェースモジュールの製造方法は、発光素子及び受光素子を実装し、その後、発光素子及び受光素子の位置に基づいてコア部を完成している。そのため、仮に発光素子及び受光素子の実装位置が設計位置から大きくずれても、発光素子及び受光素子の実際の実装位置に合わせて、高い位置精度でコア部を形成することができる。すなわち、発光素子及び受光素子の実装位置が設計位置から大きくずれても、光導波路のコア部を介した、発光素子と受光素子との間で光信号の伝送損失が少ない、光インターフェースモジュールを製造することができる。
本願発明の光インターフェースモジュールは、上記コア部の側面側に、実質的に光伝送に寄与しない樹脂層(ダミーコア)が上記コア部の側壁から離間して形成されている。そのため、コア部の断面形状(光の伝送方向に垂直な断面形状)をコア部全体(第1コア部〜第3コア部)において略同一にすることができるとともに、光導波路の上面を平坦にすることができ、その結果、伝送損失が少なくなる。さらに、上記光インターフェースモジュールでは、光信号のビットエラーレートを小さくすることができ、確実に信頼性が高い信号伝達ができる。
また、本願発明の光インターフェースモジュールでは、第1コア部の単位長さあたりの伝送損失が、第2コア部及び第3コア部の単位長さあたりの伝送損失よりも小さくなっている。そのため、光インターフェースモジュール全体で許容される伝送損失に応じて、第1コア部と、第2コア部及び第3コア部との占める割合を設計すればよい。すなわち、光インターフェースモジュール全体で許容される伝送損失が小さい場合には、第1コア部の占める割合を大きくすればよく、一方、光インターフェースモジュール全体で許容される伝送損失が大きい場合には、第2コア部及び第3コア部の占める割合が大きくてよい。
なお、本明細書において、コア部の側壁とは、コア部の側面のうち、光が入射又は出射する面以外の面のことをいう。
図1(a)は、本発明の第1実施形態の光インターフェースモジュールの平面図である。図1(b)は、図1(a)に示した光インターフェースモジュールのA−A線断面図である。図1(c)は、図1(a)に示した光インターフェースモジュールのB−B線断面図である。図1(d)は、図1(a)に示した光インターフェースモジュールのC−C線断面図である。 図2は、本発明の第1実施形態の別の光インターフェースモジュールの平面図である。 図3(a)〜(c)は、本発明の第1実施形態の製造方法を説明するための断面図である。 図4(a)〜(c)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。 図5(a)〜(c)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。 図6(a)〜(b)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。 図7(a)〜(b)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。 図8(a)〜(b)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。 図9(a)は、下層クラッド層と第1コア部のみが形成されたコア層と上層クラッド層との積層体の平面図である。図9(b)は、図9(a)に示した積層体のA−A線断面図である。図9(c)は、図9(a)に示した積層体のB−B線断面図である。図9(d)は、図9(a)に示した積層体のC−C線断面図である。図9(e)は、レーザ加工により2本の溝を形成して第2コア部及び第3コア部を形成した光導波路の平面図である。図9(f)は、図9(e)に示した光導波路のD−D線断面図である。図9(g)は、図9(e)に示した光導波路のE−E線断面図である。 図10(a)は、下層クラッド層と第1コア部とその両側のダミーコアとが形成されたコア層と上層クラッド層との積層体の平面図である。図10(b)は、図10(a)に示した積層体のA−A線断面図である。図10(c)は、図10(a)に示した積層体のB−B線断面図である。図10(d)は、図10(a)に示した積層体のC−C線断面図である。図10(e)は、レーザ加工により2本の溝を形成して第2コア部及び第3コア部を形成した光導波路の平面図である。図10(f)は、図10(e)に示した光導波路のD−D線断面図である。図10(g)は、図10(e)に示した光導波路のE−E線断面図である。 図11(a)は、比較例1の光インターフェースモジュールの平面図である。図11(b)は、図11(a)に示した光インターフェースモジュールのB−B線断面図である。図11(c)は、図11(a)に示した光インターフェースモジュールのC−C線断面図である 図12(a)は、本発明の第2実施形態の光インターフェースモジュールの平面図である。図12(b)は、図12(a)に示した光インターフェースモジュールのA−A線断面図である。図12(c)は、図12(a)に示した光インターフェースモジュールのB−B線断面図である。図12(d)は、図12(a)に示した光インターフェースモジュールのC−C線断面図である。 図13は、本発明の第2実施形態の別の光インターフェースモジュールの断面図である。 図14は、本発明の第2実施形態の別の光インターフェースモジュールの断面図である。
以下、本発明の実施形態を説明する。
(第1実施形態)
ここでは、まず、本発明の実施形態に係る光インターフェースモジュールとして、フレキシブル基板と第1及び第2リジッド基板とを備えた光インターフェースモジュールについて、図面を参照しながら説明する。
図1(a)は、本発明の第1実施形態の光インターフェースモジュールの平面図である。
図1(b)は、図1(a)に示した光インターフェースモジュールのA−A線断面図である。図1(c)は、図1(a)に示した光インターフェースモジュールのB−B線断面図である。図1(d)は、図1(a)に示した光インターフェースモジュールのC−C線断面図である。
図1(a)〜図1(d)に示すように、第1実施形態の光インターフェースモジュール100は、フレキシブルなポリイミド基板12(フレキシブル基板12)上に光導波路11が形成された光配線部10と、レーザダイオード22が実装されたリジッド電気基板21(第1リジッド基板)からなる発光部20と、フォトダイオード32が実装されたリジッド電気基板31(第2リジッド基板)からなる受光部30とを備えている。
光配線部10では、フレキシブルなポリイミド基板12上に光導波路11が形成されている。光導波路11は、樹脂からなる下層クラッド層13、コア層14及び上層クラッド層16を備え、各層がこの順にポリイミド基板12上に積層されている。
さらに、光導波路11では、コア層14の一部に、2本の平行な溝15、17(図1(a)参照)が形成されており、溝15、17は、上層クラッド層16の樹脂が充填された中央の2本の溝15(図1(c)参照)と、溝15の両側に存在する充填物のない4本の溝17(図1(d)参照)からなる。そして、2本の溝15で挟まれた部分、及び、その両側の2本の溝17で挟まれた部分は、実際に光路となるコア部14Aである。より詳細には、2本の溝15に挟まれたコア部が第1コア部14Aであり、2本の溝17で挟まれた2つのコア部が、第2コア部14A又は第3コア部14Aである。また、コア層14のうち、溝15、17を隔ててその両側に存在する外側部分は、実際には光路とならない樹脂層(ダミーコア)14Bである。従って、ダミーコア14Bは、コア部14Aの側壁に沿って、コア部14Aの側壁から離間して形成されている。
溝15内には、上述したように、樹脂が充填され、上層クラッド層16の一部を構成しており、溝17は空隙であり、コア層14及び上層クラッド層16を貫通するように形成されている。なお、溝17内には樹脂が充填されていてもよい。
また、光配線部10のポリイミド基板12の下面の両端部12Aは、接着材層(図示せず)を介して、発光部20のリジッド電気基板21、及び、受光部30のリジッド電気基板31のそれぞれに固定されている。
ここで、リジッド電気基板21に実装されたレーザダイオード22と光学的に接続される側の第2コア部14Aの端部は、リジッド電気基板21上に位置するように、リジッド電気基板21がポリイミド基板12に固定されている。
また、リジッド電気基板31に実装されたフォトダイオード32と光学的に接続される側の第3コア部14Aの端部は、リジッド電気基板31上に位置するように、リジッド電気基板31がポリイミド基板12に固定されている。
