JP4698728B2 - 光電気集積配線基板および光電気集積配線システム - Google Patents

光電気集積配線基板および光電気集積配線システム Download PDF

Info

Publication number
JP4698728B2
JP4698728B2 JP2008330310A JP2008330310A JP4698728B2 JP 4698728 B2 JP4698728 B2 JP 4698728B2 JP 2008330310 A JP2008330310 A JP 2008330310A JP 2008330310 A JP2008330310 A JP 2008330310A JP 4698728 B2 JP4698728 B2 JP 4698728B2
Authority
JP
Japan
Prior art keywords
substrate
wiring
optical
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008330310A
Other languages
English (en)
Other versions
JP2009075619A (ja
Inventor
恵子 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008330310A priority Critical patent/JP4698728B2/ja
Publication of JP2009075619A publication Critical patent/JP2009075619A/ja
Application granted granted Critical
Publication of JP4698728B2 publication Critical patent/JP4698728B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、電気配線層を具備し電子回路部品を実装する基板に、光半導体デバイスを実装するための光配線層を組み込んだ光電気集積配線基板及びこれを用いた光電気集積配線システムに関する。
近年、コンピュータの処理能力向上を図るべく、マイクロプロセッサとして用いられる半導体大規模集積回路(LSI)等の電気素子ではトランジスタの集積度が高められ、その動作速度はクロック周波数でGHzに達している。それに伴い、電気素子間を電気的に接続する電気配線は高密度化・微細化の一途をたどっている。
マイクロプロセッサの高速化に伴う電気配線の微細化は、クロストークや伝播損失が増すこととなるため、高密度化の限界あるいは駆動と受信回路の複雑化といった問題をもたらしており、それらの問題がコンピュータの高性能化の障害となっている。
これに対し、これらの問題を解決する技術として、従来のプリント配線基板上の銅から成る配線導体による電気配線の一部を光ファイバ又は光導波路による光配線に置き換えて、素子間の配線に電気配線に代えて光配線を利用することが行なわれている。光配線は無誘導であり、信号線となるコア部はマルチモードでも断面が50μm角程度のサイズであるため、光配線を用いれば信号伝送の高速化が可能なだけでなく、信号間のクロストークの低減や配線の微細化・高密度化が可能になる。
しかしながら、光配線として光ファイバを用いる場合には、その屈曲性に限界があることから、複雑な形状の光配線には対応しきれず、配線の設計の自由度が低くなってしまい、高密度配線や基板の小型化に十分には対応できないという問題がある。そのため、光配線としては、設計の自由度が大きい光導波路を用いた構成が有効である。
光導波路は、光信号が伝搬する信号線となるコア部と、コア部の周囲に配置されて光信号をコア部に閉じ込めるクラッド部とで構成されて、基板の表面に平行な方向に形成されている。コア部の形成方法はフォトリソグラフィ技術によるドライエッチングや感光性のコア材料を使用した露光及び現像による形成方法等があるが、いずれもその形状や寸法精度はフォトマスクパターンで決定されるため、設計の自由度は高くなる。
このような光導波路を光配線に用いた光導波路基板に受発光素子等の光部品や電気部品を実装する際には、従来の電気部品に用いられている表面実装技術を用いて実装できることが望ましい。そのため、光部品としては省電力化や面アレイ化に有利な面発光型の縦キャビティ型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)や面受光型の半導体受光素子(PD:Photo Diode)等が使用される。
基板の表面に平行な方向に形成されている光導波路とその基板の表面に実装されるVCSELやPD等の光部品とを光結合させるには、ミラー等の光路変換手段を用いて、基板の表面に平行な方向と基板の表面に垂直な方向との間でほぼ90度に光路を曲げる必要がある。その光路変換手段の形成方法には、これまでいくつかの提案がなされており、半導体チップ切り分け用のダイシングソーやレーザにより光導波路端面に45度の切れ込みを入れる方法や、別途ミラー部材を用意して配設する方法などがある。
また、基板表面に垂直な方向の構造としては、光導波路の直上に受発光素子を配設する場合は垂直方向に特別な構造を必要としないが、基板表面上に光導波路を形成しその直上に受発光素子を設ける場合は、同じ基板表面上に電気配線と光導波路とを共存配置させることとなり互いの配線が制約されることとなっていた。そこで、特許文献1では、多層基板の上面に面型発光素子と面型受光素子とを実装し、各素子の実装位置において多層基板に光路となる貫通穴をそれぞれ穿設し、多層基板の下面において一方の貫通穴と他方の貫通穴の下端位置に光路変換ミラーをそれぞれ配置し、一対の光路変換ミラーの間に光導波路を形成した光電気集積配線基板が開示されている。
特開2000−81524号公報
光導波路の直上に受発光素子を配設する場合は、光導波路上に電気配線を形成することもできるが、その場合、電気配線や受発光素子、電子回路部品の密着性の問題や電気配線引き回しの困難さなどがある。光導波路としてマルチモードを考えた場合、膜厚はコア部分だけで50μm,上下のクラッド部をあわせると100μmを越すものとなるため、その上部に形成された電気配線と基板側の電気配線間での電気的な接合を得ることが難しく、光配線層上の電気配線のみですべての電気回路をまかなうには基板面積の制限があり、多層基板を駆使して電気回路を形成している現在のプリント基板の機能をすべて引き継ぐのは不可能である。
また、基板の両面を利用して受発光素子と光導波路とを離してつなぐ場合、特許文献1にあるように、貫通穴を利用して基板に垂直方向の光路を確保することが考えられている。しかしながら、この場合、基板の下面にのみ光導波路が形成されており、上下対称の層構造でないために、光導波路層の熱による収縮・膨張などで基板の反りが発生しやすく、ひいては実装された受発光素子や電子回路部品の実装時の不具合や密着強度不良などが起こりやすいといった問題があった。
本発明は以上のような従来の技術における問題を解決すべく案出されたものであり、その目的は、信頼性の高い光電気集積配線基板を提供すると同時に、電子回路部品や受発光素子の基板への配設において電気的な接続だけでなく光導波路との光接続をも簡便な方法で効率的に行うことを可能とする光電気集積配線基板を提供することにある。
また、本発明の他の目的は、基板だけでなく光導波路と受発光素子との光結合のための作製工程を簡略化することができ、作製が容易で量産性に優れた光電気集積配線基板及び斯かる基板に素子を実装した光電気集積配線システムを提供することにある。
上記の目的を達成するべく本発明は以下の構成を提供する。(1)請求項1に係る光電気集積配線基板は、第1の面と第2の面とを有する基板と、前記第1の面上に設けられた第1の電気配線層と、前記第1の電気配線層を覆い前記第1の面上に設けられた第1の樹脂絶縁層と、前記第2の面上に設けられた第2の電気配線層と、前記第2の電気配線層を覆い前記第2の面上に設けられた第2の樹脂絶縁層とを有し、前記第1の樹脂絶縁層及び前記第2の樹脂絶縁層の少なくとも一方が透明樹脂により形成されかつ光配線層を具備し、かつ前記第1の樹脂絶縁層の厚さと前記第2の樹脂絶縁層の厚さが等しいことを特徴とする。
(2)請求項2に係る光電気集積配線基板は、請求項1において、前記基板を垂直方向に貫通する貫通孔と、前記貫通孔の開口位置にて前記光配線層に設けられ、光の進行方向を前記基板の垂直方向と前記基板の面内方向との間で相互に変換可能な光路変換ミラーとをさらに有することを特徴とする。
(3)請求項3に係る光電気集積配線基板は、請求項2において、前記貫通孔の内部に透明樹脂が充填されていることを特徴とする。
(4)請求項4に係る光電気集積配線基板は、請求項3において、前記貫通孔の内部に充填されている透明樹脂の屈折率が該貫通孔の中心軸近傍において周辺部近傍よりも高いことを特徴とする。
(5)請求項5に係る光電気集積配線基板は、請求項1〜4のいずれかにおいて、前記第1の樹脂絶縁層及び前記第2の樹脂絶縁層が感光性材料にて形成されることを特徴とする。
(6)請求項6に係る光電気集積配線基板は、請求項1〜5のいずれかにおいて、前記基板が多層基板であり、前記第1の面の前記第1の電気配線層と、前記第2の面の前記第2の電気配線層とが前記多層基板の内部に設けた電気配線を介して接続されていることを特徴とする。
(7)請求項7に係る光電気集積配線システムは、請求項1〜6のいずれかに記載の光電気集積配線基板と、前記光電気集積配線基板に実装され、前記光配線層を介して光学的に結合する発光素子及び/または受光素子と、前記光電気集積配線基板に実装されかつ前記第1の電気配線層及び/または前記第2の電気配線層に接続された電子回路部品とを有することを特徴とする。
光電気集積配線基板は、基板の第1の面及び第2の面のそれぞれに電気配線層とこれを覆う樹脂絶縁層とを有し、少なくとも一方の樹脂絶縁層が透明樹脂により形成されており、かつその透明樹脂により形成された樹脂絶縁層が光配線層を具備する。これにより、通常、電気配線層上を覆うように形成される樹脂絶縁層を光配線層として兼用させることができ、電気配線と光配線の共存配置における制約を緩和し、受発光素子をその光配線層を介して効率的かつ簡便に光結合させることができる。電気配線層上の樹脂絶縁層は、ソルダーレジストとして一般には有色の材料が用いられるが、透明樹脂とすることにより光配線層を形成することが可能となる。また、基板の第1の面及び第2の面のそれぞれの絶縁樹脂層を同じ厚さとすることにより、上下対称な層構造となり、絶縁樹脂層の収縮・膨張に起因する基板の反りが相殺されて抑制される。この結果、基板の反りがなく、部品実装時の歩留まりや信頼性の高い光電気集積基板が得られる。
