JP5098206B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5098206B2
JP5098206B2 JP2006107129A JP2006107129A JP5098206B2 JP 5098206 B2 JP5098206 B2 JP 5098206B2 JP 2006107129 A JP2006107129 A JP 2006107129A JP 2006107129 A JP2006107129 A JP 2006107129A JP 5098206 B2 JP5098206 B2 JP 5098206B2
Authority
JP
Japan
Prior art keywords
region
semiconductor region
hetero
insulating film
hetero semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006107129A
Other languages
English (en)
Other versions
JP2007281270A (ja
Inventor
良雄 下井田
哲也 林
秀明 田中
滋春 山上
正勝 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006107129A priority Critical patent/JP5098206B2/ja
Publication of JP2007281270A publication Critical patent/JP2007281270A/ja
Application granted granted Critical
Publication of JP5098206B2 publication Critical patent/JP5098206B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体装置の製造方法に関する。
ヘテロ界面を利用した電界効果型トランジスタに関する従来の技術としては、特許文献1に示す特開2003−318398号公報「炭化珪素半導体装置」に記載されている技術がある。該特許文献1に記載の技術は、半導体基体上に形成した多結晶シリコン(ポリSi)層に対してポストアニールを施して、低抵抗のヘテロ半導体領域をゲート電極に近接させて形成することにより、ゲート電極に制御電圧を印加して、ヘテロ接合界面でのエネルギー障壁の厚みを制御し、素子オン時には、トンネル電流によりキャリアを通過させるものである。このようなヘテロ界面を利用した電界効果型トランジスタは、MOSFETのような大きいチャネル領域が存在しないので、チャネル抵抗の影響を受けにくいデバイス構造を形成することができる点にその特徴を有しており、高耐圧で、かつ、低オン抵抗のパワー半導体スイッチを提供することができる。
特開2003−318398号公報
しかしながら、前記特許文献1の従来技術においては、多結晶シリコン層にポストアニールを行うことにより低オン抵抗化して、駆動力を向上させることができるが、一方において、逆方向耐圧の劣化を招き、オン抵抗の低減と逆方向耐圧の向上とを両立させることが困難であるという問題点があった。
すなわち、従来技術の製造方法により製造される半導体装置は、半導体基体としてドレイン電極とオーミック接続された炭化珪素(SiC)と多結晶シリコン(ポリSi)とをヘテロ接合した半導体基体を形成し、そのヘテロ接合面の一部において、ゲート絶縁膜を介してゲート電極を近接して配置するという構成としている。
ここで、素子オン時の順方向の電流は、ゲート絶縁膜と多結晶シリコンとの界面、および、ゲート絶縁膜と炭化珪素(SiC)との界面に沿って流れる。なお、数μmに及ぶような大きいチャネル領域は存在しない構造であるため、MOSFETほどには界面の電子移動度の影響を受けないものの、やはり、界面の電子移動度は高い方が有利である。そのため、ゲート絶縁膜を形成する際に、NO雰囲気等による高温熱処理(アニール処理)を施し、界面準位の低減を図るようにしている。また、電流通路となる多結晶シリコンの結晶粒径をコントロールして、さらに低オン抵抗化すべく、多結晶シリコン層に対する高温熱処理を行なう場合もある。
しかしながら、このような高温の熱処理を行なうことによって、素子のオフ特性を決めているヘテロ接合界面に悪影響を与えることが懸念される。具体的には、逆方向耐圧の低下が懸念される。
また、そのような課題を克服するデバイス構造を微細パターンで作製するためには、マスク合せ等の余裕を極力無くしたセルフアラインプロセスが必須となるが、従来技術においては、これらを全て満たすようなデバイス構造、製造プロセスが見出されていなかった。
本発明は、かかる問題に鑑みてなされたものであり、本発明が解決しようとする課題は、低オン抵抗で、かつ、逆方向特性を大幅に改善可能な半導体装置を製造する半導体装置の製造方法を提供することにある。
本発明は、前述の課題を解決するために、半導体基体とヘテロ接合し、ソース電極と接続されるヘテロ半導体領域として、ゲート絶縁膜と接してゲート電極に近接して配置し、前記半導体基体と同一の導電型からなる第一のヘテロ半導体領域と、前記半導体基体上に配置し、前記半導体基体とは異なる導電型からなる第二のヘテロ半導体領域とを有する構造の半導体装置を製造する半導体装置の製造方法であって、前記第一のヘテロ半導体領域を、前記ゲート電極の上部と該ゲート電極に隣接する前記ゲート絶縁膜の一部の領域の上部に形成したキャップ絶縁膜をマスクとして、前記ゲート電極に近接して形成した第一のヘテロ半導体領域の層をパターニングすることによって形成し、一方、前記第二のヘテロ半導体領域を、前記半導体基体とは異なる導電型の不純物を前記半導体基体上に形成したヘテロ半導体領域へ導入することにより形成することとし、前記第二のヘテロ半導体領域を形成する工程を、少なくとも前記ゲート絶縁膜を熱処理する工程よりも後で実施することを特徴としている。
本発明によれば、ゲート絶縁膜への高温熱処理を行なった後に、半導体基体とは異なる導電型からなり、素子オフ特性を支配的に決定する第二のヘテロ半導体領域を形成することができるとともに、半導体基体と同じ導電型からなる第一のヘテロ半導体領域を狭い領域にセルフアラインプロセスで確実に形成することができるので、小型化を図りつつ、素子の低オン抵抗化とオフ特性(逆方向特性)とを大幅に改善可能な半導体装置の製造方法を提供することができる。
以下に、本発明に係る半導体装置の製造方法および半導体装置の最良の実施形態について、その一例を、図面を参照しながら詳細に説明する。
(第一の実施の形態)
まず、本発明の製造方法により製造される半導体装置のデバイス構造の第一の実施の形態について、図1を用いて説明する。図1は、本発明に係る半導体装置である電界効果トランジスタのデバイス断面構造の第一の実施の形態を示す断面図である。図1の半導体装置100は、単位セルを2つ対向して並べた断面に相当する。実際には、これらのセルが、複数、並列に接続されて素子を形成するが、この断面構造を、代表として説明する。
(構成例)
まず、本発明に係る半導体装置の一例を示す図1の半導体装置100の構成について説明する。高密度N型(N+型:以下、高密度を「+」で示す)のSiC(炭化珪素、以下、SiCと略記する)基板領域1の第一主面上には、低密度N型(N−型:以下、低密度を「−」で示す)のSiCドレイン領域2が形成されている。N−型SiCドレイン領域2は、N+型SiC基板領域1上に成長させたエピタキシャル層により構成されている。ここに、N+型SiC基板領域1とN−型SiCドレイン領域2とにより第一導電型(ここではN型)の半導体基体を構成している。
SiCには、いくつかのポリタイプ(多結晶形)が存在するが、ここでは、代表的な4H-SiC(4層六方晶SiC)を用いて説明する。ただし、他の6H-SiC(6層六方晶SiC)、3C-SiC(3層立方晶SiC)であってもかまわない。なお、本実施の形態および以下の実施の形態においては、N型を第一導電型とし、P型を第二導電型として説明するが、第一導電型とは、半導体基体と同じ導電型を意味し、第二導電型とは、半導体基体とは異なる導電型を意味している。
図1では、N+型SiC基板領域1とN−型SiCドレイン領域2との厚みの概念を省略している。実際には、N+型SiC基板領域1は、数100μmの厚みを持ち、N−型SiCドレイン領域2は、数μmから10数μm程度である。
N−型のSiCドレイン領域2の第一主面側(N+型SiC基板領域1とは反対側)の面は、所定の領域(周辺部)上にあらかじめ定めた形状からなる溝部7が穿設され、穿設された溝部7に接して、第二導電型(P型)の第二のヘテロ半導体領域9として、多結晶シリコン(ポリSi)を構成素材とするP+型ヘテロ半導体領域9が形成されている。SiCと多結晶シリコンとは、バンドギャップが異なり、電子親和力も異なる。従って、N−型のSiCドレイン領域2と多結晶シリコンのP+型ヘテロ半導体領域9との両者の接合界面には、ヘテロ接合面が形成される(多結晶シリコン領域を、ヘテロ半導体領域と称する所以である)。
また、N−型のSiCドレイン領域2の第一主面側(N+型SiC基板領域1とは反対側)で、溝部7を穿設していない第一主面の一部の面上には、N−型SiCドレイン領域2に接して、第一導電型(N型)の第一のヘテロ半導体領域3として、N+型ヘテロ半導体領域3が形成されている。なお、このN+型ヘテロ半導体領域3は、その一部がP+型ヘテロ半導体領域9の上に重なる領域も有している。すなわち、N+型ヘテロ半導体領域3とP+型ヘテロ半導体領域9とは、ソース電極14からドレイン電極13に向かう方向において、重なる部分を互いに有している。
なお、ここでは、N+型ヘテロ半導体領域3とP+型ヘテロ半導体領域9との層同士が互いに重なり合う部分を有して接している例を示しているが、P+型ヘテロ半導体領域9が、N+型ヘテロ半導体領域3よりもN−型SiCドレイン領域2内のより深い位置に形成されて、N+型ヘテロ半導体領域3と接している限り、如何なる形状や状態で形成されていてもかまわない。
ここで、特徴的なことは、半導体基体と同一の導電型を有するN+型ヘテロ半導体領域3は、その端部の側面においてソース電極14と接続していることである。
また、N−型のSiCドレイン領域2とN+型ヘテロ半導体領域3との接合部の一部に対してゲート絶縁膜5を介して近接して位置するゲート電極16が形成されている。ゲート電極16の上部にはキャップ絶縁膜6が形成されている。P+型ヘテロ半導体領域9は、ソース電極14に直接接続される。
さらに、特徴的なことは、N+型ヘテロ半導体領域3が、その端部側面において、ソース電極14と接するコンタクト部が形成されるとともに、該コンタクト部が、ゲート絶縁膜5の近くに配置されている点である。この結果、N+型ヘテロ半導体領域3を素子オン時の電流通路とした場合に、横方向に張り出した引き出し領域(すなわち、N+型ヘテロ半導体領域3の表層面にてソース電極14の下面と接するようにソース電極14の下に横方向に張り出した領域)を設ける場合のように、無駄な領域が存在せず、微細化に有利な構造となっている点である。
N+型SiC基板領域1の裏面にはドレイン電極13が電気的に低抵抗でオーミック接続されている。ゲート電極16は、キャップ絶縁膜6により、ソース電極14とは絶縁分離されている。なお、キャップ絶縁膜6上には、P+型ヘテロ半導体領域10が、また、キャップ絶縁膜6の側壁には、不純物を導入していないヘテロ半導体領域8が存在するが、P+型へテロ半導体領域10やヘテロ半導体領域8は、いずれも、電界効果トランジスタとして機能する電流通路となっておらず、本質的には無くても良い領域である。これらは、以下に説明する製造工程において、副次的に作製される領域である。
(製造工程例)
次に、本実施の形態における電界効果トランジスタを製造する工程を図2〜図10の各工程図を用いて説明する。
まず、図2の第1工程(半導体基体形成工程、第一ヘテロ半導体領域層形成工程)では、N+型のSiC基板領域1の第一主面上にN−型のSiCドレイン領域2をエピタキシャル成長させて半導体基体が形成される。さらに、N−型のSiCドレイン領域2の表面が前処理等により清浄化された後、半導体基体と同一の導電型である第一導電型の第一のヘテロ半導体領域3を形成するために、N+型ヘテロ半導体領域層として、多結晶シリコン(ポリSi)層3(第一のヘテロ半導体領域3と同じ符号3で表している)が堆積される。多結晶シリコン層3の代表的な厚みは、数100Å〜数μmの範囲内にある。
多結晶シリコン層3の堆積後に、多結晶シリコンの結晶粒界の大きさをコントロールして、素子オン時の電流通路を低抵抗とすべく、1300℃を超えない高温での熱処理が施される場合がある。その後、多結晶シリコン層3には、N+型とするための不純物が導入される。N+型不純物の導入の方法としては、イオン注入法を用いてもかまわないし、デポジション拡散(不純物含有堆積層からの固相拡散)、気相拡散等の方法を用いてもかまわない。
次の図3の第2工程(ゲート絶縁膜層形成工程)では、N−型のSiCドレイン領域2の第一主面側のあらかじめ定めた所望の位置に、ゲート電極16を形成するために、N−型のSiCドレイン領域2を露わにする露出領域4(図3においてはN−型のSiCドレイン領域2の第一主面中央部の領域)を設け、その露出領域4に位置するN+型ヘテロ半導体領域層すなわち多結晶シリコン層3がエッチング除去される。ここでは、低密度N型(N−型)のSiCドレイン領域2の表面を露出させるようにエッチングするだけで、N−型のSiCドレイン領域2をエッチングしていない場合を説明するが、N−型のSiCドレイン領域2の第一主面を溝状にエッチングするようにしてもかまわない。
しかる後、N−型のSiCドレイン領域2の第一主面(N−型のSiCドレイン領域2が露わになる露出領域4)およびN+型ヘテロ半導体領域3上に、ゲート絶縁膜5を形成するためのゲート絶縁膜層(ゲート絶縁膜5と同じ符号5で表している)が堆積される。ゲート絶縁膜層5の代表的な厚みは数100Å〜数1000Åの範囲内にある。この後、ゲート絶縁膜層5と低密度N型(N−型)のSiCドレイン領域2との接合界面、もしくは、ゲート絶縁膜層5とN+型ヘテロ半導体領域3との接合界面における界面準位を低減すべく、例えばNOないしはNO雰囲気で、温度は、例えば900℃〜1300℃、時間は数10分程度での、高温の熱処理を施す場合がある。
次の図4の第3工程(ゲート電極形成工程)では、ゲート絶縁膜層5上にゲート電極16を形成するための多結晶シリコンが最初に厚く積層され、しかる後に、N+型ヘテロ半導体領域層すなわち多結晶シリコン層3をエッチング除去した後のゲート絶縁膜層5の溝部を埋める状態にまで、堆積した多結晶シリコンがエッチバックされ、ゲート電極16として形成される。このとき、ゲート電極16の平坦化は、化学的にエッチングしてもかまわないし、物理的にポリッシュしてもかまわない。また、CMP(Chemical Mechanical
Polish)を利用してもかまわない。
次の図5の第4工程(キャップ絶縁膜形成工程)では、ゲート電極16に対する酸化処理を行なうことによって、ゲート電極16および多結晶シリコン層3の一部の領域(ゲート電極16に隣接する一部の領域)を覆うようにキャップ絶縁膜6が局所的に厚く形成される。
次の図6の第5工程(第一ヘテロ半導体領域形成工程の前半工程)では、キャップ絶縁膜6をマスクとして、ゲート絶縁膜層5、N+型ヘテロ半導体領域層の多結晶シリコン層3、さらに、N−型のSiCドレイン領域2の表層部がエッチングされる。このとき、キャップ絶縁膜6は、前述のように、ゲート電極16に対して、外側の横方向に成長して形成されており(所謂バーズビーク状に成長して形成されており)、キャップ絶縁膜6の庇の下部には、多結晶シリコン層3が狭い領域で残される状態になって、所定の大きさの狭い第一のヘテロ半導体領域3として形成される。
次の図7の第6工程(ヘテロ半導体領域形成工程)では、図6の状態の構造の上部全面を覆うように、不純物を導入していないヘテロ半導体領域8である多結晶シリコン層(ヘテロ半導体領域8と同じ符号8で表している)が堆積される。
次の図8の第7工程(第二ヘテロ半導体領域形成工程の前半工程)では、図7の第6工程で堆積した多結晶シリコン層8に、第一導電型の半導体基体とは導電型が異なる第二導電型のP+型となるような不純物が導入される。不純物の導入の方法については、イオン注入法が最も相応しい。この結果、多結晶シリコン層8の表面には不純物が導入されて、N-型のSiCドレイン領域2の表面に接する領域には、第二のヘテロ半導体領域9すなわちP+型ヘテロ半導体領域9が、また、キャップ絶縁膜6と接する領域には、P+型ヘテロ半導体領域10が形成される。
しかし、キャップ絶縁膜6、ゲート絶縁膜5、第一のヘテロ半導体領域3、および、N−型のSiCドレイン領域2の溝部7のそれぞれの周辺部(すなわち側面部)に接して形成された多結晶シリコン層8の側壁部には不純物が導入されていない。すなわち、この状態では、キャップ絶縁膜6の庇の下部に形成された狭い第一のヘテロ半導体領域3は周辺を不純物が導入されていない多結晶シリコン層8に囲まれている。
次の図9の第8工程(第一ヘテロ半導体領域形成工程の後半工程、第二ヘテロ半導体領域形成工程の後半工程)では、RTA(Rapid
Thermal Anneal)といわれる短時間の急速加熱を行う。すると、N+型ヘテロ半導体領域3が固相拡散源となり、高密度のN+型ヘテロ半導体領域3のN型不純物は、周りを囲んでいる、不純物を導入していない多結晶シリコン層8へと固相拡散し、拡散した領域がN+型の領域11となり、第一のヘテロ半導体領域3の側面部を形成することにより、第一のヘテロ半導体領域3として最終的な形状に形成される。同時に、P+型ヘテロ半導体領域9においても、P型の不純物が、横方向の側壁部に隣接して位置する、不純物が導入されていない多結晶シリコン層8中へと固相拡散し、N-型のSiCドレイン領域2と接する面が、全てP+型化し、P+型の領域12となり、第一のヘテロ半導体領域3の下側に重なり合うように接した状態とされた第二のヘテロ半導体領域9として最終的な形状に形成される。
最後の図10の第9工程(ソース電極形成工程、ドレイン電極形成工程)では、第二のヘテロ半導体領域のP+型へテロ半導体領域9およびP+型ヘテロ半導体領域10の第一主面側の全域に亘って、金属等を構成素材とするソース電極14が形成され、P+型ヘテロ半導体領域9の表層部とN+型ヘテロ半導体領域3の側面部とに、それぞれ、電気的に低抵抗で接続される。さらに、N+型SiC基板領域1の裏面側には、全面に亘り、低抵抗なオーミック接続となるように、金属等を構成素材とするドレイン電極13が形成される。すなわち、N+型ヘテロ半導体領域3は、図1の構造において前述したように、図9の第8工程にてN型不純物を横方向に固相拡散した結果として得られるN+型の領域11の側壁において、ソース電極14に接している。
以上のような工程で、本実施の形態のデバイスが完成する。
図2〜図10に示す製造工程において、第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9は、図8の第7工程で説明したように、ゲート絶縁膜5の熱処理工程(図3の第2工程に関する説明に記載した熱処理工程)後に、形成されている。このようにして、素子のオフ特性を支配的に定める第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9を、ゲート絶縁膜5の熱処理を行なった後に形成しているため、低オン抵抗を実現しながら、素子のオフ特性(逆方向耐圧特性)を大幅に改善することができるという効果が現れる。
また、第一のヘテロ半導体領域であるN+型ヘテロ半導体領域3は、図2の第1工程で説明したように、第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9の形成前に、熱処理を施される場合がある。このようにして、第一のヘテロ半導体領域であるN+型ヘテロ半導体領域3の熱処理を実施した後に、第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9を形成することができるため、低オン抵抗を実現しながら、素子のオフ特性を大幅に改善できるという効果が現れる。
さらに、本発明においては、セルフアラインプロセスとして、第一のヘテロ半導体領域であるN+型ヘテロ半導体領域3を、無駄に横方向に延在させることなく、狭く形成しながら、第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9をゲート電極16の近傍に形成することができるので、素子の基本セルを微細化することが可能であり、オン抵抗の低減に大きく寄与するという効果がある。
(動作例)
次に、本実施の形態の製造方法により作製された電界効果型トランジスタの動作について効果を交えて説明する。
基本的なオン/オフの動作については従来例と同じである。ソース電極14を基準として、ゲート電極16に印加される電圧がある閾値電圧以下の場合は、素子はオフ状態である。この状態で、ドレイン電極13に素子耐圧以下の電圧が印加されたとしても、P+型ヘテロ半導体領域9とN−型のSiCドレイン領域2とのヘテロ接合界面には比較的大きなエネルギー障壁が存在し、キャリアの流れは阻止される。ドレイン電極13とソース電極14との間にかかる電圧によって、空乏層がN−型のSiCドレイン領域2に伸張し、ドレイン電極13とソース電極14との間でオフ特性が保持される。このエネルギー障壁の高さは、N−型のSiCドレイン領域2とP+型ヘテロ半導体領域9とのヘテロ接合のバンド構造によって決まり、多結晶シリコン層のフェルミレベル、言い換えれば、P+型ヘテロ半導体領域9の不純物密度に依存する。
次に、ソース電極14を基準として、ゲート電極16に印加される電圧がある閾値電圧以上になると、素子はオン状態になる。ゲート電極16からの電界によりN+型ヘテロ半導体領域3とN−型のSiCドレイン領域2との接合界面で少なくともゲート絶縁膜5に接する部分における障壁の厚みが狭まり、トンネル電流によりキャリアが通過できるようになる。この結果、ドレイン電極13とソース電極14との間に電流が流れるようになる。また、図2〜図10の製造工程で説明したように、ゲート絶縁膜5への高温熱処理により、界面準位が低減しているので、電子移動度が向上し、低オン抵抗の素子が得られる。
また、本実施の形態においては、素子オフ特性を支配的に定める第二導電型(本実施の形態においてはP型)の例えばP+型ヘテロ半導体領域9を、ゲート絶縁膜5への高温熱処理を行なった後に形成することができるため、低オン抵抗を実現しながら、素子のオフ特性(逆方向特性)を大幅に改善することができるという効果が得られる。
さらに、第一導電型(本実施の形態においてはN型)の例えばN+型ヘテロ半導体領域3への高温熱処理を実施した後に第二導電型(本実施の形態においてはP型)の例えばP+型ヘテロ半導体領域9を形成しているため、低オン抵抗を実現しながら、素子のオフ特性を大幅に改善できるという効果が得られる。
さらに、構造的には、電流通路となる第一導電型のN+型ヘテロ半導体領域3およびN+型の領域11(この両方の領域を合わせて最終的なN+型ヘテロ半導体領域となっている)が無駄に横方向に延在した領域を有していないので、素子の微細化に有利となり、低オン抵抗で、かつ、より小型化した素子を実現することができるという効果が得られる。
(第二の実施の形態)
図11に、本発明における半導体装置の第二の実施の形態である電界効果トランジスタのデバイス断面構造を示す。図11に示す半導体装置200の断面構造は、図1で示した構造と同様に、単位セルを2つ対向して並べた断面構造に相当する。基本的な構成は図1で説明したものと同様であるので、以下には、図1と異なる部分のみを説明する。
(構成例)
図11に示す半導体装置200において、N−型のSiCドレイン領域2の第一主面側には、図1の場合と同様に、多結晶シリコンを構成素材とする第二導電型の第二のヘテロ半導体領域であるP+型ヘテロ半導体領域9が溝部7の底面と側面とに接して形成されている。ここで、図1の場合とは異なり、本実施の形態の半導体装置200においては、さらに、半導体基体のN−型のSiCドレイン領域2の第一主面の表層部近傍に、例えば溝部7に沿う形で、N−型のSiCドレイン領域2とN+型ヘテロ半導体領域3との接合部に印加されるドレイン電極13のドレイン電界を緩和する電界緩和領域15がN−型のSiCドレイン領域2内に形成されている。この電界緩和領域15は、例えば半導体基体の導電型とは異なる導電型からなる半導体領域や高抵抗体や絶縁体であり、第二導電型のP+型ヘテロ半導体領域9を介してソース電極14に接続されている。
(製造工程例)
次に、本実施の形態における電界効果トランジスタを製造する工程を図12〜図20の各工程図を用いて説明する。基本的には、第一の実施の形態で説明した製造工程と同様であり、図17の第6工程のイオン注入工程(すなわち電界緩和領域形成工程)が余分に追加されているのみである。ここで、図12の第1工程〜図16の第5工程までは、第一の実施の形態で説明した図2の第1工程〜図6の第5工程までと全く同等であり、説明を省略する。しかる後、図17の第6工程のイオン注入工程において、キャップ絶縁膜6をマスクにしてエッチングされてN−型のSiCドレイン領域2の溝部7が露わになった状態で、N−型のSiCドレイン領域2とキャップ絶縁膜6との両者の全面に、P型となるボロン等の不純物がイオン注入等の手段によって導入される。これにより、第一導電型(N型)のN−型SiCドレイン領域2の溝部7に沿うように、第二導電型(P型)の電界緩和領域15が形成される。
その後の図18の第7工程〜図20の第9工程までは、第一の実施の形態で説明した図7の第6工程〜図9の第8工程までと同等であるが、図17の第6工程において導入した不純物による高抵抗層が、電界緩和領域15として、溝部7に沿う形でN−型のSiCドレイン領域2内に形成されているところのみが異なっている。
なお、N−型のSiCドレイン領域2の溝部7に沿うように、半導体基体の表層部近傍に形成される電界緩和領域15としては、半導体基体の導電型(例えばSiCドレイン領域2のN型)とは異なる導電型(例えばP型)の不純物を導入した半導体領域を形成しても良いし、高抵抗体や絶縁体を形成するようにしても良い。
図示していないが、最後の工程では、第一の実施の形態の図10と同様に、第一のへテロ半導体領域であるP+型へテロ半導体領域9およびP+型ヘテロ半導体領域10の第一主面側の全域に亘って、金属等を構成素材とするソース電極14が形成されて、P+型ヘテロ半導体領域9とN+型ヘテロ半導体領域3とに、それぞれ、電気的に低抵抗で接続され、一方、N+型SiC基板領域1の裏面側には、全面に亘り、低抵抗なオーミック接続となるように、金属等を構成素材とするドレイン電極13が形成される。
(動作例)
次に、本実施の形態の製造方法により作製された電界効果型トランジスタの動作について、効果を交えて説明する。
基本的な効果は、第一の実施の形態で説明したものと同様である。しかし、本実施の形態においては、P+型ヘテロ半導体領域9の下層側に形成された電界緩和領域15が、N+型SiC基板領域1とN−型SiCドレイン領域2とからなる半導体基体に形成された溝部7に沿って、電流通路のヘテロ接合界面よりも深い位置に形成されている。これによって、素子オフ時において、ソース電極14を基準にして、ドレイン電極13に電圧が印加された場合に、N-型のSiCドレイン領域2に伸びる空乏層がゲート電極16直下の領域にも広がり易くなり、その結果、素子のオフ特性をさらに改善することができるという独特の効果が得られる。
なお、前述した各実施の形態においては、半導体基体が炭化珪素(SiC)からなり、ヘテロ半導体領域が多結晶シリコン(ポリSi)からなっていたが、本発明は、かかる場合に限るものではない。半導体基体が、窒化ガリウム(GaN)、ダイヤモンドのいずれかからなっていても良いし、ヘテロ半導体領域が、単結晶シリコン、アモルファスシリコン、ゲルマニウム(Ge)、ひ化ガリウム(GaAs)のいずれかからなっていても、本発明の効果は、全く同様に得ることができる。
本発明に係る半導体装置である電界効果トランジスタのデバイス断面構造の第一の実施の形態を示す断面図である。 本発明の第一の実施の形態における第1工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第2工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第3工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第4工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第5工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第6工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第7工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第8工程を示すデバイス製造工程図である。 本発明の第一の実施の形態における第9工程を示すデバイス製造工程図である。 本発明に係る半導体装置である電界効果トランジスタのデバイス断面構造の第二の実施の形態を示す断面図である。 本発明の第二の実施例における第1工程を示すデバイス製造工程図である。 本発明の第二の実施例における第2工程を示すデバイス製造工程図である。 本発明の第二の実施例における第3工程を示すデバイス製造工程図である。 本発明の第二の実施例における第4工程を示すデバイス製造工程図である。 本発明の第二の実施例における第5工程を示すデバイス製造工程図である。 本発明の第二の実施例における第6工程を示すデバイス製造工程図である。 本発明の第二の実施例における第7工程を示すデバイス製造工程図である。 本発明の第二の実施例における第8工程を示すデバイス製造工程図である。 本発明の第二の実施例における第9工程を示すデバイス製造工程図である。
符号の説明
1…N+型SiC基板領域、2…N−型SiCドレイン領域、3…N+型へテロ半導体領域(多結晶シリコン層、第一のへテロ半導体領域)、4…露出領域(N−型SiCドレイン領域2が露わとなる領域)、5…ゲート絶縁膜(ゲート絶縁物層)、6…キャップ絶縁膜、7…溝部、8…へテロ半導体領域の側壁部(不純物を導入していないヘテロ半導体領域)、9…P+型へテロ半導体領域(第二のへテロ半導体領域)、10…P+型へテロ半導体領域(キャップ絶縁膜6の上部の領域)、11…N+型の領域(固相拡散によりN+型化したヘテロ半導体領域)、12…P+型の領域(固相拡散によりP+型化したヘテロ半導体領域)、13…ドレイン電極、14…ソース電極、15…電界緩和領域、16…ゲート電極、100,200…半導体装置。

Claims (15)

  1. 基板上に半導体領域を形成した半導体基体と、前記半導体基体に接し、かつ、前記半導体基体とはバンドギャップが異なる半導体材料からなるヘテロ半導体領域と、前記ヘテロ半導体領域と前記半導体基体との接合部に近接した位置にゲート絶縁膜を介して形成されたゲート電極と、前記ヘテロ半導体領域と接続されたソース電極と、前記半導体基体と接続されたドレイン電極とを有する半導体装置を製造する半導体装置の製造方法において、前記半導体基体の第一主面上に、前記半導体基体と同じ導電型を有する第一のヘテロ半導体領域の層を形成する第一ヘテロ半導体層形成工程と、前記第一のヘテロ半導体領域の層および/または前記半導体基体の上に前記ゲート絶縁膜の層を形成するゲート絶縁膜層形成工程と、前記ゲート絶縁膜の層を熱処理するゲート絶縁膜層熱処理工程と、前記第一のヘテロ半導体領域の層と前記半導体基体との接合面に近接したあらかじめ定めた所定の位置に前記ゲート絶縁膜を介して前記ゲート電極を形成するゲート電極形成工程と、前記ゲート電極の上部および該ゲート電極に隣接する前記ゲート絶縁膜の一部の領域の上部にキャップ絶縁膜を形成するキャップ絶縁膜形成工程と、前記キャップ絶縁膜をマスクとして、少なくとも、前記ゲート絶縁膜、前記第一のヘテロ半導体領域の層をエッチング除去して、前記第一のヘテロ半導体領域をパターニングするとともに、前記半導体基体の一部の領域を露出させる第一ヘテロ半導体領域形成工程と、露出した前記半導体基体上に不純物が導入されていないヘテロ半導体領域を形成するヘテロ半導体領域形成工程と、不純物が導入されていない前記ヘテロ半導体領域に、前記半導体基体とは異なる導電型を有する不純物を導入して、第二のヘテロ半導体領域を形成する第二ヘテロ半導体領域形成工程とを、少なくとも有し、前記第二ヘテロ半導体領域形成工程を少なくとも前記ゲート絶縁膜層熱処理工程よりも後で実施することを特徴とする半導体装置の製造方法。
  2. 請求項1に記載の半導体装置の製造方法において、前記第二ヘテロ半導体領域形成工程を少なくとも前記第一ヘテロ半導体層形成工程よりも後で実施することを特徴とする半導体装置の製造方法。
  3. 請求項1または2に記載の半導体装置の製造方法において、前記第一ヘテロ半導体領域形成工程が、前記キャップ絶縁膜をマスクとして、前記ゲート絶縁膜、前記第一のヘテロ半導体領域の層をエッチング除去する際に、前記半導体基体の表層部の一部をさらにエッチングして、前記半導体基体上に溝部を形成することを特徴とする半導体装置の製造方法。
  4. 請求項1ないし3のいずれかに記載の半導体装置の製造方法において、前記ゲート絶縁膜層形成工程が、前記ゲート絶縁膜の層を形成する前に、前記第一のヘテロ半導体領域の一部をエッチングして前記半導体基体を露出させる工程を有し、前記第一のヘテロ半導体領域と露出した前記半導体基体との上に前記ゲート絶縁膜の層を形成することにより、前記ゲート絶縁膜上に溝部を形成することを特徴とする半導体装置の製造方法。
  5. 請求項4に記載の半導体装置の製造方法において、前記ゲート電極形成工程が、前記ゲート絶縁膜上に前記ゲート電極を形成する位置を、前記ゲート絶縁膜上に形成された前記溝部の位置とし、前記溝部を充填するように前記ゲート電極を形成することを特徴とする半導体装置の製造方法。
  6. 請求項1ないし5のいずれかに記載の半導体装置の製造方法において、前記ゲート電極形成工程は、形成した前記ゲート電極の表面を、エッチングもしくは研磨により平坦化する工程をさらに有していることを特徴とする半導体装置の製造方法。
  7. 請求項1ないし6のいずれかに記載の半導体装置の製造方法において、前記キャップ絶縁膜形成工程にて形成する前記キャップ絶縁膜が、前記ゲート電極を酸化処理することにより、前記ゲート電極の上部および該ゲート電極に隣接する前記ゲート絶縁膜の一部の領域の上部を覆うように形成される酸化膜からなっていることを特徴とする半導体装置の製造方法。
  8. 請求項1ないし7のいずれかに記載の半導体装置の製造方法において、前記第二ヘテロ半導体領域形成工程が、不純物が導入されていない前記ヘテロ半導体領域中の前記第二のヘテロ半導体領域に隣接する側壁部の部位に、前記第二のヘテロ半導体領域に導入した前記不純物を固相拡散するための熱処理を行なう熱処理工程をさらに有していることを特徴とする半導体装置の製造方法。
  9. 請求項8に記載の半導体装置の製造方法において、前記第二ヘテロ半導体領域形成工程の前記熱処理工程により、不純物が導入されていない前記ヘテロ半導体領域中の前記第一のヘテロ半導体領域に隣接する側壁部の部位に、前記第一のヘテロ半導体領域に含まれている不純物を固相拡散して、前記第一のヘテロ半導体領域の側面部を形成することを特徴とする半導体装置の製造方法。
  10. 請求項9に記載の半導体装置の製造方法において、前記第一のヘテロ半導体領域の前記側面部と少なくとも接して前記ソース電極を形成するソース電極形成工程を有していることを特徴とする半導体装置の製造方法。
  11. 請求項10に記載の半導体装置の製造方法において、前記ソース電極形成工程にて形成される前記ソース電極が、前記第二のヘテロ半導体領域の表面と接していることを特徴とする半導体装置の製造方法。
  12. 請求項1ないし11のいずれかに記載の半導体装置の製造方法において、前記半導体基体の第一主面の表層部近傍に、前記ヘテロ半導体領域と前記半導体基体との接合部に印加される前記ドレイン電極のドレイン電界を緩和する電界緩和領域を形成する電界緩和領域形成工程を有することを特徴とする半導体装置の製造方法。
  13. 請求項12に記載の半導体装置の製造方法において、前記電界緩和領域形成工程は、前記半導体基体とは異なる導電型の半導体、高抵抗体、もしくは、絶縁体のいずれかを用いて前記電界緩和領域を形成することを特徴とする半導体装置の製造方法。
  14. 請求項1ないし13のいずれかに記載の半導体装置の製造方法において、前記半導体基体の材料として、炭化珪素、窒化ガリウム、もしくは、ダイヤモンドのいずれかを用いることを特徴とする半導体装置の製造方法。
  15. 請求項1ないし14のいずれかに記載の半導体装置の製造方法において、前記第一のへテロ半導体領域および/または前記第二のヘテロ半導体領域の材料として、単結晶シリコン、多結晶シリコン、もしくは、アモルファスシリコンのいずれかを用いることを特徴とする半導体装置の製造方法。
JP2006107129A 2006-04-10 2006-04-10 半導体装置の製造方法 Expired - Fee Related JP5098206B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107129A JP5098206B2 (ja) 2006-04-10 2006-04-10 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107129A JP5098206B2 (ja) 2006-04-10 2006-04-10 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007281270A JP2007281270A (ja) 2007-10-25
JP5098206B2 true JP5098206B2 (ja) 2012-12-12

Family

ID=38682401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107129A Expired - Fee Related JP5098206B2 (ja) 2006-04-10 2006-04-10 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5098206B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573149B2 (ja) * 2002-10-16 2004-10-06 日産自動車株式会社 炭化珪素半導体装置
JP3617510B2 (ja) * 2002-10-18 2005-02-09 日産自動車株式会社 炭化珪素半導体装置
JP2006086397A (ja) * 2004-09-17 2006-03-30 Nissan Motor Co Ltd 半導体装置およびその製造方法
EP1641030B1 (en) * 2004-09-28 2012-01-11 Nissan Motor Co., Ltd. Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
JP2007281270A (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2018161412A1 (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
US8748977B2 (en) Semiconductor device and method for producing same
US8564060B2 (en) Semiconductor device with large blocking voltage and manufacturing method thereof
US8658503B2 (en) Semiconductor device and method of fabricating the same
JP5671779B2 (ja) エピタキシャルウエハの製造方法および半導体装置の製造方法
JP5145694B2 (ja) SiC半導体縦型MOSFETの製造方法。
JP3573149B2 (ja) 炭化珪素半導体装置
JP2022088613A (ja) 半導体装置の製造方法
JP4948784B2 (ja) 半導体装置及びその製造方法
JP5556863B2 (ja) ワイドバンドギャップ半導体縦型mosfet
WO2012105170A1 (ja) 半導体装置およびその製造方法
JP2012064741A (ja) 半導体装置およびその製造方法
JP5636752B2 (ja) 半導体装置及びその製造方法
JP7101101B2 (ja) 半導体装置
KR100964771B1 (ko) 반도체 장치 및 그 제조 방법
JP5098293B2 (ja) ワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法
JP5607947B2 (ja) 半導体装置およびその製造方法
JP7152117B2 (ja) 半導体装置の製造方法および半導体装置
JP2007053226A (ja) 半導体装置およびその製造方法
JP5059989B1 (ja) 半導体装置とその製造方法
JP5098206B2 (ja) 半導体装置の製造方法
WO2015076020A1 (ja) 半導体装置
JP2007019095A (ja) 半導体装置の製造方法
JP5077185B2 (ja) 横型接合型電界効果トランジスタおよびその製造方法
JP5439856B2 (ja) 絶縁ゲート型電界効果トランジスタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees