JP5019616B2 - 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置 - Google Patents

多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置 Download PDF

Info

Publication number
JP5019616B2
JP5019616B2 JP2008056093A JP2008056093A JP5019616B2 JP 5019616 B2 JP5019616 B2 JP 5019616B2 JP 2008056093 A JP2008056093 A JP 2008056093A JP 2008056093 A JP2008056093 A JP 2008056093A JP 5019616 B2 JP5019616 B2 JP 5019616B2
Authority
JP
Japan
Prior art keywords
fiber
rotation
distortion
core
reference position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008056093A
Other languages
English (en)
Other versions
JP2009210502A (ja
Inventor
純一 風間
裕之 瀬川
明夫 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008056093A priority Critical patent/JP5019616B2/ja
Publication of JP2009210502A publication Critical patent/JP2009210502A/ja
Application granted granted Critical
Publication of JP5019616B2 publication Critical patent/JP5019616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置に関するものである。
従来、光ファイバは、光通信システムにおける光伝送路を始めとして種々の産業分野で使用され、多種多様の光ファイバが提供されている。このような光ファイバの一つとして、光軸に垂直な断面におけるクラッドの外形が多角形、例えば、六角形からなる六角形ファイバが提案されている(例えば、特許文献1参照)。
特開2005−289766号公報
ところで、一般に、光ファイバは、他の光学素子や光学部品と接続し、或いは組み合わせて使用することによって光学装置として組み立てられ、他の光ファイバと融着接続する場合がある。このような場合、多角形ファイバが、例えば、コア形状が楕円形の偏波面保存ファイバであると、接続相手の光ファイバと偏光軸を合わせるために光軸廻りの回転方向における基準位置を定める必要があるが、その方法が確立されていないことから多角形ファイバの用途が制限されてしまうという問題があった。
本発明は、上記に鑑みてなされたものであって、多角形ファイバの光軸廻りの回転方向における基準位置を決定する多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の多角形ファイバの回転基準位置決定方法は、光軸に垂直な断面におけるクラッドの外形が多角形であり、側方から照明される多角形ファイバを前記光軸廻りに順次回転させながら回転位置ごとに撮像する撮像工程と、撮像した前記多角形ファイバの画像を処理し、前記光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める画像処理工程と、前記画像処理工程において求めた光強度分布をもとに当該光強度分布の明部の中心とクラッド外径の中心との差であるディストーションを回転位置ごとに演算するディストーション演算工程と、を含み、前記ディストーションをもとに前記光軸廻りの回転における回転基準位置を決定することを特徴とする。
また、本発明の多角形ファイバの回転基準位置決定方法は、上記の発明において、更に、前記多角形ファイバが、前記クラッドの中央にコアを有する場合、前記画像処理工程において求めた光強度分布をもとに当該光強度分布の明部におけるコア係数を回転位置ごとに演算するコア係数演算工程を含み、前記ディストーションと前記コア係数とをもとに前記光軸廻りの回転における回転基準位置を決定することを特徴とする。
また、本発明の多角形ファイバの回転基準位置決定方法は、上記の発明において、前記多角形ファイバは、光軸に垂直な断面におけるクラッドの外形が六角形であり、コアの断面形状が楕円であることを特徴とする。
また、本発明の多角形ファイバの回転基準位置決定方法は、上記の発明において、前記ディストーションがゼロであり、かつ、前記コア係数の値が他の回転領域に比べて大きい回転領域における回転位置を回転基準位置とすることを特徴とする。
また、上述した課題を解決し、目的を達成するために、本発明の光ファイバ融着接続装置は、対向配置された光ファイバ相互を先端部分で融着接続する融着接続装置において、側方から照明される多角形ファイバを前記光軸廻りに順次回転させながら回転位置ごとに撮像する撮像手段と、撮像した前記多角形ファイバの画像を処理し、前記光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める画像処理手段と、前記画像処理手段が求めた光強度分布をもとに当該光強度分布における明部の中心とクラッド外径の中心との差であるディストーションを回転位置ごとに演算するディストーション演算手段と、を備え、前記ディストーションをもとに前記多角形ファイバの光軸廻りの回転における回転基準位置を決定することを特徴とする。
また、本発明の光ファイバ融着接続装置は、上記の発明において、更に、前記多角形ファイバが、前記クラッドの中央にコアを有する場合、前記画像処理手段が求めた光強度分布をもとに当該光強度分布における明部におけるコア係数を回転位置ごとに演算するコア係数演算手段を備え、前記ディストーションと前記コア係数とをもとに前記多角形ファイバの光軸廻りの回転における回転基準位置を決定することを特徴とする。
また、本発明の光ファイバ融着接続装置は、上記の発明において、前記多角形ファイバは、光軸に垂直な断面におけるクラッドの外形が六角形であり、コアの断面形状が楕円であることを特徴とする。
また、本発明の光ファイバ融着接続装置は、上記の発明において、前記ディストーションがゼロであり、かつ、前記コア係数の値が他の回転領域に比べて大きい回転領域における回転位置を回転基準位置とすることを特徴とする。
ここで、本発明において、回転基準位置とは、融着接続する多角形ファイバ相互における光軸廻りの回転においてクラッド外形が一致するように角度合わせをする際の基準位置をいい、コアを有する場合にはクラッド外形とコア形状が一致するように角度合わせをする際の基準位置をいう。例えば、クラッドの外形が六角形であり、コアの断面形状が楕円である図6に示す六角形ファイバの場合、本明細書においては、コアの長軸ALを回転基準位置としている。
本発明の多角形ファイバの回転基準位置決定方法は、光軸に垂直な断面におけるクラッドの外形が多角形であり、側方から照明される多角形ファイバを前記光軸廻りに順次回転させながら回転位置ごとに撮像する撮像工程と、撮像した前記多角形ファイバの画像を処理し、前記光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める画像処理工程と、前記画像処理工程において求めた光強度分布をもとに当該光強度分布の明部の中心とクラッド外径の中心との差であるディストーションを回転位置ごとに演算するディストーション演算工程と、を含み、前記ディストーションをもとに前記光軸廻りの回転における回転基準位置を決定し、本発明の光ファイバ融着接続装置は、前記回転基準位置決定方法によって多角形ファイバの回転基準位置を決定するので、多角形ファイバの回転基準位置を高精度に決定することができるうえ、多角形ファイバの光軸廻りの回転方向における回転基準位置を一致させて融着接続することができる。
以下、図面を参照して本発明の多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置にかかる実施の形態を詳細に説明する。図1は、本発明の多角形ファイバの回転基準位置決定方法を使用して多角形ファイバからなる光ファイバ相互の光軸廻りの回転基準位置を合わせて融着接続する光ファイバ融着接続装置を示す平面図である。図2は、図1に示す光ファイバ融着接続装置のホルダ台を中心とする要部を示す斜視図である。図3は、図1に示す光ファイバ融着接続装置の全体構成を示すブロック図である。図4は、図1に示す光ファイバ融着接続装置における光源、六角形ファイバ、カメラ及び放電電極の六角形ファイバの光軸方向から見た配置を示す説明図である。図5は、同じく光源、六角形ファイバ及びカメラの六角形ファイバの光軸に直交する方向から見た配置を示す説明図である。
融着接続装置1は、図1〜図3に示すように、本体2に放電加工部3、加熱処理部4、左ファイバセット部5、右ファイバセット部6、左ファイバ撮像部7、右ファイバ撮像部8、電源ユニット9及び制御部10が設けられている。
本体2は、図1に示すように、表示部2aが設けられると共に、上面のパネルには入力部2bが配置されている。表示部2aは、例えば、接続損失の設定値、推定損失、軸ずれエラーに関する警告などの文字を液晶パネルに表示する。また、表示部2aは、左ファイバ撮像部7や右ファイバ撮像部8のカメラ7b,8bが撮像した光ファイバの画像及びこの画像に基づいて画像処理部13が求めた光強度分布を表示する。入力部2bは、融着接続装置1の電源のオン/オフ操作、表示部2aにおけるカーソルの移動並びに接続操作の開始、入力のリセット操作、選択の決定操作、動作開始あるいは位置停止を入力する各種操作キーの他、電源のオン/オフ状態を表示するモニタランプ等が設けられている。
放電加工部3は、2本の光ファイバの先端を互いに対向配置し、光ファイバの光軸に直交させて対向配置させた1対の放電電極3a(図2,図4参照)間のアーク放電を利用して光ファイバの先端部分を融着接続する部分であり、風防カバー1aを閉じて融着接続を行う。
加熱処理部4は、融着接続された光ファイバの接続部に補強スリーブを被着する加熱処理を行う部分であり、図1及び図2に示すように、融着接続装置1の幅方向に沿って直線状に形成されている。加熱処理部4は、中央に補強スリーブの加熱装置40が搭載され、両端には融着接続された光ファイバを保持するホルダ4aが設けられている。
左ファイバセット部5及び右ファイバセット部6は、所定の前処理(被覆除去、異物清掃、端面切断)が施された接続対象の光ファイバをセットする部分であり、図1において、左ファイバセット部5は左側に配置され、右ファイバセット部6は右側に配置されている。左ファイバセット部5及び右ファイバセット部6は、配置が異なるだけで構成は同じであるので、左ファイバセット部5について説明し、右ファイバセット部6は対応する構成要素に対応する符号を付して詳細な説明を省略する。
左ファイバセット部5は、図1〜図3に示すように、ホルダ台5a、3軸方向駆動部5b及び回転駆動部5cを備えている。ホルダ台5aは、図2に示すように、接続対象の光ファイバFを保持した光ファイバホルダHを設置する台であり、3軸方向駆動部5bによって光ファイバFの光軸に直交するX,Y軸方向及び光ファイバFの光軸に沿ったZ軸方向の互いに直交する3軸方向に移動されると共に、回転駆動部5cによって光ファイバFの光軸廻りに回転される。ホルダ台5aは、水平状態(初期位置)から光ファイバFの光軸廻りに時計方向及び反時計方向へ等しい角度、合わせて最低180°の範囲回転することができる。このため、例えば、3軸方向駆動部5bは3軸ステージ等の駆動手段が使用され、回転駆動部5cは回転角度を高精度に制御することが可能なパルスモータによって回転駆動される回転ステージ等の回転手段が使用される。
左ファイバセット部5は、駆動制御部11によって3軸方向駆動部5b及び回転駆動部5cの作動が制御され、光ファイバホルダを介してホルダ台5aに設置された光ファイバの右ファイバセット部6側に配置された接続相手の光ファイバに対する調心、突き合わせ及び回転を行う。ここで、3軸方向駆動部は、接続する光ファイバ相互の調心と突き合わせを行うことができればよいので、左ファイバセット部5又は右ファイバセット部6の一方が備えていればよい。
左ファイバ撮像部7及び右ファイバ撮像部8は、融着接続する光ファイバを光軸に直交する側方のX,Y軸方向から撮像すると共に、光ファイバ相互の突合せ部を撮像する部分であり、互いに突き合わされる光ファイバの近傍に配置されている。左ファイバ撮像部7及び右ファイバ撮像部8は、配置が異なるだけで構成は同じであるので、左ファイバ撮像部7について説明し、右ファイバ撮像部8は対応する構成要素に対応する符号を付して詳細な説明を省略する。
左ファイバ撮像部7は、図3に示すように、光源7a、カメラ7b及びZ軸方向駆動部7cを備えている。
光源7aは、図4及び図5に示すように、左ファイバセット部5に配置された光ファイバをX軸方向から平行光束によって照明する。カメラ7bは、X軸方向から照明された光ファイバを撮像するCCDカメラやC−MOSカメラ等の撮像手段である。カメラ7bは、焦点調整を適性に行うことにより光ファイバを透過してくる透過光によってコアを明瞭に把握することが可能なように、少なくとも開口数が0.3以上のものを使用することが望ましい。但し、開口数が0.60を超えると、カメラ7bは、レンズが大型化して融着接続装置1における配置上の問題が生ずる。
Z軸方向駆動部7cは、光源7a及びカメラ7bを光ファイバの光軸に沿ったZ軸方向へ一体に移動させる1軸ステージ等の駆動手段である。一方、右ファイバ撮像部8は、光源8a及びカメラ8bがY軸方向に配置され、右ファイバセット部6に配置された光ファイバをY軸方向から撮像する。
ここで、融着接続装置1は、通常は、光ファイバ相互の突合せ部を撮像するため、図4及び図5に示すように、光源7a,カメラ7bと光源8a,カメラ8bがZ軸方向に沿った同じ位置に配置されている。また、光源7a,カメラ7bと光源8a,カメラ8bは、互いに直交するX軸上とY軸上に配置されている。そして、六角形ファイバ20を含む多角形ファイバの光軸廻りに関する回転基準位置を決定する際は、左ファイバセット部5と右ファイバセット部6のそれぞれに配置される多角形ファイバを個々に撮像するため、Z軸方向駆動部7c,8cによってZ軸方向にそれぞれ個別に移動される。
但し、Z軸方向に沿った同じ位置に配置した光源7a,カメラ7bと光源8a,カメラ8bのそれぞれが撮像した光ファイバの画像、特に、多角形ファイバの画像を画像処理部13によって個々に画像処理し、各多角形ファイバの回転基準位置を決定することができれば、Z軸方向駆動部7c,8cは不用である。
電源ユニット9は、融着接続装置1の駆動電力を供給するユニットであり、交流電源の他、内蔵したバッテリや外部の直流電源を使用することができる。
制御部10は、図3に示すように、駆動制御部11、放電制御部12、画像処理部13、ディストーション演算部14、コア係数演算部15及び記憶部16を備えており、マイクロコンピュータ等が使用される。
駆動制御部11は、回転駆動部5c,6cによる光ファイバの光軸廻りの回転を含め融着接続装置1を構成する各部の動作を制御する。放電制御部12は、光ファイバ相互を融着接続する際、放電加工部3の放電電極3aに印加する電圧や印加時間等を制御する。画像処理部13は、カメラ7b,8bから入力される光ファイバの画像情報をもとに、光ファイバの画像を処理し、光軸中心から半径方向外方向に沿った光強度分布を求める。特に、画像処理部13は、光ファイバが多角形ファイバの場合には、回転位置ごとに入力される画像情報をもとに光強度分布を回転位置ごとに求める。求めた光強度分布(図7,図8参照)は、画像処理部13から表示部2a及び記憶部16に出力され、表示部2aに表示されると共に記憶部16に回転位置情報と共に光強度分布データとして記憶される。
ディストーション演算部14及びコア係数演算部15は、融着接続する光ファイバが多角形ファイバの場合に使用される。ディストーション演算部14は、画像処理部13が画像処理によって求めた回転位置ごとの光強度分布をもとに多角形ファイバのディストーションを演算する。
ここで、多角形ファイバは、光軸に垂直な断面におけるクラッドの外形が正多角形であり、コアの断面形状が楕円である。例えば、図6に示す六角形ファイバ20について説明すると、六角形ファイバ20は、光軸に垂直な断面におけるクラッド20aの外形が正六角形であり、コア20bの断面形状が楕円である。また、コア20bは、平行光線Lが入射するクラッド20aの辺に対して楕円の長軸ALが時計方向に角度θ(=30°)傾斜している。
このとき、画像処理部13が画像処理によって求めた光強度分布は、クラッド20aの外形とコア20bの断面形状によって周期的に変化し、例えば、図7に示すように回転位置ごとに異なる。なお、図中の角度(0°,10°,20°,……,50°)は、図6に示す長軸ALを基準とした回転角度(回転位置)を示している。但し、図7は、コアがないことを除き六角形ファイバ20と同一構造のコアレスファイバの場合における光強度分布の一例であり、横軸が照度(W/mm)であり、縦軸が中心からクラッド外方向への位置(mm)を示している。
ここで、図7に示すように、コアレスファイバは、光強度分布の中央に照度が大きい明部が現れると共に、その上下両側に照度が小さい暗部が現れ、入射する平行光線と外形形状との関係を反映するように光強度が変化する。この光強度分布において、2つの暗部の外側間の幅がクラッドの外径に対応しており、この幅を以下クラッド外径(図8参照)と呼ぶ。また、図7に示す光強度分布のうち、照度が小さい2つの暗部の間に現れる照度が大きい明部は、コアレスファイバの外縁に入射することなくカメラ7b,8bに入射した平行光線に対応している。図7において、中央に現れる照度が大きい明部やその上下両側に現れる照度が小さい暗部は、コアレスファイバの外形形状に対応して発生している。
なお、六角形ファイバ20の場合、中心に断面形状が楕円のコア20bが存在するために、上述の光強度分布は、より複雑になるが、光強度が周期的に変化する点では大きく異なるものではない。特に、コア20bの長軸ALに平行な方向から平行光線が入射すると、光強度分布は、図8に示すように、中央の明部Sbの部分にコア20bの存在に起因した光強度の低下(図中A,B参照)が2箇所に発生する。但し、コア20bの長軸ALに直交する方向から平行光線が入射した場合、光強度分布に大きな変化は見られない。従って、これら2箇所の光強度低下は、入射する平行光線に対するコア20bの位置関係によって生ずるものと言える。
ディストーション演算部14は、画像処理部13が求めた光強度分布をもとに、図8に示すように、明部Sbの中心Cbとクラッド外径Codの中心Cdとの差(Cb−Cd)をディストーションDiとして演算する。従って、図8において、2箇所の暗部Sdが中央の明部Sbに対して対称の場合、ディストーションDiはゼロになる。
コア係数演算部15は、画像処理部13が求めた回転位置ごとの光強度分布をもとに多角形ファイバのコア係数を演算する。このコア係数の演算に当たり、コア係数演算部15は、画像処理部13が求めた光強度分布をもとに、図8に示すように、明部Sbに出現する2箇所の光強度が低下する強度低下部A,Bにおけるコア係数CcU,CcDの平均値(=(CcU+CcD)/2)をコア係数Ccとして演算する。ここで、コア係数CcU,CcDは、強度低下部A,Bのコアらしさを示す係数であり、強度低下部A,Bのそれぞれに沿って移動しながら強度低下部A,B上の連続した複数の点、例えば、5点を順次取りながら2次曲線(y=ax+bx+c)に近似させた際に得られる2次係数(=a)の最大値をいい、以下のようにしてコア係数演算部15が算出する。
例えば、図8の強度低下部Aを拡大した図9に示すように、光強度に関する測定点P1〜Pnに関し、先ず測定点P1〜P5について2次曲線(y=ax+bx+c)の近似式を求め、そのときの2次係数をa1とする。このとき、xは図8の縦軸に記載した位置(mm)に対応し、yは横軸の照度(W/mm)に対応している。次に、測定点P2〜P6について2次曲線(y=ax+bx+c)の近似式を求め、そのときの2次係数をa2とする。以下、同様にして、測定点Pn-5〜Pnについて2次曲線(y=ax+bx+c)の近似式を求め、そのときの2次係数をan-5とする。これらの2次係数a1,a2,……,an-5の最大値を強度低下部Aのコア係数CcUとする。従って、コア係数Ccは、光学上で使用する明暗のコア係数に関する定義とは異なる本明細書のみにおいて使用する用語である。
記憶部16は、融着接続の際に画像処理によって求めた光ファイバの光強度分布,演算したディストーションやコア係数の値等を読み出し自在に記憶する。
融着接続装置1は、以上のように構成されており、光ファイバを融着接続する際に使用されるが、例えば、六角形ファイバ20を融着接続する際は以下のように作動する。即ち、融着接続装置1は、六角形ファイバ20について通常の光ファイバと同様に被覆の除去等を含む前処理を施した後、六角形ファイバ20を把持した光ファイバホルダを左ファイバセット部5のホルダ台5aと右ファイバセット部6のホルダ台6aにセットする。そして、作業者がスタートボタンを押すと、融着接続装置1は、六角形ファイバ20のクリーニング放電、外径調心、端面角度やクラッド形状等の主要寸法測定、コア調心、融着接続、接続部検査、接続損失計算、六角形ファイバ20の回転基準位置の決定等を自動的に行う。
このとき、六角形ファイバ20は、図6に示す位置を初期位置0°として左ファイバセット部5のホルダ台5aを時計方向に回転させながら角度2°間隔で角度0°〜角度200°に亘ってディストーション及びコア係数を演算すると、回転角度180°を1周期として変化し、図10に示す分布になることが分かっている。ここで、図10において、コア係数は、図8に示すコア係数CcU,CcDのうちコア係数CcUを黒塗りのひし形で表し、コア係数CcDを黒塗りの正方形で表している。
図10に示すように、六角形ファイバ20の場合、ディストーションDiは、クラッド20aの正六角形の外形形状に対応して約30°間隔で変化する。但し、六角形ファイバ20は、製造上のばらつきによってクラッド20aが真正の正六角形ではない。このため、ディストーションDiは、約30°間隔で変化するが、等しい30°間隔での変化ではないうえ、約30°間隔で変化することから、回転基準位置を決定することはできない。
一方、コア係数Ccは、図10に示すように、六角形ファイバ20の回転角度が20〜40°に亘る特定の回転領域において連続して大きくなっている。従って、図10において、六角形ファイバ20の特徴であるディストーションDiがゼロであり、かつ、コア係数Ccの値が他の回転領域に比べて連続して大きくなる回転領域を特定すれば、そのときの回転位置、即ち、回転角度30°付近を回転基準位置と決定することができる。即ち、六角形ファイバ20は、この位置を回転基準位置とすれば相手の六角形ファイバ20とコア20bの位置を適正に一致させて融着接続することができる。
但し、本発明の回転基準位置決定方法は、六角形ファイバ20のディストーションをもとに光軸廻りの回転における回転基準位置を決定する。このため、六角形ファイバ20は、回転角度のみが一致していれば、楕円形のコア20bの位置まで一致させる必要がない場合は、ディストーションDiの一致する位置で回転角度を合わせればよい。
このため、接続対象の多角形ファイバは、多角形の具体的な値ごとにディストーションとコア係数の回転角度による角度分布の特性を知っておく必要がある。そこで、多角形ファイバは、融着接続装置1を使用して予めディストーションとコア係数を以下のようにして求めておく。例えば、六角形ファイバ20について説明すると、六角形ファイバ20を把持した光ファイバホルダをホルダ台5a,6aに設置し、スタートボタンを押すと、融着接続装置1は、制御部10の制御のもとに、先ず、左ファイバセット部5のホルダ台5aを水平位置からそれぞれ時計方向へ105°回転し、右ファイバセット部6のホルダ台6aを水平位置からそれぞれ反時計方向へ105°回転する。そして、融着接続装置1は、この位置を測定開始位置として、左ファイバセット部5のホルダ台5aを少なくとも180°の範囲に亘って回転させると共に、右ファイバセット部6ホルダ台6aを少なくとも180°の範囲に亘って回転させ、本発明の回転基準位置決定方法を実行する。以下、図11に示すフローチャートを参照しながら本発明の回転基準位置決定方法を説明する。なお、左ファイバセット部5も右ファイバセット部6も同様の操作が実行されるので、一方の左ファイバセット部5について説明する。
先ず、制御部10は、六角形ファイバ20の回転位置ごとの撮像をカメラ7bに指示する(ステップS100)。このとき、制御部10は、駆動制御部11によってホルダ台5aの回転を制御しながら、カメラ7bによって六角形ファイバ20を回転位置ごとに撮像する。次に、制御部10は、各回転位置で撮像した六角形ファイバ20の画像処理を画像処理部13に指示する(ステップS102)。これにより、画像処理部13が、各回転位置で撮像した六角形ファイバ20の画像情報をもとに、光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める。
次いで、制御部10は、画像処理部13が求めた光強度分布をもとにディストーションDiを六角形ファイバ20の回転位置ごとにディストーション演算部14に演算させる(ステップS104)。その後、制御部10は、画像処理部13が求めた光強度分布をもとにコア係数Ccを六角形ファイバ20の回転位置ごとにコア係数演算部15に演算させる(ステップS106)。このようして演算した回転位置ごとのディストーションDi及びコア係数Ccは、ディストーション演算部14及びコア係数演算部15から記憶部16に出力され、記憶部16に記憶される。
次に、制御部10は、全回転範囲(=0°〜180°)におけるディストーションDiとコア係数Ccの変化図を画像処理部13に作成させる(ステップS108)。この変化図は、図10に対応した図であり、表示部2aに表示される。これにより、制御部10は、ディストーションDiがゼロであり、かつ、コア係数Ccの値が他の回転領域に比べて連続して大きくなる回転領域を特定することにより、ホルダ台5aにセットした六角形ファイバ20の回転基準位置を決定することができる。
以上が、六角形ファイバ20のディストーションDi及びコア係数Ccの分布特性を考慮した本発明の基本的な回転基準位置決定方法である。但し、六角形ファイバ20は、製造上のばらつきによってディストーションDiやコア係数Ccがファイバごとに微妙に異なっている。このため、実際の融着接続に際しては、融着接続装置1は、六角形ファイバ20ごとに効率よく回転基準位置を決定する必要がある。
そこで、上述の回転基準位置決定方法を踏襲しつつ、融着接続装置1は、制御部10に作動プログラムが設定され、以下のようにしてディストーションDiとコア係数Ccを演算すると共に、回転位置の粗調整と微調整を行うことによって回転基準位置を決定する。
先ず、融着接続装置1は、六角形ファイバ20を把持した光ファイバホルダをホルダ台5aにセットして、作業者がスタートボタンを押すと、制御部10の制御のもとに、その位置で六角形ファイバ20を撮像して画像処理した画像情報をもとにディストーションDi01とコア係数Ccを演算する。
このとき、融着接続装置1は、制御部10の制御のもとに、以下の回転位置の粗調整を実行することにより、ホルダ台5a未回転の位置においてディストーションDiがゼロとなる六角形ファイバ20の回転位置を確定する。
1) 回転位置の粗調整
粗1 ディストーションゼロ外し工程
水平なホルダ台5aにセットした六角形ファイバ20のディストーションDi01の絶対値が1未満の場合(|Di01|<1)、ホルダ台5aをその位置から時計方向へ30°/4回転させる。
この30°/4回転させる操作は、図12に示すように、回転基準位置Pを確認するための操作といえる。即ち、ディストーションDi01の絶対値が1未満である図中の位置Qの回転位置にある場合、ホルダ台5aをその位置から時計方向(図10,図12において右方向)へ30°/4回転させると、ディストーションは+(プラス)の値となるのに対し、回転基準位置Pの場合にはディストーションは−(マイナス)の値となる。これにより、ディストーションが同じゼロとなる位置であっても、図12に示す回転基準位置Pと位置Qとを区別することができる。この関係は、図12において、回転基準位置Pとディストーションがゼロとなる位置Rとを区別する場合にも適用できる。
一方、ディストーションDi01の絶対値が1以上の場合(|Di01|≧1)、言い換えるとディストーションDi01が1以上か、−1以下の場合(Di01≧1,Di01≦−1)は、次の工程(粗2)へ進む。
粗2 ディストーションゼロ粗修正工程
ホルダ台5aを30°/4回転した場合と、回転しなかった場合とを含め、この位置におけるディストーションDi02を新たに求める。ディストーションDi02の値が+(プラス)の場合(Di02>0)、ホルダ台5aをその位置から時計方向へ角度θrc(=Di02×30°/10μm)回転させる。一方、ディストーションDi02の値がプラスでない場合(Di02≦0)、ホルダ台5aをその位置から反時計方向へ角度θrc(=Di02×30°/10μm)回転させる。この操作は、θrc=Di02×30°/10μmの式から明らかなように、ディストーションDi02を1回の操作でゼロに粗修正する操作である。ディストーションゼロ粗修正が終了した後、次のディストーションゼロ確定工程(粗3)へ進む。
粗3 ディストーションゼロ確定工程
ホルダ台5aを角度θrc回転させた位置におけるディストーションDi03を新たに求める。ディストーションDi03の値の絶対値が1を超えている場合(|Di01|>1)、ディストーションをゼロにする粗修正が不十分なので、前の粗2に戻り、再度ディストーションゼロ粗修正を行う。一方、ディストーションDi03の絶対値が1未満の場合(|Di03|≦1)、粗2におけるディストーションゼロ粗修正は適切に行われているので、ホルダ台5aを30度回転させ、次の回転位置での粗調整に移行する。
次に、融着接続装置1は、制御部10の制御のもとに、ホルダ台5aを更に30度時計方向へ回転させ、ディストーションDiとコア係数Ccを演算すると共に、上述の回転位置の粗調整を実行させる。このようにして、測定開始位置から少なくとも180°の範囲について演算と粗調整が終了したら、融着接続装置1は、制御部10の制御のもとに、ディストーションDiとコア係数Ccの変化図を画像処理部13に作成させ、ディストーションDiがゼロであり、かつ、コア係数Ccの値が他の回転領域に比べて連続して大きくなる回転領域から回転基準位置を決定する。そして、融着接続装置1は、制御部10の制御のもとに、決定した回転基準位置までホルダ台5aを逆回転させ、この回転基準位置の微調整を実行する。
2) 回転位置の微調整
微1 回転基準位置確定工程
ホルダ台5aを逆回転させた回転基準位置において、新たにディストーションDi04[0]を求め、0.4≦Di04[0]≦1.0を満たしている場合、粗3におけるディストーションの粗修正は適切に行われているので、次の最小値取得工程(微2)に移行する。一方、ディストーションDi04[0]が上記式を満たさず、Di04[0]>1.0或いはDi04[0]<0.4の場合には、ホルダ台5aを以下に説明する角度θc回転させてディストーションDi04[0]を0.4≦Di04[0]≦1.0に収束させることによって回転基準位置を確定させる。
即ち、ディストーションDi04[0]が1.0よりも大きい場合(Di04[0]>1.0)、ホルダ台5aを時計方向へ角度θc(=(Di04[0]−0.5)×30°/10μm)回転させる。一方、ディストーションDi04[0]が0.4よりも小さい場合(Di04[0]<0.4)、ホルダ台5aを反時計方向へ角度θc(=(0.5−Di04[0])×30°/10μm)回転させる。このようにして、ホルダ台5aの回転角度を修正した後、微1の工程を0.4≦Di04[0]≦1.0となるまで繰り返す。
微2 最小値取得工程
この工程においては、ホルダ台5aを時計方向へ0.2°回転させ、ディストーションDi04[n]を求める。求めたディストーションDi04[n]が、Di04[n]<0.03を満たしている場合、次の角度補正工程(微3)に移行する。Di04[n]<0.03を満たしていない場合には、再度ホルダ台5aを時計方向へ0.2°回転させ、Di04[n]<0.03となるまで微2の工程を繰り返す。従って、微2の最小値取得工程は、微1の回転基準位置確定工程と共に、ホルダ台5aをディストーションがゼロの回転位置、即ち、回転基準位置Pに近づけるための操作を実行する工程である。
微3 角度補正工程
この工程は、六角形ファイバ20の外形が正六角形のクラッド20aと楕円のコア20bとの位置ずれに起因した角度補正を実行する工程である。微2の最小値取得工程において、Di04[n]<0.03を満たした際のホルダ台5aの回転角度をθ(min)、クラッド20aとコア20bとの位置ずれに起因した角度補正係数をθ(cr)とすると、回転基準位置Pは、P=θ(min)+θ(cr)で与えられる。
融着接続装置1は、以上のようにして個々の六角形ファイバ20の回転基準位置Pを決定する。そして、回転基準位置Pの決定後、融着接続装置1は、引き続く融着接続、接続部検査、接続損失計算等を自動的に行う。従って、融着接続装置1は、融着接続する六角形ファイバ20の光軸廻りの回転方向における回転基準位置を高精度に決定することができる。また、融着接続装置1は、決定した回転基準位置をもとに接続対象の多角形ファイバを位置決めするので、光が伝搬するコアが高精度に位置決めされ、接続損失を小さく抑えて多角形ファイバ相互を融着接続することができる。
本発明の多角形ファイバの回転基準位置決定方法を使用して多角形ファイバからなる光ファイバ相互の光軸廻りの回転基準位置を合わせて融着接続する光ファイバ融着接続装置を示す平面図である。 図1に示す光ファイバ融着接続装置のホルダ台を中心とする要部を示す斜視図である。 図1に示す光ファイバ融着接続装置の全体構成を示すブロック図である。 図1に示す光ファイバ融着接続装置における光源、六角形ファイバ、カメラ及び放電電極の六角形ファイバの光軸方向から見た配置を示す説明図である。 同じく光源、六角形ファイバ及びカメラの六角形ファイバの光軸に直交する方向から見た配置を示す説明図である。 六角形ファイバの断面を拡大した説明図である。 図6に示す六角形ファイバがコアのない場合における回転角度ごとに測定した光軸中心からクラッド外方向に沿った光強度分布図である。 六角形ファイバにおけるディストーション及びコア係数を説明する光強度分布図である。 コア係数の算出方法を説明する図である。 六角形ファイバ角度0°〜角度200°まで回転させた際のディストーション及びコア係数の一例を示す図である。 本発明の多角形ファイバの回転基準位置決定方法を説明するフローチャートである。 図10に示すディストーションの変化図の一部を使用して回転位置の粗調整におけるディストーションゼロ外し工程を説明する図である。
符号の説明
1 融着接続装置
2 本体
3 放電加工部
4 加熱処理部
5 左ファイバセット部
6 右ファイバセット部
7 左ファイバ撮像部
7b カメラ
8 右ファイバ撮像部
8b カメラ
9 電源ユニット
10 制御部
13 画像処理部
14 ディストーション演算部
15 演算部
Cc コア係数
Cb 明部の中心
Cd 暗部の中心
Cod クラッド外径
Di ディストーション
Sb 明部
Sd 暗部

Claims (8)

  1. 光軸に垂直な断面におけるクラッドの外形が多角形であり、側方から照明される多角形ファイバを前記光軸廻りに順次回転させながら回転位置ごとに撮像する撮像工程と、
    撮像した前記多角形ファイバの画像を処理し、前記光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める画像処理工程と、
    前記画像処理工程において求めた光強度分布をもとに当該光強度分布の明部の中心とクラッド外径の中心との差であるディストーションを回転位置ごとに演算するディストーション演算工程と、
    を含み、前記ディストーションをもとに前記光軸廻りの回転方向における対向する光ファイバとの角度合わせをした位置である回転基準位置を決定することを特徴とする多角形ファイバの回転基準位置決定方法。
  2. 更に、前記多角形ファイバが、前記クラッドの中央にコアを有する場合、前記画像処理工程において求めた光強度分布をもとに当該光強度分布の明部に出現する光強度低下部のコアらしさを示すコア係数を回転位置ごとに演算するコア係数演算工程を含み、
    前記ディストーションと前記コア係数とをもとに前記光軸廻りの回転における回転基準位置を決定することを特徴とする請求項1に記載の多角形ファイバの回転基準位置決定方法。
    ここで、前記コア係数とは、前記強度低下部に沿って移動しながら該強度低下部上の連続した複数の点を順次取りつつ該複数の点を2次曲線y=ax2+bx+cに近似させた際に得られる該2次曲線の2次係数aの最大値である。
  3. 前記多角形ファイバは、光軸に垂直な断面におけるクラッドの外形が六角形であり、コアの断面形状が楕円であることを特徴とする請求項2に記載の多角形ファイバの回転基準位置決定方法。
  4. 前記ディストーションがゼロであり、かつ、前記コア係数の値が他の回転領域に比べて大きい回転領域における回転位置を回転基準位置とすることを特徴とする請求項3に記載の多角形ファイバの回転基準位置決定方法。
  5. 対向配置された光ファイバ相互を先端部分で融着接続する融着接続装置において、
    側方から照明される多角形ファイバを前記光軸廻りに順次回転させながら回転位置ごとに撮像する撮像手段と、
    撮像した前記多角形ファイバの画像を処理し、前記光軸中心からクラッド外方向に沿った光強度分布を回転位置ごとに求める画像処理手段と、
    前記画像処理手段が求めた光強度分布をもとに当該光強度分布における明部の中心とクラッド外径の中心との差であるディストーションを回転位置ごとに演算するディストーション演算手段と、
    を備え、前記ディストーションをもとに前記多角形ファイバの光軸廻りの回転方向における対向する光ファイバ相互の角度合わせをした位置である回転基準位置を決定することを特徴とする光ファイバ融着接続装置。
  6. 更に、前記多角形ファイバが、前記クラッドの中央にコアを有する場合、前記画像処理手段が求めた光強度分布をもとに当該光強度分布における明部に出現する光強度低下部のコアらしさを示すコア係数を回転位置ごとに演算するコア係数演算手段を備え、
    前記ディストーションと前記コア係数とをもとに前記多角形ファイバの光軸廻りの回転における回転基準位置を決定することを特徴とする請求項5に記載の光ファイバ融着接続装置。
    ここで、前記コア係数とは、前記強度低下部に沿って移動しながら該強度低下部上の連続した複数の点を順次取りつつ該複数の点を2次曲線y=ax2+bx+cに近似させた際に得られる該2次曲線の2次係数aの最大値である。
  7. 前記多角形ファイバは、光軸に垂直な断面におけるクラッドの外形が六角形であり、コアの断面形状が楕円であることを特徴とする請求項6に記載の光ファイバ融着接続装置。
  8. 前記ディストーションがゼロであり、かつ、前記コア係数の値が他の回転領域に比べて大きい回転領域における回転位置を回転基準位置とすることを特徴とする請求項7に記載の光ファイバ融着接続装置。
JP2008056093A 2008-03-06 2008-03-06 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置 Active JP5019616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056093A JP5019616B2 (ja) 2008-03-06 2008-03-06 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056093A JP5019616B2 (ja) 2008-03-06 2008-03-06 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置

Publications (2)

Publication Number Publication Date
JP2009210502A JP2009210502A (ja) 2009-09-17
JP5019616B2 true JP5019616B2 (ja) 2012-09-05

Family

ID=41183801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056093A Active JP5019616B2 (ja) 2008-03-06 2008-03-06 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置

Country Status (1)

Country Link
JP (1) JP5019616B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220086250A (ko) 2020-12-16 2022-06-23 주식회사 엘지화학 폴리(아릴렌 에테르) 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303673B1 (ja) * 2012-07-06 2013-10-02 株式会社フジクラ 光ファイバ融着接続機
JP5985297B2 (ja) * 2012-08-07 2016-09-06 三菱電線工業株式会社 光ファイバ接続方法
JP2014163946A (ja) * 2013-02-21 2014-09-08 Mitsubishi Cable Ind Ltd 光ファイバ接続方法
CN105335948B (zh) * 2014-08-08 2018-06-29 富士通株式会社 文档图像的拼接装置、方法以及扫描仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815563A (ja) * 1994-07-01 1996-01-19 Hitachi Cable Ltd 非軸対称屈折率分布を有する光ファイバと光導波路との結合部におけるアライメント方法、光ファイバ固定構造及び結合部
SE506956C2 (sv) * 1995-10-24 1998-03-09 Ericsson Telefon Ab L M Förfarande och anordning för att bestämma vinkelläget för en optisk axiell asymmetri, samt användning av förfarandet respektive anordningen
JP4268057B2 (ja) * 2004-01-05 2009-05-27 古河電気工業株式会社 偏波面保持光ファイバの偏波面光学主軸決定方法
JP2005289766A (ja) * 2004-04-02 2005-10-20 Nippon Sheet Glass Co Ltd 光学素子用母材およびそれを用いて製造される光学素子、並びに光学素子用母材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220086250A (ko) 2020-12-16 2022-06-23 주식회사 엘지화학 폴리(아릴렌 에테르) 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Also Published As

Publication number Publication date
JP2009210502A (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
US6702481B2 (en) Method and apparatus for fusion-splicing polarization maintaining optical fibers
JP5019616B2 (ja) 多角形ファイバの回転基準位置決定方法及び光ファイバ融着接続装置
JP3168844B2 (ja) 定偏波光ファイバの融着接続方法
JP6928854B2 (ja) 融着接続機及び光ファイバの回転調心方法
JP6421348B2 (ja) 光ファイバ融着接続装置及び光ファイバの融着接続方法
US7003200B2 (en) PM fiber alignment
JPH09288221A (ja) リボン型光ファイバの突き合せ部を観察する方法及び観察装置
JP2012242599A (ja) 光ファイバ判別方法及び光ファイバの融着接続方法
JP4430058B2 (ja) 融着接続機および融着接続機の制御方法
JP2010117600A (ja) 融着接続機及び融着接続機の接続制御方法
JP4190997B2 (ja) 光ファイバの融着接続装置と融着接続方法
JP2002098854A (ja) 定偏波光ファイバの融着接続方法
JPH02196204A (ja) 定偏波光フアイバの軸合せ方法
JP2005173210A (ja) 偏波面保持光ファイバの回転基準位置決定方法及び光ファイバ融着接続機
KR0124372B1 (ko) 광커넥터 저 접속손실화를 위한 조립장치 및 그 제어방법
JP2002116339A (ja) 定偏波光ファイバの融着接続方法
CN216285811U (zh) 光纤熔接机
JPH1114855A (ja) 光ファイバ観察装置および融着接続装置
JP4398950B2 (ja) 表示制御装置、光ファイバ融着接続機、制御方法および制御プログラム
JP4268057B2 (ja) 偏波面保持光ファイバの偏波面光学主軸決定方法
JP4336056B2 (ja) 光ファイバ観察装置と光ファイバ融着接続装置
WO2023157564A1 (ja) 光ファイバの調心方法、光ファイバ接続体の製造方法、光ファイバの調心装置、及び光ファイバの融着接続機
JP2005222045A (ja) 光ファイバ融着接続損失推定装置及び光ファイバ融着接続損失推定方法
JP3642849B2 (ja) 光ファイバの融着接続方法
JP2022125758A (ja) 融着接続機及び光ファイバの回転調心方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5019616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350