JP4967847B2 - 光スイッチおよびmemsパッケージ - Google Patents

光スイッチおよびmemsパッケージ Download PDF

Info

Publication number
JP4967847B2
JP4967847B2 JP2007165528A JP2007165528A JP4967847B2 JP 4967847 B2 JP4967847 B2 JP 4967847B2 JP 2007165528 A JP2007165528 A JP 2007165528A JP 2007165528 A JP2007165528 A JP 2007165528A JP 4967847 B2 JP4967847 B2 JP 4967847B2
Authority
JP
Japan
Prior art keywords
transmission window
port
optical switch
thickness
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007165528A
Other languages
English (en)
Other versions
JP2009003282A (ja
Inventor
宏史 青田
康平 柴田
保 赤司
毅 山本
直樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007165528A priority Critical patent/JP4967847B2/ja
Priority to US12/153,820 priority patent/US7580599B2/en
Publication of JP2009003282A publication Critical patent/JP2009003282A/ja
Application granted granted Critical
Publication of JP4967847B2 publication Critical patent/JP4967847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3592Means for removing polarization dependence of the switching means, i.e. polarization insensitive switching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Polarising Elements (AREA)

Description

この発明は、光通信においてビームの経路切替を行う光スイッチおよびMEMSパッケージに関する。
現在、激増するインターネットトラフィックを収容すべく、波長分割多重(WDM:Wavelength Division Multiplexing)通信を中核としたネットワークの光化が急ピッチで進んでいる。現在のWDM通信は、主にpoint−to−pointのネットワーク形態であるが、近い将来にはリング型ネットワーク、メッシュ型ネットワークへ発展すると考えられる。
また、ネットワークを構成する各ノードでは、任意波長の分岐/挿入(Add/Drop)、電気への変換を介さない全光クロスコネクト(OXC:Optical Cross Connect)などの処理が可能となり、波長情報を基にしたダイナミックなパスの設定/解除が行われると考えられる。
このように、光技術を最大限に生かしたフォトニックネットワーク技術が進展している(たとえば、下記非特許文献1参照。)。本発明が関連する波長選択スイッチは、リング型ネットワーク、メッシュ型ネットワークにおけるノードに配置される光スイッチであり、入力された波長を任意の出力ポートに振り分ける機能を有する。
図14は、従来の波長選択スイッチを示す平面図である。図14に示すように、従来の波長選択スイッチ140は、ポート群141と、コリメートレンズ群142と、分光素子143と、集光レンズ144と、λ/4板145と、MEMS(Micro Electro Mechanical Systems)パッケージ146と、を備えている。
ポート群141から入射された複数波長を含むWDMビームは、コリメートレンズ群142によってコリメートされて分光素子143へ出射される。分光素子143は、一般に回折格子などで構成される。回折格子は、ガラス基板上に、平行な多数の溝を一定間隔で設けた光学素子であり、光の回折現象を利用して、一定の角度で入射される複数の波長成分に対して波長毎に異なる出射角度を与える。
WDMビームは分光素子143によって波長毎の成分に分光され、集光レンズ144へ出射される。集光レンズ144を通過したそれぞれのビームはλ/4板145を介してMEMSパッケージ146へ出射される。MEMSパッケージ146には複数のMEMSミラー147がアレイ状に設けられている。複数のMEMSミラー147は、集光レンズ144によって集光されたそれぞれのビームを個別に反射する可動反射体である。
MEMSパッケージ146で反射したビームは、λ/4板145、集光レンズ144、分光素子143およびコリメートレンズ群142を再度通過してポート群141から出力される。以下、分光素子143による波長毎のビームの分光方向を波長分散方向とよぶ。また、コリメートレンズ群142によってコリメートされて分光素子143へ出射されるビームの方向を光軸方向とよぶ。
図15は、従来の波長選択スイッチを示す正面図である。図15に示すように、ポート群141は、波長分散方向とは異なる方向に配列されたポート0〜ポート4から構成されている。MEMSパッケージ146のMEMSミラー147は、波長分散方向を軸として回転自在であり、集光レンズ144からλ/4板145を介して出射されたビームを可変の傾斜角度で反射させる。波長選択スイッチ140は、MEMSミラー147の傾斜角度によってビームを入出射するポートを切り替える。
以下、ポート0〜ポート4の配列方向をポート配列方向とよぶ。ここで、MEMSパッケージ146は、湿度や異物の影響を避けるため、MEMSミラー147が筐体に気密封止されて構成されている。このMEMSパッケージ146の筐体の透過窓148としては、機械的強度と光透過率の観点からサファイアガラスを用いることが一般的である(たとえば、下記特許文献1参照。)。
サファイアガラスは、1軸性結晶であり、結晶軸の方向によっては複屈折性を有する。これに対して、透過窓148を構成するサファイアガラスのC軸と、透過窓148を透過するビームの方向とを一致させ、サファイアガラスによる複屈折の影響をなくすための構成が開示されている(たとえば、下記特許文献2,3参照。)。
また、波長選択スイッチ140は、回折格子などの分光素子に代表される偏光依存損失(PDL:Polarization Dependent Loss)発生素子を複数含むため、各素子単体でPDLを抑えるだけでは、波長選択スイッチ140全体としてのPDLをシステム仕様値以下に抑えることは困難である。このため、MEMSパッケージ146と集光レンズ144との間にλ/4板145を設けてPDLをキャンセルさせる構成としている。
λ/4板145は、透過するビームに対してλ/4の位相差を与えるため、ポート群141からMEMSパッケージ146へ向かうビームと、MEMSパッケージ146で反射してポート群141へ向かうビームとの偏光状態が直交し、PDLが打ち消される。これにより、波長選択スイッチ140から出力されるビームのPDLが低減される。
「電子情報通信学会誌」,2002年2月1日,2002年2月号,p.94−103 特許第3777045号明細書 特開平8−148594号公報 特開2005−136119号公報
しかしながら、上述した従来技術では、波長選択スイッチ140にλ/4板145を設けるため、波長選択スイッチ140を構成する光学素子が1つ増えるとともに、λ/4板145を光路上に調節、固定するホルダ機構が必要となる。このため、波長選択スイッチ140が大型化し、波長選択スイッチ140の製造工程が複雑となるという問題がある。
また、λ/4板145は高価であるため、波長選択スイッチ140のコストが増加するという問題がある。また、λ/4板145は破損しやすいため、波長選択スイッチ140にλ/4板145を設けると波長選択スイッチ140の取り扱いが困難となるという問題がある。たとえば、水晶を材質としたλ/4板145を使用する場合、使用波長を1550mmとすると、0次でのλ/4板145の厚みが50μmとなり破損しやすくなる。
この発明は、上述した問題点を解消するものであり、λ/4板を用いることなく簡単な構成によりPDLを低減することができる光スイッチおよびMEMSパッケージを提供することを目的とする。
この発明にかかる光スイッチは、可動反射体の傾斜角度によってビームを入出力するポートを切り替える光スイッチにおいて、前記ビームを入出力させる複数のポートと、前記複数のポートによって入出力されるビームを通過させる光学系と、前記光学系を通過したビームを可変の傾斜角度で反射させる可動反射体と、前記可動反射体を封止する筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、を備えることを特徴とする。
上記構成によれば、透過窓がλ/4板の機能を併せ持つことにより、出力されるビームのPDLを低減することができる。
また、この発明にかかるMEMSパッケージは、可変の傾斜角度でビームを反射する可動反射体と、前記可動反射体を封止する筐体と、前記筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、を備えることを特徴とする。
上記構成によれば、透過窓がλ/4板の機能を併せ持つことにより、出力されるビームのPDLを低減することができる。
以上説明したように、この発明によれば、λ/4板を用いることなく簡単な構成によりPDLを低減することができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる光スイッチおよびMEMSパッケージの好適な実施の形態を詳細に説明する。
(実施の形態1)
図1は、実施の形態1にかかる光スイッチを示す正面図である。実施の形態1にかかる光スイッチ10は、ビームの波長毎に経路切替が可能な波長選択スイッチである。図1に示すように、光スイッチ10は、複数の入出力ポート(ポート0〜ポート4)と、集光レンズ11と、透過窓12と、MEMSミラー13と、を備えている。
複数の入出力ポート(ポート0〜ポート4)は、光ファイバなどで構成され、外部からの光を入力させ、または外部へ光を出力する。ここでは、ポート0を入力ポートとし、ポート1〜ポート4を出力ポートとする。ポート0は、外部から入力された光を集光レンズ11へ出射する。ポート1〜ポート4は、集光レンズ11から出射された光を外部へ出力する。
集光レンズ11は、ポート0から入力された光を、透過窓12を介してMEMSミラー13へ集光する。また、集光レンズ11は、MEMSミラー13によって反射して透過窓12を介して出射された光を、反射角度に応じてポート1、ポート2、ポート3またはポート4へ出射する。
MEMSミラー13(可動反射体)は、集光レンズ11から透過窓12を介して出射された光を、可変の傾斜角度で反射し、透過窓12を介して集光レンズ11へ出射する。MEMSミラー13は、透過窓12を有する筐体(不図示)によって気密封止されてパッケージ化されている。透過窓12は、MEMSミラー13を気密封止している筐体の、集光レンズ11とMEMSミラー13との間で入出射されるビームが透過する位置に設けられている。
透過窓12は、サファイア結晶などの1軸性結晶である。本発明にかかる光スイッチおよびMEMSパッケージは、上記特許文献2,3とは逆の観点から、1軸性結晶である透過窓12の複屈折を利用して透過窓12にλ/4板の機能を併せ持たせる。このため、透過窓12のC軸方向は、透過窓12を透過するビームに対して異なる方向となるように設定される。具体的には、たとえばサファイア結晶を、C軸に対して所定の角度で各辺を切り出すことによって透過窓12を形成する。
ここでは、透過窓12は並行平板のサファイア結晶とする。透過窓12の厚みをt、透過窓12の結晶軸(サファイア結晶のC軸)と透過窓12を透過するビームとの角度差をθ、角度差θに依存した透過窓12の複屈折率をΔn(θ)、透過窓12における異常光線成分の屈折率をne、透過窓12における通常光線成分の屈折率をnoとすると、透過窓12がλ/4板の機能を有する条件は下記(1)式で示すことができる。
Figure 0004967847
上記(1)式の複屈折率Δn(θ)は下記(2)式で示すことができる。
Figure 0004967847
上記(1)式に示すように、透過する光の波長をλとすると、透過窓12内でビームに対して与えられる位相差がλ/4の奇数倍となるように透過窓12の複屈折率Δn(θ)と厚みtとを設定することで、透過窓12にλ/4板の機能を併せ持たせることができる。複屈折率Δn(θ)は角度差θに依存するため、透過窓12の結晶軸方向の設定によって複屈折率Δn(θ)を調節することができる。
たとえば、MEMSミラー13から透過窓12を透過してポート2へ出射されるビーム15について、上記(1)式を満たすように透過窓12の結晶軸(C軸)および透過窓12の厚みtを設定する。これにより、透過窓12は、ビーム15に対してλ/4の奇数倍の位相差を与えるλ/4板の機能を有する。
なお、図示しないが、光スイッチ10は、ポート1〜ポート4から出射されるビームをコリメートして集光レンズ11へ出射し、または集光レンズ11からポート1〜ポート4へ出射された光をポート1〜ポート4へ集光するコリメートレンズを備えていてもよい(図15符号142参照)。また、光スイッチ10は、ポート1〜ポート4と集光レンズ11との間に回折格子などの分光素子を備えていてもよい(図15符号143参照)。
光スイッチ10が分光素子を備えている場合、MEMSミラー13は、分光素子によって分光されるそれぞれのビームに対応して波長分散方向にアレイ状に複数設けられ、分光素子によって分光され集光レンズ11によって集光された波長毎のビーム(たとえばCH1〜CH40)をそれぞれ個別に反射する(図15符号147参照)。これにより、光スイッチ10は、入力されたビームに対して波長毎に経路切替を行うことができる。
また、ポート0を入力ポートとし、ポート1〜ポート4を出力ポートとする例について説明したが、ポート0を出力ポートとし、ポート1〜ポート4を入力ポートとして光スイッチ10を用いてもよい。この場合、ポート1〜ポート4のそれぞれから入力されるビームのうちいずれのビームをポート0から出力するかを選択して切り替える。
図2は、光スイッチのPDL特性(t=50μm)を示すグラフである。図2は、光スイッチ10が備える回折格子などの光学系によって発生するPDLが初期的に1.6dBであり、ポート0から出射されたビームとポート4から出射されたビームとの透過窓12内の角度差が10°であり、透過窓12が厚み50μmのサファイア結晶であると仮定した場合のジョーンズベクトルを用いたPDL計算例を示している。
図2において、横軸はポート1〜ポート4のポート番号(1〜4)を示している。縦軸は、ポート0から入力され、ポート1、ポート2、ポート3またはポート4から出力されるビームのPDL[dB]を示している。実線21は、CH1のPDL特性を示している。点線22は、CH20のPDL特性を示している。破線23は、CH40のPDL特性を示している。ここでは、実線21、点線22および破線23はほぼ重なっている。
透過窓12がλ/4板の機能を有するため、ポート0〜ポート4からMEMSミラー13へ向かうビームと、MEMSミラー13からポート0〜ポート4へ向かうビームとの偏光状態が直交し、PDLが打ち消し合う。このため、透過窓12の厚みtが50μmである場合、図2に示すように、PDL特性にはポート依存性もCH(波長)依存性もほとんどなく、初期的なPDLをほぼ完全に打ち消すことができる。
このように、実施の形態1にかかる光スイッチ10によれば、透過窓12の結晶軸方向および透過窓12の厚みtを設定することで、MEMSミラー13の筐体の透過窓12にλ/4板の機能を併せ持たせることができる。このため、λ/4板を用いることなくPDLを低減することができる。
また、実施の形態1にかかる光スイッチ10によれば、λ/4板を用いることなく簡単な構成によりPDLを低減することができ、また、λ/4板の位置を調節、固定するホルダ機構も不要にできるため、光スイッチ10の小型化が可能となり、光スイッチ10の製造工程が簡単になるとともに、光スイッチ10のコストを低減させることができる。
また、λ/4板の機能を有する透過窓12をサファイア結晶などの強度が高い材質で構成することにより、破損しやすいλ/4板を用いる場合と比べて光スイッチ10の耐久性を向上させることができる。このため、λ/4板を用いる場合と比べて光スイッチ10の取り扱いが容易となる。
図3は、光スイッチのPDL特性(t=1mm)を示すグラフである。MEMSミラー13を気密封止するための筐体の透過窓12は、強度を確保するために、たとえば1mm以上の厚みが必要である。図3は、実施の形態1にかかる光スイッチ10において、透過窓12の厚みが1mmであり、その他の条件は図2に示した条件と同様であると仮定した場合のジョーンズベクトルを用いたPDL計算例を示している。
図3に示すように、実施の形態1にかかる光スイッチ10においては、透過窓12の厚みtが1mmである場合、ポート2およびポート3においてはPDLが十分に低減されている一方、ポート1およびポート4においてはPDLが十分に低減されていない。これに対して、透過窓12の厚みtに分布を持たせることで、透過窓12の厚みtを確保しつつ全てのポートにおけるPDLを十分に低減させる構成を実施の形態2として説明する。
(実施の形態2)
図4は、実施の形態2にかかる光スイッチを示す正面図である。図4に示すように、実施の形態2にかかる光スイッチ10の透過窓12はポート配列方向に厚みtの分布を有している。この厚みtの設計により、ポート0から出射されて透過窓12を透過するビームと、透過窓12を透過してポート1、ポート2、ポート3またはポート4へ出射されるビームとに与えられる位相差を全てλ/4の奇数倍とすることができる。
図5は、透過窓の厚みtの設計例を示す図である。図5は、透過窓12の集光レンズ11側の面がポート配列方向と平行な平面である場合の透過窓12の厚みtの設計例を示している。図5において、集光レンズ11の曲率中心を通過する軸51を基準軸として説明する。各ポート(ここではポートiとする)のポート配列方向の位置をxとする。
x=0の位置から出射されるビームは、集光レンズ11の曲率中心を通過し、透過窓12に対して入射角度0°で入射する。また、集光レンズ11の焦点距離をF、集光レンズ11の主面から透過窓12の集光レンズ11側の面までの距離をL、透過窓12へのビームの入射角度をθ2とする。透過窓12の集光レンズ11側の面に対するポート配列方向のビームの入射位置s(x)は下記(3)式で示すことができる。
s(x)=x−L・Tan(θ2) …(3)
上記(3)式の入射角度θ2は下記(4)式で示すことができる。
θ2=ArcTan(x/F) …(4)
また、透過窓12内でのビームと軸51との角度差をθ3、透過窓12の結晶軸(C軸)と軸51との角度差をθ4、透過窓12内でのビームと透過窓12の結晶軸(C軸)との角度差をθとすると、θ3は下記(5)式で示すことができる。
θ3=ArcSin(Sin(θ2)/no) …(5)
角度差θは下記(6)式で示すことができる。
θ=θ3+θ4 …(6)
ポートiの位置xに対応した、ポートiからのビームに与えられる位相差が全てλ/4の奇数倍となる透過窓12の厚みt(x)は下記(7)式で示すことができる。
Figure 0004967847
上記(7)式のF(x)は、透過窓12の複屈折率Δn(θ)および結晶軸(C軸)方向と、透過窓12を透過するビームの角度(θ3)とから決定され、下記(8)式で示すことができる。
Figure 0004967847
透過窓12のMEMSミラー13側の面におけるポート配列方向のビームの透過位置d(x)は、t(x)およびs(x)を用いて下記(9)式で示すことができる。
d(x)=s(x)−t(x)・Tan(θ3) …(9)
各透過位置d(x)に対応したt(x)を上記(7)式を満たすように設計することにより、全てのポートからのビームに与えられる位相差をλ/4の奇数倍にすることができる。これにより、透過窓12は、いずれのポート(ポート1〜ポート4)によって入出力されるビームに対してもλ/4板の機能を有する。
図6は、透過窓の結晶軸の角度と複屈折率の関係を示すグラフである。図6において、横軸は透過窓12を構成するサファイア結晶の結晶軸(C軸)の角度[°]を示している。縦軸は透過窓12の複屈折率を示している。図6に示すように、透過窓12の複屈折率は、透過窓12の結晶軸の角度に対して2次関数に近い特性を有する。このため、透過窓12の結晶軸の角度によっては、上記(7)式を満たす透過窓12の厚みt(x)も2次関数に近い特性を有する。
図7は、透過窓を透過するビームの角度と透過窓の厚みとの関係(θ=5°)を示すグラフである。図7において、横軸は透過窓12を透過するビームの角度[°]を示している。縦軸は透過窓12の厚み[mm]を示している。図7は、透過窓12をサファイア結晶とし、サファイア結晶の結晶軸(C軸)とビームとの角度差θを5°とし、透過窓12の厚みt(x)を最低1mm程度確保するように行った計算例を示している。
角度差θを5°とした場合、図7に示すように、透過窓12の厚みt(x)は、透過窓12を透過するビームの角度に対して2次関数に近い特性を有する。これに対して、図6に示すように、角度差θを20°〜70°程度、特に、30°〜60°程度とした場合、複屈折率は1次関数に近い特性を有する。
図8は、透過窓を透過するビームの角度と透過窓の厚みとの関係(θ=30°)を示すグラフである。図8において、ドット81は計算値を示している。破線82はドット81を一次関数で近似した特性を示している。図8は、サファイア結晶のC軸とビームとの角度差θを30°とし、その他の条件は図7に示した条件と同様であると仮定し、透過窓12の厚みt(x)を1mm程度確保するように行った計算例を示している。
この場合、図8に示すように、透過窓12の厚みt(x)は、破線82に示すように、透過窓12を透過するビームの角度に対して一次関数に近い特性を有する。このため、透過窓12の透過面を平面状に形成することができる。たとえば、透過窓12を、厚みが一次関数的に変化する、曲率のないくさび形に形成することができる。このため、透過窓12の製造が容易となる。
図9は、透過窓をくさび形に形成した光スイッチを示す正面図である。図9において、符号91は、ポート0〜ポート4を構成する光ファイバ群を示している。符号92は、ポート0〜ポート4に対応して設けられたコリメートレンズ群を示している。符号93は、回折格子などの分光素子を示している。符号94は、MEMSミラー13を気密封止する筐体を示している。
図9に示すように、くさび型に形成された透過窓12は、筐体94の、集光レンズ11とMEMSミラー13との間で入出射されるビームが透過する位置に設けられている。分光素子93は、通過させるビームを、ポート配列方向とは異なる方向(たとえばポート配列方向および光軸方向に対して直角の方向)に分光する角度で配置される。MEMSミラー13は、分光素子93の分光方向にアレイ状に複数設けられている。
図10は、透過窓をくさび形に形成した場合の光スイッチのPDL特性を示すグラフである。図9に示すように筐体94の透過窓12をくさび形に形成することで、図10に示すように、透過窓12の厚みtを1mm程度確保しつつ、ポート1〜ポート4において初期的なPDLをほぼ完全に打ち消すことができる。
このように、実施の形態2にかかる光スイッチ10によれば、実施の形態1にかかる光スイッチ10の効果を奏するとともに、透過窓12の厚みtに分布を持たせることで、利用する入出力ポートにかかわらず、MEMSミラー13の筐体94の透過窓12にλ/4板の機能を併せ持たせることができる。このため、透過窓12の厚みtを確保しつつPDLを十分に低減させることができる。
なお、図10において、ポート2およびポート3におけるPDLに比べて、ポート1およびポート4におけるPDLはわずかに高くなっているが、このPDL特性に合わせて透過窓12のビームの透過面が曲率を有するように構成してもよい。これにより、ポート1およびポート4におけるPDLをさらに低減させ、PDLのポート依存性を完全になくすことができる。
図11は、MEMSミラーの反射によるクロストークを示す図である。破線111は、集光レンズ11から透過窓12を介して出射されてMEMSミラー13によって反射した光のうち、透過窓12のMEMSミラー13側の面で再度反射した成分を示している。破線112は、集光レンズ11から透過窓12を介して出射されてMEMSミラー13によって反射したビームのうち、透過窓12の集光レンズ11側の面で再度反射した成分を示している。
図11に示すように、ポート配列方向に対する透過窓12の傾斜が小さい場合、意図しないポートにビームが入り込むクロストークが発生する場合がある。ここでは、ポート3へ出射されるビームの一部が、破線112に示すようにポート4へ入り込んでいる。これに対して、ポート配列方向に対する透過窓12の傾斜を大きくすることでクロストークの発生を回避する構成を実施の形態3として説明する。
(実施の形態3)
図12は、実施の形態3にかかる光スイッチを示す正面図である。図12において、図11に示した構成と同様の構成については同一の符号を付して説明を省略する。図12に示すように、実施の形態3にかかる光スイッチ10においては、ポート配列方向に対して所定の角度θ5を有して透過窓12を傾斜させる。
具体的には、破線111または破線112で示すビームの成分が、ポート0〜4のいずれにも入り込まない程度に透過窓12を傾斜させる。ここでは、図11においてはポート4に入り込んでいた破線112で示すビームの成分が、透過窓12の傾斜によってポート0〜4のいずれにも入り込まなくなっている。
このように、実施の形態3にかかる光スイッチ10によれば、実施の形態1および2にかかる光スイッチ10の効果を奏するとともに、ポート配列方向に対して所定の角度θ5を有して透過窓12を傾斜させることでクロストークの発生を回避することができる。このため、光スイッチ10においてクロストークによって発生するノイズを抑えることができる。
(実施の形態4)
図13は、実施の形態4にかかる光スイッチの分光素子を示す正面図である。図13に示すように、実施の形態4にかかる光スイッチ10の分光素子93は、ビームが通過する複数の回折格子131,132によって構成されている。これにより、分光素子93の波長分散能力が2倍になり、集光レンズ11を変えることなく複数のMEMSミラー13の配列間隔を2倍に広げることができる。
MEMSミラー13の配列間隔を広げることにより、MEMSミラー13をアレイ状に配列したMEMSパッケージの製造が容易になる。このとき、分光素子93によって発生するPDLも2倍となるが、本発明の透過窓12が有するλ/4板の機能によってPDLを十分に低減することができる。
このように、実施の形態4にかかる光スイッチ10によれば、実施の形態1〜3にかかる光スイッチ10の効果を奏するとともに、複数の回折格子131,132によって分光素子93を構成することによって複数のMEMSミラー13の配列間隔を広げ、MEMSパッケージの製造を容易にすることができる。
なお、本発明は、MEMSパッケージを利用した光スイッチだけでなく、可動反射体が筐体によって気密封止されたMEMSパッケージ全般に適用することができ、λ/4板の機能を併せ持つという効果を奏する。また、本発明は、可動反射体が筐体によって厳密に気密封止されているものに限らず、可動反射体が筐体によって保護される程度に封止されているMEMSパッケージ全般に適用することができる。
また、本発明にかかる光スイッチは、波長選択スイッチに限らず、MEMSパッケージを利用する光スイッチ全般に適用することができる。たとえば、光スイッチは、単一のビームの経路切替を行う光スイッチであってもよい。
以上説明したように、この発明にかかる光スイッチおよびMEMSパッケージによればMEMSパッケージの透過窓にλ/4板の機能を併せ持たせることで、λ/4板を用いることなく簡単な構成によりPDLを低減することができる。このため、光スイッチの小型化が可能になり、光スイッチの製造工程が簡単になるとともに、光スイッチおよびMEMSパッケージのコストを低減させることができる。また、光スイッチおよびMEMSパッケージの耐久性が向上し、取り扱いが容易となる。
(付記1)可動反射体の傾斜角度によってビームを入出力するポートを切り替える光スイッチにおいて、
前記ビームを入出力させる複数のポートと、
前記複数のポートによって入出力されるビームを通過させる光学系と、
前記光学系を通過したビームを可変の傾斜角度で反射させる可動反射体と、
前記可動反射体を封止する筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、
を備えることを特徴とする光スイッチ。
(付記2)前記透過窓は、前記複数のポートのうちいずれのポートによって入出力されるビームに対しても前記λ/4の奇数倍の位相差を与えるように前記複数のポートの配列方向に厚みの分布を有することを特徴とする付記1に記載の光スイッチ。
(付記3)前記複数のポートの配列方向の前記複数のポートの位置をxとし、
前記xの位置のポートから出射されたビームが透過する位置の前記透過窓の厚みをt(x)とし、
前記透過窓の複屈折率および結晶軸方向と、前記透過窓を透過するビームの角度とから決定される関数をF(x)とし、
前記透過窓を透過するビームの波長をλとすると、
t(x)=(2m+1)・λ/(4・F(x))となることを特徴とする付記1に記載の光スイッチ。
(付記4)前記透過窓は、前記t(x)を一次関数で近似した厚みの分布を有することを特徴とする付記3に記載の光スイッチ。
(付記5)前記透過窓は、前記複数のポートの配列方向に対して所定の角度を有して傾斜していることを特徴とする付記1〜4のいずれか一つに記載の光スイッチ。
(付記6)前記光学系は、通過させるビームを波長毎に分光する分光素子と、前記分光素子によって分光されるそれぞれのビームを集光する集光レンズと、から構成され、
前記可動反射体は、前記分光素子によって分光され前記集光レンズによって集光されるそれぞれのビームに対応してアレイ状に複数設けられていることを特徴とする付記1〜5のいずれか一つに記載の光スイッチ。
(付記7)前記分光素子は、前記ビームが通過する複数の回折格子によって構成されることを特徴とする付記6に記載の光スイッチ。
(付記8)前記1軸性結晶はサファイア結晶であることを特徴とする付記1〜6のいずれか一つに記載の光スイッチ。
(付記9)可変の傾斜角度でビームを反射する可動反射体と、
前記可動反射体を封止する筐体と、
前記筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、
を備えることを特徴とするMEMSパッケージ。
以上のように、この発明にかかる光スイッチおよびMEMSパッケージは、光通信においてビームの経路切替を行う光スイッチおよびMEMSパッケージに有用であり、特に、MEMSパッケージの透過窓にサファイア結晶を用いる場合に適している。
実施の形態1にかかる光スイッチを示す正面図である。 光スイッチのPDL特性(t=50μm)を示すグラフである。 光スイッチのPDL特性(t=1mm)を示すグラフである。 実施の形態2にかかる光スイッチを示す正面図である。 透過窓の厚みtの設計例を示す図である。 透過窓の結晶軸の角度と複屈折率の関係を示すグラフである。 透過窓を透過するビームの角度と透過窓の厚みとの関係(θ=5°)を示すグラフである。 透過窓を透過するビームの角度と透過窓の厚みとの関係(θ=30°)を示すグラフである。 透過窓をくさび形に形成した光スイッチを示す正面図である。 透過窓をくさび形に形成した場合の光スイッチのPDL特性を示すグラフである。 MEMSミラーの反射によるクロストークを示す図である。 実施の形態3にかかる光スイッチを示す正面図である。 実施の形態4にかかる光スイッチの分光素子を示す正面図である。 従来の波長選択スイッチを示す平面図である。 従来の波長選択スイッチを示す正面図である。
符号の説明
10 光スイッチ
11 集光レンズ
12 透過窓
13 MEMSミラー
91 光ファイバ群
92 コリメートレンズ群
93 分光素子
94 筐体

Claims (4)

  1. 可動反射体の傾斜角度によってビームを入出力するポートを切り替える光スイッチにおいて、
    前記ビームを入出力させる複数のポートと、
    前記複数のポートによって入出力されるビームを通過させ、偏光依存損失を発生させる光学系と、
    前記光学系を通過したビームを可変の傾斜角度で反射させる可動反射体と、
    前記可動反射体を封止する筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、
    を備え、前記透過窓は、前記複数のポートのうちいずれのポートによって入出力されるビームに対しても前記λ/4の奇数倍の位相差を与えるように前記複数のポートの配列方向に厚みの分布を有することを特徴とする光スイッチ。
  2. 前記複数のポートの配列方向の前記複数のポートの位置をxとし、
    前記xの位置のポートから出射されたビームが透過する位置の前記透過窓の厚みをt(x)とし、
    前記透過窓の複屈折率および結晶軸方向と、前記透過窓を透過するビームの角度とから決定される関数をF(x)とし、
    前記透過窓を透過するビームの波長をλとすると、
    t(x)=(2m+1)・λ/(4・F(x))となることを特徴とする請求項1に記載の光スイッチ。
  3. 前記透過窓は、前記t(x)を一次関数で近似した厚みの分布を有することを特徴とする請求項2に記載の光スイッチ。
  4. 入出力されるビームを通過させ、偏光依存損失を発生させる光学系と、
    前記光学系を通過したビームを可変の傾斜角度でビームを反射する可動反射体と、
    前記可動反射体を封止する筐体と、
    前記筐体の前記ビームが透過する位置に設けられ、結晶軸方向および厚みの設定によって、透過した波長λのビームに与える位相差がλ/4の奇数倍となる1軸性結晶の透過窓と、
    を備え、前記透過窓は、いずれの入射位置によって透過するビームに対しても前記λ/4の奇数倍の位相差を与えるように厚みの分布を有することを特徴とするMEMSパッケージ。
JP2007165528A 2007-06-22 2007-06-22 光スイッチおよびmemsパッケージ Active JP4967847B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007165528A JP4967847B2 (ja) 2007-06-22 2007-06-22 光スイッチおよびmemsパッケージ
US12/153,820 US7580599B2 (en) 2007-06-22 2008-05-23 Optical switch and MEMS package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165528A JP4967847B2 (ja) 2007-06-22 2007-06-22 光スイッチおよびmemsパッケージ

Publications (2)

Publication Number Publication Date
JP2009003282A JP2009003282A (ja) 2009-01-08
JP4967847B2 true JP4967847B2 (ja) 2012-07-04

Family

ID=40136576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165528A Active JP4967847B2 (ja) 2007-06-22 2007-06-22 光スイッチおよびmemsパッケージ

Country Status (2)

Country Link
US (1) US7580599B2 (ja)
JP (1) JP4967847B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631636B2 (ja) * 2010-06-07 2014-11-26 アンリツ株式会社 Osnr評価装置及びosnr評価方法
US8767170B2 (en) 2011-06-03 2014-07-01 Silicon Light Machines Corporation Flow through MEMS package
JP5838639B2 (ja) * 2011-08-02 2016-01-06 富士通株式会社 光伝送装置及び光伝送方法
JP5749637B2 (ja) * 2011-12-05 2015-07-15 株式会社日立製作所 Pdl補償器、光デバイス、pdl補償方法
US20140071511A1 (en) * 2012-09-13 2014-03-13 Sumitomo Electric Industries, Ltd. Wavelength selective switch
WO2017213018A1 (ja) * 2016-06-07 2017-12-14 アダマンド株式会社 Mems光スイッチ、その駆動方法、及びmems光スイッチを備えた光スイッチモジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783080A (en) * 1980-11-10 1982-05-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser module device
JPH07211976A (ja) * 1994-01-24 1995-08-11 Sony Corp 光学共振器
JPH08148594A (ja) * 1994-11-25 1996-06-07 Kyocera Corp 光半導体素子収納用パッケージ
JP3777045B2 (ja) * 1998-03-19 2006-05-24 富士通株式会社 偏波スクランブラー
US6295154B1 (en) * 1998-06-05 2001-09-25 Texas Instruments Incorporated Optical switching apparatus
JP3613200B2 (ja) * 2000-09-01 2005-01-26 住友電気工業株式会社 光モジュール
WO2002075410A1 (en) * 2001-03-19 2002-09-26 Capella Photonics, Inc. Reconfigurable optical add-drop multiplexers
JP4472440B2 (ja) * 2003-07-28 2010-06-02 オリンパス株式会社 光スイッチ
JP2005136119A (ja) 2003-10-30 2005-05-26 Namiki Precision Jewel Co Ltd サファイア窓材

Also Published As

Publication number Publication date
JP2009003282A (ja) 2009-01-08
US20080317405A1 (en) 2008-12-25
US7580599B2 (en) 2009-08-25

Similar Documents

Publication Publication Date Title
JP4458494B2 (ja) 導波路型波長選択スイッチ
JP5692865B2 (ja) 波長クロスコネクト装置
US7126740B2 (en) Multifunctional optical device having a spatial light modulator with an array of micromirrors
US8391654B2 (en) Wavelength selection switch
JP5730526B2 (ja) 光スイッチ
JP2006276216A (ja) 光スイッチ
JP4967847B2 (ja) 光スイッチおよびmemsパッケージ
EP2605051B1 (en) Optical processing device employing a digital micromirror device (dmd) and having reduced wavelength dependent loss
EP4072044A1 (en) Wavelength selection switch
JP4949355B2 (ja) 波長選択スイッチ
JP4842226B2 (ja) 波長選択スイッチ
WO2012060339A1 (ja) 光学装置
US7706049B2 (en) Mirror device and optical apparatus
JP5759430B2 (ja) 波長選択スイッチ
JP2009198593A (ja) 可変分散補償器
JP2010134027A (ja) 波長選択スイッチ
JP2005321480A (ja) 波長選択デバイス
JP2010237377A (ja) プリズム、プリズムペア及び該プリズムペアを備える波長選択デバイス
JP3142566U (ja) 波長可変半導体レーザ光源
JP5508368B2 (ja) 波長選択スイッチ
JP3145164U (ja) Awg型半導体リングレーザ
JP2012093380A (ja) 波長選択スイッチおよびその組立方法
JP2005266093A (ja) 分散補償器
JP2007078836A (ja) 光通信用結合光学系およびこれを備えた光通信システム
JP2013125078A (ja) 波長選択スイッチ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150