JP4928893B2 - プラズマエッチング方法。 - Google Patents

プラズマエッチング方法。 Download PDF

Info

Publication number
JP4928893B2
JP4928893B2 JP2006271362A JP2006271362A JP4928893B2 JP 4928893 B2 JP4928893 B2 JP 4928893B2 JP 2006271362 A JP2006271362 A JP 2006271362A JP 2006271362 A JP2006271362 A JP 2006271362A JP 4928893 B2 JP4928893 B2 JP 4928893B2
Authority
JP
Japan
Prior art keywords
gas
valve
processing chamber
mass flow
flow controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006271362A
Other languages
English (en)
Other versions
JP2008091651A (ja
JP2008091651A5 (ja
Inventor
直行 小藤
博 秋山
浩平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006271362A priority Critical patent/JP4928893B2/ja
Priority to US11/670,048 priority patent/US20080078505A1/en
Publication of JP2008091651A publication Critical patent/JP2008091651A/ja
Publication of JP2008091651A5 publication Critical patent/JP2008091651A5/ja
Priority to US12/723,443 priority patent/US20100167426A1/en
Application granted granted Critical
Publication of JP4928893B2 publication Critical patent/JP4928893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、半導体ウェハなど半導体基板の処理を行うプラズマエッチング装置およびその装置を用いたプラズマエッチング方法に関する。
半導体デバイスのゲート加工に用いられるプラズマエッチングの推移について説明する。1990年代前半までは、ゲート電極には単層のPoly−Si膜が使われていた。このため、単一のエッチング条件で加工する方法が主流であった。1990年代後半になって、異種材料の積層構造のゲートが導入されると、単一条件による加工は難しくなり、複数の条件をいくつかのステップに分けて処理する方法が用いられるようになった。この場合、条件切換え直後にガス流量やガス圧力などが十数秒間変動する。変動中の不確定な条件でゲートがエッチングされて再現性が低下することを避けるために、ステップ間でプラズマ放電を中断する方法(放電中断)がとられるようになってきた。
しかしながら、この方法には二つの問題があった。一つは、スループットの低下である。条件切換えには十数秒を要するため、条件切換えの回数が増えると処理時間が増大する問題がある。もう一つは製品欠陥の増加である。通常、エッチングによって処理室内部では、大量のパーティクルが発生する。このパーティクルは、プラズマ放電中にはプラズマとウエーハの界面に存在するイオンシースと呼ばれる部分にトラップされていて、プラズマ放電を中断した瞬間にウエーハに付着する特徴がある。以前の単一条件の処理の場合、パーティクルは、エッチング中はシースにトラップされていて、エッチングが終了してプラズマ放電が中断された瞬間にウエーハに付着していた。付着したパーティクルは、洗浄により除去され、製品欠陥はほとんど発生しなかった。一方、放電中断を用いた処理の場合、放電中断によってエッチング途中でパーティクルがウエーハに付着する。この後、エッチングを再開した際には、付着したパーティクルの直下がエッチングされずにエッチ残りを発生する。このため、洗浄でパーティクルが除去されても、エッチングされていない部分が残り、製品欠陥を発生させる。
この製品欠陥低減のため、一部の半導体デバイスメーカでは、ステップ間で放電中断しない方法(連続放電)が検討されはじめている。連続放電の多くは、ステップ間に中間ステップを設け、その間を反応性の少ない希ガス等で希釈することによってガス切換え中のエッチングを抑制する方法を用いている。しかしながら、この方法を用いても、ガスの切換え時間は短縮されないため、スループットの低下は避けられない。
スループットを向上させるためには、中間ステップを用いずに連続放電する必要がある。この場合、ガス流量やガス圧力を再現性よく高速かつスムーズに切換えなければならない。しかしながら、通常エッチングで用いられるガス切換方式では、ガス切換えの応答性が悪いという問題があった。
従来の装置のガスラインの具体的な構成を図25に示す。図25の構成で、ガス供給源101からガス供給源111に切換える場合のシーケンスを例として説明する。ガス供給源101のステップでは、ガス供給源101のガスラインに取り付けられたMFC102の流量が所望の値に設定されており、MFC102と減圧処理室との間をつなぐ処理ガスライン8に設置されたバルブ103が開いている状態である。ガス切換えの信号が入力されたと同時に、MFC102の流量を0sccmにして、バルブ103を閉じ、バルブ113を開くと同時にガス供給源111のMFC112の流量を所望の値に設定する。この時のガス供給源101とガス供給源111のガス流量の応答および圧力の応答をそれぞれ図
26に示す。バルブ応答性は極めてよいため、ステップ切換えの直後にガス供給源101の流量は0sccmになるのに対して、MFCの流量応答性は悪いため、ガス供給源111は流れ始めが約1秒遅れる。このため、ガス切換直後の数秒間、ガスが流れない状態になり、ガス切換直後の圧力にアンダーシュートが発生する。
また、MFCは0sccm設定の場合でも微量のガスが流れるため、バルブ113を閉じた状態が長い時間続くと、MFC112とバルブ113の間にガス供給源111が貯まる。このときの流量および圧力の応答を図27に示す。バルブ113を開いた瞬間に大量のガス供給源111が流れ、ガス供給源111の流量がオーバーシュートする。この時、処理室圧力もオーバーシュートし、定常に達するまでに数秒を要する。このように、エッチングの再現性自身も低下する問題がある。また、実際のエッチング装置では、微小な穴からガスを噴出するシャワープレート構造やノズル構造がガス供給機構として採用されているため、さらに複雑な応答となる。
ガス流量を高速に切換えるための要素技術としては、例えば、主にMO−CVDで用いられる高速ガス流量制御方法がある。この高速ガス流量制御方法のガスラインの具体的な構成を図28に示す。図28においてガス供給源4からMFC3,減圧処理室6,排気手段7をつなぐ処理ガスライン8とは、別にMFC3と排気ポンプ5をつなぐ排ガスライン9を設けて、それぞれのガスラインにバルブ1およびバルブ2を設置する。ガス供給時には、バルブ1を閉じたまま、バルブ2を開き、MFC3の流量Qoを処理時の流量Qと同じ値に設定して、ガスを排気ポンプ5に流す。流量Qoが安定した時点でバルブ2を閉じると同時にバルブ1を開けることで、高速なガス供給を行う方法である。また、処理ガスライン8の中の圧力Poに比べ、排ガスライン9の中の圧力Pの圧力が高いことによって発生するガス供給開始時のオーバーシュートを回避するため、排ガスライン9に流す流量
Qoを処理時の流量Qより小さな値にする方法も開示されている(例えば、特許文献1)。
特開平5−198513号公報
連続放電するためには、エッチング特有のガス導入機構であるシャワープレート構造やノズル構造においてガス流量やガス圧力を再現性よく高速かつスムーズに切換える必要がある。特に近年のゲートエッチングでは各ステップの処理時間が短くなっており、1s以内の高速なガス切換えが求められる。しかるに、前述の特許文献1の高速ガス流量制御方式では、シャワープレート構造やノズル構造の影響が考慮されていない。そこで、本発明者らは、本発明に至るに先立って、特許文献1のガス流量制御方式をシャワープレート構造に応用して、ガス切換時の応答を計測した。
応答計測時の具体的な構成を図29に示す。図29においてMFC102およびMFC112から処理ガスライン8,ガス貯め10,シャワープレートのガス導入用穴11を経て処理室に至る処理ガスライン8とは別に、MFC102およびMFC112と排気ポンプ5をつなぐ排ガスライン9を設けて、それぞれのガスラインにバルブ103,104,113,114を設置している。ガス供給源101のステップでは、ガス供給源101の排ガスラインのバルブ104が閉じ、処理ガスライン8に取り付けられたバルブ103が開いており、MFC102から所望の流量のガスが減圧処理室に供給されている状態である。また、この時、次ステップで使用するガス供給源111に関しては、バルブ113が閉じ、バルブ114が開いており、MFC112から次ステップで使用する流量のガスが排ガスライン9に流されている。ガス供給源101からガス供給源111に切換える際には、バルブ113を開くと同時に、バルブ114およびバルブ103が閉じられる。この際の処理室の圧力変動をモニタした結果、圧力がガス切換直後にアンダーシュートすることが分かった。さらに、アンダーシュートの大きさには再現性がなく、大きい場合と小さい場合があることがわかった。
また、プラズマ発光分析を用いて、ガス切換直後の処理室内のガスの組成を調べたところ、ガス供給源111の割合の増加は非常に緩やかで、ガス供給源101からガス供給源111に完全に入れ換わるのに10s程度要していることがわかった。すなわち、(1)アンダーシュートの問題と(2)低応答性の問題があることがわかった。この構成を用いて連続放電した結果、(1)切換え直後の圧力が急激に低下することによって、プラズマが消滅してパーティクルがウエーハに付着する問題や(2)短時間ステップでガスが完全に切換らず安定なエッチング特性が得られない等の問題があることがわかった。
本発明の目的は、シャワープレート構造やノズル構造においてガス流量やガス圧力を再現性よく高速かつスムーズに切換えることができるプラズマエッチング装置およびプラズマエッチング方法を提供することにある。
本発明者らは、圧力のアンダーシュートについて調べ、その原因がガスの逆流によるものであること、およびガスの逆流に2種類のメカニズムがあることがわかった。図29を用いて一つ目のメカニズムを説明する。シャワープレート構造やノズル構造では、減圧処理室6にガスを導入するための穴11の内径が、処理ガスライン8の内径よりも小さく、ガスが流れにくくなっている。このため処理ガスライン8の圧力Poは排ガスライン9の圧力P1よりも著しく高くなっている。バルブ113を開け、バルブ114を閉じた瞬間は、バルブ113,バルブ114およびMFC112で囲まれた部分のガス配管115の圧力はP1で、処理ガスライン8の圧力Poより低いため、処理ガスライン8からガス配管115へガスが逆流する。このメカニズムによる逆流現象は、再現性よく発生する。
二つ目のメカニズムは次のようにして発生する。前述の特許文献1のようにバルブ113とバルブ114を同時に開閉した場合、バルブ113が完全に閉じておらず、バルブ114が少し開いている瞬間が存在する。この瞬間には、処理ガスライン8と排ガスライン9がつながっているため、圧力の高い処理ガスライン8から排ガスライン9へガスが逆流する。このメカニズムによる逆流は、ガス切換えの瞬間のバルブ113およびバルブ114の開閉具合のバラツキに影響されるため、逆流の大きさにはバラツキが生じる。
アンダーシュートを防ぐための方法の第1は図1に示すように排ガスライン9に可変コンダクタンスバルブ100を設置して、排ガスライン9の圧力P1を処理ガスライン8の圧力Poの1倍から1.2 倍の大きさに調整する方法である。これによって、処理ガスライン8から排ガスライン9へのガスの逆流は完全に防止できる。
アンダーシュートを防ぐための第2の方法はガス配管115の部分の容積V1をバルブ113からガス貯め10に至るまでの処理ガスライン8の容積とガス貯め10の容積の総和Voに比べ十分小さくすることである。これにより、P1とPoの間に多少の圧力差があった場合でも、メカニズム1によるアンダーシュートを低減できる。
アンダーシュートを防ぐための第3の方法は、バルブ113とバルブ114を同時に開閉するのではなく、バルブ114を閉じてから、バルブ113を開くことである。これによって、バルブ113とバルブ114が同時に開いている瞬間がなくなり、メカニズム2によるガスの逆流が防止できる。
また、排気ポンプ5は、排気手段7の背圧を排気するポンプと兼用してもよい。
次に、発明者らは低応答性の原因について調べ、最も重要な要因を二つ見出した。一つはシャワープレートのガス導入用穴11の内径や数が小さく、ガスが流れにくくなっていることである。もう一つは、ガス貯め10や処理ガスライン8を含むシャワープレートからバルブ113までの間の容積Voが大きいことである。このため、容積Voの空間中でガスがよどみバルブ切換後もガス組成がなかなか変化しないことがわかった。我々の研究の結果、ガス導入用穴11の内径が処理ガスラインの配管の内径より小さい場合は、ガスの応答性は数式1に依存することがわかった。
Figure 0004928893
ここで、tはガス導入用穴11の深さ、dは穴径、Nは個数、Qはガス流量(Pa・m3/s) である。この値を大きくすることで、高速の応答が実現できる。
本発明を多段ステップのプラズマエッチングに適用すれば、中間ステップ無しで、連続放電で処理できるため、スループットが向上する。また、ステップ切換え時の圧力変動が小さく放電の不安定が生じないため、パーティクルに起因する製品欠陥を大幅に低減できる。
〔実施例1〕
本発明の一実施例の装置構成を図2に示す。図2の装置において、エッチングガスをガス供給ユニット16から処理ガスライン8,ガス導入機構19を介して、減圧処理室20に供給するとともに、アルミナ製の誘電体窓26の外部に設置されたアンテナコイル13およびアンテナコイル12に放電用RF電源14から例えば13.56MHz のRF電力を印加して、エッチングガスから誘導結合プラズマ17を発生させる。このアンテナコイル12および13と放電用RF電源14との間には電力分配器15があり、アンテナコイル12および13の供給電力の比を調整することによって、プラズマの生成分布を調整できる構造になっている。このプラズマ17を試料台18に載置された試料21に照射して、エッチング処理を行う。試料台18には、バイアス用RF電源29が接続されており、例えば13.56MHz のRF電力を印加することによって、効率的に試料21をエッチングすることができる。また、減圧処理室20の圧力はターボ分子ポンプ22および可変コンダクタンスバルブ23によって調整することができる。圧力は可変コンダクタンスバルブ23の上方に取り付けたキャパンシタンスマノメータ24によって測定され、この値を可変コンダクタンスバルブ23の開度にフィードバック制御することによって圧力を所望の値に維持することができる。
処理室側面には石英のぞき窓30が設けられており、ここに光ファイバ27を介して分光システム28が接続されており、プラズマ発光を分析して、条件切換えのタイミングを判断することができる。分光システム28からの条件切換え指示に基づき、コンピュータ25が、ガス供給ユニット16を始めとする装置各ユニットに次の条件を指示する構造になっている。ガス供給ユニット16の構成としては、図3のような構成を用いた。図3において各ガスラインにはMFC102,112,122とバルブ103,113,123が取り付けられており、バルブ103,113,123の後段で全てのガスラインがガス配管105に結合され、バルブ130,処理ガスライン8を介して、ノズル19へ導入される構造になっている。
さらに、MFC102,112および122とバルブ103,113および123の間に排気ポンプ5に繋がる排ガスライン106を追加し、それぞれにバルブ104,114および124を設置している。また、排ガスライン9には可変コンダクタンスバルブ100(ピエゾバルブ)が取り付けられており、排ガスライン9の圧力P1を調整できる構造になっている。このガス供給ユニットを用いてガス供給源101からガス供給源111に切換える場合を例にとって説明する。ガス供給源101のステップでは、ガス供給源101の排ガスラインのバルブ104が閉じ、処理ガスライン8に取り付けられたバルブ103が開いており、MFC102から所望の流量のガスが減圧処理室6に供給されている状態である。また、この時、次ステップで使用するガス供給源111に関しては、バルブ113が閉じ、バルブ114が開いており、MFC112から次ステップで使用する流量のガスが排ガスライン9に流されている。ガス供給源101からガス供給源111に切換える際には、バルブ113を開くと同時に、バルブ114およびバルブ103が閉じられる。
つぎに、流量変更について、ガス供給源101の流量を変更する場合を例にとって説明する。前のステップではバルブ103および可変コンダクタンスバルブ100が開いている状態で、MFC102の流量設定がQ1に設定されている状態である。条件切換えの指示と同時にMFC102の設定値がQ2に設定される。
ガス導入機構19には図2の拡大図のよう穴径d=0.1mm,穴深さt=7mmのノズル状のガス導入用穴11を27個有するものを用いて、Po=P1になるように可変コンダクタンスバルブ100の開度を調整した状態でガス流量の応答性を調べた。処理ガスライン8の配管長を変えることでVoの大きさを変えて、ガス供給源101からガス供給源111へ切換えた場合のガス供給源111の流量の応答性の変化をみた結果を図4に示す。なお処理ガスライン8のガス配管には一般的な1/4インチステンレス配管を用いた。図4に示すように処理ガスライン8の配管長を短くして、Voを小さくするに従って、応答性が向上しており、配管長を20mm、Voを1.1cm3まで小くすることで目標の1s以内に流量を設定値150sccmにすることができることがわかる。
この結果を数式1のUの値を横軸にとり、ガス切換後1sのガス流量との相関を図5に示す。ここで、tはガス導入用穴11の穴深さ、dは穴径、Nは個数、Qはガス流量(Pa・m3/s)である。Uの値が十分大きい場合は1s後のガス流量が設定流量の150sccmになる。一方、Uの値が0.2(Pa0.5/s0.5)以下になると急激に流量が減少し始め、0.02(Pa0.5/s0.5)以下では完全に0sccm になってしまう。したがって、1s以下のガス切換えをするにはUの値を少なくとも0.02(Pa0.5/s0.5) 以上、望ましくは0.2(Pa0.5/s0.5)以上にする必要がある。
次に前述のノズル構造を用いて、処理ガスライン8の配管の長さを20mmにして、可変コンダクタンスバルブ100の開度を変更して、ガス切換時の圧力変動を調べた。Poの値は22kPaであり、これを基準にしてP1の値を0.5倍 ,1倍,2倍にした場合のガス切換時の圧力変動を調べた結果を図6に示す。P1が小さい場合にはアンダーシュートが、P1が大きい場合にはオーバーシュートが発生する。この原因について調べた。
P1が小さい場合には、バルブ113,バルブ114およびMFC112で囲まれた部分のガス配管115へガスが逆流しており、逆にP1が高い場合にはガス配管115に貯まったガスが一気に噴出していることがわかった。
次にガス切換時の圧力変動量ΔPとP1の関係を調べた結果を図7に示す。Poの1〜1.2 倍の範囲でオーバーシュートもアンダーシュートも発生しない領域があることがわかる。したがってP1の値をこの範囲に設定することによってアンダーシュートやオーバーシュートの発生しないスムーズなガス切換えができる。
可変バルブの開度でアンダーシュートを制御する場合、ガス流量やガス種によって可変バルブの開度を常に制御する必要があり、装置コストが大きくなる。そこで、可変バルブを用いずにアンダーシュートを防止する方法を検討した。
可変コンダクタンスバルブ100を全開にした状態では、Poが22KPaなのに対して、P1の圧力は50Paと低いため、逆流によって大きなアンダーシュートが発生する。このときの圧力変動量ΔPとガス配管115の容積V1との関係を計算機シミュレーションによって求めた結果、ΔP=Po×V1/(V1+Vo)で表されることがわかった。
このため例えば圧力変動ΔPを10%以下に抑えるためには、V1をVoの11%以下にする必要がある。今回の実験系でV1をVoの11%以下にするためには、ガス配管
115の配管長を3mm以下にする必要がある。しかし、バルブ113,バルブ114およびMFC112を通常のガス配管で接続した場合、3mm以下にすることは極めて困難である。そこで、ガス配管115の長さを極限まで小さくするため、バルブやMFCが直結されている集積化ガスシステムを用いた。この方法によって、Vo≫V1の状態を作り、ガス切換時の圧力の応答性を調べた結果、圧力のアンダーシュートが発生せず、スムーズなガス切換えができることが確認された。
この構成を用いて、ガス切換試験を繰り返して再現性試験を行い、アンダーシュートの有無を調べた。この結果、5%の確率でランダムにアンダーシュートが発生していることがわかった。この原因についてガス供給源101からガス供給源111へ切換える場合のシーケンス図(図8)で説明する。ガス切換えの瞬間の時刻0sから0.1s の間は、バルブ103およびバルブ114が完全に閉じておらず、バルブ113が開きかけている状態である。この瞬間、バルブ113およびバルブ114を介して処理ガスライン105と排ガスライン106がつながっているため、圧力の高い処理ガスライン105から排ガスライン106へ逆流が発生する。この逆流によって、ガス切換時に圧力のアンダーシュートが発生する。また、アンダーシュートの程度は、時刻0sから0.1s の間の各バルブの閉まり具合に依存するため、バラツキが大きい。バルブの切換シーケンスを図9に示すようにバルブ114が閉じてからバルブ113を開くように変更した。このシーケンスによって再現性試験を行った結果、1000回の繰り返し実験においても一度もアンダーシュートが発生しなくなった。
圧力のアンダーシュートが発生するハードと発生しないハードの二つにおいて、連続放電したまま、ガス供給源101からガス供給源111に切換えた。その結果、アンダーシュートのないハードでは安定なプラズマ放電が得られたが、アンダーシュートのあるハードでは、アンダーシュート発生時に放電が明滅することがわかった。この二つのハードで製品処理を行って歩留まりを評価したところ、アンダーシュートのないハードでは、高い歩留まりが得られたが、アンダーシュートのあるハードでは、パーティクル起因のエッチング残りによる配線ショートが多発して、歩留まりが大幅に低下した。
以上のように、本発明のガス切換えシステムを用いることによって、高速かつスムーズなガス切換えができるため、安定した連続放電を実現できる。これによって、パーティクル起因の製品欠陥を減らすことができることがわかった。
本発明では、(1)集積ガスシステムによるV1の低減および(2)図9のバルブ切換シーケンスの組み合わせを用いて、放電安定性や製品歩留まりの評価を行ったが、(1)または(2)の方法のいずれかのみでもある程度の効果は得られる。また、(3)可変コンダクタンスバルブ100によるP1の調整による方法を用いた場合でも、(1)および(2)の組み合わせと同様の効果が得られる。さらに(1)(2)および(3)の方法を組み合わせれば、更に高い効果が得られる。
〔実施例2〕
実施例1の構成を使って、図10のような3ステップのエッチングを行った。このとき圧力は図11に示すように、ステップ1の直後には圧力のアンダーシュートが、ステップ2の直後には圧力のオーバーシュートがそれぞれ発生して、プラズマが消滅する現象が見られた。そこで、このアンダーシュートとオーバーシュートの発生原因および低減方法を検討した。
本方式ではガス流量の応答性が高く、ガス流量が急峻に変化するため、応答性の遅い圧力制御機構が追従できない状況になっている。このため、図11に示すようなアンダーシュートやオーバーシュートが発生したと考えられる。この問題を解決するため、ガス流量を段階的に変化させる方法を検討した。
図12に示すように、ステップ2の最初の1.0s間だけMFC112の流量を150
sccmに設定し、それ以降を100sccmに減らした。また、ステップ3についても最初の
1.0s 間だけMFC122の流量を150sccmに設定し、それ以降を200sccmに増やした。このときの圧力の変化は、ガス流量を段階的に引き下げたり、引き上げたりすることによって圧力のアンダーシュートやオーバーシュートが小さくなっている。これによりステップ切換えにかかわらず、安定な放電を維持できるようになった。
以上のように、本発明のガス流量切換え方式を用いて、ステップ1とステップ2で流量を変更した場合に発生する圧力のアンダーシュートやオーバーシュートに関して、ステップ2の開始時の流量を、ステップ1とステップ2の中間的な流量にすることによって、圧力のアンダーシュートを低減できることがわかった。この方式を用いれば、連続放電した場合でも、ステップ切換え時のプラズマ消滅がなくなり、パーティクル起因の製品欠陥を大幅に軽減できる。
〔実施例3〕
実施例1のガス切換え方式をマイクロ波エッチング装置に適用した場合の構成を図13に示す。図13の装置では、エッチングガスは、ガス供給ユニット16から、石英製の誘電体窓26の内部に作られたガス貯め10を経て、誘電体窓26の減圧処理室側に設けられた複数の穴(シャワープレート構造)から、減圧処理室内に導入される。また、マグネトロン53で生成されたマイクロ波が導波管54,空洞共振部55,誘電体窓26を経て、減圧処理室内に供給される構造になっており、このマイクロ波と、コイル56の作る磁場の相互作用によってプラズマ17を生成する構造になっている。また、この装置は、圧力制御の安定性を上げるため、減圧処理室の容積を150Lと比較的大きくなっている。その他の構成は実施例1と同じである。シャワープレート構造の例としてここでは、穴径1mm,深さ10mmのガス導入用穴11が5個開いているものを使用した。また、ガス貯め10としては、例として直径500mm,厚さ2mmの円筒状の空洞構造を用いた。
この装置を用いて、ガス供給源101からガス供給源111に切換え、ガス供給源111の流量の応答を調べた。その結果、応答性が極めて悪く、設定流量の150sccmに達するのに5s程度要していることがわかった。応答速度が悪い原因を調べた結果、ガス貯め
10の容積が大きいため、Uの値が小さくなっていることが原因であることがわかった。ガス導入口57が最外周にあるためガス貯め10の直径は小さくできない。そこで、ガス貯め10の厚みを0.1mm まで減らして、ガス貯め10の容積を減らした。この構成で同様の試験をした結果、ガス流量の応答性が逆に劣化していることがわかった。これは、ガス導入口57から、ガス導入用穴11に至るまでのガス流路が極端に狭くなって、ガスが通りにくくなったためである。
以上の検討から、シャワープレートでは、ガス貯めの容積が大きく、Voを小さくすることができないことがわかった。
そこで、シャワープレートのガス導入用穴11の数を増やすことでUの値を大きくして応答性を向上させることを検討した。ガス導入用穴11の数を30個,150個と増やしていた場合のガス流量の応答性を図14に示す。穴数を増やすに伴って、応答性が改善しており、150個ではほぼ1sで設定流量の150sccmに達している。
本実施例では、穴数を増やすことでUの値を大きくして応答性の改善を実現したが、穴径を大きくしても同様の効果が得られる。
この装置に穴数5個もしくは150個のシャワープレートを搭載して、図15の3ステップエッチングによって、図16(a)の構造の試料を処理した。このエッチングではレジストパターンのマスク60に沿って、ポリシリコン61,シリコン酸化膜62,ポリシリコン63をエッチングし、シリコン酸化膜64と基板シリコン65を残す必要がある。まず、第1ステップでは、ポリシリコン61,シリコン酸化膜62をエッチングする。第2ステップでは、シリコン酸化膜64が露出するまで、ポリシリコン63をエッチングする。このときの加工形状は、図16(b)のように、ポリシリコン63がテーパ形状になる。第3ステップでは、このテーパ形状の裾部をエッチング除去する。このとき、シリコン酸化膜64がエッチングされないようにするため、シリコン酸化膜のエッチング速度の遅い高圧条件を用いている。この3ステップによって、図16(c)のような垂直な加工形状が期待できる。
次に放電中断と連続放電の二つの方法で図16(a)の構造の試料を処理して加工形状を比較した。放電中断処理の場合は、シャワープレートの穴数によらず、十分な膜厚のシリコン酸化膜64が残っており、図16(c)とほぼ同じ加工形状が得られた。これに対して、穴数150個のシャワープレート連続放電の場合は、図17(a)に示すようにパターン裾部のシリコン酸化膜64が消失して、基板シリコン65の一部がエッチングされていた。さらに穴数5個のシャワープレートでは、図17(b)に示すようにシリコン酸化膜64が完全に消失していた。
そこでこの違いの発生する理由を調べた。放電中断処理の場合の圧力変化と、マイクロ波の投入電力の変化をそれぞれ図18に示す。放電中断処理では、各ステップの始め5s間に、マイクロ波電力を投入しない時間帯を設けることによって、圧力の安定な時間帯のみにエッチング処理を行っている。次に、連続放電の場合の、圧力変化と、マイクロ波の投入電力・反射電力の変化をそれぞれ図19に示す。この場合は、最初の5s間を除き、エッチング終了までマイクロ波電力を投入している。このため、圧力の変化している最中もエッチング処理していることになる。特にステップ3の開始時は圧力が0.5Pa から3Paに徐々に上昇する時間帯が2.5s 程あり、この間のエッチングを考慮する必要がある。
ステップ3のガス条件にて、圧力を0.4Pa から3Paまで変えた場合のポリシリコンおよびシリコン酸化膜のエッチング速度を図20に示す。3Paでは、シリコン酸化膜のエッチング速度がほとんど0nm/min であるのに対して、圧力を下げた場合はシリコン酸化膜のエッチング速度が増加しており、0.5Pa近傍では、40nm/min程度の高い値となり、シリコンとの選択比が大幅に低下していることがわかる。このため、シリコン酸化膜64の膜厚が薄い場合は、ステップ3開始後、3Paに達するまでの2.5s 間にシリコン酸化膜64の一部がエッチング除去されたと考えられる。
このメカニズムに加えて、シャワープレートの穴数が5個の場合は、第1ステップに用いたガスIが5s間のステップ2中も残留しており、残留しているガスIがシリコン酸化膜64のエッチ速度を高くしていることがわかった。
前者のメカニズムによる選択性低下を防止するため、圧力の立ち上がりの時間を短縮する方法を考えた。圧力の立ち上がり時間は、ほぼ処理室容積に比例し、ガス流量に反比例する。そこで、図21のようにステップ3の開始1秒間のガスCおよびガスBのガス流量を4倍の400sccmと8sccmに増やし、その後、通常の流量に戻す方法を検討した。この方法を穴数5個と穴数150個のシャワープレートで試した場合の総ガス流量の時間変化を調べた。穴数5個のものでは、ガス流量の応答性が悪いため、1sの短時間の流量変更では、実際の流量はほとんど変化してない。これに対して、穴数150個のものでは、ガス流量の応答性がよいため、1s間の瞬間的な流量変更でも応答していることがわかった。
この時の圧力の変化を調べた。穴数5個の場合は、ガス流量に変化がないため、図19の場合と全く同じ圧力の応答を示すことがわかった。一方、穴数150個の場合には、図22に示すように3Paに達するために要する時間が0.5s に短縮されていることがわかる。この方法を用いて、図16(a)の試料をエッチングした結果、穴数5個の場合は図17(b)と同様の加工形状になったが、穴数150個の場合はシリコン酸化膜に対する選択性が改善されて、放電中断の場合の結果(図17(c))とほぼ同じ加工形状になった。
以上のように、ステップ1からステップ2に移行する際に圧力増加が必要な場合、ガス流量の応答性のよいシャワープレート構造を用いて、ステップ2開始時の流量を、ガス流量比を一定のまま、ガス流量を所望の値より大きくすることによって、より短時間で目的の圧力値にすることができる。この方法を用いれば、連続放電処理を行った場合でも、放電中断処理と差異のない加工特性が得られる。
本実施例では、ステップ間で圧力を増やす場合を例にとって説明したが、圧力を下げる場合は、ステップ開始時の流量を減らすことで高速の圧力制御が可能である。
〔実施例4〕
実施例3の装置構成において、排ガスライン9の排気ポンプ5とターボ分子ポンプ(排気手段)22の背圧排気用のポンプを兼用することを検討した。このための実施例の一つを図23に示す。ターボ分子ポンプ(排気手段)22と、そのマスク60の間をつなぐポリシリコン61に可変コンダクタンスバルブ100を介して排ガスライン9を接続した。このような構成にした場合、ポリシリコン61から、排ガスライン9を介して処理ガスライン8にターボ分子ポンプからの排ガスが逆流することが懸念される。可変コンダクタンスバルブ100の開度を調整して、圧力計131で計測されるポリシリコン61の圧力
P2より、圧力計132で計測される排ガスライン9の圧力P1を高くすることによって、逆流を防止することができる。また、これによって排気ポンプの台数を増やすことなく高速のガス切換えを実現できるため、装置コストを低減することができる。
〔実施例5〕
図24は、排気ポンプ5と背圧排気用のポンプを兼用した別の実施例である。本実施例のガス供給ユニットには、ガス供給源101,ガス供給源111とは別にガス供給源121のガスラインが設けられている。
また、本実施例では、ターボ分子ポンプ(排気手段)22と、そのマスク60の間をつなぐポリシリコン61にバルブ133を介して排ガスライン9が接続されている。
このガス供給ユニットを用いてガス供給源101からガス供給源111に切換える場合を例にとって説明する。ガス供給源101のステップでは、ガス供給源101の排ガスラインのバルブ104が閉じ、処理ガスライン8に取り付けられたバルブ103およびバルブ130が開いており、MFC102から所望の流量のガスが減圧処理室20に供給されている状態である。また、その他のバルブは閉じられており、ガス供給源111もガス供給源121も流れていない状態である。ガス供給源101からガス供給源111に切換える時刻より前(例えば10秒前)のあらかじめ決めておいた時刻toにガス切換えの準備を開始する。バルブ114を開き、MFC112の流量を次ステップで使用する流量に設定する。この後、圧力計132で計測される圧力P1と圧力計131で計測される圧力
P2をモニタして、P1がP2より高くなったところで、バルブ133を開く。この状態でMFC112の流量が安定するまで放置して、ガス供給源101からガス供給源111に切換えるタイミングで、バルブ113を開くと同時にバルブ114およびバルブ103を閉じる。その後、P2が十分下がったところでバルブ133を閉じる。
本実施例の方法では、P1がP2より高くなるまで待ってからバルブ133を開くことによって、排ガスライン9に排ガスが逆流することを防止できる。このため、ターボ分子ポンプの排気ガス中の反応生成物が排ガスライン9を介して減圧処理室20に逆流することを防止できるため、反応生成物に起因する製品欠陥を防止できる。
〔実施例6〕
実施例5の方法において、P1がP2より高くなるまで待つ間、MFC112の流量を次ステップで使用する流量Qoより一時的に高い値に設定した。その後、P1>P2となってバルブ133を開いた後に、流量をQoに設定した。これによって、P1>P2に達するまでの時間を短縮できる。
〔実施例7〕
実施例5の方法において、P1がP2より高くなるまで待つ間、一時的にバルブ124を開いてMFC122の流量を1000sccmに設定した。その後P1>P2となってバルブ133を開いた後に、流量をQoに設定した。これによって、P1>P2に達するまでの時間を短縮できる。
本実施例では、Arガスを用いたがN2 や他の希ガスなど反応性の低いガスであれば同様の効果が得られる。
また、本発明は、請求項1記載のプラズマエッチング装置において、第1のバルブとガス導入部の間の容積Voと前記ガス導入部の穴径d,穴深さt,穴個数Nによって決まる数式1のUの値を0.02(Pa0.5/s0.5) 以上にすることを特徴とする。
本発明のエッチング装置の説明図。 実施例1のエッチング装置の説明図。 実施例1のガス供給ユニットの構成の説明図。 ガス切換直後のガス供給源111の流量の時間変化の説明図。 Uとガス応答性の関係の説明図。 従来法の場合のガス切換え直後の処理室圧力の時間変化の説明図。 処理室圧力変動ΔPとガス配管115の内圧P1の関係の説明図。 改善前のバルブ切換シーケンスの説明図。 改善後のバルブ切換シーケンスの説明図。 改善前のエッチング条件を説明する図表。 条件改善前の処理中の処理室圧力の時間変化の説明図。 改善後のエッチング条件を説明する図表。 実施例3のエッチング装置の説明図。 実施例3のガス導入機構(シャワープレート構造)の説明図。 実施例3のエッチング条件を説明する図表。 実施例3で用いた被エッチング試料の断面構造(放電中断の場合)の説明図。 加工後の被エッチング試料の断面構造(改善前)の説明図。 放電中断の場合のマイクロ波投入電力および減圧処理室圧力の時間変化の説明図。 連続放電の場合のマイクロ波投入電力および減圧処理室圧力の時間変化の説明図(改善前)。 ステップ3の条件の場合の減圧処理室圧力とシリコンおよびシリコン酸化膜のエッチング速度の関係の説明図。 改善後のエッチング条件を説明する図表。 連続放電の場合の減圧処理室圧力の時間変化(改善後)の説明図。 実施例4のエッチング装置の説明図。 実施例5,6,7のエッチング装置の説明図 通常(従来)のガス供給ユニットの構成の説明図。 通常(従来)のガス供給ユニットのガス切換直後のガス流量および圧力の時間変化の説明図(例)。 通常(従来)のガス供給ユニットのガス切換直後のガス流量および圧力の時間変化の説明図(例)。 特許文献1のガス供給ユニットの構成の説明図。 特許文献1のガス供給ユニットを適用したエッチング装置の説明図(例)。
符号の説明
1,2,103,104,113,114,123,124,130,133 バルブ
3,102,112,122 MFC
4,101,111,121 ガス供給源
5 排気(手段)ポンプ
6,20 減圧処理室
7 排気手段
8 処理ガスライン
9 排ガスライン
10 ガス貯め
11 ガス導入用穴
12 外側のアンテナコイル
13 内側のアンテナコイル
14 放電用RF電源
15 電力分配器
16 ガス供給ユニット
17 プラズマ
18 試料台
19 ガス導入機構(ノズル)
21 試料
22 ターボ分子ポンプ
23 可変コンダクタンスバルブ
24 キャパシタンスマノメータ
25 コンピュータ
26 誘電体窓
27 光ファイバ
28 分光システム
29 バイアス用RF電源
30 石英のぞき窓
53 マグネトロン
54 導波管
55 空洞共振部
56 コイル
57 ガス貯めへのガス導入口
60 マスク
61 ポリシリコン
100 可変コンダクタンスバルブ(ピエゾバルブ)
115 ガス配管
131,132 圧力計




Claims (8)

  1. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を0以外の値に設定するとともに前記可変コンダクタンスバルブの開度を調節して、前記ガスラインの第1バルブと前記減圧処理室の間の圧力Poに比べ、前記ガスラインの第2バルブと前記可変コンダクタンスバルブとの間の圧力P1の値を1倍以上1.2倍以下の値に設定しておき、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じることを特徴とするプラズマエッチング方法。
  2. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を0以外の値に設定するとともに、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じ、前記可変コンダクタンスバルブの開度を調節して、前記可変コンダクタンスバルブと前記第2排気装置の間の圧力P2に比べ、前記ガスラインの第2バルブと前記可変コンダクタンスバルブとの間の圧力P1の値を大きくすることを特徴とするプラズマエッチング方法。
  3. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を次の条件で使用する流量値に設定するとともに、前記可変コンダクタンスバルブの開度を調節して、前記ガスラインの第1バルブと前記減圧処理室の間の圧力Poに比べ、前記ガスラインの第2バルブと前記可変コンダクタンスバルブとの間の圧力P1の値を1倍以上1.2倍以下の値に設定しておき、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じることを特徴とするプラズマエッチング方法。
  4. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を次の条件で使用する流量値に設定するとともに、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じ、前記可変コンダクタンスバルブの開度を調節して、前記可変コンダクタンスバルブと前記ガスラインの第2排気装置の間の圧力P2に比べ、前記ガスラインの第2バルブと前記可変コンダクタンスバルブとの間の圧力P1の値を大きくすることを特徴とするプラズマエッチング方法。
  5. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、マスフローコントローラの流量を0以外の値に設定するとともに、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じることでガス切換えを行う方法であって、かつ、前記マスフローコントローラの流量を0以外の値に設定されたガスラインの総ガス流量を条件切換直後に、前記現在のエッチング条件の値と前記次のエッチング条件の値の間の値に設定することを特徴とするプラズマエッチング方法。
  6. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を0以外の値に設定するとともに、条件切換えのタイミングで、まず、前記ガスラインの第2バルブを閉じてから後に、前記ガスラインの第1バルブを開くことでガス切換えを行う方法であって、かつ、前記マスフローコントローラの流量を0以外の値に設定されたガスラインの総ガス流量を条件切換直後に、前記現在のエッチング条件の値と前記次のエッチング条件の値の間の値に設定することを特徴とするプラズマエッチング方法。
  7. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在のエッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、マスフローコントローラの流量を0以外の値に設定するとともに、条件切換えのタイミングで、前記ガスラインの第1バルブを開き、かつ、前記ガスラインの第2バルブを閉じることでガス切換えを行う方法であって、かつ、前記マスフローコントローラの流量を0以外の値に設定されたガスラインの総ガス流量を条件切換直後に、前記次のエッチング条件が前記現在のエッチング条件より圧力が高い場合は次のエッチング条件の値より大きく設定し、もしくは、前記次のエッチング条件が前記現在のエッチング条件より圧力が低い場合は次のエッチング条件の値より小さく設定することを特徴とするプラズマエッチング方法。
  8. 減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記各第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置または減圧処理室と、該減圧処理室にガスを導入するためのガス配管および該ガス配管の内径より小さな内径の穴を複数有するガス導入部と、前記ガス配管およびガス導入部を介して複数のガスの混合ガスを前記減圧処理室に供給することのできるガス供給システムと、前記減圧処理室に接続された第1排気装置と、該第1排気装置からの排気ガスを排気するための第2排気装置とを具備し、前記混合ガスからプラズマを生成して試料をエッチング処理するプラズマエッチング装置において、
    前記ガス供給システムは、各ガスは各々マスフローコントローラを介して前記減圧処理室に供給される構造であって、前記各マスフローコントローラには、前記減圧処理室との間に各々設けられた第1バルブと、前記各マスフローコントローラと前記各第1バルブとの間の部分から分岐して各々第2排気装置に接続する各ガスパイパス管と、該各ガスパイパス管に設けられた第2バルブとを備え、前記各マスフローコントローラと前記各第1のバルブおよび前記各第2のバルブが集積化ガスシステムによって直結される構成を有するか、または前記第2排気装置と前記第2バルブとの間に可変コンダクタンスバルブを有するか、の少なくともいずれかを有するプラズマエッチング装置を用いて複数のガス条件を順次切換えて試料をエッチングするプラズマエッチング方法において、
    現在エッチング条件では使用せず、かつ、次のエッチング条件で使用するガスラインについて、あらかじめ該ガスラインの第2バルブを開き、前記マスフローコントローラの流量を0以外の値に設定するとともに、条件切換えのタイミングで、まず、前記ガスラインの第2バルブを閉じてから後に、前記ガスラインの第1バルブを開くことでガス切換えを行う方法であって、かつ、前記マスフローコントローラの流量を0以外の値に設定されたガスラインの総ガス流量を条件切換直後に、前記次のエッチング条件が前記現在エッチング条件より圧力が高い場合は次のエッチング条件の値より大きく設定し、もしくは、前記次のエッチング条件が前記現在エッチング条件より圧力が低い場合は次のエッチング条件の値より小さく設定することを特徴とするプラズマエッチング方法。
JP2006271362A 2006-10-03 2006-10-03 プラズマエッチング方法。 Active JP4928893B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006271362A JP4928893B2 (ja) 2006-10-03 2006-10-03 プラズマエッチング方法。
US11/670,048 US20080078505A1 (en) 2006-10-03 2007-02-01 Plasma etching apparatus and plasma etching method
US12/723,443 US20100167426A1 (en) 2006-10-03 2010-03-12 Plasma etching apparatus and plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271362A JP4928893B2 (ja) 2006-10-03 2006-10-03 プラズマエッチング方法。

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011108946A Division JP2011166167A (ja) 2011-05-16 2011-05-16 プラズマエッチング装置およびプラズマエッチング方法

Publications (3)

Publication Number Publication Date
JP2008091651A JP2008091651A (ja) 2008-04-17
JP2008091651A5 JP2008091651A5 (ja) 2009-09-10
JP4928893B2 true JP4928893B2 (ja) 2012-05-09

Family

ID=39259979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271362A Active JP4928893B2 (ja) 2006-10-03 2006-10-03 プラズマエッチング方法。

Country Status (2)

Country Link
US (2) US20080078505A1 (ja)
JP (1) JP4928893B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283095A (ja) * 2009-06-04 2010-12-16 Hitachi Ltd 半導体装置の製造方法
WO2011104803A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 プラズマ生成装置
US20130025786A1 (en) * 2011-07-28 2013-01-31 Vladislav Davidkovich Systems for and methods of controlling time-multiplexed deep reactive-ion etching processes
JP5937385B2 (ja) * 2012-03-16 2016-06-22 東京エレクトロン株式会社 半導体製造装置のガス供給方法、ガス供給システム及び半導体製造装置
US9275823B2 (en) 2012-03-21 2016-03-01 Fei Company Multiple gas injection system
JP6020227B2 (ja) * 2013-02-12 2016-11-02 東京エレクトロン株式会社 ガス供給系及び成膜装置
DE102013014147B4 (de) * 2013-08-23 2017-02-16 Centrotherm Photovoltaics Ag Verfahren und vorrichtung zum detektieren einer plasmazündung
JP6267491B2 (ja) * 2013-11-08 2018-01-24 株式会社堀場エステック 流体切換装置
CN104733347B (zh) * 2013-12-24 2018-03-09 北京北方华创微电子装备有限公司 半导体加工设备中气体切换的装置、方法及系统
JP6499835B2 (ja) 2014-07-24 2019-04-10 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP6438751B2 (ja) * 2014-12-01 2018-12-19 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
JP6869765B2 (ja) 2017-03-23 2021-05-12 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理方法
JP6759167B2 (ja) * 2017-09-05 2020-09-23 株式会社日立ハイテク プラズマ処理装置
JP6971805B2 (ja) 2017-11-28 2021-11-24 株式会社日立ハイテク プラズマ処理装置及びプラズマ処理方法
JP7296699B2 (ja) * 2018-07-02 2023-06-23 東京エレクトロン株式会社 ガス供給システム、プラズマ処理装置およびガス供給システムの制御方法
KR20210095798A (ko) * 2020-01-23 2021-08-03 에이에스엠 아이피 홀딩 비.브이. 반응 챔버 압력을 안정화하기 위한 시스템 및 방법
WO2021199420A1 (ja) * 2020-04-03 2021-10-07 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理方法
KR102521388B1 (ko) * 2020-04-21 2023-04-14 주식회사 히타치하이테크 플라스마 처리 장치
KR102343068B1 (ko) * 2021-06-28 2021-12-23 서명란 가스 배출 장치
TWI810772B (zh) * 2021-12-30 2023-08-01 日揚科技股份有限公司 一種快速退火設備

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143427A (ja) * 1985-12-18 1987-06-26 Hitachi Ltd 処理ガス供給装置
US5605179A (en) * 1995-03-17 1997-02-25 Insync Systems, Inc. Integrated gas panel
JP3696983B2 (ja) * 1996-06-17 2005-09-21 キヤノン株式会社 プラズマ処理方法およびプラズマ処理装置
US6110556A (en) * 1997-10-17 2000-08-29 Applied Materials, Inc. Lid assembly for a process chamber employing asymmetric flow geometries
GB9724168D0 (en) * 1997-11-14 1998-01-14 Air Prod & Chem Gas control device and method of supplying gas
JPH11302849A (ja) * 1998-04-17 1999-11-02 Ebara Corp 成膜装置
US6817381B2 (en) * 1999-08-24 2004-11-16 Tokyo Electron Limited Gas processing apparatus, gas processing method and integrated valve unit for gas processing apparatus
JP2001156045A (ja) * 1999-11-26 2001-06-08 Kawasaki Steel Corp 半導体装置の製造方法および製造装置
JP2001168033A (ja) * 1999-12-03 2001-06-22 Sony Corp 半導体製造装置
JP2002129337A (ja) * 2000-10-24 2002-05-09 Applied Materials Inc 気相堆積方法及び装置
JP4078982B2 (ja) * 2002-04-22 2008-04-23 東京エレクトロン株式会社 処理システム及び流量測定方法
US7296532B2 (en) * 2002-12-18 2007-11-20 Taiwan Semiconductor Manufacturing Co., Ltd. Bypass gas feed system and method to improve reactant gas flow and film deposition
JP2004288916A (ja) * 2003-03-24 2004-10-14 Renesas Technology Corp Cvd装置
US20050186339A1 (en) * 2004-02-20 2005-08-25 Applied Materials, Inc., A Delaware Corporation Methods and apparatuses promoting adhesion of dielectric barrier film to copper
US7708859B2 (en) * 2004-04-30 2010-05-04 Lam Research Corporation Gas distribution system having fast gas switching capabilities

Also Published As

Publication number Publication date
US20080078505A1 (en) 2008-04-03
JP2008091651A (ja) 2008-04-17
US20100167426A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4928893B2 (ja) プラズマエッチング方法。
JP4782585B2 (ja) プラズマエッチング装置及び方法
US20210313148A1 (en) Plasma etching method and plasma processing apparatus
US11308182B2 (en) Data processing method, data processing apparatus and processing apparatus
KR100912478B1 (ko) 에칭처리장치 및 에칭처리방법
JP4943047B2 (ja) 処理装置及び処理方法
JP4908045B2 (ja) プラズマ処理方法およびプラズマ処理装置
JPH11145067A (ja) 半導体素子製造用化学気相蒸着装置及びその洗浄方法並びに工程チャンバーの洗浄工程レシピ最適化方法
US6553332B2 (en) Method for evaluating process chambers used for semiconductor manufacturing
JP2018160550A (ja) プラズマ処理装置及びプラズマ処理方法
JP2011166167A (ja) プラズマエッチング装置およびプラズマエッチング方法
JP2016027592A (ja) プラズマ処理装置及びプラズマ処理方法
JP2011155044A (ja) 真空処理装置
JP4476551B2 (ja) プラズマ処理装置および処理方法
JP6318027B2 (ja) プラズマ処理装置
JP4324545B2 (ja) エッチング処理装置及び処理方法
JP6541406B2 (ja) プラズマ処理装置
JP6438751B2 (ja) プラズマ処理装置およびプラズマ処理方法
CN114080662A (zh) 等离子处理装置以及等离子处理方法
JP6670791B2 (ja) 流量制御器を検査する方法及び被処理体を処理する方法
JP4906558B2 (ja) プラズマ処理装置およびプラズマ処理方法
KR100196901B1 (ko) 진공 챔버의 압력 측정방법
JP6453421B2 (ja) データ処理方法、データ処理装置および処理装置
TWI431685B (zh) Plasma processing device and plasma processing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350