このような位置に、リジッド電気基板21、31を固定することにより、レーザダイオード22と第2コア部14Aとの間、及び、フォトダイオード32と第3コア部14Aとの間で確実に光信号を伝送することができる。使用時に光インターフェースモジュールのポリイミド基板12(フレキシブル基板12)を湾曲させても、リジッド電気基板21、31は湾曲しないためレーザダイオードやフォトダイオードとコア部との相互の位置関係が変化しないからである。
発光部20では、電気回路を備えたリジッド電気基板21にレーザダイオード22が半田バンプ23を用いてフリップチップ実装されるとともに、図示しないレーザダイオード22の駆動回路(ドライバ)が搭載されている。
受光部30では、電気回路を備えたリジッド電気基板31にフォトダイオード32が半田バンプ33を用いてフリップチップ実装されるとともに、図示しないフォトダイオード32の制御回路(プリアンプとコンパレータ)が搭載されている。
また、光インターフェースモジュール100では、第1コア部14Aの側壁の粗度が、第2コア部14A及び第3コア部14Aの側壁の粗度よりも小さくなっている。
そのため、光インターフェースモジュール100では、第1コア部14Aの単位長さあたりの伝送損失が、第2コア部14A及び第3コア部14Aのぞれぞれの単位長さあたりの伝送損失よりも小さくなっている。
従って、光インターフェースモジュール100は、下記の方法を用いて製造する際に、光インターフェースモジュール100全体で許容される伝送損失に応じて、第1コア部14Aの長さと、第2コア部14A及び第3コア部14Aのぞれぞれの長さとを設計すればよい。
このような光インターフェースモジュール100では、発光部20のレーザダイオード22から、受光部30のフォトダイオード32へ、光導波路11(コア部14A)を介して光信号を伝送することができる。
また、光インターフェースモジュール100において、ポリイミド基板12は、電気回路を備えたフレキシブル電気基板であってもよい。
この場合、リジッド電気基板21とリジッド電気基板31とを光導波路11を介して光学的に接続するとともに、電気的にも接続することができる。
また、図1に示した光インターフェースモジュール100では、コア部14A全体が直線状に形成されているが、上記コア部の一部は、屈曲又は湾曲していてもよい。
即ち、本実施形態の光インターフェースモジュールは、図2に示すような光インターフェースモジュールであってもよい。
図2は、本発明の第1実施形態の別の光インターフェースモジュールの平面図である。
図2に示した光インターフェースモジュール200は、2本の平行な溝217が湾曲している以外は、図1(a)に示した光インターフェースモジュール100と同一である。
このような構成の光インターフェースモジュール200においても発光部20のレーザダイオード22から、受光部30のフォトダイオード32へ、光導波路を介して光信号を伝送することができる。
光インターフェースモジュール200において、溝217が湾曲している理由は下記の通りである。
図1(a)に示したような第1コア部14Aの光軸の延長線上にレーザダイオード22の光の出射部位やフォトダイオード32の光の入射部位が位置している光インターフェースモジュール100では、第2コア部14A及び第3コア部14Aを直線状に形成すれば、言い換えれば、溝17を平行な直線状に形成すれば、レーザダイオード22とコア部14Aとフォトダイオード32とを光学的に接続することができる。
これに対して、レーザダイオード22の光の出射部位及びフォトダイオード32の光の入射部位が第1コア部の光軸の延長線上から、それぞれX方向にL及びL(図2参照)だけずれている場合には、第2コア部及び第3コア部を直線状に形成すると、レーザダイオード22とコア部との間や、フォトダイオード32とコア部と間で伝送損失が大きくなる。そこで、光インターフェースモジュール200では、第2コア部及び第3コア部を伝送損失の小さい形状とするために、溝217を湾曲した形状としているのである。
そして、このように溝217を湾曲させる、即ち、第2コア部及び第3コア部を湾曲した形状とすることにより、ある一定値以下の伝送損失、及び、ある一定値以下のビットエラーレートで光信号を伝送することができる。
次に、第1実施形態の光インターフェースモジュールの製造方法について、図面を参照しながら工程順に説明する。
図3(a)〜図3(c)、図4(a)〜図4(c)、図5(a)〜図5(c)、図6(a)、図6(b)、図7(a)、図7(b)、図8(a)、図8(b)は、本発明の第1実施形態の製造方法を説明するための断面図又は平面図である。
ここで、図3(a)〜図3(c)、図4(a)、図5(a)、図6(a)、図7(a)及び図8(a)は、図1(a)のA−A線断面(図1(b))と同一断面の断面図である。図4(b)、図5(b)、図6(b)、図7(b)及び図8(b)は、平面図である。図4(c)及び図5(c)は、図1(a)のB−B線断面(図1(c))と同一断面の断面図である。
(1)フレキシブルなポリイミド基板12を出発材料とし(図3(a)参照)、このポリイミド基板12上に、クラッド形成用樹脂を塗布したり、フィルム状に成形されたクラッド形成用樹脂を張り付けたりすることにより、下層クラッド層13を形成する(図3(b)参照)。
(2)次に、下層クラッド層13上に蒸着等により、銅、金、アルミニウム、チタン、ニッケル、クロム等からなる金属膜を形成し、この金属膜上にエッチングレジストを形成し、さらに、露光・現像・エッチング処理及び剥膜処理を行うことにより、下層クラッド層13上にアライメントマーク18(図4(b)参照)を形成する。このアライメントマーク18は、後工程で位置合せの基準となる。
なお、アライメントマーク18は、ポリイミド基板12上に形成してもよい。また、アライメントマーク18の材質は金属に限定されず、樹脂であってもよい。
(3)次に、下層クラッド層13上の全面に、コア形成用樹脂を塗布したり、フィルム状に成形されたコア形成用樹脂を張り付けたりすることにより、コア層14を形成する(図3(c)参照)。
その後、コア層14の一部に、平行な2本の溝15を形成する(図4参照)。
具体的には、まず、コア層14上にエッチングレジストを形成し、これに、露光・現像処理を行うことによりマスクとする。このマスクは溝15に対応する部分に開口が形成されている。この開口の形成位置は下層クラッド層13上に形成したアライメントマーク18を基準に決定する。
続いて、反応性イオンエッチング法により、マスクが存在しない部分(開口部分)のコア層14を除去することにより、平行な2本の溝15を形成する。その後、マスクを除去する。
このような2本の溝15を形成することにより、コア層14の溝15に挟まれた部分が第1コア部14Aとなる。また、溝15の外側の部分がダミーコア14Bとなる。
(4)次に、溝15の形成されたコア層14上に、クラッド形成用樹脂を塗布したり、フィルム状に成形されたクラッド形成用樹脂を張り付けたりすることにより、上層クラッド層16を形成する(図5参照)。
このとき、溝15内にもクラッド形成用樹脂が入り込むこととなり、溝15内に入り込んだクラッド形成用樹脂が上層クラッド層16の一部を構成することとなる。
(5)次に、リジッド電気基板21上にレーザダイオード22を半田バンプ23を介してフリップチップ実装するとともに、リジッド電気基板31上にフォトダイオード32を半田バンプ33を介してフリップチップ実装する。
ここでは、レーザダイオード22及びフォトダイオード32のそれぞれに予めアライメントマーク25、35を付けておき、これらのアライメントマークとリジッド電気基板21、31のアライメントマーク24、34とを基準にして、レーザダイオード22及びフォトダイオード32をリジッド電気基板21、31に実装する(図6(a)及び図6(b)参照)。
これにより、レーザダイオード22及びフォトダイオード32を所定の位置に実装することができる。
また、レーザダイオード22及びフォトダイオード32の実装は、ワイヤーボンディング、リード、ピン接続、異方導電性接着剤等を用いて行ってもよい。
(6)次に、ポリイミド基板12の両端部の下面12Aを、リジッド電気基板21、及び、リジッド電気基板31に接着剤層(図示せず)を介して固定する(図7(a)及び図7(b)参照)。ポリイミド基板12とリジッド電気基板21、31との位置合せは、下層クラッド層13上に形成したアライメントマーク18、及び、レーザダイオード及びフォトダイオードのアライメントマーク25、35を基準に行う。
なお、このとき、レーザダイオードの駆動回路やフォトダイオードの制御回路は既にリジッド電気基板に搭載されていてもよいし、ポリイミド基板12をリジッド電気基板に固定した後に、搭載してもよい。
(7)次に、レーザ加工により、上層クラッド層16及びコア層14の所定の位置に、平行な2本の溝17を形成する。このとき、溝17は、下層クラッド層13上のアライメントマーク18と、レーザダイオード22及びフォトダイオード32のそれぞれに付けられたアライメントマーク25、35とを基準に形成する(図8(a)及び図8(b)参照)。
平行な2本の溝17を成形することにより、コア層14の溝17に挟まれた部分が第2コア部14A及び第3コア部14Aとなる(図1(b)参照))。また、溝17の外側の部分がダミーコア14Bとなる(図1(c)、(d)参照)。従って、ダミーコア14Bは、コア部14Aの側壁に沿って、かつ、コア部14Aの側壁から離間して形成されていることとなる。
ここで、レーザ加工は、例えば、エキシマレーザ、炭酸ガスレーザ、紫外線レーザ等を用いて行えばよい。
この(7)の工程では、上述したように、レーザダイオード22及びフォトダイオード32の実装位置に基づいて、レーザ加工により溝17を形成している。
従って、レーザダイオード22やフォトダイオード32の実装位置によっては、図8(a)、図8(b)に示したように溝17に挟まれたコア部が直線状にならず、図2に示したように、溝17に挟まれたコア部の形状が湾曲した形状となることもある。
また、溝17を形成した後には、必要に応じて、溝17内にクラッド形成用樹脂を充填してもよい。
このような工程を経ることにより、本実施形態の光インターフェースモジュールを製造することができる。
また、ここまで説明した製造方法において、上記(2)の工程において、金属膜を形成した後、各種処理を行うことによりアライメントマークを形成しているが、上記アライメントマークは、上記(3)の工程において、溝15を形成する際に、同時に反応性イオンエッチング法により下層クラッド層に形成してもよい。
第1実施形態の光インターフェースモジュールの製造方法によれば、まず、コア層の一部にのみコア部(第1コア部)を形成しておき、上記第1コア部の形成位置、及び、レーザダイオード及びフォトダイオードの実装位置に基づいて、レーザ加工により両者を光学的に接続する第2コア部及び第3コア部を形成する。
そのため、仮に、ポリイミド基板の固定位置が設計位置からずれていたとしても、実際の固定位置(レーザダイオード及びフォトダイオードに対する実際のポリイミド基板の固定位置)に基づいて第2コア部及び第3コア部を形成しているため、レーザダイオードとフォトダイオードとを、確実に、かつ、高精度で光学的に接続する光導波路を容易に形成することができる。
特に、多数の光インターフェースモジュールを一度に製造しようとすると位置ずれが発生する確率が高くなるが、この場合にも、レーザダイオードとフォトダイオードとを、確実に、かつ、高精度で光学的に接続する光導波路を容易に組み込むことができる。
また、第1実施形態の光インターフェースモジュールの製造方法では、レーザ加工により平行な2本の溝を形成することにより、コア部を形成している。
従って、コア部の平面視形状が直線状の場合だけでなく、コア部の平面視形状が屈曲状や湾曲状の場合であっても、高い精度でコア部を形成することができる。
また、第1実施形態の光インターフェースモジュールの製造方法によれば、反応性イオンエッチング法により溝15を形成し、レーザ加工により、溝17を形成している。
そのため、溝15に挟まれた第1コア部の側壁の粗度は、溝17に挟まれた第2コア部及び第3コア部それぞれの側壁の粗度よりも小さくすることができる。そうすると、第1コア部の単位長さあたりの伝送損失は、第2コア部の単位長さあたりの伝送損失よりも小さくすることができる。
従って、第1実施形態の光インターフェースモジュールの製造方法によれば、光インターフェースモジュール全体で許容される伝送損失に応じて、各コア部の長さを決定すればよく、光インターフェースモジュール全体で許容される伝送損失が小さい場合には、第1コア部の長さを長くすればよく、光インターフェースモジュール全体で許容される伝送損失が大きい場合には、第1コア部の長さを短くしてもよい。
また、第1実施形態の光インターフェースモジュールの製造方法によれば、光導波路のコア層にダミーコアを形成しているため、コア層上に上層クラッド層を形成した際に、上層クラッド層の上面の一部が盛り上がったり、窪んだり、波打ったりすることがない。
従って、レーザ加工により、コア層及び上層クラッド層を貫通する平行な2本の溝を形成することで、第2コア部及び第3コア部を形成するのに特に適している。
これについて、図9(a)〜図9(g)、及び、図10(a)〜図10(g)を参照しながらもう少し詳しく説明する。
図9(a)は、下層クラッド層と第1コア部のみが形成されたコア層と上層クラッド層との積層体の平面図である。図9(b)は、図9(a)に示した積層体のA−A線断面図である。図9(c)は、図9(a)に示した積層体のB−B線断面図である。図9(d)は、図9(a)に示した積層体のC−C線断面図である。
図9(e)は、レーザ加工により2本の溝を形成して第2コア部及び第3コア部を形成した光導波路の平面図である。図9(f)は、図9(e)に示した光導波路のD−D線断面図である。図9(g)は、図9(e)に示した光導波路のE−E線断面図である。
図10(a)は、下層クラッド層と第1コア部とその両側のダミーコアとが形成されたコア層と上層クラッド層との積層体の平面図である。図10(b)は、図10(a)に示した積層体のA−A線断面図である。図10(c)は、図10(a)に示した積層体のB−B線断面図である。図10(d)は、図10(a)に示した積層体のC−C線断面図である。
図10(e)は、レーザ加工により2本の溝を形成して第2コア部及び第3コア部を形成した光導波路の平面図である。図10(f)は、図10(e)に示した光導波路のD−D線断面図である。図10(g)は、図10(e)に示した光導波路のE−E線断面図である。
図9(a)〜図9(d)に示すような下層クラッド層53、コア層54及び上層クラッド層56がこの順で積層された積層体51では、コア層54に第1コア部54Aのみが形成され、その両外側にはダミーコアが形成されていない。
また、図9(e)に示すように、レーザ加工により2対の平行な溝57を形成した場合、溝57の断面形状は、図9(f)及び図9(g)に示すように、テーパ状(先細り形状)となる。溝57の断面形状がこのような形状となることは、レーザ加工で溝57を形成する場合には避けることが困難である。
また、加工する位置に拠らず、同一条件でレーザ加工により形成した溝57は、その深さが同一となる。
そうすると、図9(a)〜図9(d)に示すような、ダミーコアが形成されていない積層体51では、上層クラッド層56の上面が平坦にならず、高低差が生じるため、2本の平行な溝57を形成し、溝57に挟まれた部分を第2コア部、又は、第3コア54Aとした際に、コア部の断面形状が場所によって異なることとなる。
即ち、第3コア部54Aの溝57に挟まれた部分のうち、第1コア部54Aに近い部分の第3コア部54Aの幅W(図9(f)参照)と、第1コア部54Aから遠い部分の第3コア部54Aの幅W(図9(g)参照)とが異なることとなる。なお、このように場所によりコア部の幅が異なってしまうのは、第3コア部54Aのみならず、第2コア部でも同様である。
そして、連続したコア部において、その幅が途中で変化すると、信号光がコアとクラッドの境界で全反射せずにもれて、伝送損失の増大を招く場合がある。
一方、図10(a)〜図10(d)に示すような下層クラッド層63、コア層64及び上層クラッド層66がこの順で積層され、第1コア部64Aの両外側にダミーコア64Bが形成された積層体61に、レーザ加工により2対の平行な溝67を形成した場合(図10(e)参照)には、溝67の断面形状は、図10(f)及び図10(g)に示すように、テーパ状(先細り形状)となるものの、ダミーコア64Bが形成されていることに起因して上層クラッド層66の上面が平坦であるため、2本の平行な溝67に挟まれた第3コア部64Aの幅W、Wは、いずれの部分も略同一である。なお、第3コア部64Aのみならず、第2コア部においてもコア部の幅はいずれの部分も同一である。
この場合には、連続したコア部の幅が途中で変化することがないため、伝送損失の増大を招く恐れがない。
このように、レーザ加工により溝を形成することで、第2コア部及び第3コア部を形成する場合には、低い伝送損失を維持するために、上層クラッド層の上面が平坦であることが望ましい。
そして、このように上層クラッド層の上面を平坦にするには、ダミーコアを設けることが望ましいのである。
第1実施形態の光インターフェースモジュールは、ダミーコアを備えているため、光導波路の上面が平坦である。
そのため、コア部の断面形状が光路全体で略同一であり、伝送損失の少ない光インターフェースモジュールを提供することができる。
また、第1実施形態の光インターフェースモジュールの構成は、第1実施形態の光インターフェースモジュールの製造方法を用いて製造するのに適している。
(実施例1)
(1)厚さ0.025mmのフレキシブルなポリイミド基板12を出発材料とし(図3(a)参照)、このポリイミド基板12上に、クラッド形成用樹脂としてフッ素化ポリイミド樹脂(ルクスビアPF−GAXX100038C、日本触媒社製)を塗布し、250℃で1時間の条件で、硬化させることにより、厚さ50μm、長さ10cmの下層クラッド層13を形成した(図3(b)参照)。なお、下層クラッド層13の長さとは、図1(a)におけるZ方向の長さをいう。
(2)下層クラッド層13上に蒸着により金属膜(Au膜)を形成し、この金属膜上にエッチングレジストを形成し、さらに、露光・現像・エッチング処理及び剥膜処理を行うことにより、下層クラッド層13上にアライメントマーク18(図4(b)参照)を形成した。
(3)下層クラッド層13上の全面に、コア形成用樹脂としてフッ素化ポリイミド樹脂(ルクスビアPF−GAXX100033C、日本触媒社製)を塗布し、250℃で1時間の条件で、硬化させることにより、厚さ50μmのコア層14を形成した(図3(c)参照)。
(4)コア層14上にエッチングレジストを形成し、このエッチングレジストに露光・現像処理を行うことにより、下記の溝15を形成する部分に対応する部分が開口したマスクとした。なお、開口形成位置は、アライメントマーク18を基準に決定した。
その後、反応性イオンエッチング法により、コア層14の一部に、平行な2本の溝15を形成した(図4(a)、図4(b)及び図4(c)参照)。なお、溝15の長さ(図1(a)におけるZ方向の長さ)は、9cmである。
このような2本の溝15を形成することにより、コア層14の溝15に挟まれた部分を第1コア部14Aとし、コア層14の溝15の外側の部分をダミーコア14Bとした。従って、ダミーコア14Bは、第1コア部14Aの側壁に沿って、かつ、第1コア部14Aの側壁から離間して形成されている。また、第1コア部14Aの幅(図1(a)におけるX方向の長さ)は、50μmである。
(5)次に、溝15の形成されたコア層14上に、クラッド形成用樹脂としてフッ素化ポリイミド樹脂(ルクスビアPF−GAXX100038C、日本触媒社製)を塗布し、250℃で1時間の条件で、硬化させることにより、厚さ50μmの上層クラッド層16を形成した(図5(a)、図5(b)及び図5(c)参照)。
本工程では、クラッド形成用樹脂を塗布することにより、溝15内にもクラッド形成用樹脂が充填された。
(6)次に、リジッド電気基板21にレーザダイオード22とレーザダイオードの駆動回路(図示せず)とを半田バンプ23を介してフリップチップ実装するとともに、リジッド電気基板31にフォトダイオード32とフォトダイオードの制御回路(図示せず)とを半田バンプ33を介してフリップチップ実装した(図6(a)及び図6(b)参照)。
このとき、リジッド電気基板21とレーザダイオード22との位置合せは、アライメントマーク24、25を基準に行い、リジッド電気基板31とフォトダイオード32との位置合せは、アライメントマーク34、35を基準に行った。
(7)次に、ポリイミド基板12の両端部の下面12Aを、リジッド電気基板21、31にエポキシ系接着剤(図示せず)を用いて固定した(図7(a)及び図7(b)参照)。
このとき、ポリイミド基板12とリジッド電気基板21、31との位置合せは、下層クラッド層13上に形成されたアライメントマーク18、及び、レーザダイオード、フォトダイオードのアライメントマーク25、35を基準に行った。
(8)次に、UVレーザを用いて、上層クラッド層16及びコア層14の所定の位置に、平行な2本の溝17を形成した(図8(a)及び図8(b)参照)。溝17のZ方向の長さは、レーザダイオード側、フォトダイオード側ともに0.5cmであった。
このとき、溝17の形成位置は、アライメントマーク18、及び、アライメントマーク25、35を基準に決定した。
このような平行な2本の溝17を成形することにより、コア層14の溝17に挟まれた部分を第1コア部14Aと連続した第2コア部14A及び第3コア部14Aとした。
なお、本実施例では、レーザダイオード及びフォトダイオードが設計位置どおりに実装されており、そのため、コア部14A全体は、直線状に形成されていた。
このような工程を経て、光インターフェースモジュール100を完成した。
実施例1で作製した光インターフェースモジュール100について、全体の伝送損失を測定したところ、15.0dBであった。
光インターフェースモジュール100の全体の伝送損失は、下記の方法により測定した。
レーザダイオードの光出力電力は、光出力電力密度の放射角度依存性である光出力電力プロファイルとレーザダイオードの駆動回路の消費電力の大きさの観点から、1mW(0dBm)にしている。この1mW(0dBm)の光信号は、レーザダイオードから出射され、光導波路の端部から入り、光導波路の他端から出てくるので、この光信号をフォトダイオードで受光する。フォトダイオードの受光電力量と受光によって生成されるフォト電流には関係があり、それは、あらかじめわかっているので、フォト電流を測定することで、フォトダイオードが受光した光の電力[単位:mW又はdBm]を知ることができる。
そこで、下記計算式(1)を用いて、光インターフェースモジュールの全体の伝送損失[単位:dB]を算出した。
全体の伝送損失(dB)=−10log10((レーザダイオードの光出力電力(mW))/(フォトダイオードの受光電力(mW)))=−10log10((1(mW))/(フォトダイオードの受光電力(mW)))・・・(1)
また、実施例1で作製した光インターフェースモジュール100において、1Gbit/secの光信号を伝送した際のビットエラーレートを測定したところ、1×10−13であった。
なお、上記ビットエラーレートは、下記の方法により測定した。
まず、レーザダイオードの駆動回路(ドライバ)の入力端子につながる光インターフェースモジュールのフレキシブル電気基板の端子に、擬似ランダムビット列(Pseudo Random Bit Sequence(PRBS))の電圧信号を入力する。入力された電圧信号は、レーザダイオードの駆動回路(ドライバ)で電流信号に変換され、レーザダイオードで電流信号は光信号に変換される。そして、レーザダイオードから出射された光信号は、光導波路を経由してフォトダイオードで受光されて電流信号に変換される。この電流信号は、フォトダイオードの制御回路(プリアンプとコンパレータ)で電圧信号に変換され、出力端子から出力される。そこで、フォトダイオードの制御回路(プリアンプとコンパレータ)につながるフレキシブル電気基板のパッドから電圧信号を読み取り、上述の入力した擬似ランダムビット列と比較して、ビットエラーレートを計算する。
擬似ランダムビット列の発生と光インターフェースモジュールからの出力電圧の検出、両者の比較によるビットエラーレートの計算は、ビットエラーレートテスタ(Agilent社製、N4902B)を用いて行った。
(実施例2)
レーザダイオード、及び、フォトダイオードの実装位置を第1コア部の光軸から意図的にX方向(図2参照)にL=L=200μmとなるようにずらした以外は、実施例1と同様にして、光インターフェースモジュールを作製した。
従って、実施例1で作製した光インターフェースモジュールでは、レーザダイオード及びフォトダイオードの実際の実装位置がズレていることに応じて、図2に示した光インターフェースモジュールのように、第2コア部及び第3コア部が湾曲していることとなる。
また、実施例2で作製した光インターフェースモジュール100について、伝送損失、及び、1Gbit/secの光信号を伝送した際のビットエラーレートを測定したところ、それぞれ、15.5dB及び1×10−12であった。
実施例1で作製した光インターフェースモジュール100では、1Gbit/secの光信号を1×10−12以下のビットエラーレートで伝送しようとすると、許容される光インターフェースモジュール全体での伝送損失は、15.5dBである。
これに対して、実施例2では、レーザダイオード及びフォトダイオードの実装位置を、第1コア部の光軸から意図的にX方向(図2参照)にL=L=200μmずらしており、全体の伝送損失及び1Gbit/secの光信号を伝送した際のビットエラーレートがそれぞれ15.5dB及び1×10−12であった。
さらに、200μmより大きく、レーザダイオード及びフォトダイオードの実装位置をX方向にずらすと、第2コア部及び第3コア部の湾曲の局所的半径が小さくなり、より多くの光信号の成分が、コアとクラッドの境界で全反射することができず、第2コア部及び第3コア部の伝送損失が大きくなり、従って、光インターフェースモジュールの全体の伝送損失が、15.5dBより大きくなる。このことにより、1Gbit/secの光信号を伝送した際のビットエラーレートは、1×10−12より大きくなる。
すなわち、実施例2は、1Gbit/secの光信号を、1×10−12以下のビットエラーレートで伝送することができるレーザダイオード及びフォトダイオードの実装位置をX方向(図2参照)へ最大にずらした場合の実施例であり、1Gbit/secの光信号を1×10−12以下のビットエラーレートで伝送するのに許容されるレーザダイオード及びフォトダイオードに許容されるX方向の位置ずれが、ともに200μmであったということである。
また、比較のため、実施例1の光インターフェースモジュールの製造方法において、第2コア部及び第3コア部を形成せず、光導波路のコア部が第1コア部(反応性イオンエッチング法で形成された溝15で挟まれたコア部)のみで構成された光インターフェースモジュールを作製した。そして、この光インターフェースモジュールについても、上述した方法と同様の方法により、レーザダイオード及びフォトダイオードにおいて許容される位置ずれ量を算出した。
その結果、レーザダイオードの許容されるX方向の位置ズレは、31μmであり、フォトダイオードの許容されるX方向の位置ズレ量は、48μmであった。
このように、レーザダイオード及びフォトダイオードの実装位置に基づいて、第2コア部及び第3コア部をレーザ加工で形成することにより、許容されるレーザダイオード及びフォトダイオードの実装位置のずれ量を大きくすることができる。
すなわち、実施例2では、レーザダイオード及びフォトダイオードを実装し、その後、レーザダイオード及びフォトダイオードの位置に基づいて、レーザ加工により第2コア部、第3コア部を形成し、コア部全体を完成している。そのため、仮にレーザダイオード及びフォトダイオードの実装位置が設計位置から大きくずれても、レーザダイオード及びフォトダイオードの実際の実装位置に合わせて、レーザ加工で、高い位置精度で第2コア部及び第3コア部を形成することができ、レーザダイオード及びフォトダイオードの実装位置が設計位置から大きくずれても、光導波路のコア部を介した、レーザダイオードとフォトダイオードとの間で光信号の伝送損失が少ない、光インターフェースモジュールを製造することができる。
(比較例1)
実施例1の(4)の工程において、第1コア部14Aのみを形成し、第1コア部の両側にダミーコア14Bを形成しなかった以外は、実施例1と同様に光インターフェースモジュール150を完成した(図11(a)、図11(b)及び図11(c)参照)。
従って、図11(a)〜(c)に示したように、比較例1の光インターフェースモジュール150では、第1コア部の両側にダミーコアが形成されていない以外は、実施例1の光インターフェースモジュールと同様の構成を備えることとなる。
比較例1で作製した光インターフェースモジュールの全伝送損失は、16.5dBであり、1Gbit/secの光信号を伝送した際のビットエラーレートは、1×10−10であった。
(比較例2)
第1コア部14Aのみを形成し、第1コア部の両側にダミーコア14Bを形成しなかった以外は、実施例2と同様に光インターフェースモジュールを完成した。
従って、比較例2の光インターフェースモジュールでは、実施例2と同様、第2コア部及び第3コア部が湾曲して形成されていることとなる。
比較例2で作製した光インターフェースモジュールの全伝送損失は、17.0dBであり、1Gbit/secの光信号を伝送した際のビットエラーレートは、1×10−9であった。
なお、実施例1、2及び比較例1、2に係る光インターフェースモジュールの全伝送損失及び1Gbit/secの光信号を伝送した際のビットエラーレートは、表1に示すとおりである。
Figure 0005139375
このように、実施例1及び2の光インターフェースモジュールは、それぞれ比較例1及び2の光インターフェースモジュールに比べて、全伝送損失及びビットエラーレートともに小さくかった。これは、実施例1及び2の光インターフェースモジュールでは、コア層にダミーコアを形成したためであると考えられる。
(第2実施形態)
第2実施形態の光インターフェースモジュールについて、図面を参照しながら説明する。
図12(a)は、本発明の第2実施形態の光インターフェースモジュールの平面図である。
図12(b)は、図12(a)に示した光インターフェースモジュールのA−A線断面図である。図12(c)は、図12(a)に示した光インターフェースモジュールのB−B線断面図である。図12(d)は、図12(a)に示した光インターフェースモジュールのC−C線断面図である。
図12(a)〜図12(d)に示すように、第2実施形態の光インターフェースモジュール300は、フレキシブル電気基板312上に光導波路311が形成された光配線部310と、レーザダイオード322が実装された発光部320と、フォトダイオード332が実装された受光部330とを備えている。
光導波路311は、樹脂からなる下層クラッド層313、コア層314及び上層クラッド層316を備え、各層がこの順にフレキシブル電気基板312上に積層されている。
さらに、光導波路311では、コア層314の一部に、2本の平行な溝315、317が形成されている。
コア層314のうち、2本の溝315で挟まれた部分、及び、2本の溝317で挟まれた部分は、実際に光路となるコア部314Aである。より詳細には、2本の溝315に挟まれたコア部が第1コア部314Aであり、2本の溝317で挟まれたコア部が、第2コア部314A又は第3コア部314Aである。また、溝315、317の外側部分は、実際には光路とならないダミーコア314Bである。
また、図12(c)に示すように、溝315内には、上層クラッド層316と同一の樹脂が充填されている。
また、図12(d)に示すように、溝317は空隙であり、コア層314及び上層クラッド層316を貫通するように形成されている。
発光部320では、電気回路を備えたフレキシブル電気基板312にレーザダイオード322が半田バンプ323を用いてフリップチップ実装されるとともに、図示しないレーザダイオード322の駆動回路(ドライバ)が搭載されている。
受光部330では、電気回路を備えたフレキシブル電気基板312にフォトダイオード332が半田バンプ333を用いてフリップチップ実装されるとともに、図示しないフォトダイオード332の制御回路(プリアンプとコンパレータ)が搭載されている。
光インターフェースモジュール300では、発光部320のレーザダイオード322から、受光部330のフォトダイオード332へ、光導波路311(コア部314A)を介して光信号を伝送することができる。
このような第2実施形態の光インターフェースモジュール300は、光導波路を形成するための基板と、レーザダイオードを実装するための基板と、フォトダイオードを実装するための基板とが、1つのフレキシブル電気基板312(第1基板)で構成されている点でのみ、第1実施形態の光インターフェースモジュール100とは異なる。
また、第2実施形態の光インターフェースモジュールは、下記の点を変更する以外は、第1実施形態の光インターフェースモジュールを製造する方法と同様の方法により製造することができる。
即ち、ポリイミド基板12に代えてフレキシブル電気基板312を出発材料とし、第1実施形態の光インターフェースモジュールの製造方法の(6)の工程を行わない以外は、第1実施形態の光インターフェースモジュールの製造方法と同様の方法を用いることにより、第2実施形態の光インターフェースモジュールを製造することができる。
また、第2実施形態の光インターフェースモジュールでは、第1実施形態の光インターフェースモジュールと同様、コア部全体が必ずしも直線状に形成されている必要はなく、その一部が屈曲又は湾曲していてもよい。
即ち、第2実施形態の光インターフェースモジュールにおいても、例えば、第2コア部及び第3コア部が図2に示した光インターフェースモジュール200のように、発光素子及び受光素子の実際の実装位置に応じて湾曲していてもよい。
また、第2実施形態の光インターフェースモジュールでは、フレキシブル電気基板312の第2面(光導波路が形成された面と反対側の面)に、補強板が形成されていてもよい。
上記補強板は、レーザダイオードの直下を含む領域と、フォトダイオードの直下を含む領域とに形成されていることが望ましく、特に、図13に示す光インターフェースモジュール400ように、レーザダイオード322、及び、レーザダイオード322と対向する第2コア部314Aの端部の直下を含む領域に補強板351が形成され、フォトダイオード332、及び、フォトダイオード332と対向する第3コア部314Aの端部の直下を含む領域に補強板352が形成されていることが望ましい。
このような補強板を形成することにより、レーザダイオード322と第2コア部314Aとの間、及び、フォトダイオード332と第3コア部314Aとの間で確実に光信号を伝送することができる。使用時に光インターフェースモジュールを湾曲させても、補強板を形成した部分は、湾曲しないためレーザダイオードやフォトダイオードとコア部との相互の位置関係が変化しないからである。
なお、図13の光インターフェースモジュールは、補強板が形成されている以外は、図12(a)〜図12(d)に示した光インターフェースモジュール300の構成と同一である。
また、第2実施形態の光インターフェースモジュールでは、フレキシブル電気基板312に代えて、図14に示す光インターフェースモジュール500のように、リジッド部とフレキシブル部とからなるリジッドフレキシブル電気基板362を備えていてもよい。
図14の光インターフェースモジュールは、フレキシブル電気基板に代えて、リジッドフレキシブル電気基板を備えている以外は、図12(b)の光インターフェースモジュールと同一の光インターフェースモジュールである。
図14に示す光インターフェースモジュール500は、光導波路を形成したり、レーザダイオード322やフォトダイオード332を実装したりする基板として、2箇所のリジッド部362A、362Bと、リジッド部362A、362Bをつなぐ、フレキシブル部362Cとからなるリジッドフレキシブル電気基板362を備えている。
そして、リジッド部362A上には、レーザダイオード322が実装されており、リジッド部362B上には、フォトダイオード332が実装されている。そして、フレキシブル部362C上には光導波路が形成されており、さらに、光導波路は、レーザダイオード322と対向する第2コア部314Aの端部がリジッド部362A上に位置し、フォトダイオード332と対向する第3コア部314Aの端部がリジッド部362B上に位置するように形成されている。
なお、光インターフェースモジュール500の構成は、フレキシブル電気基板312に代えて、リジッドフレキシブル電気基板362を備えている以外は、図12(a)〜図12(d)に示した光インターフェースモジュール300の構成と同一である。
このようなリジッドフレキシブル電気基板を用いることにより、レーザダイオード322と第2コア部314Aとの間、及び、フォトダイオード332と第3コア部314Aとの間で確実に光信号を伝送することができる。使用時に光インターフェースモジュールのフレキシブル部を湾曲させても、リジッド部は、湾曲しないためレーザダイオードやフォトダイオードとコア部との相互の位置関係が変化しないからである。
このような第2実施形態の光インターフェースモジュールは、第1実施形態の光インターフェースモジュールと同様の作用効果を享受することができる。
また、第2実施形態の光インターフェースモジュールの構造は、小型化、低コスト化に特に適している。
(その他の実施形態)
第1実施形態及び第2実施形態の光インターフェースモジュールにおいては、コア層の一部がダミーコアとして機能しているが、本発明の実施形態の光インターフェースモジュールにおいては、ダミーコアは必ずしもコア層の一部を用いて形成されている必要はなく、コア層とは異なる材質からなり、高さが略同一のダミーコアが別途、取り付けられていてもよい。
即ち、ダミーコアは、コア部と略同一の高さを有し、上記コア部の側面から離間して形成されているものであれば、ダミーコアとしての役目を果すことができる。
上記コア部と上記ダミーコアとの離間距離は、約50〜約200μmが望ましい。
上記離間距離が、上記範囲内にあれば、ダミーコアを設ける効果を充分に享受することができるとともに、ダミーコアの形成が容易だからである。
第1実施形態及び第2実施形態の光インターフェースモジュールの製造方法では、第1コア部を形成するための溝は、反応性イオンエッチング法を用いて形成しているが、第1コア部を形成するための溝の形成方法は、反応性イオンエッチング法に限定されるわけではなく、例えば、露光・現像処理、ルータ加工、ダイサー加工等を用いてもよい。
本発明の実施形態において、発光素子はレーザダイオードに限定されるわけではなく、例えば、発光ダイオードであってもよい。
また、本発明の実施形態において、レーザダイオードは端面発光型が望ましく、フォトダイオードは端面受光型が望ましい。
また、上記レーザダイオードは、シングルモード発信であってもよいし、マルチモード発信であってもよい。従って、光導波路もまた、レーザダイオードの発信モードに応じて、シングルモード仕様であっても良いし、マルチモード仕様であっても良い。
第1実施形態の光インターフェースモジュール100を構成するポリイミド基板12や、第2実施形態の光インターフェースモジュール300を構成する電気基板312は、フレキシブル基板であるが、これらの基板は、フレキシブル基板に限定されるわけではなく、リジッド基板であってもよい。
本発明の実施形態の光インターフェースモジュールにおいて、クラッド形成用樹脂やコア形成用樹脂としては、エポキシ系樹脂以外に、例えば、アクリル系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂等を用いることができる。
本発明の実施形態の光インターフェースモジュールは、例えば、携帯電話、パソコン、デジタルビデオカメラ、デジタルビカメラ、CCDモジュール、液晶パネル等の種々の装置に好適に使用することができる。
100、200、300、400、500 光インターフェースモジュール
11、311 光導波路
13、313 下層クラッド層
14、314 コア層
14A、314A コア部
14A、314A 第1コア部
14A、314A 第2コア部
14A、314A 第3コア部
14B、314B ダミーコア
15、315 溝
17、317 溝
16、316 上層クラッド層
22、322 レーザダイオード
32、332 フォトダイオード

Claims (16)

  1. 第1面と、第1面とは反対側の第2面とを有する基板の前記第1面上に、下層クラッド層を形成する工程と、
    前記下層クラッド層上にコア層を形成する工程と、
    前記コア層の一部に2本の溝を設け、この2本の溝で挟まれ、一端と他端とを有する第1コア部を形成する工程と、
    前記コア層上及び前記溝内に、上層クラッド層を形成する工程と、
    前記基板の第1面上に、発光素子を実装する工程と、
    前記基板の第1面上に、受光素子を実装する工程と、
    前記発光素子と前記第1コア部の一端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記発光素子及び前記第1コア部の一端のそれぞれと光学的に接続している第2コア部を形成する工程と、
    前記受光素子と前記第1コア部の他端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記受光素子及び前記第1コア部の他端のぞれぞれと光学的に接続している第3コア部を形成する工程と、
    を有する光インターフェースモジュールの製造方法。
  2. 前記基板は、フレキシブル基板である請求項1に記載の光インターフェースモジュールの製造方法。
  3. 前記発光素子の直下を含む領域の前記フレキシブル基板の第2面上に第1の補強板を形成し、前記受光素子の直下を含む領域の前記フレキシブル基板の第2面上に第2の補強板を形成する請求項2に記載の光インターフェースモジュールの製造方法。
  4. 前記第2コア部は、前記第1コア部の一端に光学的に接続される第1端部及び前記発光素子に光学的に接続される第2端部を有しており、
    前記第3コア部は、前記第1コア部の他端に光学的に接続される第3端部及び前記受光素子に光学的に接続される第4端部を有しており、
    前記第1の補強板を前記発光素子の直下と前記第2端部の直下とを含む領域に形成し、
    前記第2の補強板を前記受光素子の直下と前記第4端部の直下とを含む領域に形成する請求項3に記載の光インターフェースモジュールの製造方法。
  5. 前記基板は、リジッド部とフレキシブル部とからなるリジッドフレキシブル基板であり、前記発光素子及び前記受光素子を前記リジッド部に実装し、
    前記下層クラッド層を少なくとも前記フレキシブル部に形成する請求項1に記載の光インターフェースモジュールの製造方法。
  6. 前記第2コア部は、前記第1コア部の一端に光学的に接続される第1端部及び前記発光素子に光学的に接続される第2端部を有し、前記第2端部が前記リジッド部上に位置するように形成する請求項5に記載の光インターフェースモジュールの製造方法。
  7. 前記第3コア部は、前記第1コア部の他端に光学的に接続される第3端部及び前記受光素子に光学的に接続される第4端部を有し、前記第4端部が前記リジッド部上に位置するように形成する請求項5に記載の光インターフェースモジュールの製造方法。
  8. フレキシブル基板上に、下層クラッド層を形成する工程と、
    前記下層クラッド層上にコア層を形成する工程と、
    前記コア層の一部に2本の溝を設け、この2本の溝で挟まれ、一端と他端とを有する第1コア部を形成する工程と、
    前記コア層上及び前記溝内に、上層クラッド層を形成する工程と、
    第1リジッド基板上に、発光素子を実装する工程と、
    第2リジッド基板上に、受光素子を実装する工程と、
    前記フレキシブル基板に前記第1リジッド基板と前記第2リジッド基板とを接着する工程と、
    前記発光素子と前記第1コア部の一端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記発光素子及び前記第1コア部の一端のそれぞれと光学的に接続している第2コア部を形成する工程と、
    前記受光素子と前記第1コア部の他端との間の前記上層クラッド層及び前記コア層に、レーザ加工により2本の溝を設け、前記受光素子及び前記第1コア部の他端のそれぞれと光学的に接続している第3コア部を形成する工程と、
    を有する光インターフェースモジュールの製造方法。
  9. 前記第2コア部は、前記第1コア部の一端に光学的に接続される第1端部及び前記発光素子に光学的に接続される第2端部を有し、前記第2端部が前記第1リジッド基板上に位置するように形成する請求項8に記載の光インターフェースモジュールの製造方法。
  10. 前記第3コア部は、前記第1コア部の他端と光学的に接続される第3端部及び前記受光素子に光学的に接続される第4端部を有し、前記第4端部が前記第2のリジッド基板上に位置するように形成する請求項8に記載の光インターフェースモジュールの製造方法。
  11. 基板と、
    前記基板上に形成されている下層クラッド層と、
    前記下層クラッド層上に形成され、第1の側壁と前記第1の側壁とは反対側の第2の側壁を有する3次元のコア部と、
    前記コア部の前記第1の側壁に沿って、かつ、前記第1の側壁から離間して前記下層クラッド層上に形成されている第1の樹脂層と、
    前記コア部の前記第2側壁に沿って、かつ、前記第2側壁から離間して前記下層クラッド層上に形成されている第2の樹脂層と、
    前記コア部上と、前記第1の樹脂層上と、前記第2の樹脂層上と、前記コア部と前記第1の樹脂層との間隙の少なくとも一部と、前記コア部と前記第2の樹脂層との間隙の少なくとも一部とに形成されている上層クラッドと、
    前記基板上に実装され、前記コア部と光学的に接続されている発光素子と、
    前記基板上に実装され、前記コア部と光学的に接続されている受光素子と、
    からなる光インターフェースモジュールであって、
    前記コア部は、第1コア部と第2コア部と第3コア部とからなり、
    前記第1コア部は、前記第2コア部と前記第3コア部とに挟まれており、
    前記第1コア部の単位長さあたりの伝送損失は、前記第2コア部及び前記第3コア部の単位長さあたりの伝送損失より小さい光インターフェースモジュール。
  12. 前記第1の樹脂層の上面と第2の樹脂層の上面と前記コア部の上面とは実質的に同一平面に位置している請求項11に記載の光インターフェースモジュール。
  13. フレキシブル基板と、
    前記フレキシブル基板上に形成されている下層クラッド層と、
    前記下層クラッド層上に形成され、第1の側壁と前記第1の側壁とは反対側の第2の側壁を有する3次元のコア部と、
    前記コア部の前記第1の側壁に沿って、かつ、前記第1の側壁から離間して前記下層クラッド層上に形成されている第1の樹脂層と、
    前記コア部の前記第2の側壁に沿って、かつ、前記第2の側壁から離間して前記下層クラッド層上に形成されている第2の樹脂層と、
    前記コア部上と、前記第1の樹脂層上と、前記第2の樹脂層上と、前記コア部と前記第1の樹脂層との間隙の少なくとも一部と、前記コア部と前記第2の樹脂層との間隙の少なくとも一部とに形成されている上層クラッドと、
    第1リジッド基板と、
    前記第1リジッド基板上に実装されている発光素子と、
    第2リジッド基板と、
    前記第2リジッド基板上に実装されている受光素子と、
    からなる光インターフェースモジュールであって、
    前記フレキシブル基板は、前記第1リジッド基板と前記第2リジッド基板に接着され、前記光学素子と前記受光素子とは、前記コア部と光学的に接続されており、
    前記コア部は第1コア部と第2コア部と第3コア部とからなり、
    前記第1コア部は、前記第2コア部と第3コア部とに挟まれており、
    前記第1コア部の単位長さあたりの伝送損失は、前記第2コア部及び前記第3コア部の単位長さあたりの伝送損失より小さい光インターフェースモジュール。
  14. 前記第1の樹脂層の上面と第2の樹脂層の上面と前記コア部の上面とは実質的に同一平面に位置している請求項13に記載の光インターフェースモジュール。
  15. 前記第1の樹脂層及び前記第2の樹脂層の材質と、前記コア部の材質とが同一である請求項11又は13に記載の光インターフェースモジュール。
  16. 前記第1コア部の側壁の粗度は、前記第2コア部及び第3コア部の側壁の粗度よりも小さい請求項11又は13の光インターフェースモジュール。
JP2009147899A 2008-07-16 2009-06-22 光インターフェースモジュールの製造方法、及び、光インターフェースモジュール Active JP5139375B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8118208P 2008-07-16 2008-07-16
US61/081,182 2008-07-16

Publications (2)

Publication Number Publication Date
JP2010026508A JP2010026508A (ja) 2010-02-04
JP5139375B2 true JP5139375B2 (ja) 2013-02-06

Family

ID=41530374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147899A Active JP5139375B2 (ja) 2008-07-16 2009-06-22 光インターフェースモジュールの製造方法、及び、光インターフェースモジュール

Country Status (2)

Country Link
US (1) US8078017B2 (ja)
JP (1) JP5139375B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000833A4 (en) * 2006-03-24 2010-03-31 Ibiden Co Ltd PHOTOELECTRIC WIRING PANEL, OPTICAL COMMUNICATION DEVICE, AND METHOD OF MANUFACTURING OPTICAL COMMUNICATION DEVICE
JP5840411B2 (ja) 2011-08-05 2016-01-06 日本メクトロン株式会社 光電気混載可撓性プリント配線板及びその受発光素子実装方法
US9417418B2 (en) 2011-09-12 2016-08-16 Commscope Technologies Llc Flexible lensed optical interconnect device for signal distribution
EP2764390B1 (en) 2011-10-07 2020-12-02 CommScope Technologies LLC Fiber optic cassette, system, and method
JP5840988B2 (ja) * 2012-03-16 2016-01-06 日東電工株式会社 光電気混載基板およびその製法
JP5840989B2 (ja) * 2012-03-16 2016-01-06 日東電工株式会社 光電気混載基板およびその製法
CN103376514A (zh) * 2012-04-20 2013-10-30 鸿富锦精密工业(深圳)有限公司 光纤连接器
CN103376515A (zh) * 2012-04-27 2013-10-30 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器
ES2792122T3 (es) 2012-09-28 2020-11-10 Commscope Connectivity Uk Ltd Casete de fibra óptica
US9146374B2 (en) 2012-09-28 2015-09-29 Adc Telecommunications, Inc. Rapid deployment packaging for optical fiber
IN2015DN02865A (ja) 2012-09-28 2015-09-11 Tyco Electronics Ltd Uk
US9223094B2 (en) 2012-10-05 2015-12-29 Tyco Electronics Nederland Bv Flexible optical circuit, cassettes, and methods
US9435975B2 (en) 2013-03-15 2016-09-06 Commscope Technologies Llc Modular high density telecommunications frame and chassis system
JP2014194473A (ja) * 2013-03-28 2014-10-09 Hitachi Chemical Co Ltd 光導波路及び光導波路の検査方法
TW201506481A (zh) 2013-07-02 2015-02-16 Sumitomo Bakelite Co 光模組用構件、光模組及電子機器
US20160274321A1 (en) * 2015-03-21 2016-09-22 Ii-Vi Incorporated Flexible Structured Optical Modules
CN109906395B (zh) 2016-09-08 2021-06-18 康普连通比利时私人有限公司 电信分配元件
WO2019070682A2 (en) 2017-10-02 2019-04-11 Commscope Technologies Llc OPTICAL CIRCUIT AND PREPARATION METHOD

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836122A (ja) 1994-07-22 1996-02-06 Hitachi Ltd 導波路結合モジュール
JPH0836133A (ja) 1994-07-25 1996-02-06 Toyo Kogaku Kogyo Kk 実物光学顕微鏡用導光装置
JP2005215054A (ja) * 2004-01-27 2005-08-11 Sharp Corp 光導波路およびその製造方法並びに光回路基板
JP2010504571A (ja) * 2006-09-19 2010-02-12 イビデン株式会社 光インターコネクトデバイス及びその製造方法

Also Published As

Publication number Publication date
US8078017B2 (en) 2011-12-13
JP2010026508A (ja) 2010-02-04
US20100014803A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5139375B2 (ja) 光インターフェースモジュールの製造方法、及び、光インターフェースモジュール
JP4457545B2 (ja) 光・電気配線基板、実装基板及び光電気配線基板の製造方法
JP4655042B2 (ja) 光電気混載回路実装基板およびそれを用いた伝送装置
US8437584B2 (en) Optical I/O array module and its fabrication method
JP6115067B2 (ja) 光モジュール
US9081159B2 (en) Optical waveguide and method of manufacturing the same, and optical waveguide device
JP5964143B2 (ja) 光電気混載フレキシブルプリント配線板の製造方法
JP5247880B2 (ja) 光電気配線基板および光モジュール
TW200404487A (en) A light reception/emission device built-in module with optical and electrical wiring combined therein and method of making the same
JP5395734B2 (ja) 光電気複合基板の製造方法
US9075206B2 (en) Optical waveguide device
JP2012042731A (ja) フレキシブル光電配線板及びフレキシブル光電配線モジュール
JP2009288614A (ja) 平面型光導波路アレイモジュールとその製造方法
JP5277874B2 (ja) 光電気混載基板および電子機器
JP2004302188A (ja) 光導波路付き電気配線基板
JP4476743B2 (ja) 光部品支持基板及びその製造方法
JP2014049657A (ja) 光モジュール
JP5300700B2 (ja) 光配線基板
JP5898732B2 (ja) 光モジュールの製造方法
JP6268932B2 (ja) 光導波路、インプリント用型、光導波路の製造方法、光電気混載基板および電子機器
JP4698728B2 (ja) 光電気集積配線基板および光電気集積配線システム
JP5316389B2 (ja) 光電気複合用基板、光電気複合基板、および光電気複合用基板の製造方法
JP2009145647A (ja) 光電気複合配線板とその製造方法
JP2021015176A (ja) 光モジュールおよび光モジュールの製造方法
JP2015087712A (ja) 光導波路、光電気混載基板および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250