また、両面の樹脂絶縁層とも透明樹脂とし、光配線層を両面に設けることもできる。これにより、電気配線と光配線の設計配置の多様性が向上、種々の用途に適用できる。
基板の垂直方向に貫通する貫通孔と、光の進行方向を基板の垂直方向と基板の面内方向との間で相互に変換可能な光路変換ミラーを設けることにより、基板において受発光素子の実装される面と光配線層の形成される面を別にすることができる。これにより、電気回路部品のみならず光部品に対しても表面実装技術を用いることができる上、実装される部品を一面に集約することができるため、基板上への受発光素子及び電気回路部品の実装が容易となる。
また、光配線層が別の面に形成されることにより基板の両面を通した光配線を可能とし、光配線層を設けない面側での受発光素子及び電気回路部品の実装スペースや電気回路引き回しのスペースに余裕ができるため、より高度な配線や実装を実現できる。
また、光配線層端部に形成される光路変換ミラーについても、周辺に切削加工時に障害となる部品等がないために、一般に用いられるダイシングソーを使って自由な位置に作製できる。
貫通孔の内部に透光性を有する透明樹脂が充填されていることにより、受発光素子から出た光、又は入る光が、空気中や他の材料に比べて光を減衰させることなく、より効率的な光伝送を可能とする。
貫通孔内に充填される透明樹脂の屈折率が中心軸近傍で、周辺部近傍より高いことにより、光は、中心軸近傍の高屈折率領域に閉じ込められて伝搬するので、屈折率が一様な透明樹脂の場合に比べて高効率な光信号伝搬が実現できる。
第1及び第2の樹脂絶縁層が感光性材料にて形成されることにより、フォトマスクを用いた露光・現像を用いた簡易なプロセスでソルダーレジスト及び光配線層を作製できる。
基板両面での電気配線の接続を可能とし、より高密度な配線を実現できる。
請求項7では、上記の光電気集積配線基板を用いて発光素子及び/または受光素子と電子回路部品とを実装することにより、より高速で大容量の情報伝送が可能な光電気集積システムが得られる。
以下、本発明の光電気集積配線基板及び光電気集積配線システムについて、図面を参照しつつ説明する。図1(a)、(b)はそれぞれ本発明の光電気集積配線システムの一例を示す上面図、下面図である。図2は、図1のA断面図である。図3は、図2の光配線部を表す部分拡大図である。図4(a)、(b)は、それぞれ、図1の光電気集積配線システム100の実装部品を除いた光電気集積配線基板1を示す上面図及び下面図である。
図1及び図2に示すように、本発明の光電気配線システム100は、基板2の両面である第1の面2aと第2の面2bのそれぞれの上に、電気配線層3a、3bが形成されている。各電気配線層3a、3bの上面のほぼ大部分は、樹脂からなる絶縁層4a、4bで被覆されているが、受発光素子8a、8b及び電子回路部品9を実装する箇所については、樹脂絶縁層4a、4bで被覆されていない開口部が部分的に設けられている。
樹脂絶縁層4a、4bは、基本的には、電気配線層3a、3bのためのソルダーレジストであり、はんだの付着防止、電気配線層の導体間の絶縁性の維持、導体の保護等の役割を果たす。導体上の誘電率制御にも用いられる。従って、はんだ耐熱性、電気絶縁性、基板との密着性、耐候性等の機能をもつ材料が選択される。ソルダーレジストは種々の材料及び形成方法が知られているが、高密度配線では、例えばアクリル系、エポキシ系の感光性樹脂が用いられ、露光、現像、硬化のプロセスで形成することができる。
図2に示すように、第1の面2aの樹脂絶縁層4aと第2の面2bの樹脂絶縁層4bとが同じ厚さで形成されることにより、両面対称の層構造となっている。なお、この場合の「厚さ」は、第1の面2aから樹脂絶縁層4aの表面までの距離、及び、第2の面2bから樹脂絶縁層4bの表面までの距離をいう。電気配線層3a、3bを覆っている部分の樹脂絶縁層4a、4bの厚さは電気配線層の厚さの分だけ薄くなる。基板2の両面に設けられる樹脂絶縁層4a、4bの厚さを等しくすることにより、樹脂絶縁層4a、4bの収縮、膨張は両面において均等に生じるため、それによる基板2の反りが発生しない。なお、樹脂絶縁層4a、4bで覆われず電気配線層3a、3bまたは基板2の第1の面2a、第2の面2bが露出した箇所もあるが、基板2の全表面積からすれば絶縁樹脂層4a、4bで覆われた部分が支配的であり、基板2全体の機械的特性及び熱的特性に関しては、ほぼ両面対称の層構造ということができる。従って、樹脂絶縁層4aと4bの厚さが「等しい」とは、厳密な計測上の値において等しいことを意味せず、計測上の厚さの相違があっても上記の作用効果が得られる程度であれば両者は等しいといってよい。目安としては、樹脂絶縁層4aと4bの厚さの平均値に対し、それぞれの樹脂絶縁層の厚さが±10%以内の範囲にあればよい。
本発明では、少なくとも基板2の一方の面(図示の例では第2の面2b)に設ける樹脂絶縁層全体を透明樹脂にて形成する。そして、図1(b)、図2及び図3に示すように、第2の面2b上の樹脂絶縁層4bの透明樹脂を利用して光配線層5が形成されている。従来の一般的なソルダーレジストは透明ではないが、ソルダーレジストである樹脂絶縁層4bを透明とすることにより光導波路を兼用させることが可能となる。一方、発光素子8c及び受光素子8dは、第1の面2a上に実装されている。さらに、基板2の内部には少なくとも二つの貫通孔6c、6dが光路として形成されており、光配線層5と貫通孔6c、6dとがそれぞれ交わる位置には光路を基板2の垂直方向と基板2の面内方向との間で90度変換するための光路変換ミラー7c、7dが形成されている。
図示の例では、第2の面2bにのみ光配線層5が形成されているため、第1の面2aの樹脂絶縁層4aについては透明樹脂とする必要はないが、上記のように基板2の両面対称の層構造を実現する上で、両面の樹脂絶縁層4a、4bを同材料で形成することが好適であり、その場合は両面の樹脂絶縁層とも透明樹脂で形成する。
図5は、両面の樹脂絶縁層4a、4bに光配線層5a、5bをそれぞれ設けた別の実施例を示す断面図である。図5の例では、任意であるが電子回路部品も両面に設けられている。第2の面2bに形成された光配線層5bについては、図1〜図4に示した実施例と同じ構成である。第1の面2aに形成された光配線層5aの構成も上下が逆となっていることを除いて同じ構成である。第1の面2aに形成された光配線層5aに対応する発光素子8e、受光素子8fは、第2の面2b上に実装されている。基板2の内部には光配線層5aに対応する光路としての貫通孔6e、6fが形成されている。光配線層5aと貫通孔6e、6fとがそれぞれ交わる位置には光路を基板2の垂直方向と基板2の面内方向との間で90度変換するための光路変換ミラー7e、7fが形成されている。本発明では、両面の樹脂絶縁層4a、4bが同じ厚さで設けられているため、いずれにも光配線層を形成することができる。基板の両面を電気配線及び光配線のために自在に利用することができるため、電気配線と光配線の設計の多様性が向上し、種々の用途に対応できる。
再び図1(a)を参照すると、基板2の第1の面2a上では、樹脂絶縁層4aの一部が除去された開口部があり、必要な箇所に電気的接合を形成して発光素子8c及び受光素子8dや電子回路部品9が配設され、発光素子8cの発光部及び受光素子8dの受光部が貫通孔6の開口端部と向かい合う形で配設される。
図2に示すように、電子回路部品9から送られる電気信号は、その一部又は全部が発光素子8cを通して光信号に変換され、発光素子8cから発せられた基板2に垂直な方向の光は貫通孔6cを通して基板2の第1の面2aから第2の面2bに伝搬し、第2の面2b側の光路変換ミラー7cにより基板2に平行な方向へ90度光路変換され光配線層5内を通って他端の光路変換ミラー7dにより再度光路を基板2に平行な方向から基板2に垂直な方向に90度変換され、光路変換ミラー7d上部の貫通孔6dを通って第1の面2aに配設された受光素子8dにより受光され電気信号へと変換される。
基板2内の貫通孔6c、6dは、発光素子8cの発光部及び受光素子8dの受光部にそれぞれ向かい合う位置に形成される。貫通孔6c、6dの形成は、通常のプリント板の穴あけ工程に使用されるドリルやレーザを用いて形成できる。貫通孔6c、6d内には光路として適した透明樹脂を充填することが好適である。さらに好適には、貫通孔6c、6dの内部に充填されている透明樹脂の屈折率を、貫通孔6c、6dの中心軸近傍において周辺部近傍よりも高くする。これにより、光は中心軸近傍の高屈折率領域に閉じ込められて伝搬するので、屈折率が一様な透明樹脂の場合に比べて高効率な光信号伝搬が実現できる。
このような貫通孔6c、6d内の屈折率の分布は、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分の屈折率が高くなる感光性のアクリル系樹脂やエポキシ樹脂等を用いて形成することができる。例えば、貫通孔6c、6dにこれらの感光性ポリマー材料を充填し、加熱硬化させた後、フォトマスク(貫通孔より小さい径の円形パターンの遮光部または透光部を具備する)を介して紫外光を照射して紫外光照射部の屈折率を低下または上昇させ、最後にポストベークを行うことにより貫通孔6c、6d内の透明樹脂に屈折率の分布を形成する。
貫通孔6c、6dのサイズは、発光素子8c及び受光素子8dの各々の受発光径に合わせて光の広がりを考慮して決定する。受光部に対応する貫通孔6dは受光部より小さく、発光部に対応する貫通孔6cは発光部より大きくするのが最も好適であるが、発光部に対する貫通孔6cについては、光配線層5のコア部のサイズも考慮する必要がある。例えば、発光部が直径100μmで250μmピッチの4チャンネルアレイのVCSELを使用する場合は、貫通孔6cも発光部に合わせて直径100μm、ピッチ250μmとして各々の発光部に対して貫通孔6cを形成する必要がある。
基板2としては、例えばプリント配線基板として一般に用いられているエポキシ樹脂等よりなるプリント配線基板を用いればよい。一般的なエポキシ樹脂等のプリント配線基板は安価であるが、機械的強度は低くまた熱に弱く反りやすい。本発明では両面に同じ厚さの樹脂絶縁層を形成した対称層構造を有するため、安価な基板であっても反りを効果的に防止できる。また、本発明の樹脂絶縁層は、光配線層を形成できる厚さ(例えば、90〜100μm)で設けられ、通常のソルダーレジストの厚さ(例えば、30μm)よりも厚くなるため基板の機械的強度がさらに補強される。
電気配線は基板2の第1の面2a上だけでなく、第2の面2b上に形成されていてもよい。さらに、基板2として電気配線層と絶縁層とが交互に積層された多層基板を用い、基板2の内部に電気配線層が形成されていてもよい。多層基板を用いる際、基板2は内部の電気配線を通じて両面で電気的な接合が得られている。もちろん、基板2はプリント配線基板に限らず、基板内部の絶縁層にアルミナ等を用いたセラミック配線基板や、シリコンやガラス等に電気配線を形成した基板を用いてもよい。中でも、汎用性があり低コストに作製できるものとしては、ガラスエポキシ配線基板が好適である。
基板2の第1の面2a及び第2の面2b上の電気配線層3a、3bの配線パターンは、通常のプリント基板製造工程中に、銅箔や銅箔付き樹脂のフォトリソグラフィ工程やエッチング工程により形成される。
電気配線層3a、3b上に形成される透明な樹脂絶縁層4a、4bの材料としては、基本的にはソルダーレジストとしての機能と、光導波路としての機能の双方をもつ材料を選択すればよい。最小限の特性としては、ソルダーレジストとしての電気絶縁性と、光導波路としての透光性とを兼ね備えていることが必要である。
一般に光導波路用材料として用いられるポリシラン、アクリル、ポリイミド、エポキシ、シロキサン、ポリシラン、ベンゾシクロブテン(BCB)、メタクリル酸メチル(PMMA)、ポリカーボネート(PC)等のポリマー材料が好適に使用できる。
なお、石英系の光導波路用材料を使用するには火炎堆積法又はCVD法等のプロセスで光配線層を作製する必要があるが、これらは高温で行なわれるプロセスであり、基板2として電気配線を有した基板や特に耐熱性が低い有機材料を用いた基板を用いることができない上、光配線層5の作製に真空装置が必要となるので、大面積化が難しく作製コストも高いという難点がある。
これに対し、前述のポリマー材料は、低温プロセスによる光配線層5の作製が可能で、大面積化への対応も容易であり、しかも低コストで作製することができるため、種々の基板2に形成できる点で好適である。特にエポキシ樹脂を用いた場合、基板として一般的に用いられるガラスエポキシ基板と同系列の材料であることから、密着性が良く、剥がれなどの不良が無く、信頼性が高いものとなる。また、エポキシ樹脂は、ソルダーレジスト材料でも一般的に用いられており、光導波路とソルダーレジストの双方の機能を兼ね備えたものを比較的容易に見出せる。加えて、エポキシ樹脂には感光性材料も多く、効率的な作製プロセスを採用できるという点からも樹脂絶縁層の材料として適している。
感光性エポキシの他に、感光性ポリイミドもまた、耐久性に富み、従来、保護膜や封止樹脂として用いられていることから好適である。
図3の部分拡大図に示すように、基板2の第2の面2bの樹脂絶縁層4bの一部に形成される光配線層5の構造は、コア部10と称される光が伝搬する部分を、クラッド部11(下部クラッド部11cと上部クラッド部11dとからなる)と称されるもので囲んだ光導波路の形となる。コア部10とクラッド部11の違いは材料の屈折率のみであり、比屈折率差Δが0.2から5%程度になるように屈折率を調整する。比屈折率差は、特にコア部10を曲げて設計する場合には大きいほうが有利となるが、直線部のみのコア部の場合は小さくても問題ない。
光配線層5のコア部10の設計に応じて、屈折率を調整することで良好な光伝搬が可能となる。光配線層5のコア部10及びクラッド部11の形状や寸法は、例えば、マルチモード光導波路を考えた場合であれば、コア部10の厚みを約40μmとし、下部クラッド部及び上部クラッド部の厚みをそれぞれ約30μmとして、約100μmの厚みの光配線層5とすればよい。その場合、基板2の第1の面2aの樹脂絶縁層4aも同じく約100μmの厚みとする。図示の例では、第1の面2a側の樹脂絶縁層4aには光配線層5としての機能は必要ないため、コア部10を形成する必要はなく、所定の厚さ(この場合は約100μm)に形成すればよい。
光配線層5として、クラッド部11内に所定の形状及び寸法のコア部10を作製する方法には、反応性イオンエッチング法,直接露光法,屈折率変化法(フォトブリーチング法)等がある。いずれの方法でも作製可能であるが、最も簡便で安定した作製方法としては、直接露光法があげられる。
直接露光法ではコア部10及びクラッド部11に相当する材料を塗布・露光・現像することにより必要なパターンを得ることができる。例えばネガ型の感光性エポキシ樹脂を用いた場合、材料を塗布し、必要な箇所を露光する形のマスクを用意して露光することにより、露光された部分の樹脂は硬化され、露光されていない部分の樹脂は現像により除去されることにより、所望のパターンが得られる。
この方法をクラッド部とコア部の両方に適用することにより、基板全体で必要な箇所にのみ光配線層5及び樹脂絶縁層4bを形成することができる。なお、第2の面2bにおいて光配線層5が配置されない箇所の樹脂絶縁層4b、並びに光配線層5を設けない第1の面2aの樹脂絶縁層4aについては、それぞれ電気配線層3a、3bのソルダーレジストとしてのパターンを形成するべく塗布・露光・現像を行う。
光配線層5を形成後、貫通孔6c、6dの開口位置に対応した部分に光路変換ミラー7c、7dを形成する。光路変換ミラー7c、7dの形成方法としては、一般的には先端が45度又は90度に加工されたブレードを用いてダイシングソーで溝入れ加工することにより形成される。それ以外にも、光配線層5のパターニング時にグレイマスクや斜め露光等により斜面を形成する方法や、プリント基板切り分け時に使用するケガキ機などを用いる方法もあるが、安定性や加工精度、生産性を考慮した場合、ダイシングソーがもっとも好適である。
以上により、図4に示すように、第1の面2aと第2の面2bとを有する基板2と、第1の面2a上に設けられ導電材料で形成された第1の電気配線層3aと、第1の電気配線層3a上に設けられた第1の樹脂絶縁層4aと、第2の面2b上に設けられ導電材料で形成された第2の電気配線層3bと、第2の電気配線層3b上に設けられた第2の樹脂絶縁層4bとを有し、第1の樹脂絶縁層4a及び第2の樹脂絶縁層4bの少なくとも一方が透明樹脂により形成された光配線層5を具備し、かつ第1の樹脂絶縁層4aの厚さと第2の樹脂絶縁層4bの厚さを等しくし、さらに、基板2を垂直方向に貫通する貫通孔6c、6dと、貫通孔6c、6dの開口位置にて光配線層5内に設けられ、光の進行方向を基板2の垂直方向と基板2の面内方向との間で相互に変換可能な光路変換ミラー7c、7dとをさらに有する光電気集積配線基板1が得られる。
さらに、本基板上に光配線層を介して光結合する発光素子及び/または受光素子を実装し(必ずしも発光素子と受光素子が対でなくともよい)、また複数の電子回路部品を配設し電気配線層に接続することにより、図1に示す光電気集積配線システム100を得ることができる。
本発明の光電気集積配線システムの具体的な作製プロセスの実施例を説明する。必要に応じて図1〜図3中の符号を用いる。
(1)基板における電気配線層の作製工程
まず、基板2として、厚み0.8mmのガラスエポキシ基板を用いる。基板には必要な電気配線層3が基板最表面の銅箔をフォトリソグラフィを行いエッチングすることで、すでに形成されている。また、基板は多層構造となっており、基板作製時には所定の穴あけ及びめっき工程などを経ており、基板内部のビアを通して基板の両面で電気的な接合が得られた形となっている。本基板を用意する工程は、従来のプリント配線板作製時となんら変わりなく、通常の工程を得て形成される。
(2)貫通孔の作製工程
次に、本基板に貫通孔6を穿設する工程を行う。実施例の光電気集積配線システムで用いるVCSEL、PDは、受発光部の直径200μm、250μmピッチの4チャンネルアレイとする。従って、穴あけ工程は従来のビア形成時のドリルを用いて、受発光素子の受発光部に対応した位置に、それぞれ直径200μmの穴を250μmピッチで4つずつ開けて貫通孔6を形成した。
(3)貫通孔内の透明樹脂の充填工程
次に、形成された貫通孔6内部に透明樹脂を充填する。透明樹脂には、絶縁層4及び光配線層5として用いるものと同じエポキシ樹脂を使用する。貫通孔6に樹脂充填後ベークを行い、樹脂を硬化させる。
(4)下部クラッド部の形成工程
次に、第1の面2aにおける樹脂絶縁層4aと、第2の面2bにおける樹脂絶縁層4b及び光配線層5とを形成する。まず、第2の面2b上(電気配線層3b上)に下部クラッド部11cとなるエポキシ樹脂を50μm塗布する。第2の面2b上に形成されている電気配線層3bは厚みが25μmであり、一方、下部クラッド部11cは第2の面2bからの厚みが50μmであるため、電気配線層3bは下部クラッド部11cで覆われた形となる。電気配線層3bの存在する部分では下部クラッド部11cの厚みは25μmとなり、下部クラッド部11cの上面は平坦に形成される。
下部クラッド部11c塗布後、プレベークを行い、露光を行う。適宜のフォトマスクを用いて、光配線層5及び樹脂絶縁層4bとして残す部分のみが露光し、それ以外の樹脂絶縁層4bを設けず開口部とすべき部分は露光しないようにする。その後、露光しなかった部分を現像により除去する。これにより下部クラッド部11cが形成される。同時に、樹脂絶縁層4bの全厚のほぼ半分が形成される。
(5)コア部の形成工程
ついで、下部クラッド部11c上にコア部10を形成するべく、屈折率が下部クラッド部11cよりわずかに高いエポキシ樹脂を40μm塗布する。プレベーク後、フォトマスクを用いてコア部10として残す場所に露光を行い、コア部10以外は露光されずに現像により除去される。
(6)上部クラッド部の形成工程
最後に、上部クラッド部11dとして下部クラッド部11cと同じエポキシ樹脂を60μmの厚みで塗布し、プレベークを行い、下部クラッド部11cと同じフォトマスクを用いて露光・現像を行う。これにより上部クラッド部11dが形成され、第2の面2bにおける光配線層5が完成する。同時に、樹脂絶縁層4bの全厚の上側半分も形成される。光配線層5及び樹脂絶縁層4bの厚さは110μmとなる。
(7)第1の面側の樹脂絶縁層の形成工程
以上により必要な箇所に開口部を有する第2の面2b側の樹脂絶縁層4及び光配線層5を形成した後、第1の面2a側に、第2の面2bのクラッド部と同じ材料のエポキシ樹脂を第1の面2aからの厚みが110μmとなるように塗布し、プレベークを行った後、適宜のフォトマスクを用いて樹脂絶縁層4aとして残す部分を露光し、開口部は未露光となるように露光を行う。その後、現像し、最後にポストベークを行うことで、第1の面2a側の樹脂絶縁層4aを形成する。
(8)光路変換ミラーの形成工程
さらに、第2の面2bの光配線層5の両端部において、貫通孔6c、6dの開口位置に対応する光配線層5の表面に対しダイシングソーにより断面V字型の加工を行う。ダイシングソーには、ブレードとして先端が90度に加工された厚みが400μmのものを使用し、深さは光配線層5の表面より約85μm未満とする。従って、仮に電気配線層3(厚さ約25μm)が加工ライン上に形成されているとしても断線されず、自由な電気配線の引き回しが可能となっている。以上により、本発明の光電気集積配線基板1が得られる。
(9)各素子の実装工程
最後に、本発明の光電気集積配線基板1上に、受発光素子8c、8d並びに電子回路部品9を樹脂絶縁層4aが開口部となっている所定の位置に実装することにより電気的な接続が得られ、本発明の光電気集積配線システム100が得られる。
(a)、(b)は、それぞれ本発明の光電気集積配線システムの実施例を示す上面図及び下面図である。 図1のA−A’断面図である。 図2の光配線部を表す部分拡大図である。 (a)、(b)は、それぞれ図1の光電気集積配線システムの光電気集積配線基板を示す上面図及び下面図である。 本発明の光電気集積配線システムの別の実施例を示す部分断面図である。
符号の説明
1 光電気集積配線基板
2 基板
2a 第1の面
2b 第2の面
3a 第1の電気配線層
3b 第2の電気配線層
4a 第1の樹脂絶縁層
4b 第2の樹脂絶縁層
5、5a、5b 光配線層
6c、6d、6e、6f 貫通孔
7c、7d、7e、7f 光路変換ミラー
8c、8e 発光素子
8d、8f 受光素子
9 電子回路部品
10 コア部
11 クラッド部
11c 上部クラッド部
11d 下部クラッド部
100 光電気集積配線システム

Claims (6)

  1. 第1の面と第2の面とで開口しかつ垂直方向に貫通する貫通孔を有する基板と、
    前記第1の面上に設けられた電気配線層と、
    前記電気配線層を覆い、前記第1の面上に設けられ、第1の樹脂絶縁層と、
    前記第2の面上に設けられた、前記第1の樹脂絶縁層の厚さと厚さが等しくかつ透明樹脂で形成されている第2の樹脂絶縁層とを有し、
    前記第1の面上における前記貫通孔の一方の開口の上には、発光素子または受光素子を収容して実装するために前記第1の樹脂絶縁層が設けられていない開口部を有し、
    前記第2の樹脂絶縁層は、光配線層を具備し、
    前記光配線層における前記貫通孔の他方の開口の上には、前記基板の垂直方向と前記基板の面内方向との間で光の進行方向を相互に変換可能な光路変換ミラーが形成され、
    前記貫通孔の内部には、透明樹脂が充填されており、該透明樹脂は、当該貫通孔の前記一方の開口から突出し、前記開口部の内側に位置している、光電気集積配線基板
  2. 前記貫通孔の内部に透明樹脂が充填されており、該該貫通孔の内部の透明樹脂と前記第2の樹脂絶縁層を形成する透明樹脂とが、当該貫通孔の他方の開口において界面が生じていない、請求項1に記載の光電気集積配線基板
  3. 前記光路変換ミラーは、傾斜面に形成されている、請求項1または2に記載の光電気集積配線基板
  4. 前記光路変換ミラーは、溝の備える傾斜面に形成される、請求項1乃至3のいずれかに記載の光電気集積配線基板
  5. 請求項1〜4のいずれかに記載の光電気集積配線基板と、
    前記開口部に実装され、前記貫通孔を介して前記光配線層に光学的に結合する発光素子および受光素子の少なくとも一方とを有する、請求項1乃至4のいずれか記載の光電気集積配線システム。
  6. 前記基板は、内部に他の電気配線を有する多層基板であり、
    前記発光素子および前記受光素子の少なくとも一方と、前記他の電気配線とは、前記電気配線層を介して電気的に接続されている、請求項5に記載の光電気集積配線システム。
JP2008330310A 2008-12-25 2008-12-25 光電気集積配線基板および光電気集積配線システム Expired - Fee Related JP4698728B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330310A JP4698728B2 (ja) 2008-12-25 2008-12-25 光電気集積配線基板および光電気集積配線システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330310A JP4698728B2 (ja) 2008-12-25 2008-12-25 光電気集積配線基板および光電気集積配線システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005343665A Division JP4690870B2 (ja) 2005-11-29 2005-11-29 光電気集積配線基板及び光電気集積配線システム

Publications (2)

Publication Number Publication Date
JP2009075619A JP2009075619A (ja) 2009-04-09
JP4698728B2 true JP4698728B2 (ja) 2011-06-08

Family

ID=40610565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330310A Expired - Fee Related JP4698728B2 (ja) 2008-12-25 2008-12-25 光電気集積配線基板および光電気集積配線システム

Country Status (1)

Country Link
JP (1) JP4698728B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393841B1 (it) 2009-04-30 2012-05-11 Giuliani Spa Composizione farmaceutica o dermatologica o nutrizionale o cosmetica per combattere l'azione di immunosoppressione provocata sulla pelle da agenti aggressivi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081524A (ja) * 1998-09-07 2000-03-21 Sony Corp 光送受信システム
JP2001036197A (ja) * 1999-07-16 2001-02-09 Canon Inc 光電子集積素子、その駆動方法、該素子を用いた光配線方式、該素子を有する演算処理装置
JP2001318250A (ja) * 2000-05-08 2001-11-16 Toppan Printing Co Ltd 光・電気配線基板及びその製造方法並びに光配線フィルムの製造方法並びに実装基板
JP2002236229A (ja) * 2000-12-06 2002-08-23 Ibiden Co Ltd 多層プリント配線板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071141A2 (en) * 2003-02-07 2004-08-19 Matsushita Electric Industrial Co., Ltd. Metal base wiring board for retaining light emitting elements, light emitting source, lighting apparatus, and display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081524A (ja) * 1998-09-07 2000-03-21 Sony Corp 光送受信システム
JP2001036197A (ja) * 1999-07-16 2001-02-09 Canon Inc 光電子集積素子、その駆動方法、該素子を用いた光配線方式、該素子を有する演算処理装置
JP2001318250A (ja) * 2000-05-08 2001-11-16 Toppan Printing Co Ltd 光・電気配線基板及びその製造方法並びに光配線フィルムの製造方法並びに実装基板
JP2002236229A (ja) * 2000-12-06 2002-08-23 Ibiden Co Ltd 多層プリント配線板

Also Published As

Publication number Publication date
JP2009075619A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
JP4690870B2 (ja) 光電気集積配線基板及び光電気集積配線システム
JP4457545B2 (ja) 光・電気配線基板、実装基板及び光電気配線基板の製造方法
KR100546856B1 (ko) 수발광 소자 내장 광전기 혼재(混載) 배선 모듈과 그 제조방법 및 그 실장체
TWI396874B (zh) Optical wiring printing board manufacturing method and optical wiring printed circuit board
KR101390137B1 (ko) 위치 결정 구조체를 갖는 광도파로 기판 및 그 제조 방법, 및 광전기 혼재 기판의 제조 방법
JP5670169B2 (ja) 光導波路の製造方法
US8989531B2 (en) Optical-electrical wiring board and optical module
JP5014855B2 (ja) 光電気集積配線基板およびその製造方法並びに光電気集積配線システム
JP5395734B2 (ja) 光電気複合基板の製造方法
US8737781B2 (en) Optical waveguide and method of manufacturing the same, and optical waveguide device
JP6084027B2 (ja) 光導波路装置及びその製造方法
JP5328095B2 (ja) 光伝送基板、光電子混載基板、光モジュールおよび光電気回路システム
JP5078442B2 (ja) 光伝送基板およびその製造方法、並びに光電子混載基板および光モジュール
JP2008129385A (ja) 光部品搭載用基板及び光モジュール
JP5349192B2 (ja) 光配線構造およびそれを具備する光モジュール
JP2008158388A (ja) 光電気回路基板、光モジュールおよび光電気回路システム
JP4698728B2 (ja) 光電気集積配線基板および光電気集積配線システム
JP2004177521A (ja) 光電気複合回路基板
JP5976769B2 (ja) 光導波路及び光導波路装置
JP4691196B2 (ja) 光電気集積配線基板及び光電気集積配線システム
JP2008216794A (ja) 光結合器
JP2005115190A (ja) 光電気複合配線基板、積層光導波路構造体
JP2004302347A (ja) 光電気プリント配線板とその製造方法
JP2004302346A (ja) 光電気プリント配線板とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees