JP5078975B2 - 膨張機一体型圧縮機 - Google Patents

膨張機一体型圧縮機 Download PDF

Info

Publication number
JP5078975B2
JP5078975B2 JP2009277610A JP2009277610A JP5078975B2 JP 5078975 B2 JP5078975 B2 JP 5078975B2 JP 2009277610 A JP2009277610 A JP 2009277610A JP 2009277610 A JP2009277610 A JP 2009277610A JP 5078975 B2 JP5078975 B2 JP 5078975B2
Authority
JP
Japan
Prior art keywords
oil
shaft
oil pump
expansion mechanism
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009277610A
Other languages
English (en)
Other versions
JP2010053871A (ja
Inventor
優 塩谷
雄司 尾形
信吾 大八木
賢宣 和田
康文 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009277610A priority Critical patent/JP5078975B2/ja
Publication of JP2010053871A publication Critical patent/JP2010053871A/ja
Application granted granted Critical
Publication of JP5078975B2 publication Critical patent/JP5078975B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Description

本発明は、流体を圧縮する圧縮機構と流体を膨張させる膨張機構とを備えた膨張機一体型圧縮機に関する。
従来から、圧縮機構と膨張機構とを備えた流体機械として、膨張機一体型圧縮機が知られている。図15は、特許文献1に記載された膨張機一体型圧縮機の縦断面図である。
膨張機一体型圧縮機103は、密閉容器120、圧縮機構121、電動機122および膨張機構123を備えている。電動機122、圧縮機構121および膨張機構123は、シャフト124により連結されている。膨張機構123は、膨張する作動流体(例えば冷媒)から動力を回収し、回収した動力をシャフト124に与える。これにより、圧縮機構121を駆動する電動機122の消費電力が低減し、膨張機一体型圧縮機103を用いたシステムの成績係数が向上する。
密閉容器120の底部125は、オイル貯まりとして利用されている。底部125に貯められたオイルを密閉容器120の上方へ汲み上げるために、シャフト124の下端にオイルポンプ126が設けられている。オイルポンプ126によって汲み上げられたオイルは、シャフト124内の給油路127を経由して、圧縮機構121および膨張機構123に供給される。これにより、圧縮機構121の摺動部分および膨張機構123の摺動部分における潤滑性とシール性を確保することができる。
膨張機構123の上部には、オイル戻し経路128が設けられている。オイル戻し経路128は、一端がシャフト124の給油路127に接続し、他端が膨張機構123の下方に向かって開口している。一般に、膨張機構123の信頼性確保のため、オイルは過剰に供給される。余剰のオイルはオイル戻し経路128を経由して、膨張機構123の下方に排出される。
作動流体に混入するオイルの量は、通常、圧縮機構121と膨張機構123とで相違する。したがって、圧縮機構121と膨張機構123とが別々の密閉容器内に収容されている場合には、オイル量の過不足が生じないように、2つの密閉容器内のオイル量を調整するための手段が不可欠となる。これに対し、圧縮機構121および膨張機構123が同一の密閉容器120内に収容されているため、図11に示す膨張機一体型圧縮機103には、オイル量の過不足の問題が本質的に存在しない。
上記の膨張機一体型圧縮機103では、底部125から汲み上げられたオイルが、高温の圧縮機構121を通過するため、圧縮機構121によって加熱される。圧縮機構121によって加熱されたオイルは、電動機122によってさらに加熱され、膨張機構123に到達する。膨張機構123に到達したオイルは、低温の膨張機構123において冷却されたのち、オイル戻し経路128を経由して、膨張機構123の下方に排出される。膨張機構123から排出されたオイルは、電動機122の側面を通過する際に加熱され、さらに圧縮機構121の側面を通過する際にも加熱されて密閉容器120の底部125に戻る。
特開2005−299632号公報
以上のように、オイルが圧縮機構と膨張機構を循環することにより、オイルを介して圧縮機構から膨張機構への熱移動が起こる。このような熱移動は、圧縮機構から吐出される作動流体の温度低下、膨張機構から吐出される作動流体の温度上昇を招来し、膨張機一体型圧縮機を用いたシステムの成績係数の向上を妨げる。
本発明はかかる点に鑑みてなされたものであり、膨張機一体型圧縮機において、圧縮機構から膨張機構への熱移動を抑制することを目的とする。
上記の目的を達成するために、本出願に先行する国際出願PCT/JP2007/058871(出願日2007年4月24日、優先日2006年5月17日)において、本発明者らは、
底部がオイル貯まりとして利用される密閉容器と、
オイル貯まりに貯留されたオイルの油面よりも上または下に位置するように密閉容器内に配置された圧縮機構と、
油面に対する位置関係が圧縮機構とは上下逆になるように密閉容器内に配置された膨張機構と、
圧縮機構と膨張機構とを連結するシャフトと、
圧縮機構と膨張機構との間に配置され、圧縮機構または膨張機構の周囲を満たすオイルを油面よりも上に位置する圧縮機構または膨張機構に供給するオイルポンプと、
を備えた膨張機一体型圧縮機を開示する。
上記の膨張機一体型圧縮機において、圧縮機構と膨張機構との上下関係は限定されないが、油面よりも上に圧縮機構が配置され、油面よりも下に膨張機構が配置されている場合に、オイルを介した熱移動を防止する効果をより多く享受できる。そして、以下の改良を加えることにより、熱移動を防止する効果をさらに高めることができることが判明した。
すなわち、本発明は、
底部がオイル貯まりとして利用されるとともに、圧縮後の高圧の作動流体で内部空間が満たされる密閉容器と、
前記密閉容器内の上部に配置され、作動流体を圧縮して前記密閉容器の内部空間へと吐出する圧縮機構と、
前記オイル貯まりに貯められたオイルで周囲が満たされるように前記密閉容器の下部に配置され、膨張する作動流体から動力を回収する膨張機構と、
前記膨張機構で回収した動力が前記圧縮機構に伝達されるように前記圧縮機構と前記膨張機構とを連結するシャフトと、
前記シャフトの軸方向における前記圧縮機構と前記膨張機構との間に配置され、前記オイル貯まりに貯められたオイルを吸入口から吸入して吐出口から上方に吐出することで前記圧縮機構に供給するオイルポンプと、
前記オイルポンプから吐出されたオイルを前記圧縮機構に供給しうるように前記シャフトの内部に形成され、前記シャフトの外周面に形成された入口が前記オイルポンプよりも上方にある給油路と、
前記オイルポンプよりも上側で前記オイルポンプの吐出口と前記給油路の入口とを連通する導入路と、
を備え、
前記シャフトは、前記オイルポンプに対応する位置に偏心部を有しており、
前記オイルポンプは、前記シャフトの偏心部に嵌合して偏心運動するピストンと、このピストンを収容するハウジングとを有しており、
前記導入路は、前記ピストンの上面に面しており、
前記ピストンが表面上を摺動するように前記オイルポンプの下側に前記ハウジングに隣接して配置された閉塞部材をさらに備えた、膨張機一体型圧縮機を提供する。
本発明の膨張機一体型圧縮機は、密閉容器内に高温高圧の作動流体が充填される、いわゆる高圧シェル型を採用する。密閉容器内の上部には、動作時に高温となる圧縮機構が配置され、下部には、動作時に低温となる膨張機構が配置される。密閉容器の底部には、圧縮機構および膨張機構を潤滑するためのオイルが貯められる。オイルポンプが圧縮機構と膨張機構の間に配置されており、シャフトの内部に形成された給油路を通じてオイルポンプから圧縮機構へとオイルが供給される。オイルポンプに吸入されたオイルは、下部の膨張機構を経由することなく上部の圧縮機構へと供給される。言い換えれば、圧縮機構を潤滑するオイルの循環経路上に膨張機構が位置しないようにすることができる。これにより、オイルを介した圧縮機構から膨張機構への熱移動が抑制される。
さらに、本発明によれば、オイル貯まりに貯められたオイルがオイルポンプから上方に吐出された後にオイルポンプの上側にある導入路および入口を通ってシャフト内の給油路に導入されるようになっているので、オイルポンプから吐出されたオイルが膨張機構に近づくことなく圧縮機構に供給されるようになる。このため、オイルポンプから吐出されたオイルから膨張機構に熱がいっそう伝わり難くなり、オイルを介した熱移動を抑制する効果がさらに高められる。
本発明の第1実施形態にかかる膨張機一体型圧縮機の縦断面図 図1に示す膨張機一体型圧縮機のIIA−IIA横断面図 同じくIIB−IIB横断面図 図1の部分拡大図 オイルポンプの平面図 第2シャフトの外周面に形成された給油用の溝を示す模式図 給油路の別の形態を示す拡大断面図 給油路のさらに別の形態を示す拡大断面図 給油路のさらに別の形態を示す拡大断面図 給油路のさらに別の形態を示す拡大断面図 本発明の第2実施形態にかかる膨張機一体型圧縮機の縦断面図 図10の部分拡大図 図11のXII−XII線に対応するオイルポンプの平面図 下面にオイル保持溝が形成されたピストンの断面図 下面が傾斜させられたピストンの断面図 膨張機一体型圧縮機を用いた冷凍サイクル装置の構成図 従来の膨張機一体型圧縮機の断面図
以下、添付の図面を参照しつつ本発明の実施形態について説明する。
(第1実施形態)
図1は、本発明の第1実施形態にかかる膨張機一体型圧縮機の縦断面図である。図2Aは、図1に示す膨張機一体型圧縮機のIIA−IIA横断面図である。図2Bは、図1に示す膨張機一体型圧縮機のIIB−IIB横断面図である。図3は、図1の部分拡大図である。
図1に示すように、第1実施形態の膨張機一体型圧縮機200Aは、密閉容器1と、密閉容器1内の上部に配置されたスクロール型の圧縮機構2と、密閉容器1内の下部に配置された2段ロータリ型の膨張機構3と、圧縮機構2と膨張機構3との間に配置された電動機4と、圧縮機構2、膨張機構3および電動機4を連結するシャフト5と、電動機4と膨張機構3との間に配置されたオイルポンプ6と、膨張機構3とオイルポンプ6との間に配置された断熱構造30とを備えている。電動機4がシャフト5を駆動することにより、圧縮機構2が作動する。膨張機構3は、膨張する作動流体から動力を回収してシャフト5に与え、電動機4によるシャフト5の駆動をアシストする。作動流体は、例えば、二酸化炭素やハイドロフルオロカーボンなどの冷媒である。
本明細書中では、シャフト5の軸方向を上下方向と定義し、圧縮機構2が配置されている側を上側、膨張機構3が配置されている側を下側と定義する。さらに、本実施形態では、スクロール型の圧縮機構2とロータリ型の膨張機構3を採用しているが、圧縮機構2および膨張機構3の型式はこれらに限定されず、他の容積型であってもよい。例えば、圧縮機構と膨張機構の双方をロータリ型またはスクロール型にすることが可能である。
図1に示すように、密閉容器1の底部はオイル貯まり25として利用され、その上側の内部空間24は作動流体で満たされる。オイルは、圧縮機構2および膨張機構3の摺動部分における潤滑性とシール性を確保するために使用される。オイル貯まり25に貯留されたオイルの量は、密閉容器1を立てた状態、つまりシャフト5の軸方向が鉛直方向に平行となるように密閉容器1の姿勢を定めた状態で、オイルポンプ6のオイル吸入口62qよりも上、かつ電動機4よりも下に油面SL(図3参照)が位置するように調整されている。言い換えれば、オイルの油面がオイルポンプ6のオイル吸入口62qと電動機4との間に位置するように、オイルポンプ6および電動機4の位置、ならびにそれらの要素を収容するための密閉容器1の形状および大きさが定められている。
オイル貯まり25は、オイルポンプ6のオイル吸入口62qが位置する上槽25aと、膨張機構3が位置する下槽25bとを含む。上槽25aと下槽25bとは、断熱構造30を構成する部材(具体的には後述する仕切板31)によって隔てられている。オイルポンプ6の周囲が上槽25aのオイルで満たされ、膨張機構3の周囲が下槽25bのオイルで満たされている。上槽25aのオイルは主に圧縮機構2のために使用され、下槽25bのオイルは主に膨張機構3のために使用される。
オイルポンプ6は、上槽25aに貯まっているオイルの油面がオイル吸入口62qよりも上方に位置するように、シャフト5の軸方向における圧縮機構2と膨張機構3との間に配置されている。電動機4とオイルポンプ6との間には、支持フレーム75が配置されている。支持フレーム75は密閉容器1に固定されており、この支持フレーム75を介して、オイルポンプ6、断熱構造30および膨張機構3が密閉容器1に固定されている。支持フレーム75の外周部には、圧縮機構2を潤滑し終えたオイル、および密閉容器1の内部空間24に吐出された作動流体から分離したオイルが上槽25aに戻れるように、複数の貫通孔75aが形成されている。貫通孔75aの数は、1つであってもよい。
オイルポンプ6は、上槽25aのオイルを吸入し、圧縮機構2の摺動部分に供給する。圧縮機構2を潤滑後、支持フレーム75の貫通孔75aを通じて上槽25aに戻るオイルは、圧縮機構2および電動機4から加熱作用を受けているので、相対的に高温である。上槽25aに戻ったオイルは、再びオイルポンプ6に吸入される。一方、膨張機構3の摺動部分には、下槽25bのオイルが供給される。膨張機構3の摺動部分を潤滑したオイルは、直接下槽25bに戻される。下槽25bに貯められたオイルは、膨張機構3から冷却作用を受けるので、相対的に低温となる。圧縮機構2と膨張機構3との間にオイルポンプ6を配置し、そのオイルポンプ6を用いて圧縮機構2への給油を行うことにより、圧縮機構2を潤滑する高温のオイルの循環経路を膨張機構3から遠ざけることができる。言い換えれば、圧縮機構2を潤滑する高温のオイルの循環経路と、膨張機構3を潤滑する低温のオイルの循環経路とを分けることができる。これにより、オイルを介した圧縮機構2から膨張機構3への熱移動が抑制される。
熱移動を抑制する効果は、圧縮機構2と膨張機構3との間にあるオイルポンプ6のみによっても得ることができるが、断熱構造30を追加することにより、その効果を大幅に高めることが可能である。
膨張機一体型圧縮機200Aの動作時において、オイル貯まり25に貯められたオイルは、上槽25aでは相対的に高温となり、下槽25bの膨張機構3の周囲では相対的に低温となる。断熱構造30は、上槽25aと下槽25bとの間のオイルの流通を制限することにより、上槽25aに高温のオイルが貯まり、下槽25bに低温のオイルが貯まった状態を維持しようとする。さらに、断熱構造30の存在により、オイルポンプ6と膨張機構3との軸方向の距離が長くなるため、このことによっても、オイルポンプ6の周囲を満たすオイルから膨張機構3への熱移動量を低減することができる。上槽25aと下槽25bとの間のオイルの流通は、断熱構造30によって制限されているが、禁止されているわけではない。上槽25aから下槽25b、またはその逆方向へのオイルの流通は、オイル量をバランスさせるように起こりうる。
以下、各構成要素についてさらに詳しく説明する。
<<圧縮機構2>>
スクロール型の圧縮機構2は、旋回スクロール7と、固定スクロール8と、オルダムリング11と、軸受部材10と、マフラー16と、吸入管13と、吐出管15とを備えている。シャフト5の偏心軸5aに嵌合され、かつ、オルダムリング11により自転運動を拘束された旋回スクロール7は、渦巻き形状のラップ7aが、固定スクロール8のラップ8aと噛み合いながら、シャフト5の回転に伴って旋回運動を行い、ラップ7a,8aの間に形成される三日月形状の作動室12が外側から内側に移動しながら容積を縮小することにより、吸入管13から吸入された作動流体を圧縮する。圧縮された作動流体は、固定スクロール8の中央部に形成された吐出孔8b、マフラー16の内部空間16a、ならびに固定スクロール8および軸受部材10を貫通する流路17をこの順に経由して、密閉容器1の内部空間24に吐出される。シャフト5の給油路29を通ってこの圧縮機構2に到達したオイルは、旋回スクロール7と偏心軸5aとの摺動面や、旋回スクロール7と固定スクロール8との摺動面を潤滑する。密閉容器1の内部空間24に吐出された作動流体は、内部空間24に滞留する間に、重力や遠心力によってオイルと分離され、その後、吐出管15からガスクーラに向けて吐出される。
<<電動機4>>
シャフト5を介して圧縮機構2を駆動する電動機4は、密閉容器1に固定された固定子21と、シャフト5に固定された回転子22とを含む。密閉容器1の上部に配置されたターミナル(図示省略)から電動機4に電力が供給される。電動機4は、同期機および誘導
機のいずれであってもよく、圧縮機構2から吐出された作動流体に混入しているオイルによって冷却される。
<<シャフト5>>
シャフト5の内部には、圧縮機構2の摺動部分に通ずる給油路29が軸方向に延びるように形成されており、この給油路29にオイルポンプ6から吐出されたオイルが送り込まれる。給油路29に送られたオイルは、膨張機構3を経由することなく、圧縮機構2の各摺動部分に供給される。このようにすれば、圧縮機構2に向かうオイルが膨張機構3で冷却されることがないので、オイルを介した圧縮機構2から膨張機構3への熱移動を効果的に抑制することができる。また、シャフト5の内部に給油路29を形成すれば、部品点数の増加やレイアウトの問題が新たに生じないので好適である。
さらに、本実施形態においてシャフト5は、圧縮機構2側に位置する第1シャフト5sと、第1シャフト5sに連結された、膨張機構3側に位置する第2シャフト5tとを含む。第1シャフト5sおよび第2シャフト5tの内部には、圧縮機構2の摺動部分に通ずる給油路29が軸方向に延びるように形成されている。第1シャフト5sと第2シャフト5tとは、膨張機構3によって回収された動力が圧縮機構2に伝達されるように連結器63によって連結されている。ただし、連結器63を使用せず、第1シャフト5sと第2シャフト5tとを直接嵌め合わせるようにしてもよい。さらに、単一の部品からなるシャフトを用いることも可能である。
<<膨張機構3>>
膨張機構3は、第1シリンダ42と、第1シリンダ42よりも厚みのある第2シリンダ44と、これらのシリンダ42,44を仕切る中板43とを備えている。第1シリンダ42と第2シリンダ44とは、互いに同心状の配置である。膨張機構3は、さらに、シャフト5の偏心部5cと嵌合し、第1シリンダ42の中で偏心回転運動する第1ピストン46と、第1シリンダ42のベーン溝42a(図2A参照)に往復動自在に保持され、一方の端部が第1ピストン46に接する第1ベーン48と、第1ベーン48の他方の端部に接し、第1ベーン48を第1ピストン46へと付勢する第1ばね50と、シャフト5の偏心部5dと嵌合し、第2シリンダ44の中で偏心回転運動する第2ピストン47と、第2シリンダ44のベーン溝44a(図2B参照)に往復動自在に保持され、一方の端部が第2ピストン47に接する第2ベーン49と、第2ベーン49の他方の端部に接し、第2ベーン49を第2ピストン47へと付勢する第2ばね51と、を備えている。
膨張機構3は、さらに、第1シリンダ42、第2シリンダ44および中板43を狭持するように配置された上軸受部材45および下軸受部材41を備えている。下軸受部材41および中板43は第1シリンダ42を上下から狭持し、中板43および上軸受部材45は第2シリンダ44を上下から狭持する。上軸受部材45、中板43および下軸受部材41による狭持により、第1シリンダ42および第2シリンダ44内には、ピストン46,47の回転に応じて容積が変化する作動室が形成される。膨張機構3も、圧縮機構2と同様、吸入管52と、吐出管53とを備えている。
図2Aに示すように、第1シリンダ42の内側には、第1ピストン46および第1ベーン48により区画された、吸入側の作動室55a(第1吸入側空間)および吐出側の作動室55b(第1吐出側空間)が形成される。図2Bに示すように、第2シリンダ44の内側には、第2ピストン47および第2ベーン49により区画された、吸入側の作動室56a(第2吸入側空間)および吐出側の作動室56b(第2吐出側空間)が形成される。第2シリンダ44における2つの作動室56a,56bの合計容積は、第1シリンダ42における2つの作動室55a,55bの合計容積よりも大きい。第1シリンダ42の吐出側の作動室55bと、第2シリンダ44の吸入側の作動室56aとは、中板43に形成され
た貫通孔43aにより接続されており、一つの作動室(膨張室)として機能する。高圧の作動流体は、吸入管52および吸入経路54を経たのち、下軸受部材41に形成された吸入孔41aから第1シリンダ42の作動室55aに流入する。第1シリンダ42の作動室55aに流入した作動流体は、作動室55bと作動室56aからなる膨張室においてシャフト5を回転させながら膨張して低圧になり、吐出孔45aおよび吐出管53を経て外部に導かれる。
このように、膨張機構3は、シリンダ42,44と、シャフト5の偏心部5c,5dに嵌合するようにシリンダ42,44内に配置されたピストン46,47と、シリンダ42,44を閉塞しシリンダ42,44およびピストン46,47とともに膨張室を形成する軸受部材41,45(閉塞部材)を含むロータリ型である。ロータリ型の流体機構は、その構造上、シリンダ内の空間を2つに仕切るベーンの潤滑が不可欠となる。機構全体がオイルに浸かっている場合には、ベーンが配置されているベーン溝の後端を密閉容器1内に露出させるという極めて単純な方法により、ベーンを潤滑することができる。本実施形態においても、そのような方法でベーン48,49の潤滑を行っている。
その他の部分(例えば軸受部材41,45)への給油は、図5に示すように、例えば、第2シャフト5tの下端から膨張機構3のシリンダ42,44に向かって延びるように、第2シャフト5tの外周面に溝5kを形成することによって行うことができる。オイル貯まり25に貯められているオイルに懸かる圧力は、シリンダ42,44とピストン46,47とを潤滑中のオイルに懸かる圧力よりも大きい。したがって、オイルポンプの助けを借りなくても、オイルは、第2シャフト5tの外周面の溝5kを伝って膨張機構3の摺動部分に供給されうる。
<<オイルポンプ6>>
図3に示すように、オイルポンプ6は、シャフト5の回転に伴う作動室の容積の増減によりオイルを圧送するように構成された容積式ポンプである。オイルポンプ6に隣接して、連結器63を収容する中空の中継部材71が設けられている。オイルポンプ6および中継部材71の中央部を貫通するように、シャフト5が通されている。
図4にオイルポンプ6の平面図を示す。オイルポンプ6は、シャフト5(第2シャフト5t)の偏心部に取り付けられたピストン61と、ピストン61を収容するハウジング62(シリンダ)とを含む。ピストン61とハウジング62との間には、三日月状の作動室64が形成されている。すなわち、オイルポンプ6には、ロータリ型の流体機構が採用されている。ハウジング62には、オイル貯まり25(具体的には上槽25a)と作動室64とを接続するオイル吸入路62aと、作動室64と給油路29とを接続するオイル吐出路62bおよび中継通路62c(図3参照)とが形成されている。第2シャフト5tの回転に伴ってハウジング62内をピストン61が偏心回転運動する。これにより、作動室64の容積が増減し、オイルの吸入および吐出が行われる。このような機構は、第2シャフト5tの回転運動をカム機構等で他の運動に変換することなく、オイルを圧送する運動に直接利用するので、機械ロスが小さいという利点がある。また、比較的単純な構造によるので、信頼性も高い。
オイルポンプ6と中継部材71は、オイルポンプ6のハウジング62の上面と中継部材71の下面とが接するように、軸方向の上下に隣接して配置されている。ハウジング62の上面によって、中継部材71が閉じられている。さらに、中継部材71は、シャフト5(第1シャフト5s)を支持する軸受部76を有している。言い換えれば、中継部材71はシャフト5を支持する軸受の機能も有している。軸受部76の潤滑を行えるように、シャフト5の給油路29が、軸受部76に対応する区間で分岐している。なお、軸受部76に相当する部分を、支持フレーム75が有していてもよい。さらには、支持フレーム75
と中継部材71とが単一の部品からなっていてもよい。
第1シャフト5sと第2シャフト5tとが連結器63によって連結されており、この連結器63が中継部材71の内部空間70hに配置されている。第1シャフト5sと連結器63とは、例えば、第1シャフト5sの外周面に形成された溝と、連結器63の内周面に形成された溝とが係合することにより、同期回転するように連結される。第2シャフト5tと連結器63も、同様の方法で固定できる。連結器63は、中継部材71内において第1シャフト5sおよび第2シャフト5tと同期回転する。膨張機構3によって第2シャフト5tに与えられるトルクは、連結器63を介して第1シャフト5sに伝達される。
給油路29は、第1シャフト5sおよび第2シャフト5tにまたがって形成されている。シャフト5の連結部と、給油路29の入口29pと、オイルポンプ6の本体部分とが、圧縮機構2に近い側からこの順番で並んでいる。給油路29の入口29pは、第2シャフト5tの上端部とピストン61が嵌め合わされた部分(偏心部)との間における、第2シャフト5tの外周面に形成されている。中継通路62cは、第2シャフト5tを周方向に取り囲む環状の空間であり、この環状の空間に給油路29の入口29pが面している。
オイルポンプ6から吐出されたオイルは、オイル吐出路62bおよび中継通路62cを通じて給油路29に導かれる。中継部材71は、連結器63を収容するハウジングとしての役割、および、シャフト5の軸受としての役割を担う。ただし、中継部材71の内部空間70hは、オイルで満たされていてもよい。
<<断熱構造30>>
図1に示すように、断熱構造30は、膨張機構3の上軸受部材45(閉塞部材)とは別部材によって構成されている。これにより、オイルポンプ6から第2シリンダ44までの距離を十分に稼ぐことができ、より高い断熱効果を得ることが可能となる。
具体的に、断熱構造30は、上槽25aと下槽25bとを仕切る仕切板31と、仕切板31と膨張機構3との間に配置されたスペーサ32,33とを含む。スペーサ32,33は、仕切板31と膨張機構3との間に下槽25bのオイルで満たされる空間を形成する。スペーサ32,33によって確保された空間を満たすオイルは、それ自体が断熱材として働き、軸方向に温度成層を形成する。
仕切板31は、その上面が、オイルポンプ6のハウジング62の下面に接している。つまり、仕切板31の上面によってハウジング62内の作動室64が閉じられている。仕切板31には、シャフト5を通すための貫通孔が中央部に形成されている。仕切板31の構成材料は、炭素鋼、鋳鉄、合金鋼のような金属でありうる。仕切板31の厚さは特に限定されず、本実施形態のように、仕切板31の厚さが均一である必要もない。
仕切板31の形状は、密閉容器1の横断面形状(図2参照)に沿っていることが好ましい。本実施形態では、円形の外形を有する仕切板31が採用されている。仕切板31の大きさは、上槽25aと下槽25bとの間のオイルの流通を十分に制限できる大きさであればよい。具体的には、仕切板31の外径が、密閉容器1の内径と概ね一致するか、やや小さいくらいが適切である。
図1に示すように、密閉容器1の内面と仕切板31の外周面との間には隙間77が形成されている。隙間77の広さは、上槽25aと下槽25bとの間をオイルが流通できる必要最小限でよく、例えば、シャフト5の径方向の長さで、0.5mm〜1mmとすることができる。このようにすれば、上槽25aと下槽25bとの間のオイルの流通を必要最小限に留めることができる。
なお、このような隙間77は、仕切板31の全周囲に渡って形成されていてもよいし、そうでなくてもよい。例えば、仕切板31の外周部の1箇所または複数箇所に、隙間77としての切り欠きがあってもよい。さらに、隙間77の代わりに、または隙間77とともに、オイルの流通を許容する貫通孔(微孔)が仕切板31に形成されていてもよい。そのような貫通孔は、上下方向に直交する横方向に関して、オイルポンプ6のオイル吸入口62qおよび支持フレーム75の貫通孔75aから離れていること(上下方向で重なり合わないこと)が望ましい。そのような位置関係によれば、オイルポンプ6に高温のオイルが優先的に吸入され、高温のオイルが仕切板31の貫通孔を通じて下槽25bに移動しにくくなるからである。
スペーサ32,33は、シャフト5の周囲に配置された第1スペーサ32と、第1スペーサ32よりも径方向の外側に配置された第2スペーサ33とを含む。本実施形態において、第1スペーサ32は円筒状であり、第2シャフト5tを覆うカバーとして機能する。さらに、第1スペーサ32は、第2シャフト5tを支持する軸受として機能するものであってもよい。第2スペーサ33は、膨張機構3を支持フレーム75に固定するためのボルトやネジであってもよいし、そのようなボルトやネジを通す孔を有する部材であってもよいし、単に空間を確保するための部材であってもよい。さらに、これらのスペーサ32,33が仕切板31と一体化されていてもよい。言い換えれば、スペーサ32,33と仕切板31とが溶接やロウ付けされていてもよいし、一体成形された部材であってもよい。
なお、第2シャフト5tの仕切板31よりも上の部分は、オイルポンプ6を通り、中継部材71内に突出しているので、高温となる。したがって、第2シャフト5tが断熱構造30によって形成された空間に露出し、下槽25bのオイルに接触している場合には、第2シャフト5tを介して上槽25aから下槽25bへの熱移動が起こりやすくなる。本実施形態のように、第1スペーサ32によって第2シャフト5tを覆えば、断熱構造30によって形成された空間を満たすオイルが、第2シャフト5tに直接触れて加熱されることを防止できる。つまり、第1スペーサ32により、第2シャフト5tを介した熱移動を抑制できる。併せて、第2シャフト5tによって下槽25bに貯められたオイルが撹拌されることも防止できる。
第2シャフト5tを介した熱移動を抑制する効果は、第1スペーサ32の熱伝導率が、仕切板31や第2シャフト5tの熱伝導率よりも小さい場合に一層高くなる。例えば、仕切板31や第2シャフト5tを鋳鉄製とし、第1スペーサ32をSUS304のようなステンレス製とすることができる。同様の理由から、第2スペーサ33も熱伝導率の小さい金属製であることが望ましい。もちろん、仕切板31および第2シャフト5tが、熱伝導率の小さいステンレスで構成されていてもよい。なお、熱伝導率の大小は、膨張機一体型圧縮機200Aの動作時におけるオイルの通常の温度域(例えば0℃〜100℃)での大小をいうものとする。
<<給油路29>>
給油路29は、本来的には給油を行うためのものであるが、本発明では給油路29自身にも熱移動を抑制する機能を持たせている。具体的には、図1および図3に示すように、給油路29の下端29eがシャフト5の外周面に形成された入口29pよりも下方に位置している。給油路29は、下端29eで行き止まりになっているので、入口29pよりも下側の部分にオイルが滞留する。オイルの熱伝導率はシャフト5の熱伝導率よりも低いので、オイルが滞留することによって断熱効果が得られる。
給油路29の径は特に限定されないが、シャフト5の強度を十分に確保できる範囲内であれば、ある程度太くしても問題ない。そのようにすれば、オイルが滞留しやすくなり、
断熱効果が高まる。例えば、給油路29の半径がシャフト5(5t)の径方向の肉厚よりも大きくなるように給油路29が形成されていてもよい。また、給油路29の入口29pは1つに限定されず、シャフト5の周方向の複数箇所に入口29pがあってもよい。入口29pが複数あると、給油路29に流入するオイルの流速が落ちるので、入口29pよりも下の部分にオイルを安定して滞留させやすくなる。
本実施形態において、給油路29の入口29pは、オイルポンプ6の本体部よりも上方に位置し、給油路29が軸方向に関してオイルポンプ6の本体部と重なっている部分を含む。オイルポンプ6の本体部とは、ピストン61および作動室64がある部分をいう。先に説明したように、オイルポンプ6には比較的高温のオイルが吸入され、そのオイルが給油路29に導かれる。したがって、膨張機一体型圧縮機200Aの動作時において、オイルポンプ6自身も比較的高温となる。給油路29の入口29pがオイルポンプ6の本体部よりも上にあり、尚かつオイルの滞留する部分がオイルポンプ6と軸方向で重なっていると、オイルポンプ6からシャフト5(5t)への伝熱を抑制することができる。具体的に、本実施形態では、仕切板31が設けられている高さに下端29eが位置するように給油路29が形成されている。
なお、給油路29は、通常、ドリルを用いた掘削加工によってシャフト5の内部に形成される。加工上の要請から、給油路29の下端29eは、入口29pよりも必ず2〜3mm程度下方に位置することになる。加工上の要請から生ずるこのような微差では、オイルを滞留させることができないので、給油路29の下端29eが入口29pよりも下方に位置することにならない。オイルを滞留させて断熱効果を得るには、例えば、入口29pよりも下方の部分が10mm程度確保されるとよい。
また、図6に示すように、給油路29は、軸方向に関して断熱構造30と重なっている部分を含んでいてもよい。このようにすれば、オイルポンプ6からシャフト5(5t)への伝熱を抑制する効果がいっそう高まる。具体的には、軸方向に関して給油路29の下端29eがスペーサ32,33と重なっているとよい。
一方、図7に示すように、本実施形態の膨張機構3は、シャフト5(5t)を支持する上軸受部材45を圧縮機構2側に有する。そのため、給油路29の下端29eは、その上軸受部材45よりも上方に位置していることが望ましい。つまり、給油路29を上軸受部材45よりも上で留めておく。このようにすれば、上軸受部材45によって支持される部分が中空になるのを回避でき、シャフト5(5t)の強度確保およびシャフト5(5t)の撓み抑制の観点で好ましい。
また、図8に示すように、給油路29には、入口29pよりも下方にオイルの流動を抑制するトラップ80が設けられていてもよい。トラップ80が設けられていると、オイルが滞留しやすくなる。トラップ80は、給油路29の下端29eに接して設けられていてもよいし、離れて設けられていてもよい。図8に示す例では、入口29pと下端29eとの間にトラップ80が設けられている。トラップ80はオイルを滞留させる作用を高めるものであればよく、その形態は特に限定されない。例えば、金属製または樹脂製のメッシュをトラップ80として用いることができる。なお、給油路29は、トラップ80が着座して位置決めされるように、トラップ80よりも下の部分29sが縮径されているとよい。
また、図9に示すように、給油路29の下端29eよりも膨張機構3側において、シャフト5(5t)の内部に断熱材料82が充填されていてもよい。この場合、断熱材料82の上端が給油路29の下端29eに一致することとなる。断熱材料82を充填することにより、シャフト5(5t)の熱抵抗が増し、シャフト5(5t)を伝熱経路とする熱移動
がいっそう起こりにくくなる。このような断熱材料82は、例えば樹脂、セラミック、ガラスなど、シャフト5を構成する金属よりも熱伝導率が低い材料からなっているとよい。断熱材料82は、図8を参照して説明したトラップ80に代えて、またはトラップ80とともに給油路29の内部に設けられるものであってもよい。
(第2実施形態)
図10は、本発明の第2実施形態にかかる膨張機一体型圧縮機の縦断面図である。図11は、図10の部分拡大図である。なお、図10に示す膨張機一体型圧縮機のIIA−IIA横断面図は図2Aと同じであり、IIB−IIB横断面図は図2Bと同じである。
第2実施形態の膨張機一体型圧縮機200Bは、第1実施形態の膨張機一体型圧縮機200Aと比べ、オイルポンプ6自体の構成およびその周囲の構成が異なっている。なお、第2実施形態の膨張機一体型圧縮機200Bのその他の構成は、第1実施形態の膨張機一体型圧縮機200Aと基本的に同じであるため、これらの部分には第1実施形態と同一符号を付してその説明は省略する。また、第2実施形態では、第1実施形態の仕切板31を仕切部材31という。
本実施形態では、上槽25aと下槽25bとを隔てるとともにこれらの間のオイルの流通を制限する仕切部材31は、密閉容器1の内部空間24の横断面よりも一回り小さな円盤状をなしており、仕切部材31の端面と密閉容器1の内周面との間に形成された隙間31a(図3参照)を通じてオイルの流通が僅かに許容されている。また、仕切部材31の中央部には、シャフト5を通すための貫通孔31b(図11参照)が設けられている。貫通孔31bの直径は、本実施形態ではシャフト5の直径よりも一回り大きく設定されているが、シャフト5の直径と同程度に設定されていてもよい。
なお、仕切部材31としては、上槽25aと下槽25bとを隔てるとともにこれらの間のオイルの流通を制限するものであればよく、その形状および構成は適宜選定可能である。例えば、仕切部材31の直径が密閉容器1の内径と一致していて、仕切部材31にオイルの流通を許容する貫通孔または端面からの切り込みが設けられていてもよい。あるいは、仕切部材31が複数の部品によって中空状(例えば、リール状)に形成されていて、その中にオイルが一旦保持されるようになっていてもよい。
本実施形態では、シャフト5におけるオイルポンプ6よりも僅かに上方の位置に、給油路29にオイルを導入する入口(導入口)29p(図11参照)が設けられている。そして、給油路29には、オイルポンプ6から上方に吐出されたオイルが後述する導入路74および入口29pを通じて送り込まれる。給油路29に送られたオイルは、膨張機構3を経由することなく、圧縮機構2の各摺動部分に供給される。このようにすれば、圧縮機構2に向かうオイルが膨張機構3で冷却されることがないので、オイルを介した圧縮機構2から膨張機構3への熱移動を効果的に抑制することができる。また、シャフト5の内部に給油路29を形成すれば、部品点数の増加やレイアウトの問題が新たに生じないので好適である。なお、給油路29の下端29eは、第1実施形態と同様に、シャフト5の外周面に形成された入口29pよりも下方に位置している。この給油路29における入口29pから下側部分の構成としては、第1実施形態で図3および図6〜図9を参照して説明した構成のいずれも採用可能である。
図11に示すように、オイルポンプ6は、シャフト5の回転に伴う作動室の容積の増減によりオイルを圧送するように構成された容積式ポンプである。オイルポンプ6の上側にはその中央部をシャフト5に貫通された導入部材73および中継部材71が順に配置されていて、オイルポンプ6はこれらの部材73,71を介して支持フレーム75に固定されている。
中継部材71は、連結器63を収容する内部空間70hと、シャフト5(第1シャフト5s)を支持する軸受部76とを有している。言い換えれば、中継部材71は、連結器63のハウジングとしての役割とシャフト5の軸受としての役割を担う。なお、軸受部76に相当する部分を、支持フレーム75が有していてもよい。さらには、支持フレーム75と中継部材71とが単一の部品からなっていてもよい。導入部材73は、上下方向に扁平な板状の形状をなしている。
図12にオイルポンプ6の平面図を示す。シャフト5(第2シャフト5t)には、オイルポンプ6に対応する位置に、偏心部5eが設けられている。オイルポンプ6は、シャフト5の偏心部5eに嵌合して偏心運動するピストン61と、このピストン61を収容するハウジング62(シリンダ)とを有している。ピストン61とハウジング62との間には、三日月状の作動室64が形成されている。すなわち、オイルポンプ6には、ロータリ型の流体機構が採用されている。なお、本実施形態では、図12に示すようにピストン61が自転不能な構造のオイルポンプ6となっているが、オイルポンプ6としては容積式ポンプであればよく、スライドベーンを有しピストン61が自転可能とされた他のロータリ型のものや、トロコイドポンプのようなギア型のものであってもよい。
ハウジング62には、オイル貯まり25の上槽25aと作動室64とを接続する吸入路62aと、作動室64からオイルを逃がす吐出路62bとが形成されている。吸入路62aは、ハウジング62の上面に沿って直線上に延びており、吐出路62bは、ハウジング62の内周面から径方向外側に後退する溝状をなしている。そして、吸入路62aの外側の開口によって吸入口62qが構成され、吐出路62bの上側の開口によって吐出口が構成されている。なお、吐出路62bの下側の開口は、仕切部材31で閉じられている。第2シャフト5tの回転に伴ってハウジング62内をピストン61が偏心運動すると、これにより作動室64の容積が増減し、吸入口62qからのオイルの吸入および吐出口からの上方へのオイルの吐出が行われる。このような機構は、第2シャフト5tの回転運動をカム機構等で他の運動に変換することなく、オイルを圧送する運動に直接利用するので、機械ロスが小さいという利点がある。また、比較的単純な構造によるので、信頼性も高い。
図11に示すように、導入部材73は、当該導入部材73の下面がハウジング62の上面に接するようにハウジング62に隣接して配置されており、仕切部材31は、当該仕切部材31の上面がハウジング62の下面に接するようにハウジング62に隣接して配置されている。このため、作動室64が上方から導入部材73に閉塞されるとともに下方から仕切部材31に閉塞されており、ピストン61が仕切部材31上を摺動するようになっている。すなわち、導入部材73および仕切部材31は作動室64を閉塞する閉塞部材を兼ねている。なお、ハウジング62は、仕切部材31と一体になっていてもよい。また、オイルポンプ6と仕切部材31との間に、ハウジング62に隣接して作動室64を下方から閉塞する閉塞部材を別途配置してもよい。この場合、閉塞部材を例えばハウジング62と同程度の大きさとしてもよい。
導入部材73には、オイルポンプ6の吐出口と給油路29の入口29pを連通する導入路74が設けられている。具体的には、導入部材73の下面には、シャフト5に臨む周回部分が上方に窪まされた円形環状の段差部73aと、この段差部73aからオイルポンプ6の吐出口に対応する位置までシャフト5の径方向外側に延びる溝部73bとが設けられており、この段差部73aおよび溝部73bによって導入路74が構成されている。そして、給油路29の入口29pは、シャフト5における段差部73aでつくられる空間に面する部分に設けられていて、当該空間に横向きに開口している。オイルポンプ6の吐出口から上方に吐出されたオイルは、溝部73b内を通って段差部73a内に送り込まれ、ここからシャフト5と共に回転する入口29pを通じて給油路29に導入される。段差部7
3aの外径は、偏心運動するピストン61によって描かれる軌跡円のうちの最小の直径よりも小さく設定されている。このため、段差部73a内の空間は下方からピストン61およびシャフト5の段差部5eで塞がれ、導入路74がピストン61の上面に常に面するようになっている。なお、段差部73aは円形環状である必要はなく、その形状は適宜選定可能である。また、入口29pの数量も1つである必要はなく、段差部73aの形状に応じて複数としてもよい。
さらに、本実施形態では、シャフト5の偏心部5eの厚みがピストン61よりも薄く設定されているとともに、偏心部5eがピストン61内で下側に寄った位置に配置されている。
以上説明したように、本実施形態の膨張機一体型圧縮機200Bでは、給油路29の下端29eが入口29pよりも下方に位置しているので、第1実施形態と同様に、入口29pよりも下側にオイルが対流することによって断熱効果が得られる。
さらに、本実施形態では、オイル貯まり25に貯められたオイルがオイルポンプ6から上方に吐出された後にオイルポンプ6の上側にある導入路74および入口29pを通ってシャフト5内の給油路29に導入されるようになっているので、オイルポンプ6から吐出されたオイルが膨張機構3に近づくことなく圧縮機構2に供給されるようになる。このため、オイルポンプ6から吐出されたオイルから膨張機構3に熱がいっそう伝わり難くなり、オイルを介した熱移動を抑制する効果がさらに高められる。
また、本実施形態では、仕切部材31が配置されていてその上方にオイルポンプ6の吸入口62qが位置しているので、圧縮機構2を潤滑するオイルの潤滑経路が仕切部材31の上側で形成されるようになり、オイルポンプ6に吸入されるオイルからも膨張機構3に熱が伝わり難くなる。
さらには、オイルポンプ6のピストン61は仕切部材31上を摺動し、導入路74はピストン6の上面に面しているので、導入路74を流れるオイルによってピストン61が仕切部材31に押し付けられる。このため、ピストン61の下面61aと仕切部材31の上面との間のシール性が向上し、この間から高温のオイルが仕切部材31の下方に(より詳しくは、仕切部材31の貫通孔31bを通じて)漏れることを防止することができる。なお、この効果は、内歯がシャフト5に沿って移動可能なギア型のオイルポンプを用いた場合でも同様に得ることができる。
また、シャフト5の偏心部5eがピストン62内の下側に寄った位置にあるので、入口29pの直前のバッファ空間を大きく確保することができ、給油路29へのオイルの供給を安定して行うことができる。
ここで、ピストン61の下面61aには、摺動性を向上させるための処理が施されていることが好ましい。本実施形態によれば、ピストン61の下面61aが仕切部材31の上面に押し付けられるので、ピストン61をスムーズに移動させるためである。例えば、ピストン61の下面61aを、DLC(ダイヤモンドライクカーボン)膜や窒化物でコーティングしたり、下面61aにショットピーニングして微細な凹凸を形成したりすることが考えられる。あるいは、図13Aに示すように、ピストン61の下面61aに複数の環状の溝61bを同心円を描くように形成し、この溝61bにオイルを保持させるようにしてもよいし、図13Bに示すように、ピストン61の下面61aを径方向外側に向って上向きに僅かに傾斜させて、ピストン61が移動することによって下面61aと仕切部材31の上面との間にオイルが自動的に噛み込まされるようにしてもよい。
または、摺動性を向上させるための処理(例えば、コーティングやピーニング)を、ピストン61の下面61aが摺動する仕切部材31の上面(ハウジング62で囲まれる部分)のみに施してもよいし、あるいはピストン61の下面61aと仕切部材31の上面の双方に施してもよい。
なお、本実施形態では、ハウジング62に吐出路62bが設けられたオイルポンプ6を用いているが、吐出路62bは省略することも可能である。この場合には、作動室64のうち導入部材73の溝部73b内に開放される部分、換言すれば平面視で溝部73bと作動室64とが重なり合う領域がオイルポンプ6の吐出口となる。
また、第2実施形態では、給油路29の下端29eが入口29pよりも下方に位置しているが、給油路29の下端29eが入口29pと同じ高さ位置に位置していても、オイルを介した圧縮機構から膨張機構への熱移動を抑制する効果は得られる。
すなわち、第2実施形態の構成では、圧縮機構と膨張機構との間にオイルポンプが配置され、このオイルポンプから吐出されたオイルがシャフト内の給油路を通って圧縮機構に供給されるようになっているので、オイルポンプに吸入されたオイルは、下部の膨張機構を経由することなく上部の圧縮機構へと供給され、その後、オイル貯まりに戻る。このように、圧縮機構と膨張機構との間にオイルポンプを配置し、そのオイルポンプを用いて圧縮機構への給油を行うことにより、圧縮機構を潤滑するオイルの循環経路を膨張機構から遠ざけることができる。言い換えれば、圧縮機構を潤滑するオイルの循環経路上に膨張機構が位置しないようにすることができる。これにより、オイルを介した圧縮機構から膨張機構への熱移動が抑制される。
さらに第2実施形態の構成では、オイル貯まりに貯められたオイルがオイルポンプから上方に吐出された後にオイルポンプの上側にある導入路および入口を通ってシャフト内の給油路に導入されるようになっているので、オイルポンプから吐出されたオイルが膨張機構に近づくことなく圧縮機構に供給されるようになる。このため、オイルポンプから吐出されたオイルから膨張機構に熱がいっそう伝わり難くなり、オイルを介した熱移動を抑制する効果がさらに高められる。
本発明の膨張機一体型圧縮機は、例えば、空気調和装置、給湯装置、乾燥機または冷凍冷蔵庫のための冷凍サイクル装置(ヒートポンプ)に好適に採用できる。図14に示すように、冷凍サイクル装置110は、膨張機一体型圧縮機200A(または200B)と、圧縮機構2で圧縮された冷媒を放熱させる放熱器112と、膨張機構3で膨張した冷媒を蒸発させる蒸発器114とを備えている。圧縮機構2、放熱器112、膨張機構3および蒸発器114が配管によって接続され、冷媒回路が形成されている。
例えば、冷凍サイクル装置110が空気調和装置に適用される場合、圧縮機構2から膨張機構3への熱移動を抑制することにより、暖房運転時における圧縮機構2の吐出温度の低下による暖房能力の低下、冷房運転時における膨張機構3の吐出温度の上昇による冷房能力の低下を防ぐことができる。結果として、空気調和装置の成績係数が向上する。

Claims (7)

  1. 底部がオイル貯まりとして利用されるとともに、圧縮後の高圧の作動流体で内部空間が満たされる密閉容器と、
    前記密閉容器内の上部に配置され、作動流体を圧縮して前記密閉容器の内部空間へと吐出する圧縮機構と、
    前記オイル貯まりに貯められたオイルで周囲が満たされるように前記密閉容器の下部に配置され、膨張する作動流体から動力を回収する膨張機構と、
    前記膨張機構で回収した動力が前記圧縮機構に伝達されるように前記圧縮機構と前記膨張機構とを連結するシャフトと、
    前記シャフトの軸方向における前記圧縮機構と前記膨張機構との間に配置され、前記オイル貯まりに貯められたオイルを吸入口から吸入して吐出口から上方に吐出することで前記圧縮機構に供給するオイルポンプと、
    前記オイルポンプから吐出されたオイルを前記圧縮機構に供給しうるように前記シャフトの内部に形成され、前記シャフトの外周面に形成された入口が前記オイルポンプよりも上方にある給油路と、
    前記オイルポンプよりも上側で前記オイルポンプの吐出口と前記給油路の入口とを連通する導入路と、
    を備え、
    前記シャフトは、前記オイルポンプに対応する位置に偏心部を有しており、
    前記オイルポンプは、前記シャフトの偏心部に嵌合して偏心運動するピストンと、このピストンを収容するハウジングとを有しており、
    前記導入路は、前記ピストンの上面に面しており、
    前記ピストンが表面上を摺動するように前記オイルポンプの下側に前記ハウジングに隣接して配置された閉塞部材をさらに備えた、膨張機一体型圧縮機。
  2. 前記シャフトの偏心部は、厚みが前記ピストンよりも薄く設定されていて、前記ピストン内の下側に寄った位置にある、請求項に記載の膨張機一体型圧縮機。
  3. 前記ピストンの下面とこの下面が摺動する前記閉塞部材の上面のうち少なくとも一方には、摺動性を向上させるための処理が施されている、請求項に記載の膨張機一体型圧縮機。
  4. 前記オイルポンプの上側には、前記シャフトに貫通された導入部材が前記ハウジングに隣接して配置されており、前記導入路は、前記導入部材に設けられている、請求項に記載の膨張機一体型圧縮機。
  5. 前記導入部材の下面には、前記シャフトに臨む周回部分が上方に窪まされた環状の段差部とこの段差部から前記シャフトの径方向外側に延びる溝部とが設けられており、前記導入路は、前記段差部および前記溝部によって構成されており、前記給油路の入口は、前記段差部によってつくられる空間に開口している、請求項に記載の膨張機一体型圧縮機。
  6. 前記閉塞部材は、前記オイルポンプと前記膨張機構との間に配置され、前記オイル貯まりを前記オイルポンプの吸入口が位置する上槽と前記膨張機構が位置する下槽とに隔てるとともにこれらの間のオイルの流通を制限する仕切部材である、請求項に記載の膨張機一体型圧縮機。
  7. 請求項1に記載の膨張機一体型圧縮機を含む、冷凍サイクル装置。
JP2009277610A 2007-11-21 2009-12-07 膨張機一体型圧縮機 Expired - Fee Related JP5078975B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277610A JP5078975B2 (ja) 2007-11-21 2009-12-07 膨張機一体型圧縮機

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007301434 2007-11-21
JP2007301436 2007-11-21
JP2007301436 2007-11-21
JP2007301434 2007-11-21
JP2009277610A JP5078975B2 (ja) 2007-11-21 2009-12-07 膨張機一体型圧縮機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009541660A Division JP4423348B2 (ja) 2007-11-21 2008-10-23 膨張機一体型圧縮機

Publications (2)

Publication Number Publication Date
JP2010053871A JP2010053871A (ja) 2010-03-11
JP5078975B2 true JP5078975B2 (ja) 2012-11-21

Family

ID=40667248

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009541660A Expired - Fee Related JP4423348B2 (ja) 2007-11-21 2008-10-23 膨張機一体型圧縮機
JP2009277610A Expired - Fee Related JP5078975B2 (ja) 2007-11-21 2009-12-07 膨張機一体型圧縮機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009541660A Expired - Fee Related JP4423348B2 (ja) 2007-11-21 2008-10-23 膨張機一体型圧縮機

Country Status (5)

Country Link
US (1) US8182251B2 (ja)
EP (1) EP2224093A4 (ja)
JP (2) JP4423348B2 (ja)
CN (1) CN101855422B (ja)
WO (1) WO2009066413A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000854A1 (ja) * 2005-06-29 2007-01-04 Matsushita Electric Industrial Co., Ltd. 流体機械及び冷凍サイクル装置
US8186179B2 (en) * 2006-05-17 2012-05-29 Panasonic Corporation Expander-compressor unit
EP2128384B1 (en) * 2007-01-15 2011-12-14 Panasonic Corporation Expander-integrated compressor
JP5103952B2 (ja) * 2007-03-08 2012-12-19 ダイキン工業株式会社 冷凍装置
EP2224094A4 (en) * 2007-11-21 2012-08-29 Panasonic Corp COMPRESSOR WITH INTEGRATED REGULATOR
US8192185B2 (en) * 2007-11-21 2012-06-05 Panasonic Corporation Expander-compressor unit
WO2009096167A1 (ja) * 2008-01-29 2009-08-06 Panasonic Corporation 膨張機一体型圧縮機およびそれを用いた冷凍サイクル装置
CN101779039B (zh) * 2008-05-23 2013-01-16 松下电器产业株式会社 流体机械及制冷循环装置
JP2010249130A (ja) * 2009-03-27 2010-11-04 Sanden Corp 流体機械
JP2012062763A (ja) * 2010-09-14 2012-03-29 Taiho Kogyo Co Ltd ロータリ型圧縮機
JP5984492B2 (ja) * 2012-05-08 2016-09-06 サンデンホールディングス株式会社 流体機械
JP5655850B2 (ja) 2012-12-28 2015-01-21 ダイキン工業株式会社 スクロール型圧縮機
JP6225045B2 (ja) * 2014-02-21 2017-11-01 大豊工業株式会社 ロータおよびロータリー型流体機械
DE102014204946A1 (de) * 2014-03-18 2015-09-24 Mahle International Gmbh Pumpenanordnung
CN105351009B (zh) * 2015-09-28 2017-12-15 南京航空航天大学 锥形压缩膨胀一体机及方法
JP6237942B1 (ja) * 2017-01-30 2017-11-29 富士通株式会社 液浸冷却装置
KR102338126B1 (ko) * 2017-04-12 2021-12-10 엘지전자 주식회사 스크롤 압축기
CN113646533B (zh) * 2019-03-26 2023-10-10 东芝开利株式会社 密闭型压缩机及制冷循环装置
KR102191131B1 (ko) * 2019-05-20 2020-12-17 엘지전자 주식회사 전동식 압축 팽창기 및 이를 포함하는 공기 조화 시스템

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848702A (en) * 1972-10-02 1974-11-19 Copeland Corp Lubricating system for vertical machine elements
US4846640A (en) * 1986-09-24 1989-07-11 Mitsubishi Denki Kabushiki Kaisha Scroll-type vacuum apparatus with rotating scrolls and discharge valve
JP2782858B2 (ja) * 1989-10-31 1998-08-06 松下電器産業株式会社 スクロール気体圧縮機
US5214932A (en) * 1991-01-25 1993-06-01 Abdelmalek Fawzy T Hermetically sealed electric driven gas compressor - expander for refrigeration
JP2895320B2 (ja) * 1992-06-12 1999-05-24 三菱重工業株式会社 横型密閉圧縮機
JPH0828461A (ja) 1994-07-11 1996-01-30 Toshiba Corp スクロール膨張機
JPH0882296A (ja) 1994-07-11 1996-03-26 Toshiba Corp ローリングピストン式膨張機
JPH0886289A (ja) * 1994-09-19 1996-04-02 Toshiba Corp ローリングピストン式回転機械
MY126636A (en) * 1994-10-24 2006-10-31 Hitachi Ltd Scroll compressor
JPH08338356A (ja) 1995-06-13 1996-12-24 Toshiba Corp ローリングピストン式膨張機
JPH0953590A (ja) * 1995-08-14 1997-02-25 Toshiba Corp ローリングピストン式膨張機
JPH09126171A (ja) 1995-11-01 1997-05-13 Toshiba Corp 流体機械
JP3864452B2 (ja) 1996-06-07 2006-12-27 松下電器産業株式会社 密閉型電動圧縮機
JPH10266980A (ja) * 1997-03-27 1998-10-06 Toshiba Corp スクロール式膨張機
US6098753A (en) * 1998-06-05 2000-08-08 Pratt & Whitney Canada Corp. System for delivering pressurized lubricant fluids to an interior of a rotating hollow shaft
JP2003139059A (ja) 2001-10-31 2003-05-14 Daikin Ind Ltd 流体機械
JP3674625B2 (ja) * 2003-09-08 2005-07-20 ダイキン工業株式会社 ロータリ式膨張機及び流体機械
JP4561326B2 (ja) 2004-03-17 2010-10-13 ダイキン工業株式会社 流体機械
JP2005265278A (ja) * 2004-03-18 2005-09-29 Daikin Ind Ltd 冷凍装置
JP4696530B2 (ja) * 2004-11-04 2011-06-08 ダイキン工業株式会社 流体機械
US20060204378A1 (en) * 2005-03-08 2006-09-14 Anderson Gary J Dual horizontal scroll machine
JP4617964B2 (ja) 2005-03-31 2011-01-26 ダイキン工業株式会社 流体機械
WO2007000854A1 (ja) 2005-06-29 2007-01-04 Matsushita Electric Industrial Co., Ltd. 流体機械及び冷凍サイクル装置
WO2007032337A1 (ja) * 2005-09-12 2007-03-22 Matsushita Electric Industrial Co., Ltd. ロータリ型流体機械および冷凍サイクル装置
EP1953337A4 (en) * 2005-10-31 2011-03-30 Panasonic Corp EXPANDER AND HEAT PUMP USING THE SAME
KR100751152B1 (ko) * 2005-11-30 2007-08-22 엘지전자 주식회사 스크롤 압축기의 오일 공급 구조
US8186179B2 (en) 2006-05-17 2012-05-29 Panasonic Corporation Expander-compressor unit
JP4742985B2 (ja) * 2006-05-24 2011-08-10 パナソニック株式会社 膨張機一体型圧縮機および冷凍サイクル装置
JP2008008165A (ja) * 2006-06-28 2008-01-17 Matsushita Electric Ind Co Ltd 圧縮機
EP2128384B1 (en) * 2007-01-15 2011-12-14 Panasonic Corporation Expander-integrated compressor
JP4837049B2 (ja) * 2007-01-18 2011-12-14 パナソニック株式会社 流体機械および冷凍サイクル装置
KR100869929B1 (ko) * 2007-02-23 2008-11-24 엘지전자 주식회사 스크롤 압축기
JP2008215212A (ja) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd 膨張機一体型圧縮機および冷凍サイクル装置
JP4989269B2 (ja) * 2007-03-26 2012-08-01 パナソニック株式会社 流体機械および冷凍サイクル装置
JP4969646B2 (ja) * 2007-05-16 2012-07-04 パナソニック株式会社 流体機械及びそれを備えた冷凍サイクル装置
WO2008139667A1 (ja) * 2007-05-16 2008-11-20 Panasonic Corporation 冷凍サイクル装置及びそれに用いる流体機械
WO2008142822A1 (ja) * 2007-05-16 2008-11-27 Panasonic Corporation 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
EP2224094A4 (en) 2007-11-21 2012-08-29 Panasonic Corp COMPRESSOR WITH INTEGRATED REGULATOR
US8192185B2 (en) 2007-11-21 2012-06-05 Panasonic Corporation Expander-compressor unit
WO2009136488A1 (ja) * 2008-05-08 2009-11-12 パナソニック株式会社 流体機械
CN101779039B (zh) * 2008-05-23 2013-01-16 松下电器产业株式会社 流体机械及制冷循环装置
EP2202384A4 (en) * 2008-05-23 2013-12-11 Panasonic Corp FLUID MACHINE AND REFRIGERATION CYCLE DEVICE
WO2010021137A1 (ja) * 2008-08-22 2010-02-25 パナソニック株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN101855422B (zh) 2012-05-30
US20100263404A1 (en) 2010-10-21
JP4423348B2 (ja) 2010-03-03
JPWO2009066413A1 (ja) 2011-03-31
EP2224093A1 (en) 2010-09-01
JP2010053871A (ja) 2010-03-11
US8182251B2 (en) 2012-05-22
EP2224093A4 (en) 2012-08-29
CN101855422A (zh) 2010-10-06
WO2009066413A1 (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5078975B2 (ja) 膨張機一体型圧縮機
JP4422208B2 (ja) 膨張機一体型圧縮機
JP4805984B2 (ja) 膨張機一体型圧縮機
US8186179B2 (en) Expander-compressor unit
EP2034131B1 (en) Expander and expander-compressor unit
JPWO2008139667A1 (ja) 冷凍サイクル装置及びそれに用いる流体機械
US8104307B2 (en) Expander-integrated compressor and refrigeration-cycle apparatus with the same
US8245531B2 (en) Fluid machine and refrigeration cycle apparatus having the same
JP4422209B2 (ja) 膨張機一体型圧縮機
JP4777217B2 (ja) 冷凍サイクル装置
JP4380734B2 (ja) ロータリ圧縮機
JP4989269B2 (ja) 流体機械および冷凍サイクル装置
JP2008038915A (ja) 膨張機一体型圧縮機
JP2008215212A (ja) 膨張機一体型圧縮機および冷凍サイクル装置
JP2009019591A (ja) 膨張機一体型圧縮機および冷凍サイクル装置
JP5191405B2 (ja) 膨張機一体型圧縮機および冷凍サイクル装置
JP2009127464A (ja) 容積型膨張機、膨張機一体型圧縮機および冷凍サイクル装置
JP6969918B2 (ja) 密閉型スクロール圧縮機
JP2012211569A (ja) ロータリ圧縮機
JP2009162123A (ja) 冷凍サイクル装置及びそれに用いる流体機械
JP2008082192A (ja) 回転式圧縮機
JP2007032293A (ja) スクロール圧縮機
JP2606388C (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees