JP4989823B2 - 新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 - Google Patents
新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 Download PDFInfo
- Publication number
- JP4989823B2 JP4989823B2 JP2001212190A JP2001212190A JP4989823B2 JP 4989823 B2 JP4989823 B2 JP 4989823B2 JP 2001212190 A JP2001212190 A JP 2001212190A JP 2001212190 A JP2001212190 A JP 2001212190A JP 4989823 B2 JP4989823 B2 JP 4989823B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- component
- hydrocarbon group
- transition metal
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
【発明の属する技術分野】
本発明は、新規なα−オレフィン重合用の触媒成分となる新規な遷移金属錯体に関するものであり、特に高分子量重合体を製造するのに適した三重架橋型錯体に関するものである。さらに詳しくは、本発明は、新規な遷移金属錯体、高分子量のα−オレフィン重合体の製造を可能にするα−オレフィン重合用触媒成分、および、該触媒成分を含むα−オレフィン重合用触媒、並びに、該重合用触媒を用いたα−オレフィン重合体の製造方法に関する。
【0002】
【従来の技術】
α−オレフィン重合用触媒として用いられる物質として、メタロセン錯体と、助触媒としてアルミノキサンやホウ素化合物などを組み合わせて用いる、いわゆるメタロセン系触媒が知られている。この触媒は、一般に、非常に重合活性が高く、分子量分布の狭い重合体が得られるという特徴がある。
【0003】
かかるメタロセン錯体としては、これまでは非架橋型または一重架橋型がほとんどであった。これに対して、多重架橋型メタロセン錯体については、その合成例が少なく、いくつかが知られているに過ぎない。例えば、特開平11−322774号公報、特開2000−256411号には二重架橋インデン錯体が開示され、プロピレン重合体が得られている。また、Organometallics第12巻、1931ページ(1993年)及び、Organometallics第13巻、3868ページ(1994年)にも二重架橋型錯体が開示されており、特開平8−20605号公報、国際特許公開95−09172号公報には、多重架橋型錯体が開示されているが、2つの置換シクロペンタジエニル基が直接三重以上で架橋された錯体については知られていない。また、これらの開示された錯体では、いずれも得られる重合体の分子量は低いものであり、実用的には不満足なものであった。
【0004】
【発明が解決しようとする課題】
本発明は、工業的に実用的な重合温度において、高分子量α−オレフィン重合体を製造するのに適した新規な遷移金属錯体を提供することである。
【0005】
またこの新規錯体を用いて、高分子量α−オレフィン重合体を得ることを可能にするα−オレフィン重合触媒成分、及びα−オレフィン重合触媒、並びにα−オレフィン重合体の製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意検討を行った結果、特定の構造の新規な三重架橋型遷移金属化合物がα−オレフィン重合用触媒成分として有用であり、これを用いて高分子量α−オレフィン重合体を与えることを見いだした。
【0012】
すなわち、本発明の第1は、下記一般式(Ic)で表される遷移金属化合物を提供するものである。
【0013】
【化6】
【0014】
(一般式(Ic)中、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21はそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基または炭素数1〜20のハロゲン化炭化水素基であり、C1 は、炭素数1〜20の二価の炭化水素基;炭素数1〜20の炭化水素基を有していてもよいシリレン基、オリゴシリレン基、ゲルミレン基、または単に単結合を形成している架橋基であり、Mは、周期律表第4族の遷移金属を示し、X及びYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を示す。)
【0015】
本発明の第2は、上記の一般式(Ic)で表される遷移金属化合物からなることを特徴とするオレフィン重合用触媒成分に存する。
【0016】
本発明の第3は、次の成分(A)及び(B)と任意成分(C)を含むことを特徴とするα−オレフィン重合用触媒を提供するものである。
【0017】
成分(A):上述の一般式(Ic)で表される遷移金属化合物
成分(B):アルミニウムオキシ化合物、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物またはルイス酸からなる群より選ばれるもの
成分(C):微粒子担体
本発明の第4は、次の成分(A)及び(D)と任意成分(E)を含むことを特徴とするα−オレフィン重合用触媒を提供するものである。
【0018】
成分(A):上述の一般式(Ic)で表される遷移金属化合物
成分(D):珪酸塩を除くイオン交換性層状化合物または無機珪酸塩からなる群より選ばれるもの
成分(E):有機アルミニウム化合物
そして、本発明の第5は、上記の何れかの触媒とα−オレフィンとを接触させて重合を行うことを特徴とするα−オレフィン重合体の製造方法を提供するものである。
【0019】
【発明の実施の形態】
以下、本発明を詳細に説明する。先ず、本発明の遷移金属化合物について説明すれば、本発明の遷移金属化合物は、下記一般式(Ia)で表される。
【0020】
【化7】
【0021】
本発明の遷移金属化合物は、一般式(Ia)中、A、Bはそれぞれ独立して、置換シクロペンタジエニル基を示す。つまり、シクロペンタジエニル環に置換基を有し、それが新たに環構造を形成していてもよい。具体的には、新たに環を形成しない例としては、メチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ブチルシクロペンタジエニル基等が挙げられる。また、新たな環構造を有する例としては、一般式(Id)で表されるペンタレニル基、インデニル基、アズレニル基、シクロペンタシクロオクテニル基等が挙げられる。またこれらに置換基を有するもの、さらにそれの一部またはすべてを水添した構造のもの等が挙げられる。
【0022】
【化8】
【0023】
一般式(Ia)中、C1、C2、C3は、A、Bを結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基、オリゴシリレン基、ゲルミレン基または単に単結合を形成している架橋基の何れかを示す。上述のシリレン基、オリゴシリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
【0024】
上記のC1、C2、C3の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、1,3−トリメチレン、1,4−テトラメチレン、1,2−シクロへキシレン、1,4−シクロへキシレン等のアルキレン基;(メチル)(フェニル)メチレン、ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン、メチル(トリル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基、または単に単結合を形成しているものなどを挙げることが出来る。
【0025】
一般式(Ia)中、X及びYは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を示す。上記のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0026】
上記の炭素数1〜20の炭化水素基の具体例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシル、メチルシクロヘキシル等のアルキル基、ビニル、プロペニル、シクロヘキセニル等のアルケニル基、ベンジル、フェニルエチル、フェニルプロピル等のアリールアルキル基、trans−スチリル等のアリールアルケニル基、フェニル、トリル、ジメチルフェニル、エチルフェニル、トリメチルフェニル、1−ナフチル、2−ナフチル、アセナフチル、フェナントリル、アントリル等のアリール基が挙げられる。
【0027】
上記の炭素数1〜20の酸素含有炭化水素基の具体例としては、メトキシ、エトキシ、プロポキシ、シクロプロポキシ、ブトキシ等のアルコキシ基、フェノキシ、メチルフェノキシ、ジメチルフェノキシ、ナフトキシ等のアリロキシ基、フェニルメトキシ、ナフチルメトキシ等のアリールアルコキシ基、フリル基などの酸素含有複素環基などが挙げられる。
【0028】
上記の炭素数1〜20の窒素含有炭化水素基の具体例としては、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ等のアルキルアミノ基、フェニルアミノ、ジフェニルアミノ等のアリールアミノ基、(メチル)(フェニル)アミノ等の(アルキル)(アリール)アミノ基、ピラゾリル、インドリル等の窒素含有複素環基などが挙げられる。
【0029】
上記の炭素数1〜20のハロゲン化炭化水素基において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。そして、上記のハロゲン化炭化水素基は、ハロゲン原子が例えばフッ素原子の場合、フッ素原子が上記の炭化水素基の任意の位置に置換した化合物である。具体的には、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、2,2,2−トリフルオロエチル、2,2,1,1−テトラフルオロエチル、ペンタフルオロエチル、ペンタクロロエチル、ペンタフルオロプロピル、ノナフルオロブチル、トリフルオロビニル、1,1−ジフルオロベンジル、1,1,2,2−テトラフルオロフェニルエチル、2−、3−、4−フルオロフェニル、2−、3−、4−クロロフェニル、2−、3−、4−ブロモフェニル、2,4−、3,5−、2,6−、2,5−ジフルオロフェニル、2,4−、3,5−、2,6−、2,5−ジクロロフェニル、2,4,6−トリフルオロフェニル、2,4,6−トリクロロフェニル、ペンタフルオロフェニル、ペンタクロロフェニル、4−フルオロナフチル、4−クロロナフチル、2,4−ジフルオロナフチル、ヘプタフルオロ−1−ナフチル、ヘプタクロロ−1−ナフチル、2−、3−、4−トリフルオロメチルフェニル、2−、3−、4−トリクロロメチルフェニル、2,4−、3,5−、2,6−、2,5−ビス(トリフルオロメチル)フェニル、2,4−、3,5−、2,6−、2,5−ビス(トリクロロメチル)フェニル、2,4,6−トリス(トリフルオロメチル)フェニル、4−トリフルオロメチルナフチル、4−トリクロロメチルナフチル、2,4−ビス(トリフルオロメチル)ナフチル基などが挙げられる。
【0030】
上記の炭素数1〜20のケイ素含有炭化水素基の具体例としては、トリメチルシリルメチル、トリエチルシリルメチル等のトリアルキルシリルメチル基、ジメチルフェニルシリルメチル、ジエチルフェニルシリルメチル、ジメチルトリルシリルメチル等のジ(アルキル)(アリール)シリルメチル基などが挙げられる。X及びYとしては、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20の窒素含有炭化水素基が好ましく、ハロゲン原子、炭素数1〜20の炭化水素基または炭素数1〜20の窒素含有炭化水素基が更に好ましく、塩素原子、メチル基、i−ブチル基、フェニル基、ベンジル基、ジメチルアミノ基またはジエチルアミノ基が特に好ましい。一般式(Ia)中、Mは、周期表第4の遷移金属を示し、好ましくはジルコニウム、ハフニウムである。
【0031】
次に、本発明の第2の遷移金属化合物について説明する。この化合物は、以下の一般式(Ib)で表される。
【0032】
【化9】
【0033】
一般式(Ib)中、C1、C2、C3、M、X、Yは、一般式(Ia)と同じ意味を表す。
【0034】
一般式(Ib)中、R1、R2はそれぞれ独立して、それが結合する五員環に対して縮合環を形成する炭素数3〜10の飽和または不飽和の2価の炭化水素基を示す。従って、当該縮合環は5〜12員環である。この際、当該縮合環の両方が6〜10員環であることが好ましい。
【0035】
上記のR1及びR2の具体例としては、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン等の2価の飽和炭化水素基、プロペニレン、2−ブテニレン、1,3−ブタジエニレン、1−ペンテニレン、2−ペンテニレン、1,3−ペンタジエニレン、1,4−ペンタジエニレン、1−ヘキセニレン、2−ヘキセニレン、3−ヘキセニレン、1,3−ヘキサジエニレン、1,4−ヘキサジエニレン、1,5−ヘキサジエニレン、2,4−ヘキサジエニレン、2,5−ヘキサジエニレン、1,3,5−ヘキサトリエニレン等の2価の不飽和炭化水素基などが挙げられる。これらのうち、テトラメチレン基、1,3−ブタジエニレン基、ペンタメチレン基、1,3−ペンタジエニレン基、1,4−ペンタジエニレン基または1,3,5−ヘキサトリエニレン基が好ましく、テトラメチレン基、1,3−ブタジエニレン基、ペンタメチレン基、1,3−ペンタジエニレン基または1,4−ペンタジエニレン基が更に好ましく、ペンタメチレン基、3−ペンタジエニレン基が特に好ましい。
【0036】
一般式(Ia)中、R3、R4は、それぞれ独立して、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン化炭化水素基を示す。上記の炭素数1〜20の炭化水素基の具体例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシル、メチルシクロヘキシル等のアルキル基、ビニル、プロペニル、シクロヘキセニル等のアルケニル基、ベンジル、フェニルエチル、フェニルプロピル等のアリールアルキル基、trans−スチリル等のアリールアルケニル基、フェニル、トリル、ジメチルフェニル、エチルフェニル、トリメチルフェニル、1−ナフチル、2−ナフチル、アセナフチル、フェナントリル、アントリル等のアリール基などが挙げられる。
【0037】
上記の炭素数1〜20のハロゲン化炭化水素基において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。そして、上記のハロゲン化炭化水素基は、ハロゲン原子が例えばフッ素原子の場合、フッ素原子が上記の炭化水素基の任意の位置に置換した化合物である。その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、2,2,2−トリフルオロエチル、2,2,1,1−テトラフルオロエチル、ペンタフルオロエチル、ペンタクロロエチル、ペンタフルオロプロピル、ノナフルオロブチル、トリフルオロビニル、1,1−ジフルオロベンジル、1,1,2,2−テトラフルオロフェニルエチル、2−、3−、4−フルオロフェニル、2−、3−、4−クロロフェニル、2−、3−、4−ブロモフェニル、2,4−、3,5−、2,6−、2,5−ジフルオロフェニル、2,4−、3,5−、2,6−、2,5−ジクロロフェニル、2,4,6−トリフルオロフェニル、2,4,6−トリクロロフェニル、ペンタフルオロフェニル、ペンタクロロフェニル、4−フルオロナフチル、4−クロロナフチル、2,4−ジフルオロナフチル、ヘプタフルオロ−1−ナフチル、ヘプタクロロ−1−ナフチル、2−、3−、4−トリフルオロメチルフェニル、2−、3−、4−トリクロロメチルフェニル、2,4−、3,5−、2,6−、2,5−ビス(トリフルオロメチル)フェニル、2,4−、3,5−、2,6−、2,5−ビス(トリクロロメチル)フェニル、2,4,6−トリス(トリフルオロメチル)フェニル、4−トリフルオロメチルナフチル、4−トリクロロメチルナフチル、2,4−ビス(トリフルオロメチル)ナフチル基などが挙げられる。
【0038】
R3、R4は連結して新たな環構造を形成していてもよい。R3、R4の結合位置は特に制限されないが、それぞれの5員環に隣接する炭素(α位の炭素)であることが好ましい。m及びnは、0≦m≦5および0≦n≦5の関係を満たす負でない整数であり、好ましくはm=1、n=1である。
【0039】
次に、本発明の第3の遷移金属化合物について説明する。この化合物は、以下の一般式(Ic)で表される。
【0040】
一般式(Ic)中、C1、M、X、Yは、一般式(Ia)と同じ意味を表す。
【0041】
【化10】
【0042】
R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21はそれぞれ独立して、水素原子、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン化炭化水素基を示す。
【0043】
上記の炭素数1〜20の炭化水素基の具体例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、n−ペンチル、n−ヘキシル、シクロプロピル、シクロペンチル、シクロヘキシル、メチルシクロヘキシル等のアルキル基、ビニル、プロペニル、シクロヘキセニル等のアルケニル基、ベンジル、フェニルエチル、フェニルプロピル等のアリールアルキル基、trans−スチリル等のアリールアルケニル基、フェニル、トリル、ジメチルフェニル、エチルフェニル、トリメチルフェニル、1−ナフチル、2−ナフチル、アセナフチル、フェナントリル、アントリル等のアリール基などが挙げられる。
【0044】
上記の炭素数1〜20のハロゲン化炭化水素基において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。そして、上記のハロゲン化炭化水素基は、ハロゲン原子が例えばフッ素原子の場合、フッ素原子が上記の炭化水素基の任意の位置に置換した化合物である。その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、2,2,2−トリフルオロエチル、2,2,1,1−テトラフルオロエチル、ペンタフルオロエチル、ペンタクロロエチル、ペンタフルオロプロピル、ノナフルオロブチル、トリフルオロビニル、1,1−ジフルオロベンジル、1,1,2,2−テトラフルオロフェニルエチル、2−、3−、4−フルオロフェニル、2−、3−、4−クロロフェニル、2−、3−、4−ブロモフェニル、2,4−、3,5−、2,6−、2,5−ジフルオロフェニル、2,4−、3,5−、2,6−、2,5−ジクロロフェニル、2,4,6−トリフルオロフェニル、2,4,6−トリクロロフェニル、ペンタフルオロフェニル、ペンタクロロフェニル、4−フルオロナフチル、4−クロロナフチル、2,4−ジフルオロナフチル、ヘプタフルオロ−1−ナフチル、ヘプタクロロ−1−ナフチル、2−、3−、4−トリフルオロメチルフェニル、2−、3−、4−トリクロロメチルフェニル、2,4−、3,5−、2,6−、2,5−ビス(トリフルオロメチル)フェニル、2,4−、3,5−、2,6−、2,5−ビス(トリクロロメチル)フェニル、2,4,6−トリス(トリフルオロメチル)フェニル、4−トリフルオロメチルナフチル、4−トリクロロメチルナフチル、2,4−ビス(トリフルオロメチル)ナフチル基などが挙げられる。
【0045】
R11、R12、R14、R15、R16、R17、R19、R20は水素原子が好ましい。
R10、R21は炭素数1〜6の炭化水素基が好ましく、メチル基、エチル基が特に好ましい。R13、R18は炭素数6〜20のアリール基またはハロゲン含有アリール基が好ましい。
【0046】
以上述べたような本発明の遷移金属化合物、あるいは、α−オレフィン重合用触媒成分の具体例のいくつかについて、その構造式を以下に例示する。
【0047】
【化11】
【0048】
【化12】
【0049】
【化13】
【0050】
【化14】
【0051】
また、上述の様な化合物において、一般式(Ia)〜(Ic)のX及びY部分に相当する2つの塩素原子の一方または両方が、水素原子、フッ素原子、臭素原子、ヨウ素原子、メチル基、フェニル基、フルオロフェニル基、ベンジル基、メトキシ基、ジメチルアミノ基、ジエチルアミノ基などに代わった化合物も例示することが出来る。また、先に例示した化合物の中心金属(M)がジルコニウムの代わりに、チタン、ハフニウムに代えた化合物も例示することが出来る。これらの中では、ジルコニウム又はハフニウムが特に好ましい。
【0052】
次に、本発明のα−オレフィン重合用触媒(1)及び(2)について説明する。これらの触媒は、何れも、前述した本発明の遷移金属化合物を成分(A)として含む。先ず成分(A)の他に成分(B)として、アルミニウムオキシ化合物、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物またはルイス酸を含み、任意成分(C)として微粒子担体を含む、本発明のα−オレフィン重合用触媒(1)について説明する。なお、上記のルイス酸のある種のものは、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物として把握することも出来る。従って、上記のルイス酸およびイオン性化合物の両者に属する化合物は、何れか一方に属するものとする。上記のアルミニウムオキシ化合物としては、具体的には次の一般式(II)、(III)又は(IV)で表される化合物が挙げられる。
【0053】
【化15】
【0054】
上記の各一般式中、R24は、水素原子または炭化水素残基、好ましくは炭素数1〜10、特に好ましくは炭素数1〜6の炭化水素残基を示す。また、複数のR24はそれぞれ同一でも異なっていてもよい。また、pは0〜40、好ましくは2〜30の整数を示す。
【0055】
一般式(II)及び(III)で表される化合物は、アルモキサンとも呼ばれる化合物であって、一種類のトリアルキルアルミニウム又は二種類以上のトリアルキルアルミニウムと水との反応により得られる。具体的には、(a)一種類のトリアルキルアルミニウムと水から得られる、メチルアルモキサン、エチルアルモキサン、プロピルアルモキサン、ブチルアルモキサン、イソブチルアルモキサン、(b)二種類のトリアルキルアルミニウムと水から得られる、メチルエチルアルモキサン、メチルブチルアルモキサン、メチルイソブチルアルモキサン等が例示される。これらの中では、メチルアルモキサン又はメチルイソブチルアルモキサンが好ましい。
【0056】
上記のアルモキサンは、各群内および各群間で複数種併用することも可能である。そして、上記のアルモキサンは、公知の様々な条件下に調製することが出来る。具体的には以下の様な方法が例示できる。
(a)トルエン、ベンゼン、エーテル等の適当な有機溶剤の存在下、トリアルキルアルミニウムを直接水と反応させる方法。
(b)トリアルキルアルミニウムと結晶水を有する塩水和物、例えば、硫酸銅、硫酸アルミニウムの水和物とを反応させる方法。
(c)トリアルキルアルミニウムとシリカゲル等に含浸させた水分とを反応させる方法。
(d)トリメチルアルミニウムとトリイソブチルアルミニウムとを混合した後、トルエン、ベンゼン、エーテル等の適当な有機溶剤の存在下、直接水と反応させる方法。
(e)トリメチルアルミニウムとトリイソブチルアルミニウムとの混合物と結晶水を有する塩水和物、例えば、硫酸銅、硫酸アルミニウムとの水和物とを加熱反応させる方法。
(f)シリカゲル等に水分を含浸させ、トリイソブチルアルミニウムで処理した後、トリメチルアルミニウムで追加処理する方法。
(g)メチルアルモキサン及びイソブチルアルモキサンを公知の方法で合成し、これら二成分を所定量混合して加熱反応させる方法。
(h)ベンゼン、トルエン等の芳香族炭化水素溶媒中に硫酸銅5水塩などの結晶水を有する塩とトリメチルアルミニウムとを添加して約−40〜40℃の温度条件下に反応させる方法。
【0057】
反応に使用する水の量は、トリメチルアルミニウムに対するモル比で通常0.5〜1.5である。上記の方法で得られたメチルアルモキサンは、線状または環状の有機アルミニウムの重合体である。一般式(IV)で表される化合物は、一種類のトリアルキルアルミニウム又は二種類以上のトリアルキルアルミニウムと次の一般式(V)で表されるアルキルボロン酸との10:1〜1:1(モル比)の反応により得ることが出来る。一般式(V)中、R25は、炭素数1〜10、好ましくは炭素数1〜6の炭化水素残基またはハロゲン化炭化水素基を示す。
【0058】
R25B(OH)2 (V)
具体的には以下の様な反応生成物が例示できる。
(a)トリメチルアルミニウムとメチルボロン酸の2:1の反応物
(b)トリイソブチルアルミニウムとメチルボロン酸の2:1反応物
(c)トリメチルアルミニウムとトリイソブチルアルミニウムとメチルボロン酸の1:1:1反応物
(d)トリメチルアルミニウムとエチルボロン酸の2:1反応物
(e)トリエチルアルミニウムとブチルボロン酸の2:1反応物
また、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物としては、一般式(VI)で表される化合物が挙げられる。
【0059】
〔K〕e+〔Z〕e- (VI)
一般式(VI)中、Kはカチオン成分であって、例えば、カルボニウムカチオン、トロピリウムカチオン、アンモニウムカチオン、オキソニウムカチオン、スルホニウムカチオン、ホスフォニウムカチオン等が挙げられる。また、それ自身が還元され易い金属の陽イオンや有機金属の陽イオン等も挙げられる。上記のカチオンの具体例としては、トリフェニルカルボニウム、ジフェニルカルボニウム、シクロヘプタトリエニウム、インデニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、N, N−ジメチルアニリニウム、ジプロピルアンモニウム、ジシクロヘキシルアンモニウム、トリフェニルホスホニウム、トリメチルホスホニウム、トリス(ジメチルフェニル)ホスホニウム、トリス(メチルフェニル)ホスホニウム、トリフェニルスルホニウム、トリフェニルオキソニウム、トリエチルオキソニウム、ピリリウム、銀イオン、金イオン、白金イオン、銅イオン、パラジウムイオン、水銀イオン、フェロセニウムイオン等が挙げられる。
【0060】
上記の一般式(VI)中、Zは、アニオン成分であり、成分(A)が変換されたカチオン種に対して対アニオンとなる成分(一般には非配位の成分)である。Zとしては、例えば、有機ホウ素化合物アニオン、有機アルミニウム化合物アニオン、有機ガリウム化合物アニオン、有機リン化合物アニオン、有機ヒ素化合物アニオン、有機アンチモン化合物アニオン等が挙げられ、具体的には次のアニオンが挙げられる。
(a)テトラフェニルホウ素、テトラキス(3,4,5−トリフルオロフェニル)ホウ素、テトラキス{3,5−ビス(トリフルオロメチル)フェニル}ホウ素、テトラキス{3,5−ジ(t−ブチル)フェニル}ホウ素、テトラキス(ペンタフルオロフェニル)ホウ素等
(b)テトラフェニルアルミニウム、テトラキス(3,4,5−トリフルオロフェニル)アルミニウム、テトラキス{3,5−ビス(トリフルオロメチル)フェニル}アルミニウム、テトラキス(3,5−ジ(t−ブチル)フェニル)アルミニウム、テトラキス(ペンタフルオロフェニル)アルミニウム等。
(c)テトラフェニルガリウム、テトラキス(3,4,5−トリフルオロフェニル)ガリウム、テトラキス{3,5−ビス(トリフルオロメチル)フェニル}ガリウム、テトラキス{3,5−ジ(t−ブチル)フェニル}ガリウム、テトラキス(ペンタフルオロフェニル)ガリウム等
(d)テトラフェニルリン、テトラキス(ペンタフルオロフェニル)リン等
(e)テトラフェニルヒ素、テトラキス(ペンタフルオロフェニル)ヒ素等
(f)テトラフェニルアンチモン、テトラキス(ペンタフルオロフェニル)アンチモン等
(g)デカボレート、ウンデカボレート、カルバドデカボレート、デカクロロデカボレート等
また、ルイス酸、特に成分(A)をカチオンに変換可能なルイス酸としては、種々の有機ホウ素化合物、金属ハロゲン化合物、固体酸などが例示され、その具体的例としては次の化合物が挙げられる。
(a)トリフェニルホウ素、トリス(3,5−ジフルオロフェニル)ホウ素、トリス(ペンタフルオロフェニル)ホウ素等の有機ホウ素化合物
(b)塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化臭化マグネシウム、塩化ヨウ化マグネシウム、臭化ヨウ化マグネシウム、塩化マグネシウムハイドライド、塩化マグネシウムハイドロオキシド、臭化マグネシウムハイドロオキシド、塩化マグネシウムアルコキシド、臭化マグネシウムアルコキシド等の金属ハロゲン化合物
(c)アルミナ、シリカ−アルミナ等の固体酸。
【0061】
本発明のα−オレフィン重合用触媒(1)において、任意成分(C)としての微粒子担体は、無機または有機の化合物から成り、通常5μ〜5mm、好ましくは10μ〜2mmの粒径を有する微粒子状の担体である。上記の無機担体としては、例えば、SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、ZnO等の酸化物、SiO2−MgO、SiO2−Al2O3、SiO2−TiO2、SiO2−Cr2O3、SiO2−Al2O3−MgO等の複合酸化物などが挙げられる。
【0062】
上記の有機担体としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等の炭素数2〜14のα−オレフィンの(共)重合体、スチレン、ジビニルベンゼン等の芳香族不飽和炭化水素の(共)重合体などから成る多孔質ポリマーの微粒子担体が挙げられる。これらの比表面積は、通常20〜1000m2/g、好ましくは50〜700m2/gであり、細孔容積は、通常0.1cm3/g以上、好ましくは0.3cm3/g、更に好ましくは0.8cm3/g以上である。
【0063】
本発明のα−オレフィン重合用触媒(1)は、微粒子担体以外の任意成分として、例えば、H2O、メタノール、エタノール、ブタノール等の活性水素含有化合物、エーテル、エステル、アミン等の電子供与性化合物、ホウ酸フェニル、ジメチルメトキシアルミニウム、亜リン酸フェニル、テトラエトキシシラン、ジフェニルジメトキシシラン等のアルコキシ含有化合物を含むことが出来る。
【0064】
また、上記以外の任意成分としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリ低級アルキルアルミニウム、ジエチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、メチルアルミニウムセスキクロリド等のハロゲン含有アルキルアルミニウム、ジエチルアルミニウムヒドリド等のアルキルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジメチルアルミニウムブトキシド等のアルコキシ含有アルキルアルミニウム、ジエチルアルミニウムフェノキシド等のアリールオキシ含有アルキルアルミニウム等が挙げられる。
【0065】
本発明のα−オレフィン重合用触媒(1)において、アルミニウムオキシ化合物、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物またはルイス酸は、成分(B)として、それぞれ単独使用される他、これらの3成分を適宜組み合わせて使用することが出来る。また、上記の低級アルキルアルミニウム、ハロゲン含有アルキルアルミニウム、アルキルアルミニウムヒドリド、アルコキシ含有アルキルアルミニウム、アリールオキシ含有アルキルアルミニウムの1種または2種以上は、任意成分ではあるが、アルミニウムオキシ化合物、イオン性化合物またはルイス酸と併用してα−オレフィン重合用触媒(1)中に含有させるのが好ましい。
【0066】
本発明のα−オレフィン重合用触媒(1)は、重合槽の内外において、重合させるべきモノマーの存在下または不存在下、上記の成分(A)及び(B)を接触させることにより調製することが出来る。すなわち、成分(A)及び(B)と必要に応じて成分(C)等を重合槽に別々に導入してもよいし、成分(A)及び(B)を予め接触させた後に重合槽に導入してもよい。また、成分(A)及び(B)の混合物を成分(C)に含浸させた後に重合槽へ導入してもよい。
【0067】
上記の各成分の接触は、窒素などの不活性ガス中、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性炭化水素溶媒中で行ってもよい。接触温度は、−20℃から溶媒の沸点の範囲の温度、特に、室温から溶媒の沸点の範囲の温度が好ましい。この様にして調製された触媒は、調製後に洗浄せずに使用してもよく、また、洗浄した後に使用してもよい。更には、調製後に必要に応じて新たに成分を組み合わせて使用してもよい。
【0068】
また、成分(A)、(B)及び成分(C)を予め接触させる際、重合させるモノマーを存在させてα−オレフィンの一部を重合する、いわゆる予備重合を行うことも出来る。すなわち、重合の前に、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等のオレフィンの予備重合を行い、必要に応じて洗浄した予備重合生成物を触媒として使用することも出来る。この予備重合は、不活性溶媒中で穏和な条件で行うことが好ましく、固体触媒1g当たり、通常0.01〜1000g、好ましくは0.1〜100gの重合体が生成するように行うのが好ましい。
【0069】
成分(A)及び(B)の使用量は任意である。例えば、溶媒重合の場合、成分(A)の使用量は、遷移金属原子として、通常10-7〜102mmol/L、好ましくは10-4〜1mmol/Lの範囲とされる。アルミニウムオキシ化合物の場合、Al/遷移金属のモル比は、通常10〜105、好ましくは100〜2×104、更に好ましくは100〜104の範囲とされる。一方、成分(B)としてイオン性化合物またはルイス酸を使用した場合、遷移金属に対するこれらのモル比は、通常0.1〜1000、好ましくは0.5〜100、更に好ましくは1〜50の範囲とされる。
【0070】
次に成分(D)として、珪酸塩を除くイオン交換性層状化合物または無機珪酸塩を含み、任意成分(E)として有機アルミニウム化合物を含む、本発明のα−オレフィン重合用触媒(2)について説明する。上記のイオン交換性層状化合物としては、六方最密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物が挙げられ、その具体例としては、α−Zr(HAsO4)2・H2O、α−Zr(HPO4)2、α−Zr(KPO4)3・3H2O、α−Ti(HPO4)2、α−Ti(HAsO4)2・H2O、α−Sn(HPO4)2・H2O、γ−Zr(HPO4)2、γ−Ti(HPO4)2、γ−Ti(NH4PO4)2・H2O等の多価金属の結晶性酸性塩が挙げられる。
【0071】
上記のイオン交換性層状化合物は、必要に応じて塩類処理および/または酸処理を行って使用してもよい。塩類処理も酸処理も施されていない状態の、珪酸塩を除くイオン交換性層状化合物は、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる化合物であり、含有するイオンの交換が可能である。
【0072】
上記の無機珪酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土などが挙げられる。これらは、合成品を使用してもよいし、天然に産出する鉱物を使用してもよい。粘土および粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ソーコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石などの雲母鉱物、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群などが挙げられる。これらは混合層を形成していてもよい。また、人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。
【0073】
上記の無機珪酸塩の中では、カオリン族、ハロサイト族、蛇紋石族、スメクタイト、バーミキュライト鉱物、雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト又は合成テニオライトが好ましく、スメクタイト、バーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト又は合成テニオライトが更に好ましい。これらは、特に処理を行うことなくそのまま使用してもよいし、ボールミル、篩い分け等の処理を行った後に使用してもよい。また、単独で使用しても、2種以上を混合して使用してもよい。
【0074】
上記の無機珪酸塩は、必要に応じ、塩類処理および/または酸処理により、固体の酸強度を変えることが出来る。また、塩類処理においては、イオン複合体、分子複合体、有機誘導体などを形成することにより、表面積や層間距離を変えることが出来る。すなわち、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと置換することにより、層間が拡大した状態の層状物質を得ることが出来る。
【0075】
イオン交換性層状化合物および無機珪酸塩は、未処理のまま使用してもよいが、含有される交換可能な金属陽イオンを次に示す塩類および/または酸より解離した陽イオンとイオン交換することが好ましい。上記のイオン交換に使用する塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンを含有する化合物であり、好ましくは、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の原子または原子団よりより誘導される陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、Cl、Br、I、F、PO4、SO4、NO3、CO3、C2O4、ClO4、OOCCH3、CH3COCHCOCH3、OCl2、O(NO3)2、O(ClO4)2、O(SO4)、OH、O2Cl2、OCl3、OOCH及びOOCCH2CH3から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物である。また、これら塩類は2種以上を同時に使用してもよい。
【0076】
上記のイオン交換に使用する酸は、好ましくは、塩酸、硫酸、硝酸、酢酸、シュウ酸から選択され、これらは、2種以上を同時に使用してもよい。塩類処理と酸処理を組み合わせる方法としては、塩類処理を行った後に酸処理を行う方法、酸処理を行った後に塩類処理を行う方法、塩類処理と酸処理を同時に行う方法、塩類処理を行った後に塩類処理と酸処理を同時に行う方法などがある。なお、酸処理は、イオン交換や表面の不純物を取り除く効果の他、結晶構造のAl、Fe、Mg、Li等の陽イオンの一部を溶出させる効果がある。
【0077】
塩類および酸による処理条件は特に制限されない。しかしながら、通常、塩類および酸濃度は0.1〜30重量%、処理温度は室温から使用溶媒の沸点の範囲の温度、処理時間は5分〜24時間の条件を選択し、被処理化合物の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は一般的には水溶液で使用される。
【0078】
上記の塩類処理および/または酸処理を行う場合、処理前、処理間、処理後に粉砕や造粒などで形状制御を行ってもよい。また、アルカリ処理や有機化合物処理、有機金属処理などの他の化学処理を併用してもよい。このようにして得られる成分(D)としては、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上、特には0.3〜5cc/gであることが好ましい。斯かる成分(D)は、水溶液中で処理した場合、吸着水および層間水を含む。ここで、吸着水とは、イオン交換性層状化合物または無機珪酸塩の表面あるいは結晶破面に吸着された水であり、層間水とは、結晶の層間に存在する水である。
【0079】
本発明において、成分(D)は、上記の様な吸着水および層間水を除去してから使用することが好ましい。脱水方法は、特に制限されないが、加熱脱水、気体流通下の加熱脱水、減圧下の加熱脱水および有機溶媒との共沸脱水などの方法が使用される。加熱温度は、吸着水および層間水が残存しない様な温度範囲とされ、通常100℃以上、好ましくは150℃以上とされるが、構造破壊を生じる様な高温条件は好ましくない。加熱時間は、0.5時間以上、好ましくは1時間以上である。その際、脱水乾燥した後の成分(D)の重量減量は、温度200℃、圧力1mmHgの条件下で2時間吸引した場合の値を0重量%として3重量%以下であることが好ましい。本発明においては、重量減量が3重量%以下に調製された成分(D)を使用する場合、必須成分(A)及び後述の任意成分(E)と接触する際にも、同様の重量減量の状態が保持される様に取り扱うことが好ましい。
【0080】
本発明のα−オレフィン重合用触媒(2)において、任意成分(E)としての有機アルミニウム化合物の一例は、次の一般式(VII)で表される。
【0081】
AlR26 aP3-a (VII)
一般式(VII)中、R26は炭素数1〜20の炭化水素基、Pは、水素、ハロゲン、アルコキシ基またはシロキシ基を示し、aは0より大きく3以下の数を示す。一般式(VII)で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシド等のハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられる。これらの中では、トリアルキルアルミニウムが好ましい。本発明のα−オレフィン重合用触媒(2)においては、成分(E)として、一般式(VII)で表される有機アルミニウム化合物以外にメチルアルミノキサン等のアルミノキサン類なども使用できる。また、上記の有機アルミニウム化合物とアルミノキサン類とを併用することも出来る。
【0082】
本発明のα−オレフィン重合用触媒(2)は、α−オレフィン重合用触媒(1)の場合と同様の方法により調製することが出来る。この際、成分(A)及び成分(D)と任意成分(E)の接触方法は、特に限定されないが、次の様な方法を例示することが出来る。
(1)成分(A)と成分(D)とを接触させる方法。
(2)成分(A)と成分(D)とを接触させた後に任意成分(E)を添加する方法。
(3)成分(A)と任意成分(E)とを接触させた後に成分(D)を添加する方法。
(4)成分(D)と任意成分(E)とを接触させた後に成分(A)を添加する方法。
(5)各成分(A)、(D)、(E)を同時に接触させる方法。
【0083】
なお、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時またはオレフィンの重合時に行ってもよい。上記の各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、アルミナ等の無機酸化物の固体を共存させるか、または、接触させてもよい。
【0084】
また、上記の各成分の接触は、窒素などの不活性ガス中、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性炭化水素溶媒中で行ってもよい。接触は、−20℃から溶媒の沸点の間の温度で行い、特に室温から溶媒の沸点の間での温度で行うのが好ましい。上記の各成分の使用量は次の通りである。すなわち、成分(D)1g当たり、成分(A)は、通常10-4〜10mmol、好ましくは10-3〜5mmolであり、成分(E)は、通常0.01〜104mmol、好ましくは0.1〜100mmolである。また、成分(A)中の遷移金属と成分(E)中のアルミニウムの原子比は、通常1:0.01〜106、好ましくは1:0.1〜105である。このようにして調製された触媒は、調製後に洗浄せずに使用してもよく、また、洗浄した後に使用してもよい。また、必要に応じて新たに任意成分(E)を組み合わせて使用してもよい。この際、使用される任意成分(E)の量は、成分(A)中の遷移金属に対する任意成分(E)中のアルミニウムの原子比で1:0〜104、好ましくは1:1〜104になる様に選ばれる。
【0085】
次に、本発明に係るα−オレフィン重合体の製造方法について説明する。本発明においては、前述の本発明の触媒とα−オレフィンとを接触させて重合または共重合を行う。本発明のα−オレフィン重合用触媒(1)又は(2)は、溶媒を使用する溶媒重合に適用される他、実質的に溶媒を使用しない液相無溶媒重合、気相重合、溶融重合にも適用される。また、重合方式は、連続重合および回分式重合の何れであってもよい。
【0086】
溶媒重合における溶媒としては、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の不活性な飽和脂肪族または芳香族炭化水素の単独あるいは混合物が使用される。重合温度は、通常−78〜250℃、好ましくは−20〜100℃とされる。反応系のオレフィン圧は、特に制限されないが、好ましくは常圧から2000kgf/cm2G、更に好ましくは常圧から50kgf/cm2Gの範囲とされる。また、例えば、温度や圧力の選定または水素の導入などの公知の手段により分子量調節を行なうことも出来る。
【0087】
原料のα−オレフィンとしては、炭素数が通常2〜20、好ましくは2〜10のα−オレフィンが使用され、その具体例としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等が挙げられる。本発明の触媒は、炭素数2〜10のα−オレフィン、特にエチレンの重合に好適に使用される。
【0088】
また、本発明の触媒は、上記の各α−オレフィン同志またはα−オレフィンとの他の単量体との共重合にも適用可能である。α−オレフィンと共重合可能な他の単量体としては、例えば、ブタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、7−メチル−1,6−オクタジエン、1,8−ノナジエン、1,9−デカジエンの様な共役および非共役ジエン類、シクロプロペン、シクロブテン、シクロペンテン、ノルボルネン、ジシクロペンタジエンの様な環状オレフィンが挙げられる。また、重合に際しては、多段階に条件を変更するいわゆる多段重合、例えば、一段目にプロピレンの重合を行い、二段目にエチレンとプロピレンの共重合を行う所謂ブロック共重合も可能である。
【0089】
【実施例】
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例によって制約を受けるものではない。なお、本実施例で用いた溶媒は全て窒素下で脱水処理されており、助触媒として用いたメチルアルモキサン(MAO)は東ソー・アクゾ社製MMAO−3A(トルエン溶液、Al含量5.9重量%)である。また、本実施例における各種物性等の測定方法は以下の通りである。
(1)MFRの測定:
ポリマー6gに熱安定剤(BHT)のアセトン溶液(0.6重量%)6gを添加し、次いで、上記のポリマーを乾燥した後、メルトインデクサー(230℃)に充填し、21.6Kg荷重の条件下に5分間放置した。その後、ポリマーの押し出し量を測定し、10分間当たりの量に換算し、MFRの値とした。
(2)分子量の測定:
GPC/MALLSにより重量平均分子量(Mw)を求めた。GPC装置は、Waters社製「Alliance GPC2000CV」を使用し、多角度光散乱検出器装置(Wyatt Technology社製「DAWN−DSP」)を接続して測定した。溶媒はトリクロロベンゼンを使用し、測定温度は140℃とした。使用したカラムはShodex UT−806M、流量は0.5mL/minで行った。
(3)融点の測定:
DSC(デュポン社製「TA2000型」)を使用し、10℃/分で20〜200℃までの昇降温を1回行った後の2回目の昇温時の測定により求めた。
【0090】
実施例1
(ジクロロジメチルシリレンビス(2−メチル−4−(2−フルオロ−4−ビフェニリル)−4H−アズレニル)ジルコニウム(1)の合成)
2−フルオロ−4−ブロモビフェニル(6.08g,24.2mmol)をジエチルエーテル(40mL)とヘキサン(40mL)の混合溶媒に溶かし、t−ブチルリチウムのペンタン溶液(33mL,48.4mmol,1.45N)を−40℃で滴下した。−10℃で45分間攪拌した後、この溶液に2−メチルアズレン(3.2g,23mmol)を加え室温で1時間攪拌した。ヘキサン(30,20mL)を加え、上澄みをデカントし可溶性の不純物を除いた。得られた黄色沈殿に0℃でヘキサン(30mL)とテトラヒドロフラン(40mL)を加えた。N−メチルイミダゾール(50μL)とジメチルジクロロシラン(1.38mL,11.4mmol)を加え、室温まで昇温し、室温(15−20℃)で1時間攪拌した。この後、水を加え、分液した後有機相を硫酸マグネシウムで乾燥し、減圧下溶媒を留去すると、ジメチルシリレンビス(2−メチル−4−(2−フルオロ−4−ビフェニリル)−1,4−ジヒドロアズレンのアモルファス状粗精製物(7.72g)が得られた。
【0091】
次に、上記で得られた粗精製物をジエチルエーテル(30mL)に溶かし、−10℃でn−ブチルリチウムのヘキサン溶液(14.3mL,22.7mmol,1.59N)を滴下し、徐々に昇温して室温で1時間攪拌した。さらに、トルエン(180mL)を加え、−10℃に冷却し、四塩化ジルコニウム(2.65g,11.37mmol)を加え、徐々に昇温し室温で3時間攪拌した。得られたスラリー溶液から減圧下大部分の溶媒を留去し、得られたスラリーを濾過した。トルエン(5mL×3)、ヘキサン(5mL×3)で洗浄すると黄色固体が得られた。 さらにエタノール(10mL×2)、トルエン(3mL)、ヘキサン(5mL×2)で洗浄すると、ジクロロジメチルシリレンビス(2−メチル−4−(2−フルオロ−4−ビフェニリル)−4H−アズレニル)ジルコニウム(1)のラセミ・メソ混合物(4.48g,42%、錯体:トルエン1:1)が得られた。
【0092】
(三重架橋錯体(2)の合成)
上記で得られた(1)のラセミ・メソ混合物(4.4g)をジクロロメタン(120mL)に懸濁し、高圧水銀灯(100W)を用いて計2.75時間光照射した。このスラリー溶液を減圧下溶媒をある程度留去し、析出した沈殿を濾過し、ヘキサン(10mL)で洗浄すると(1)のラセミ体が得られた(2.24g,55%)。
【0093】
さらに、ジクロロメタン可溶分を溶媒留去し、トルエン(15mL,10mL×2)で洗浄した。得られた不溶分をさらにジクロロメタン(50mL×3)で洗浄し、1,2−ジクロロエタン(40mL)を用いて再結晶を行ったところ、下図(VIII)に示す三重架橋錯体(2)が得られた。三重架橋錯体(2)はX線結晶構造解析を行うことにより、その構造を確認した。
【0094】
【化16】
【0095】
1H−NMR(300MHz,CDCl3)δ0.67(s,3H,SiMe2),0.92(s,3H,SiMe2),2.16(s,6H,2−Me),3.87(brd,2H),4.61(brd,2H),5.12(d,J=6Hz,2H,4-H),5.70(m,2H,6−H),5.75(s,2H,3−H),6.06(dd,2H,5−H),6.94(d,J=15Hz,2H,arom),7.07(d,J=6Hz,2H,arom),7.35−7.55(m,12H,arom).
negative−DCI−MSm/z842(M-)C48H40Cl2F2SiZr.
(メチルアルモキサンを用いるエチレンの重合)
内容積1リットルの攪拌式オートクレーブ内にトルエン(500mL)、東ソー・アクゾ社製メチルアルモキサンをAl原子換算で4mmol及び、上述の方法で得られた錯体(2)(1.68mg,2.0μmmol)を入れた。エチレンを圧力一定(2.0MPa)となるようにフィードし、70℃にて1時間重合操作を行った結果、44.6gのポリマーが得られた。錯体活性は2.7×104g−ポリマー/g−錯体、融点は137℃、Mwは2.8×106、MFR(21.6Kg)では流れなかった。
【0096】
実施例2
(モンモリロナイトを用いるエチレンスラリー重合)
硫酸マグネシウム・7水和物(133g)、硫酸(109g)を溶解させたイオン交換水(660mL)中に、市販の造粒モンモリロナイト(100g,水澤化学社製、ベンクレイSL)を分散させ、2時間で100℃まで昇温し、その温度で2時間維持した。その後、1時間かけて室温まで冷却した。このスラリーをろ過し、ケーキを回収した。純水(3L)を加え再スラリー化し、ろ過を行った。 この操作をさらに2回繰り返した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。その結果、80gの化学処理担体を得た。この化学処理されたモンモリロナイト400mgに、濃度0.5mol/Lのトリエチルアルミニウムのトルエン溶液1.6mLを加え、室温で30分間攪拌した。その後、トルエンで洗浄し、33mg/mLのモンモリロナイト−トルエンスラリーを得た。
【0097】
内容積1リットルの攪拌式オ−トクレ−ブ内にトルエン(500mL)、東ソー・アクゾ社製トリイソブチルアルミをAl原子換算で0.25mmolを導入した。一方、破裂板のついた触媒フィーダーに上記で得られた錯体2(1.27mg,1.5μmmol)をトルエンに希釈して導入し、モリロナイト(50mg)及びトリイソブチルアルミをAl原子換算で0.015mmolを導入した。その後、エチレンを圧力一定(2.0MPa)となるようにフィードし、70℃で90分間重合操作を行った結果、4.0gのポリマーが得られた。錯体活性は3.1×103g−ポリマー/g−錯体、融点は133.4℃、MFR(21.6Kg)では流れなかった。
【0098】
【発明の効果】
本発明によれば、工業的に実用な重合温度において、高分子量α−オレフィン重合体を得ることができる。
Claims (5)
- 下記一般式(1c)で表される遷移金属化合物。
- 請求項1に記載の遷移金属化合物からなることを特徴とするオレフィン重合用触媒成分。
- 次の成分(A)及び(B)と任意成分(C)を含むことを特徴とするα−オレフィン重合用触媒。
成分(A):請求項1に記載の遷移金属化合物
成分(B):アルミニウムオキシ化合物、成分(A)と反応して成分(A)をカチオンに変換することが可能なイオン性化合物、または、ルイス酸からなる群より選ばれるもの
成分(C):微粒子担体 - 次の成分(A)及び(D)と任意成分(E)を含むことを特徴とするα−オレフィン重合用触媒。
成分(A):請求項1に記載の遷移金属化合物
成分(D):珪酸塩を除くイオン交換性層化合物または無機珪酸塩からなる群より選ばれるもの
成分(E):有機アルミニウム化合物 - 請求項3又は4に記載の触媒とα−オレフィンとを接触させて重合を行うことを特徴とするα−オレフィン重合体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001212190A JP4989823B2 (ja) | 2001-07-12 | 2001-07-12 | 新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001212190A JP4989823B2 (ja) | 2001-07-12 | 2001-07-12 | 新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003026691A JP2003026691A (ja) | 2003-01-29 |
JP4989823B2 true JP4989823B2 (ja) | 2012-08-01 |
Family
ID=19047389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001212190A Expired - Fee Related JP4989823B2 (ja) | 2001-07-12 | 2001-07-12 | 新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4989823B2 (ja) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3493235B2 (ja) * | 1993-12-28 | 2004-02-03 | 出光興産株式会社 | エチレン系重合体の製造方法及びその方法により得られたエチレン系重合体 |
JPH09302014A (ja) * | 1996-05-09 | 1997-11-25 | Denki Kagaku Kogyo Kk | エチレン−芳香族ビニル化合物共重合体の製造方法 |
DE19623707A1 (de) * | 1996-06-14 | 1997-12-18 | Hoechst Ag | Übergangsmetallverbindung |
JP4644886B2 (ja) * | 1998-06-05 | 2011-03-09 | 三菱化学株式会社 | 遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 |
-
2001
- 2001-07-12 JP JP2001212190A patent/JP4989823B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003026691A (ja) | 2003-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4116148B2 (ja) | 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
US6252097B1 (en) | Transition metal compounds | |
JP4028077B2 (ja) | α−オレフィン重合用触媒 | |
JP4644886B2 (ja) | 遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JP5352056B2 (ja) | プロピレン/エチレン−αオレフィン系ブロック共重合体の製造方法 | |
JP4202397B2 (ja) | α−オレフィン重合用触媒 | |
JP4834964B2 (ja) | 新規遷移金属化合物、該遷移金属化合物を用いたプロピレン系重合体の製造方法、および末端にビニル基を有するプロピレン系重合体 | |
JP3973472B2 (ja) | オレフィン重合用触媒成分、オレフィン重合用触媒、およびオレフィン重合体の製造方法 | |
JP4989823B2 (ja) | 新規な遷移金属化合物、オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 | |
JP3811563B2 (ja) | 新規な遷移金属化合物、α−オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JP2004238493A (ja) | オレフィン重合体の製造法 | |
JPH05155926A (ja) | ポリオレフィン製造用固体触媒およびポリオレフィンの製造方法 | |
JP4395930B2 (ja) | 新規な遷移金属化合物、オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JP4139618B2 (ja) | オレフィン重合用触媒成分、オレフィン重合用触媒、オレフィン重合体の製造方法及び遷移金属化合物 | |
JP4184653B2 (ja) | 遷移金属化合物、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒、及び、α−オレフィン重合体の製造方法 | |
JP3295076B1 (ja) | α−オレフィン重合用触媒成分 | |
JP4128306B2 (ja) | α−オレフィン重合用触媒成分 | |
JPH11349618A (ja) | α−オレフィン重合用触媒成分、触媒およびα−オレフィン重合体の製造方法 | |
JPH11349617A (ja) | α−オレフィン重合用触媒成分、触媒およびα−オレフィン重合体の製造方法 | |
JP4224801B2 (ja) | メタロセン化合物、それを含むオレフィン重合用触媒、および、該触媒を用いるオレフィン重合体の製造方法 | |
JP2002012596A (ja) | 遷移金属化合物、α−オレフィン重合用触媒成分、α−オレフィン重合用触媒及びα−オレフィン重合体の製造方法 | |
JPH10279588A (ja) | 新規な遷移金属化合物、α−オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JPH11189618A (ja) | 新規な遷移金属化合物、α−オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JPH11189619A (ja) | 新規な遷移金属化合物、α−オレフィン重合用触媒成分およびα−オレフィン重合体の製造方法 | |
JP2001081125A (ja) | α−オレフィン−エチレン共重合用触媒成分、触媒およびα−オレフィン−エチレン共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040520 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4989823 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |