JP4954511B2 - MgB2超電導体とその線材の製造方法 - Google Patents

MgB2超電導体とその線材の製造方法 Download PDF

Info

Publication number
JP4954511B2
JP4954511B2 JP2005244651A JP2005244651A JP4954511B2 JP 4954511 B2 JP4954511 B2 JP 4954511B2 JP 2005244651 A JP2005244651 A JP 2005244651A JP 2005244651 A JP2005244651 A JP 2005244651A JP 4954511 B2 JP4954511 B2 JP 4954511B2
Authority
JP
Japan
Prior art keywords
mgb
powder
superconductor
aromatic hydrocarbon
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005244651A
Other languages
English (en)
Other versions
JP2007059261A (ja
Inventor
浩明 熊倉
仁 北口
正澄 平川
秀之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Central Japan Railway Co
Original Assignee
National Institute for Materials Science
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Central Japan Railway Co filed Critical National Institute for Materials Science
Priority to JP2005244651A priority Critical patent/JP4954511B2/ja
Priority to US11/509,634 priority patent/US7749939B2/en
Publication of JP2007059261A publication Critical patent/JP2007059261A/ja
Application granted granted Critical
Publication of JP4954511B2 publication Critical patent/JP4954511B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Description

本発明は、高い臨界電流密度(J)を有するMgB超電導体とその線材の製造方法に関するものである。本発明の方法により得られた超電導体バルクならびに超電導線材は従来の金属系超電導体バルクならびに線材と比べ、高い温度で使用でき、また低コストが期待できることから、その適用機器は、超電導リニアモーターカー、MRI医療診断装置、半導体単結晶引き上げ装置、超電導エネルギー貯蔵、超電導回転機、超電導変圧器、超電導ケーブルなどに有用である。
2001年に日本で発見された超電導体MgBは、金属系超電導体の中では最高の超電導臨界温度(39K)を有し、かつバルク材の作製や線材加工が比較的容易であることから、世界中で本超電導体ならびにその線材化の研究開発が行われている。バルク材の作製法としては、Mg粉末またはMgH粉末とB粉末の混合粉末を加圧した後、熱処理(焼結)する方法が一般的である。また線材化の主要な方法としては、Mg(MgH)粉末とB粉末を金属管に充填するパウダー・イン・チューブ法がある。しかしながらこれらの通常の粉末焼結法やパウダー・イン・チューブ法で作製したバルクや線材のJ特性はあまり高くはない。そこで、Jの向上を目的として、これらの混合粉末への種々の不純物の添加が試みられてきている。このような不純物添加のうち、粒径がナノメートルレベルのSiC微粒子の添加が最も効果的であり、多くの研究が行われている(非特許文献1)。しかしながら、これまでは、SiCの微粒子は価格が高く、これが実用化への大きな障害となっていた。
S.X.Dou, et al., Journal of Applied Physics 94(2003)1850.
本発明は、以上のとおりの背景から、従来の問題点を解消して、低コスト化につながる比較的簡便な方法によって、実用化レベルの十分高いJを有するMgB超電導体ならびに超電導線材を製造することのできる新しい方法の提供を課題とする。
本発明は、上記の課題を解決するための手段として、超電導体MgBの原料となるMg粉末あるいはMgH粉末とB粉末の混合分粉末にベンゼンなどの芳香族炭化水素を添加することを特徴とするMgB超電導体あるいはMgB超電導線材の製造方法を提供する。そして、本発明においては、MgB超電導体の製造において、芳香族炭化水素は、単環または多環の炭素環または複素環を有する化合物であることを特徴とする方法や、芳香族炭化水素は、炭素数が4〜20の範囲の化合物であることを特徴とする方法、芳香族炭化水素は、ベンゼン、ナフタレン、アントラセン、ペリレン、ビフェニルおよびチオフェンのうちの1種以上であることを特徴とする方法、さらには芳香族炭化水素を、MgBに対して1〜40モル%の割合で添加することを特徴とする方法を提供する。
また、MgB超電導線材の製造方法としては、芳香族炭化水素を添加した混合体を、金属管に充填して加工、熱処理をすることを特徴とする方法や、金属管が鉄管である方法、MgBコアが複数本ある多芯線である方法も提供する。粉末の混合方法としては、ボールミル混合や通常の乳鉢による混合が考えられ、熱処理はアルゴンなどの不活性ガス雰囲気中か、あるいは真空中が考えられる。また、金属管としては、MgやBと反応しないこと、また価格が低廉であることなどから鉄管が最も適当である。
以上のとおりの本発明によれば、実用化に向けて、より高い超電導臨界電流密度(J)を有するMgB超電導体、あるいはその線材を、簡便な、より低コストでの方法によって提供することができる。
本発明は上記のとおりの特徴をもつものであるが、以下により詳しくその実施の形態について説明する。
本発明のMgB超電導体もしくはその線材の製造方法においては、前記のとおり、超電導体であるMgBの原料としてのMg粉末あるいはMgH粉末とB粉末との混合体の調製に際して芳香族炭化水素を添加し、次いで加圧成形して熱処理する。
加圧成形は通常の金型を用いたプレスにより行い、圧力は100〜300kg/cm2が好適である。
原料としての上記の粉末については従来と同様の純度や粒径のものを、モル比で、MgまたはMgH/B=0.5/2〜1.5/2の範囲において混合することができる。より好ましくはそのモル比は0.8/2〜1.2/2程度の範囲である。
粒径については、平均粒径がMgまたはMgHが10〜50μm、Bが0.2〜1μmの範囲程度が好適に考慮される。混合に際しては、具体的にはMgあるいはMgH粉末とB粉末の混合体に適量の芳香族炭化水素を加え、さらにボールミルなどで十分に混合する。この混合体を加圧成形したのち熱処理をしてバルク体を得る。線材の場合は、芳香族炭化水素を添加した混合体を鉄などの金属管に充填し、圧延ロール等でテープやワイヤーに加工した後、熱処理をする。
芳香族炭化水素については、単環または多環の炭素環または複素環を有する化合物のうちの各種のものが考慮されてよく、この化合物の炭素数としては特に限定されることはないが、一般的には4〜20の範囲が好適に考慮される。
芳香族炭化水素は本発明の作用効果を阻害しない限り各種の官能基を有していてもよい。入手容易性や取り扱い性、価格等を考慮して適宜に選択することができる。たとえば代表的なものとしては、ベンゼン、ナフタレン、アントラセン、ペリレン、ビフェニル、トルエン、キシレン等の炭素環状の芳香族炭化水素、あるいはチオフェン等の複素環状の芳香族炭化水素が例示される。
これらの芳香族炭化水素は、MgBの理論もしくは実験生成量に対して1〜40モル%の割合で添加することがより好ましい。この範囲において、たとえば、4.2K、10T(テスラ)磁場中でのJが5000A/cm以上、12T(テスラ)磁場中でのJが2000A/cm以上の高いJを有するMgB超電導体もしくはその線材がより確実に実現されることになる。
混合や加圧成形、そして熱処理については従来と同様の条件が採用されてよい。線材加工のための条件も同様である。
そこで以下に実施例を示し、さらに詳しく説明する。もちろん、以下の例によって発明が限定されることはない。
(実施例1)
市販のMgH粉末と市販のB粉末を1:2のモル比で混合し、さらにMgBに対して10モル%のベンゼンを添加してWC製のボールミルポットに入れ約1時間ボールミル混合した。このようにして得た混合粉末を、外径6mm、内径4mmの鉄管に充填し、溝ロール加工と平ロール圧延により幅5mm、厚さ0.5mmのテープ状に加工した。また比較のためにベンゼンを添加しないテープも同様の方法で作製した。これらの線材に対し、管状炉を用いてアルゴン雰囲気中で、600℃、1時間の熱処理を行った。図1には線材の作製行程を、また図2には、作製した線材の断面写真の例を示した。これらの線材について液体ヘリウム温度、種々の磁界中で臨界電流密度Jを測定した。その結果を図3に示した。ベンゼンを添加したテープは4.2K、12Tの磁界中で3400A/cm、10Tの磁界中で11000A/cmと、ベンゼンを添加しないテープに比べてはるかに高いJ値が得られた。熱処理後のテープをX線回折で調べたところ、生成したMgBのc軸長には変化がなかったが、a軸長は明らかに短くなっており、この結果はすでに報告されているSiC微粉末を添加したMgBと同じであった(文献1)。
文献1によると、SiC添加によりMgBのB原子の一部がSiCと入れ替わってMgB2−x(SiC)が生成され、これによってJ特性が向上するとしている。この報告を考慮すると、本実験でJ特性が向上したのは、ベンゼン添加によってMgBのB原子の一部が炭素原子と入れ替わってMgB2−xが生成したためと推測できる。
(実施例2)
実施例1において、ベンゼンの代わりに10モル%のナフタレンを添加して、同様の方法でテープを作製した。このテープの4.2KにおけるJ−B特性を図3に示した。12Tの磁界中で3200A/cm、10Tの磁界中で9500A/cmと、ベンゼン添加したテープとほぼ同様のJ特性が得られた。
(実施例3)
実施例1において、ベンゼンの代わりに10モル%のチオフェンを添加して、同様の方法でテープを作製した。このテープの4.2KにおけるJ−B特性を図3に示した。12Tの磁界中で4000A/cm、10Tの磁界中で11000A/cmと、ベンゼン添加したテープとほぼ同様のJ特性が得られた。
(実施例4)
実施例1においてMgH粉末の代わりに市販のMg粉末を使い、MgとBのモル比を1:2として同様な方法でMgB超電導テープを作製した。このテープの4.2KにおけるJ−B特性を測定したところ、MgHを用いた場合とほぼ同等のJ−B特性が得られ、MgH粉末の代わりにMg粉末を用いた場合でもベンゼンの添加効果が明瞭に認められた。
(実施例5)
市販のMg粉末と市販のB粉末を1:2のモル比で混合し、さらにMgBに対して10モル%のベンゼンを添加してWC製のボールミルポットに入れ約1時間ボールミル混合した。得られた混合粉末を金型に入れプレスして成形した。金型の溝の大きさは幅5mm、長さが20mm、プレス圧は200kg/cmとした。得られた成形体の大きさは幅5mm、高さ5mm、長さが20mmである。この成形体をタンタルホイルで包み、アルゴン雰囲気中で、600℃、1時間の熱処理を行ってMgBバルク体を得た。比較のためにベンゼンを添加しないバルク材も同様にして作製した。熱処理後これらのバルク体の、4.2KにおけるJ−B特性を測定したところ、ベンゼンを添加したバルク体のJは、4.2K、12Tの磁界中で2500A/cm、10Tの磁界中で8000A/cmで、ベンゼンを添加しないバルク体の値である1000A/cm(12T)、3000A/cm(10T)と比べてはるかに高いJ値が得られ、ベンゼン添加の効果が明瞭に認められた。

本発明のMgB超電導線材の製造工程を例示した図である。 実施例において製造したMgB超電導線材の断面図を例示した図である。 実施例において作製したMgB線材の4.2Kにおける臨界電流(J)と磁界(B)の関係を例示した図である。

Claims (8)

  1. 原料となるMg粉末あるいはMgH粉末とB粉末との混合体を、加圧成形して熱処理するMgB超電導体の製造方法において、上記混合体に芳香族炭化水素を添加することを特徴とするMgB超電導体の製造方法。
  2. 芳香族炭化水素は、単環または多環の炭素環または複素環を有する化合物であることを特徴とする請求項1のMgB超電導体の製造方法。
  3. 芳香族炭化水素は、炭素数が4〜20の範囲の化合物であることを特徴とする請求項1または2のMgB超電導体の製造方法。
  4. 芳香族炭化水素は、ベンゼン、ナフタレン、アントラセン、ペリレン、ビフェニルおよびチオフェンのうちの1種以上であることを特徴とする請求項1から3のうちのいずれかのMgB超電導体の製造方法。
  5. 芳香族炭化水素を、MgBに対して1〜40モル%の割合で添加することを特徴とする請求項1から4のうちのいずれかのMgB超電導体の製造方法。
  6. 請求項1から5のうちのいずれかの方法において、芳香族炭化水素を添加した混合体を、金属管に充填して加工、熱処理をすることを特徴とするMgB超電導線材の製造方法。
  7. 請求項6の金属管が鉄管であることを特徴とするMgB超電導線材の製造方法。
  8. 請求項6または7の超電導線材製造方法において、MgBコアが複数本ある多芯線であることを特徴とするMgB超電導線材の製造方法。
JP2005244651A 2005-08-25 2005-08-25 MgB2超電導体とその線材の製造方法 Expired - Fee Related JP4954511B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005244651A JP4954511B2 (ja) 2005-08-25 2005-08-25 MgB2超電導体とその線材の製造方法
US11/509,634 US7749939B2 (en) 2005-08-25 2006-08-25 MgB2 superconductor, its wire, and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244651A JP4954511B2 (ja) 2005-08-25 2005-08-25 MgB2超電導体とその線材の製造方法

Publications (2)

Publication Number Publication Date
JP2007059261A JP2007059261A (ja) 2007-03-08
JP4954511B2 true JP4954511B2 (ja) 2012-06-20

Family

ID=37830720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244651A Expired - Fee Related JP4954511B2 (ja) 2005-08-25 2005-08-25 MgB2超電導体とその線材の製造方法

Country Status (2)

Country Link
US (1) US7749939B2 (ja)
JP (1) JP4954511B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0706919D0 (en) * 2007-04-10 2007-05-16 Cambridge Entpr Ltd Composite electrical conductors and method for their manufacture
KR100970369B1 (ko) 2008-02-28 2010-07-15 한국원자력연구원 글리세린이 첨가된 MgB₂초전도체 제조방법
WO2009134567A2 (en) * 2008-03-30 2009-11-05 Hills,Inc. Superconducting wires and cables and methods for producing superconducting wires and cables
WO2009145220A1 (ja) * 2008-05-27 2009-12-03 学校法人中部大学 超伝導テープ線材及びその製造方法
WO2010016302A1 (ja) * 2008-08-05 2010-02-11 住友電気工業株式会社 酸化物超電導線材の前駆体線とその製造方法、および前記前駆体線を用いた酸化物超電導線材
JP5519430B2 (ja) * 2010-06-30 2014-06-11 株式会社日立製作所 MgB2超電導線材の製造方法
JP5520260B2 (ja) * 2011-07-05 2014-06-11 株式会社日立製作所 超電導線材及びその製造方法
JP2013229237A (ja) * 2012-04-26 2013-11-07 Univ Of Tokyo 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体
JP6161034B2 (ja) 2013-12-17 2017-07-12 国立研究開発法人物質・材料研究機構 MgB2超伝導体の製造方法およびMgB2超伝導体
JP6308507B2 (ja) * 2014-08-04 2018-04-11 国立研究開発法人物質・材料研究機構 炭素のナノ被覆層を有する基材粉末を用いたリチウムイオン電池用正極材の製造方法および光触媒の製造方法
JP6941599B2 (ja) * 2016-04-14 2021-09-29 株式会社日立製作所 MgB2超伝導線材の製造方法,超伝導コイル及びMRI
CN107833695B (zh) * 2017-10-30 2019-08-06 西北有色金属研究院 一种MgB2多芯超导线材的制备方法
CN114368727B (zh) * 2022-01-06 2023-05-16 哈尔滨工业大学(深圳) 一种氯硫基氢化物超导材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
JP2003095650A (ja) * 2001-06-01 2003-04-03 Internatl Superconductivity Technology Center 臨界電流密度の高いMgB2系超電導体及びその製造方法
JP2003092032A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 超電導線材及びその製造方法
JP3876317B2 (ja) * 2003-03-26 2007-01-31 独立行政法人物質・材料研究機構 MgB2超伝導線材の製造方法
US20060165579A1 (en) * 2005-01-26 2006-07-27 Harry Jones Void-free superconducting magnesium diboride

Also Published As

Publication number Publication date
US20070054810A1 (en) 2007-03-08
US7749939B2 (en) 2010-07-06
JP2007059261A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4954511B2 (ja) MgB2超電導体とその線材の製造方法
JP5046990B2 (ja) MgB2超電導体の製造方法およびMgB2超電導体
JP5401487B2 (ja) MgB2超電導線材
JP6161034B2 (ja) MgB2超伝導体の製造方法およびMgB2超伝導体
JP4055375B2 (ja) 超電導線材とその作製方法及びそれを用いた超電導マグネット
JP2013152784A (ja) MgB2超電導線材の前駆体及びその製造方法
JP5520260B2 (ja) 超電導線材及びその製造方法
Miao et al. Studies of precursor composition effect on Jc in Bi‐2212/Ag wires and tapes
US11903332B2 (en) Superconductor comprising magnesium diboride and manufacturing method therefor
Yang et al. Influence of Strand Design, Boron Type, and Carbon Doping Method on the Transport Properties of Powder-in-Tube $\hbox {MgB} _ {2-{\rm X}}\hbox {C} _ {\rm X} $ Strands
JP2012074330A (ja) 超電導線材の製造方法、および超電導線材
JP2008140556A (ja) MgB2超電導線材の製造方法
JP4500901B2 (ja) 複合シースニホウ化マグネシウム超電導線材とその製造方法
JP4033375B2 (ja) MgB2系超伝導体及びその製造方法
Jiang et al. Enhanced Jc property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process
JP2006127898A (ja) 焼結体、焼結体の製造方法、超電導線材、超電導機器、および超電導線材の製造方法
JP4136896B2 (ja) MgB2超電導線材とその製造方法。
JP5356132B2 (ja) 超電導線材
JP2011076821A (ja) 二ホウ化マグネシウム線、及びその製造方法
Jun et al. Influence of intermediate annealing on the microstructure of in situ MgB2/Fe wire
JP2003092032A (ja) 超電導線材及びその製造方法
Suo et al. High Critical Current Densities in SiC Doped In-Situ ${\hbox {MgB}} _ {2} $ Wires Prepared by Continuous Tube Forming and Filling Technique
JP4723327B2 (ja) 粉末法Nb3Sn超電導線材の製造方法およびそのための前駆体
Yamamoto et al. Processing of Low T c Conductors: The Compound MgB2
Hässler MgB2 wires by in situ technique, mechanical alloying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees