JP4920528B2 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
JP4920528B2
JP4920528B2 JP2007221247A JP2007221247A JP4920528B2 JP 4920528 B2 JP4920528 B2 JP 4920528B2 JP 2007221247 A JP2007221247 A JP 2007221247A JP 2007221247 A JP2007221247 A JP 2007221247A JP 4920528 B2 JP4920528 B2 JP 4920528B2
Authority
JP
Japan
Prior art keywords
time
signal
unit
frequency
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007221247A
Other languages
English (en)
Other versions
JP2009055430A (ja
Inventor
秀夫 難波
泰弘 浜口
晋平 藤
一成 横枕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007221247A priority Critical patent/JP4920528B2/ja
Publication of JP2009055430A publication Critical patent/JP2009055430A/ja
Application granted granted Critical
Publication of JP4920528B2 publication Critical patent/JP4920528B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、通信技術に関し、特に、伝搬路推定技術に関する。
OFDM信号の受信の際には、復調前に伝播路の影響を低減するために周波数等化処理を行う。この際に、伝搬路情報が必要となる。この伝搬路情報を求めるために、送信側では既知のパイロットシンボルを送信し、受信側では受信したパイロットシンボルを周波数軸信号に変換し、送信時に使用した符号で複素除算して伝搬路の周波数応答を得る方法が一般的に用いられている。
しかしながら、この方法では、パイロットシンボルに含まれる雑音成分が、得られる周波数応答にそのまま含まれてしまうこととなり、復調時の精度にそのまま影響してしまう。特にQAM(直交振幅変調)の場合は、振幅方向の雑音も復調性能の劣化原因となるため伝搬路推定精度が問題となりやすい。
この周波数応答に含まれる雑音を低減する技術として、DFT(離散フーリエ変換)法や時間窓法と呼ばれる技術がある。この方法は、周波数応答を、一度周波数時間変換(通常はIDFT(逆離散フーリエ変換)を使用する)によって時間軸のインパルス応答に変換し、有効な遅延波が含まれる以外の時間領域を時間窓などの時間フィルタにより低減、削除した後に、時間周波数変換(通常はDFTを使用する)で周波数軸信号に変換し、雑音が低減された周波数応答を得るものである。
この方法は、時間フィルタで削減される電力分だけ雑音も低減することができる優れた方法であるが、アナログフィルタの性能の問題などでガードバンドが含まれる場合などのようにDFT/IDFT処理ポイントと信号のサブキャリア数が異なる場合に、時間フィルタ処理によって信号帯域端に歪が発生するという問題がある。この歪を軽減する方法として、送信時にパイロット信号にダミーキャリアを付加する方法が提案されている(下記非特許文献1参照)。
以下、下記非特許文献1に示されている、送信時にパイロット信号にダミーキャリアを付加する方法について図面を参照しながら簡単に説明する。図10(a)は、想定しているシステムのスペクトラムの概要を示す図である。符号1001がデータシンボルが使用する帯域を示し、符号1002がDFT/IDFTを行う帯域を示す。このようなシステムにおいて、データシンボルが使用する帯域全体に一様な振幅を持つパイロットシンボル1003を使用してDFT法による伝搬路推定を行うと、帯域端に歪が発生し、図10(b)に示すように、帯域端における伝搬路の推定精度が悪くなる。
しかしながら、図10(c)に示すように、パイロットシンボル1003の帯域両端にダミーキャリア1005を付加して送信し、受信側でダミーキャリアを含めてDFT法を行うと、発生する歪がダミーキャリアの方に移動し、図10(d)に示すように、伝搬路推定誤差が信号帯域1001の外に移動する(符号1006参照)。これにより、信号帯域1001内の伝搬路推定精度が向上する。
図11A・Bは、上記の技術を実現することができる送信機と受信機との一構成例を示す機能ブロック図である。図11Aが送信機装置、図11Bが受信機装置を示す図である。DFT/IDFTは演算量が多いため、演算量低減のためにDFT/IDFTの変わりにFFT(高速フーリエ変換)/IFFT(逆高速フーリエ変換)を使用するものとする。
最初に、送信機装置について説明する。送信信号は無線LANなどで一般的な、最初に同期用シンボル、パイロットシンボルが配置され、続いてデータシンボルが続くタイプの信号を想定している。まず、制御部1109が入力切替部1103を切り替え、同期用符号発生部1101からの信号をIFFT(逆高速フーリエ変換)部1104により時間軸信号に変換し、GI(ガードインターバル)付加部1105によりガードインターバルを付加した後、D/A(デジタル/アナログ)変換部1106によりアナログ信号に変換され、無線送信部1107において、周波数変換・電力増幅がなされ、同期用シンボルが送信される。制御部1109は、入力切替部1103の入力先をパイロット符号発生部1102に切り替える。このパイロット符号発生部1102では、信号帯域以外にダミーキャリアの分の符号も発生させる。発生されたパイロットシンボル用の符号は、以下、同期用シンボルの場合と同じように処理され、パイロットシンボルとして送信される。続いて、パイロットシンボル送信の後に、入力切替部1103を変調部1108側に切り替えることで、後続のデータシンボルの送信を行う。変調部1108は、送信制御データに従って制御部1109が所定の変調方式で処理されるように設定するものとする。以上のように処理することで、図10(c)に示したスペクトラムのパイロットシンボルが使用される信号が送信される。
次に、受信機装置について説明する。無線受信部1111において受信された信号はベースバンド信号に変換され、A/D(アナログ/デジタル)変換部1112においてデジタル信号に変換され、同期・GI除去部1113でパイロットシンボルを利用したシンボル同期並びにカードインターバルの除去が行わる。同期・GI除去部1113では、同期用シンボルが受信されると、そのタイミングが制御部1123に通知され、他のブロックの制御に使用される。ガードインターバルが除去されたシンボルは、第1FFT部1114に送られ、周波数軸上の信号に変換される。制御部1123からの制御により、出力切替部1115でパイロットシンボルは複素除算部1116に送られ、データシンボルはIFFT部1117へ送られる。パイロットシンボルは、送信時に使用した符号で複素除算処理が行われ、ダミーキャリアの帯域を含めた周波数応答に変換される。以下、IFFT部1117で時間軸信号に変換されてインパルス応答となり、時間軸フィルタ1118で有効遅延波が存在する時間帯以外の信号を削除し、第2FFT部1119において、再び周波数応答に変換される。その後、ダミーキャリア削除部1120で送信時に付加されたダミーキャリアの帯域の成分を削除し、信号帯域内の周波数応答として伝搬路補正部1121に入力され、伝搬路補正部1121でのデータシンボルの補正に使用される。補正されたデータシンボルは復調部1122で復調処理が行われる。
以上のように動作することで、信号帯域内の歪を少なくしたDFT法による伝搬路推定を利用した通信が可能となる。
以上に説明した例は、パイロットシンボル1003のサブキャリアの電力とダミーキャリア1005の電力が等しいものとして説明したが、パイロットシンボル送信時にダミーキャリア1005の電力を減らし、受信時にダミーキャリア1005の電力を増やす事で伝搬路推定精度の低下を最小限にしながらパイロットシンボルの送信電力を下げる技術がある。
「時間窓法による伝搬路推定時における歪に関する一検討」, 2006年電子情報通信学会総合大会, B-5-93
先に示したパイロットシンボルにダミーキャリアを付加する方法は、DFT法によって発生する信号帯域内の歪を軽減する優れた方法であるが、実際に通信に使用する帯域の他にダミーキャリア用の帯域が必要になるため問題が発生する。
この問題は、パイロットシンボルの信号帯域がダミーキャリアの分だけ広がることで、データシンボルのスペクトル形状とパイロットシンボルのスペクトラムの形状とが大きく変わることである。
スペクトラム形状の変更を最小限にする技術として、先に説明したダミーキャリアの送信電力を送信時に低減し、受信時に増やす補正を行う技術がある。しかしながら、送信時のダミーキャリアの送信電力の低減量が大きい場合、受信時のダミーキャリアの補正時に増幅される雑音も大きくなるため、後段の時間フィルタによって信号帯域内に漏れてくる雑音の量が信号帯域内に存在する雑音よりも大きくなり、無視できなくなる。その結果、低SNR域での推定精度が劣化するという新たな問題が発生する。
本発明は、上記の問題点を解決し、特に低SNR域での推定精度を向上させる技術を提供することを目的とする。
本発明の一観点によれば、信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において伝搬路を推定する伝搬路推定方法であって、受信したパイロットシンボルを時間周波数変換し、該時間周波数変換後の信号を送信時に使用した符号で複素除算を行い、該複素除算後の信号に補正処理を行い、該補正処理後の信号を周波数時間変換し、該周波数時間変換後の信号の所定の時間領域の電力を低減または削除する時間フィルタ処理を行い、該時間フィルタ処理後の信号を時間周波数変換することで伝搬路の周波数応答を得る際に、前記補正処理を複数から選択することを特徴とする伝搬路推定方法が提供される。
前記補正処理の1つとして、送信時に付加した補助パイロットサブキャリアの帯域に、送信時に行った電力低減処理を打ち消す補正を行う処理を含むことが好ましい。また、前記補正処理の1つとして、信号帯域内の情報から生成した仮想サブキャリアを信号帯域外に挿入する処理を含むことが好ましい。さらに、前記補正処理の1つとして、信号帯域外の情報を削除する処理を含むことが好ましい。また、伝搬路の情報に応じて選択する補正処理を決定することが好ましい。この際、前記伝搬路の情報が雑音の量を少なくとも含むことが好ましい。或いは、前記伝搬路の情報が遅延広がりを少なくとも含むようにしても良い。伝搬路の雑音の量が所定の閾値よりも少ない時に、送信時に付加した補助パイロットサブキャリアの帯域に、送信時に行った電力低減処理を打ち消す補正を行う処理を選択することが好ましい。
また、信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において伝搬路を推定する伝搬路推定方法であって、受信したパイロットシンボルを時間周波数変換し、該時間周波数変換後の信号を送信時に使用した符号で複素除算を行い、該複素除算後の信号に補正処理を行い、該補正処理後の信号を周波数時間変換し、該周波数時間変換後の信号の所定の時間領域の電力を低減または削除する時間フィルタ処理を行い、該時間フィルタ処理後の信号を時間周波数変換することで伝搬路の周波数応答を得る際に、伝搬路の雑音の量が所定の閾値よりも少ない場合には、前記送信時に付加した補助パイロットサブキャリアの帯域に、送信時に行った電力低減処理を打ち消す補正処理を選択することを特徴とする伝搬路推定方法が提供される。また、OFDMAシステムの信号を受信し、信号帯域端のサブチャネルを割り当てられた時に上記のいずれかに記載の伝搬路推定方法を使用するようにしても良い。
本発明の他の観点によれば、信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において、受信したパイロットシンボルを時間周波数変換する第1DFT(離散フーリエ変換)部と、該第1DFT部により時間周波数変換した後の信号を送信時に使用した符号で複素除算を行う複素除算部と、該複素除算部の出力信号に対して任意の値の振幅補正処理を行う利得調整部と、前記利得調整部の振幅補正量を設定する制御部と、前記利得調整部の出力信号を周波数時間変換するIDFT(逆離散フーリエ変換)部と、該IDFT部による周波数時間変換後の信号に対して、所定の時間領域の電力を低減又は削除する時間フィルタ処理を行う時間フィルタ部と、該時間フィルタ処理後の信号を時間周波数変換する第2DFT部と、を有することを特徴とするOFDM受信装置が提供される。
また、信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において、受信したパイロットシンボルを時間周波数変換する第1DFT部と、該第1DFT部により時間周波数変換した後の信号を送信時に使用した符号で複素除算を行う複素除算部と、該複素除算部の出力信号に対して任意の値の振幅補正処理を行う第1の補正処理部と、前記第1の補正処理部の振幅補正量を設定する制御部と、前記第1の補正処理部による補正とは異なる処理を行う第2の補正処理部と、前記第1及び第2の補正処理部の出力信号を切り替える切替部と、前記切り替え部の出力信号を周波数時間変換するIDFT部と、該IDFT部による周波数時間変換後の信号に対して、所定の時間領域の電力を低減又は削除する時間フィルタ処理を行う時間フィルタ部と、該時間フィルタ処理後の信号を時間周波数変換する第2DFT部と、を有することを特徴とするOFDM受信装置が提供される。
本発明は、上記各ステップを、コンピュータに実行させるためのプログラムでも良く、或いは、上記プログラムを記録した記録媒体であっても良い。プログラムは伝送媒体によって取得されるようにしても良い。
本発明によれば、複数の伝搬路推定方法のうちから適した伝搬路推定方法を選択するようにすることで、推定精度の劣化を防ぐことが可能となる。
以下に、本発明の実施の形態による伝搬路推定技術について図面を参照しながら説明を行う。まず、使用する通信用のフレームの構造の例について説明する。説明を簡単にするために固定長フレームを使用した例について説明するが、本発明は固定長フレームの場合のみに適用されるものではなく、可変長フレーム、または、可変長の非同期パケット通信にも適用可能である。
以下で使用するフレームは、時間、周波数方向に固定長でフレームが繰り返し送信されることで通信が行われるものである。フレームはOFDMシンボル群で構成される。フレーム先頭に、同期用シンボルが配置され、続いて伝搬路推定用のパイロットシンボルが配置され、さらに続いて、データシンボルが配置される。この構造の概略例を図2(a)に示す。符号201がフレーム全体を表し、このフレーム201が繰り返し送信されることを示している。フレーム201の先頭には、同期用シンボル202が配置されている。この同期用シンボル202は、受信時にフレーム先頭であることを識別するために使用される。多くの場合、時間軸方向に特徴がある信号が使用される。OFDM信号以外の信号でも使用可能であるため、詳細は省略する。OFDM信号を使用する場合の一例として、時間軸上で同じ信号が繰り返されるように1サブキャリア毎にヌルキャリアを挿入した信号が使われることがある。続いて、パイロットシンボル203が配置される。さらに続いて、データシンボル群204が配置される。本発明においては、データシンボル群の内容は特徴とは関係ないため、データシンボル群の内容の詳細についての説明は省略するが、一般的には、そのフレームや後続のフレーム内の構造を示すための制御データや実際に通信に使用するデータなどが含まれる。
次に、1フレーム内のより詳しい構造について図2(b)を参照しながら説明を行う。フレーム201内の各OFDMシンボルには、ガードインターバル205が付加される。ガードインターバル205は、遅延波の影響を吸収するために付加するものであり、本発明の特徴とは直接の関係は無いが、一例として、OFDMシンボルの一部をサイクリックプリフィックスとして付加する方法を使用する。
以下、本発明の第1実施例による通信技術について図面を参照しながら説明を行う。
本第1実施例は、送信時にパイロットシンボルの信号帯域の両端に付加する補助パイロットサブキャリアの電力を低減する送信機と、信号帯域内のパイロットサブキャリアのみを補正せずに使用して時間窓法を行う伝搬路推定方法と、電力が低減された補助パイロットサブキャリアが付加されたパイロットシンボルを補正して時間窓法を行う伝搬路推定方法と、受信時に信号帯域内の周波数応答の情報を利用して信号帯域外に仮想サブキャリアを挿入して時間窓法を行う伝搬路推定方法を切り替えて伝搬路推定精度を向上させる受信機と、を有する。
図1Aは送信機の一構成例を示す図であり、図1Bは受信機の一構成例を示す図である。
ここで、符号101は、パイロット信号用の符号を発生させるパイロット符号発生部であり、符号102は、後述する制御部110の指示に従ってパイロット符号の振幅を変化させる利得調整部であり、符号103はIFFT部106の入力を制御部110からの指示で同期用符号発生部104の出力と利得調整部102の出力と変調部105の出力とのいずれかに切り替える入力切替部であり、符号104は、フレーム同期用符号を発生させる同期用符号発生部であり、符号105は制御部110からの指示で送信データを変調する変調部であり、符号106は入力切替部103の出力をIFFTするIFFT部であり、符号107はIFFT部106の出力の一部をサイクリックプリフィックスとして付加するガードインターバル(GI)付加部であり、符号108は、デジタル信号をアナログ信号に変換するD/A変換部であり、符号109は入力された信号をベースバンド信号として送信に必要な周波数に変換し、必要な電力まで増幅した後にアンテナから送信する無線送信部であり、符号110はフレーム送出タイミングと送信制御データにより送信機の各ブロックを制御する制御部である。
符号121はアンテナで電波を受信し、必要な帯域を取り出してベースバンド信号に変換する無線受信部であり、符号122はアナログ信号をデジタル信号に変換するA/D変換部であり、符号123は入力された信号からフレーム同期用シンボルを検出し、以降の信号からガードインターバルを取り除いたOFDMシンボルを切り出す同期・GI除去部であり、符号124は入力されたOFDMシンボルをFFTする第1FFT部、符号125は、入力信号を複素除算部126と伝搬路補正部132とのどちらかに出力する第1切り替え部であり、符号126は入力信号を送信時に使用したパイロットシンボル用符号で複素除算する複素除算部であり、符号127は制御部134からの指示で指定されたサブキャリアの信号の振幅を変化させる利得調整部であり、符号135は制御部134からの指示で信号帯域外に仮想サブキャリアを挿入する仮想サブキャリア挿入部であり、符号136は制御部134からの指示で出力信号を仮想サブキャリア挿入部135の出力と利得調整部127の出力のどちらかを選択する第2切り替え部である。符号128は入力信号をIFFTするIFFT部であり、符号129は入力された時間軸信号の所定の時間領域の電力を低減、削除する時間フィルタ部であり、符号137は時間フィルタ部の入力、出力からSNRを推定するSNR推定部であり、符号130は入力信号をFFTする第2FFT部であり、符号131は制御部134から指示されたサブキャリアのデータを0にする補助パイロットサブキャリア削除部であり、符号132は切り替え部125から入力されたデータシンボルを補助パイロットサブキャリア削除部131から出力される伝搬路情報に従って補正する伝搬路補正部である。符号133は制御部134から指示された変調方式で入力データの復調を行う復調部であり、符号134は同期・GI除去部から出力されるフレーム同期タイミングを基準に各ブロックの制御を行う制御部である。以下、各ブロックがどのように動作するかについて詳細に説明する。
最初に送信機側の動作について説明する。
本実施例によるデータシンボルを構成するサブキャリアが配置される周波数の概要を図3(a)に示す。符号301がデータシンボルを構成するサブキャリアが配置される周波数帯域であり、符号302がFFT/IFFT処理が行われる帯域である。本実施例では、データシンボルを構成するサブキャリアが配置される帯域301の両端に電力低減された補助パイロットサブキャリア303を配置したパイロットシンボルを送信する。このパイロットシンボルのスペクトルの概略を図3(b)に示す。図3(b)に示すスペクトルのパイロットシンボルをどのように送信するかを各ブロックの動作と共に説明する。
まず、パイロットシンボルの送信に先立って、先に説明したフレーム先頭の同期用シンボルを送信するために、制御部110は、入力切替部103の入力先を同期用符号発生部104に切り替える。これにより、同期用符号がIFFT部106に入力される。同期用符号はIFFTにより時間軸信号に変換され、GI付加部107に入力される。GI付加部107では、時間軸信号に変換された同期用符号の一部をガードインターバルとして付加し、D/A変換部108においてアナログ信号に変換され、無線送信部109で送信に必要な周波数に変換し、増幅されて送信される。制御部110は、入力切替部103からIFFT部106に同期用符号が出力された直後に、入力先を利得調整部102に切り替える。同時に、利得調整部102を設定し、利得調整部102に入力されたパイロット符号の振幅を基準として各サブキャリアの振幅を調整する。この利得の設定の一例として、本実施例では、図3(b)に示したデータシンボルが配置される帯域301は0dB、補助パイロットサブキャリアを配置する帯域303は−30dB、それ以外の帯域304は-∞(無限大)dB、つまり信号を削除するように設定する。
また、利得調整部102の入力には、パイロット符号発生部101から出力されるパイロットシンボル用の符号がIFFT処理ポイント分だけ入力される。利得調整部102で振幅調整を受けると、図3(b)に示したスペクトルの信号となる。
振幅調整を受けた信号は、以下、同期用シンボルの場合と同じようにIFFT部106、GI付加部107、D/A変換部108、無線送信部109を経てパイロットシンボルとして送信される。制御部110は、入力切替部103からIFFT部106に振幅調整を受けたパイロット符号が入力されると、入力を変調部105に切り替え、変調部を送信制御データに従って設定し、次のフレーム開始時までデータの送信を行う。
次のフレーム開始時間が来ると、入力切替部103の入力先を同期用符号発生部104に切り替え、以上の手順を繰り返す。これにより図2に示したフレーム構成で、図3(b)に示したスペクトルのパイロットシンボルを使用した信号の送信が可能となる。これに対し、従来の技術で補助パイロットサブキャリアを付加したパイロットシンボルのスペクトルを図3(c)に示す。符号305が従来の技術で付加した補助パイロットサブキャリアである。これをみると判るように、本実施例で補助パイロットサブキャリアを付加した時に必要な送信電力は従来方式に比べ少なくて良く、そのため無線送信部で必要な電力も従来方式によりも少なくて済み、また帯域外輻射の量も少なくなる。
次に、受信機の動作について説明する。まず無線受信部121で、信号を受信してベースバンド信号に変換する。続いてA/D変換部122でデジタル信号に変換し、同期・GI除去部123においてGIが除去される。同期・GI除去部123は、まず入力信号中のフレーム同期シンボルの検出を行い、フレーム開始タイミングを制御部134に入力する。その後、後続の受信信号からGIを取り除いたOFDMシンボルの切り出しを行い、FFT部124に入力する。フレーム同期シンボルの同期の検出方法はどのような方法でも良い。その一例として、受信信号とフレーム同期シンボルの送信時の時間波形との相関を調べ、最も相関が大きくなったところをフレーム先頭とする方法を使用することができる。同期・GI除去部123でGIを除去されたOFDMシンボルは、FFT部124で周波数軸信号に変換され、切り替え部125に入力される。同期・GI除去部123からフレーム開始タイミングを通知された制御部134は、切り替え部125の出力を複素除算部126側に切り替え、複素除算部126に受信したパイロットシンボルを入力する。その後、後続のデータシンボルのために、切り替え部125の出力を伝搬路補正部132に変更する。複素除算部126に入力された信号はパイロットシンボルの送信時に使用された符号で複素除算され、利得調整部127と仮想サブキャリア挿入部135に入力される。利得調整部127は制御部134からの指示で補助パイロットサブキャリアに対し送信時に行った振幅調整と逆の補正を行うように設定される。本実施例の場合は、30dBの利得調整が行われる。また、仮想サブキャリア挿入部135は、制御部134から指示されたサブキャリアに対して仮想サブキャリアを挿入する。仮想サブキャリアの求め方はどのような方法でも良いが、本実施例では、信号帯域内の端の値をそのまま使用する0次ホールドを使用する。
利得調整部127における補正の概略例を図を参照しながら説明する。図3(d)が、受信したパイロットシンボルを複素除算して得た周波数応答の一例を示す図である。符号307が信号帯域内の周波数応答であり、その両端に電力低減された補助パイロットサブキャリアによる周波数応答306が配置される。この状態では、信号帯域と補助パイロットサブキャリアとの帯域で、パイロットキャリアの大きさが異なるため、信号帯域と補助パイロットサブキャリアとの間に、振幅差308が発生する。この振幅差308は、補助パイロットサブキャリアが無い場合に比べて小さくなるため、このままDFT法を適用しても補助パイロットサブキャリアが無い場合に比べて小さくなるため、帯域端に発生する歪も振幅差と比例して小さくなる。しかしながら、補助パイロットサブキャリアの振幅補正を行うと、この振幅差を殆どなくすことができるため、帯域端の歪はさらに小さくなる。補助パイロットサブキャリアを+30dBしたときの周波数応答の一例を図3(e)に示す。符号309が振幅補正を行った補助パイロットサブキャリア部分の周波数応答である。この状態は、図3(c)に示した振幅補正を行わないパイロット信号を使用した状態に補助パイロットサブキャリア部分のノイズ成分が補正分だけ増えていることを示している。補助パイロットサブキャリアの部分の雑音成分は、DFT法の処理により信号帯域側に漏れることとなるが、本実施例のように補助パイロットサブキャリアの減衰量が大きい場合は、増幅する雑音も大きくなるため、SNRが大きいところでの雑音成分の漏れが無視できなくなる。SNRの小さいところでも雑音が増幅され、帯域内に漏れ出してくるが、雑音そのものが小さくなるため、補正した補助パイロットサブキャリアを用いない時間窓法の推定精度よりも推定精度が改善される。
また、利得調整部127において、補助パイロットサブキャリア帯域を含む信号帯域外のサブキャリアの増幅率を-∞(無限大)、すなわち振幅を0に設定することで、サブキャリアの補正を行わない状態の時間窓法と同等の状態になる。
次に、仮想サブキャリア挿入部135の動作の概略例を、図4A・図4Bを参照しながら説明する。図4B(a)が受信したパイロットシンボルを、複素除算して得た周波数応答の一例である。符号410がFFT処理帯域であり、符号411が信号帯域であり、信号帯域の周波数応答を示している。仮想サブキャリア挿入部135の入力時点で信号帯域外412に送信時に付加した補助パイロットサブキャリアは除かれているものとする。図4B(b)に示すように、信号帯域外412中の信号帯域411に隣接した一部の帯域413、414に仮想サブキャリアを挿入する。本実施例では0次ホールドを使用し、帯域413には低域端415の値をコピーした仮想サブキャリア群416を、帯域414には高域端417の値をコピーした仮想サブキャリア群418を挿入する。
仮想サブキャリアを挿入する帯域幅はいくつでも良いが、本実施例では、送信時に補助パイロットサブキャリアを挿入する帯域と同じとして説明する。仮想サブキャリアを挿入して帯域を広げた後にIFFT処理を行い、時間フィルタ処理を行い、その後にFFT処理を行うことで、信号帯域内の歪みが低減された周波数応答を得ることができる。
仮想サブキャリアは、本実施例では、信号帯域内の値を利用した0次ホールドで生成したため、真の値とは異なる値となっている。0次ホールド以外の方法を用いても、信号帯域内の値のみを使用して別の帯域の伝搬路を推定するため、必ず誤差が含まれた値となる。この仮想サブキャリアの値と真の値との誤差がある状態で、時間フィルタ処理を行うと、信号帯域内に誤差の一部が広がり、その結果、推定精度の劣化を招く。誤差がある程度小さい場合やSNRが低い状態では、信号帯域内に広がる誤差成分が信号帯域内の雑音に埋もれるため殆ど問題にならないが、仮想サブキャリアの誤差が大きい場合は、信号帯域内に広がる誤差成分が無視できなくなる。この仮想サブキャリアの誤差は、遅延広がりが小さいと周波数応答の周波数方向の変動がゆるやかになるために少なくなり、遅延広がりが大きい時は周波数応答の周波数方向の変動が激しくなるため多くなる。
遅延広がりと推定誤差との関係の概要を図4B(c)に示す。横軸が遅延広がりであり、縦軸が推定誤差を表すEVM(Error Vector Magnitude)である。EVMは真値とのベクトル空間上の距離であるため、小さいほど誤差が少ないことになる。遅延広がりが無い場合、すなわち伝搬路がフラットである場合は、0次ホールドでも仮想サブキャリアの誤差が無いため最も特性が良い。遅延広がりが大きくなるに従って、周波数応答の周波数方向の変動が激しくなり、誤差が増えるため、推定精度が劣化する。
遅延広がりが大きい状態で、かつ、送信時に付加する補助パイロットサブキャリアの減衰量が大きい場合において、送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法と、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法と、サブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の推定精度の特性の一例を図5(a)に示す。図5(a)の横軸がSNRであり、縦軸がEVMである。符号501が送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法の特性であり、符号502が、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性であり、符号503がサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の特性である。高SNR域506では、送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法が最も特性が良く、低SNR域504ではサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の特性が良く、中間のSNR域505では受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性が良い。
低SNR域504では、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性がサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の特性より悪くなっているのは、遅延広がりが大きく、挿入する仮想サブキャリアの誤差が大きくなっているためである。図5(a)に示すように、SNRNによって使用する伝搬路推定方法を変えると推定精度を向上させることが可能となる。伝搬路推定方式を変える閾値は、遅延広がりによって変わるが、本実施例では想定される最も大きな遅延広がりに合わせた閾値を用いるものとする。また、本実施例ではSNR推定部137の仕様上、何らかの伝搬路推定方式を選択して時間フィルタに信号を入力する必要があるが、SNRが不明の時は、サブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法を選択するものとする。
制御部134は、後述するSNR推定部137からの出力により、利得調整部127、仮想サブキャリア挿入部135、第2切り替え部136を制御して3つの伝搬路推定方法を切り替える。
第2切り替え部136から出力される制御部134によって選択された伝搬路推定方式によってサブキャリアが調整された、または調整されなかった信号は、IFFT部128でIFFTする事で時間軸信号に変換され、その後に時間フィルタ129で有効な信号以外を削除し、第2FFT部130でFFTすることで再び周波数軸の信号に変換する。
また、時間フィルタ部129の入出力はSNR推定部137に入力され、SNRの推定に使用される。SNRを推定する方法はどのような方法でも良いが、本実施例では時間フィルタ部129の出力の電力を信号の電力、時間フィルタ部129の入力電力から出力信号の電力を引いた値を雑音電力としてSNRを推定するものとする。
第2FFT部130の出力は補助パイロットキャリア削除部131で制御部134から指示された補助パイロットサブキャリア部分の振幅を0にして信号帯域について雑音成分を取り除いた周波数応答が得られる。
周波数応答が得られた後は、伝搬路補正部132において切り替え部125から出力されるデータシンボルを補助パイロットサブキャリア削除部131から出力される周波数応答を利用して周波数等化を行い、続いて復調部133で制御部134から指示された変調情報により復調動作を行い、受信データを得ることが出来る。
以上のように、受信信号のSNRによって伝搬路推定方式を選択することで、現在のSNRに適した伝搬路推定方式を選択して復調することができ、推定精度の低下を防ぐことが可能となる。
本実施例では、図5(a)の中で、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法が良いSNRの領域505がある程度存在する事を前提としているが、想定する遅延広がりが大きい場合、この領域505が少ない、もしくは、殆ど存在しない場合もある。このような場合は、送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法と、サブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の2つのみを使用しても殆ど特性が変わらない。そのため、このような場合は仮想サブキャリア挿入部135を省略した構成としても良い。
実施例2
上記実施例1は、遅延広がりが大きい場合を想定した場合の受信機の構成例を示ステップ図である。一方で、遅延広がりが小さい場合は、周波数応答の周波数方向の変動が緩やかになるため、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性が良くなり、仮想サブキャリアの誤差が小さくなるため、信号帯域内に広がる誤差が殆ど無くなり、雑音に埋もれてしまうため、低SNR域での推定精度がサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法と変わらなくなる。
この概要について図5(b)を参照しながら説明する。図5(a)と同様に、横軸がSNR、縦軸が推定精度を示すEVMを表している。符号501が補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法の特性であり、符号503が送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法の特性であり、これらは遅延広がりの影響を受けないので図5(a)と同じである。符号507が遅延広がりの少ない場合の受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性である。図5(a)の場合と異なり、SNRの低い領域508では、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法507が良く、SNRの高い領域では送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法の特性501が良い。
以上に説明したように、伝搬路の遅延広がりによって伝搬路推定方式を選択することにより、実施例1に示した方法よりも伝搬路推定精度を向上させることが可能となる。
伝搬路の遅延広がりによって伝搬路推定方法の選択方式を変える受信機の構成の一例を図6に示す。図1Bに示した構成と異なる部分は、時間フィルタ部129の出力を用いて遅延分散を推定する遅延分散推定部138と、制御部139の入力として遅延分散推定部138の出力が増えている点である。その他の動作が変わらない機能ブロックは同じ名称と同じ番号を付している。
本実施例では、遅延広がりの指標として遅延分散を使用する。遅延分散の求め方は、公知のどのような方法でも構わない。本実施例では、インパルス応答から各パスの振幅と遅延時間とを求め、遅延分散を求める方法を使用している。遅延分散推定部138の入力は、時間フィルタ部129の出力で、雑音成分がある程度除去されたインパルス応答である。一例を図7に示す。この入力信号のうち、各サンプリング点で振幅が一定以下の信号は雑音とみなして削除し、振幅が一定以上の信号を有効な遅延波として遅延分散を計算する。符号701が、雑音として削除する閾値であり、符号702が閾値以上で有効遅延波としてみなす信号である。この有効遅延波702のパス位置と振幅とから遅延分散を計算する。
制御部139は、遅延分散推定部138で推定された遅延分散と、SNR推定部137で推定されたSNRの値によって、利得調整部127と仮想サブキャリア挿入部135と第2切り替え部136を操作して伝搬路推定方法を切り替える。本実施例の形態の場合、遅延分散推定部138とSNR推定部137とは、入力信号が無い時は推定値を出力できないので、受信開始時などで遅延分散とSNRが不明な時は遅延分散が大きく、SNRが小さいものとしてサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法を使用する。遅延分散とSNRの推定が可能な状態になると、制御部139は推定した遅延分散とSNRの値を利用して伝搬路推定方法を選択する。この選択のためのフローチャート図の一例を図8に示す。
ステップS801でSNR、遅延分散の推定が可能かどうかを調べ、推定が出来ない場合はステップS808に進みサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法を選択する。SNR、遅延分散の推定が可能な場合は、ステップS802に進み、遅延分散が小さいかどうかを判断する。遅延分散が小さい時はステップS803に進む。こちら側のフローは、図5(b)に示したような特性の場合のフローとなる。ステップS803でSNRが高いか否かを判断し、高い場合はステップS804で送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法を選択し、SNRが高くなかった場合は、ステップS807に進み、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法を選択する。また、ステップS802で遅延分散が小さくないと判断された時はステップS805に進む。こちらのフローは、図5(a)に示したような特性の場合のフローとなり、基本的には実施例1と同等の選択方法となる。
ステップS805でSNRが高いかどうかを判断し、高い場合は(Yes)ステップS804に進み、送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法を選択する。ステップS805でSNRが高くないと判断された時は、ステップS806でSNRが低いかどうかを判断し、低い場合はステップS808でサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法を選択し、低くないと判断された時はステップS807に進み、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法を選択する。いずれのフローにおいても、伝搬路推定方法の選択が終了した後はステップS801に戻り、以上の手順を繰り返す。
このように、制御部139が動作する事で遅延分散とSNRが変化しても精度の良い伝搬路推定方法を選択することが可能となる。
尚、本実施例では、遅延広がりの変動幅が大きいという前提で説明を行ったが、使用条件上の制限などで遅延広がりが小さい範囲に収まることが判っている場合は、図8のステップS805側のフローが不要となる。このような場合は、遅延分散推定部138を設けない構成にすることも可能となる。
次に、実施例3について説明する。本実施例では、OFDMAシステムに本発明を適用する場合を例にして説明する。OFDMAはOFDM/FDMAともいい、OFDMで使用する帯域を周波数方向に分割して使用する方式である。概要を図9(a)に示す。図9(a)は通信に使用する帯域901を8つのサブチャネル902に分割した場合を示している。受信側では、どのサブチャネルを使用するかの割り当て情報を別途得て、必要なサブチャネルを復調する。割り当て情報の通知方法は様々な方法が使用できるが、本実施例で使用する図2に示したフレーム構成のシステムの場合、以下に続く所定の個数のフレームの割り当て状況を含むスーパーフレームを用意し、受信側ではまずスーパーフレームの内容を受信し、その内容に従って後続のノーマルフレームのどのサブチャネルに必要な通信データが割り当てられているかを知ることができる方法がある。
スーパーフレームの割り当て方法の一例の概要を図9(c)に示す。符号904がスーパーフレームであり、4フレーム毎に配置されるものとする。後続に3つのノーマルフレーム905が配置される。1つのノーマルフレームは、8つのサブチャネル906に分割されるものとする。スーパーフレームには、後続の3フレームに含まれる8サブチャネル×3フレーム分のリソースの割り当て情報が含まれる。
受信側では、4フレーム毎に送信されるスーパーフレームを受信し、後続のノーマルフレームの割り当て情報を得る事でどのサブチャネルを復調すればよいか知る事が可能となる。このようなOFDMAシステムの場合において、伝搬路推定に時間窓法を使用した場合、図9(b)に示すように、時間窓法によって発生する伝搬路推定歪みは信号帯域の端に配置されたサブチャネルに集中する。
また、実施例1、実施例2に示した方法を使用することで、伝搬路推定時の歪みを低減することができるが、途中で使用するSNRや遅延分散の推定精度が悪い場合は、適していない伝搬路推定方法を使用してしまい、伝搬路推定精度を低下させる可能性がある。
そこで、本実施例では、信号帯域端から離れたサブチャネル、図9(a)ではSCH1とSCH8とに通信データを割り当てられた時だけ実施例1または実施例2に示した方法で伝搬路推定を行い、SCH2からSCH7までを割り当てられた時はサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法を使用する。選択の範囲は適宜決めることができる。以上のように、本発明の実施の形態によれば、複数の伝搬路推定方法のうちから適した伝搬路推定方法を選択するようにすることで、推定精度の劣化を防ぐことが可能となる。例えば、送信機で電力低減された補助パイロットサブキャリアを付加したパイロットシンボルを送信することを前提とし、受信機に複数の伝搬路推定方法を実装することで、伝搬路に応じて実装された複数の伝搬路推定方法を切り替えることにより、推定精度の劣化を防ぐことができる。特に、複数の伝搬路推定方法を切り替える複数の方法の一つに受信時に補助パイロットサブキャリアの補正を行う伝搬路推定方法を含むようにすると良い。
尚、本実施の形態では、種々の通信技術について説明したが、これらの通信技術を利用した、通信装置、例えば、無線LAN装置や携帯電話機などに応用可能である。
本発明は、通信装置に利用可能である。
本発明の第1の実施例による通信装置であり、送信機の一構成例を示す図である。 本発明の第1の実施例による通信装置であり、受信機の一構成例を示す図である。 フレーム内におけるデータ構成例を示す図である。 データシンボルを構成するサブキャリアが配置される周波数の概要を示す図である。 仮想サブキャリア挿入部の動作の概略例を示す図である。 仮想サブキャリア挿入部の動作の概略例を示す図である。 符号501が送信時に付加した補助パイロットサブキャリアを補正して時間窓法を使用する伝搬路推定方法の特性であり、符号502が、受信側で仮想サブキャリアを挿入して時間窓法を使用する伝搬路推定方法の特性であり、符号503がサブキャリアの補正を行わない状態で時間窓法を使用する伝搬路推定方法の特性である。 伝搬路の遅延広がりによって伝搬路推定方法の選択方式を変える受信機の構成の一例を示す図である。 遅延分散推定部の入力(時間フィルタ部の出力)であり、雑音成分がある程度除去されたインパルス応答の一例を示す図である。 推定した遅延分散とSNRの値を利用して伝搬路推定方法を選択するための処理の流れを示すフローチャート図である。 OFDMAシステムに適用する場合の例を示す図である。 非特許文献1に記載されている通信システムのスペクトラムの概要を示す図である。 送信機装置を示す図である。 受信機装置を示す図である。
符号の説明
101…パイロット符号発生部、102…利得調整部、103…入力切替部、104…同期用符号発生部、105…変調部、106…IFFT部、107…ガードインターバル(GI)付加部、108…D/A変換部、109…無線送信部、110…制御部、121…無線受信部、122…A/D変換部、123…同期・GI除去部、124…第1FFT部、125…第1切り替え部、126…複素除算部、127…利得調整部、135…仮想サブキャリア挿入部、136…第2切り替え部、128…IFFT部、129…時間フィルタ部、137…SNR推定部、130…第2FFT部、131…補助パイロットサブキャリア削除部、132…伝搬路補正部、133…復調部、134…制御部。

Claims (8)

  1. 信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において伝搬路を推定する伝搬路推定方法であって、
    受信したパイロットシンボルを時間周波数変換し、
    該時間周波数変換後の信号を送信時に使用した符号で複素除算を行い、
    該複素除算後の信号に補正処理を行い、
    該補正処理後の信号を周波数時間変換し、
    該周波数時間変換後の信号の所定の時間領域の電力を低減または削除する時間フィルタ処理を行い、
    該時間フィルタ処理後の信号を時間周波数変換することで伝搬路の周波数応答を得る際に、
    前記補正処理を複数から選択し、
    前記補正処理の1つとして、
    送信時に付加した補助パイロットサブキャリアの帯域に、送信時に行った電力低減処理を打ち消す補正を行う処理を含むことを特徴とする伝搬路推定方法。
  2. 信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において伝搬路を推定する伝搬路推定方法であって、
    受信したパイロットシンボルを時間周波数変換し、
    該時間周波数変換後の信号を送信時に使用した符号で複素除算を行い、
    該複素除算後の信号に補正処理を行い、
    該補正処理後の信号を周波数時間変換し、
    該周波数時間変換後の信号の所定の時間領域の電力を低減または削除する時間フィルタ処理を行い、
    該時間フィルタ処理後の信号を時間周波数変換することで伝搬路の周波数応答を得る際に、
    前記補正処理を複数から選択する際に、
    前記補正処理の1つとして、
    伝搬路の雑音の量が所定の閾値よりも少ないときに、補助パイロットを利用したサブキャリアの補正方法を選択することを特徴とする伝搬路推定方法。
  3. 伝搬路の遅延広がりに関する情報に応じて補正処理を選択することを特徴とする請求項1記載の伝搬路推定方法。
  4. 信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において伝搬路を推定する伝搬路推定方法であって、
    受信したパイロットシンボルを時間周波数変換し、
    該時間周波数変換後の信号を送信時に使用した符号で複素除算を行い、
    該複素除算後の信号に補正処理を行い、
    該補正処理後の信号を周波数時間変換し、
    該周波数時間変換後の信号の所定の時間領域の電力を低減または削除する時間フィルタ処理を行い、
    該時間フィルタ処理後の信号を時間周波数変換することで伝搬路の周波数応答を得る際に、
    伝搬路の雑音の量が所定の閾値よりも少ない場合には、前記送信時に付加した補助パイロットサブキャリアの帯域に、送信時に行った電力低減処理を打ち消す補正処理を選択することを特徴とする伝搬路推定方法。
  5. OFDMAシステムの信号を受信し、
    信号帯域端のサブチャネルを割り当てられた時に請求項1から4までのいずれか1項に記載の伝搬路推定方法を使用することを特徴とする伝搬路推定方法。
  6. 信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において、
    受信したパイロットシンボルを時間周波数変換する第1DFT(離散フーリエ変換)部と、
    該第1DFT部により時間周波数変換した後の信号を送信時に使用した符号で複素除算を行う複素除算部と、
    該複素除算部の出力信号に対して任意の値の振幅補正処理を行う利得調整部と、
    該利得調整部の振幅補正量を設定する制御部と、
    該利得調整部の出力信号を周波数時間変換するIDFT(逆離散フーリエ変換)部と、
    該IDFT部による周波数時間変換後の信号に対して、所定の時間領域の電力を低減又は削除する時間フィルタ処理を行う時間フィルタ部と、
    該時間フィルタ処理後の信号を時間周波数変換する第2DFT部と、
    を有することを特徴とするOFDM受信装置。
  7. 信号帯域外に補助パイロットサブキャリアを付加したパイロットシンボルを受信するOFDM受信機において、
    受信したパイロットシンボルを時間周波数変換する第1DFT部と、
    該第1DFT部により時間周波数変換した後の信号を送信時に使用した符号で複素除算を行う複素除算部と、
    該複素除算部の出力信号に対して任意の値の振幅補正処理を行う第1の補正処理部と、
    前記第1の補正処理部の振幅補正量を設定する制御部と、
    前記第1の補正処理部による補正とは異なる処理を行う第2の補正処理部と、
    前記第1及び第2の補正処理部の出力信号を切り替える切替部と、
    前記切り替え部の出力信号を周波数時間変換するIDFT部と、
    該IDFT部による周波数時間変換後の信号に対して、所定の時間領域の電力を低減又は削除する時間フィルタ処理を行う時間フィルタ部と、
    該時間フィルタ処理後の信号を時間周波数変換する第2DFT部と、
    を有することを特徴とするOFDM受信装置。
  8. OFDMA信号を受信し、
    前記制御部は、受信するサブチャネルが信号帯域端であるかどうかを識別する機能をさらに備えることを特徴とする請求項6又は7に記載のOFDM受信装置。
JP2007221247A 2007-08-28 2007-08-28 通信装置及び通信方法 Expired - Fee Related JP4920528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221247A JP4920528B2 (ja) 2007-08-28 2007-08-28 通信装置及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221247A JP4920528B2 (ja) 2007-08-28 2007-08-28 通信装置及び通信方法

Publications (2)

Publication Number Publication Date
JP2009055430A JP2009055430A (ja) 2009-03-12
JP4920528B2 true JP4920528B2 (ja) 2012-04-18

Family

ID=40506072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221247A Expired - Fee Related JP4920528B2 (ja) 2007-08-28 2007-08-28 通信装置及び通信方法

Country Status (1)

Country Link
JP (1) JP4920528B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011108429A1 (ja) * 2010-03-05 2013-06-27 日本電気株式会社 チャネル推定回路、チャネル推定方法および受信機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993441B2 (ja) * 2002-02-01 2007-10-17 株式会社日立国際電気 Ofdm信号受信装置
JP3955550B2 (ja) * 2003-05-19 2007-08-08 アンリツ株式会社 変調誤差比測定装置
JP2006050147A (ja) * 2004-08-03 2006-02-16 Casio Comput Co Ltd 復調回路及び復調方法
JP4615404B2 (ja) * 2005-09-07 2011-01-19 シャープ株式会社 マルチキャリア無線通信システム、送信機及び受信機並びにマルチキャリア無線通信方法

Also Published As

Publication number Publication date
JP2009055430A (ja) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4946159B2 (ja) 無線送信方法及び無線受信方法並びに無線送信装置及び無線受信装置
CN101682588B (zh) 用于ofdm系统的信道估计器
JP4571997B2 (ja) マルチキャリア通信システムにおける干渉雑音推定方法及び受信処理方法並びに干渉雑音推定装置及び受信機
KR101176265B1 (ko) 채널 추정 장치 및 등화 장치와 그 추정 및 등화 방법
US8023526B2 (en) Adaptive channel prediction apparatus and method for performing uplink pre-equalization depending on downlink channel variation in OFDM/TDD mobile communication system
CN107306238B (zh) 载波调制信号的接收、发送方法及相应接收机与发射机
JPWO2009028589A1 (ja) 通信装置
JP4612511B2 (ja) 受信装置及び受信方法
JP5632457B2 (ja) マルチキャリア信号におけるピーク電力対平均電力比の低減
JP2007096468A (ja) マルチユーザ受信装置
JP2009503944A (ja) Ofdm方式用シンボル同期
JP2011014982A (ja) 無線受信装置
JP2002271293A (ja) 受信装置、受信方法、プログラム、ならびに、情報記録媒体
JP4874178B2 (ja) 無線送信方法、伝搬路推定方法、無線送信機、無線受信機および無線通信システム
JP4920528B2 (ja) 通信装置及び通信方法
JP4675790B2 (ja) 通信装置および通信システム
KR100765990B1 (ko) 멀티-밴드 ofdm 스킴에서 적응적 ola를 수행하는수신기 및 방법
KR101329335B1 (ko) 주파수 영역의 채널 추정 장치 및 방법
US8457253B2 (en) Apparatus and method for estimating a channel in a broadband wireless communication system
CN114710386A (zh) 一种水声ofdm通信非均匀多普勒频偏抑制方法和系统
KR100542114B1 (ko) 직교 주파수 분할 다중화 기반의 무선 통신 시스템 및 그 채널 보상 방법
JP2009049792A (ja) 受信機および伝搬路推定方法
JP4812567B2 (ja) パイロット信号の割り当て方法およびそれを利用した無線装置
KR101492641B1 (ko) 채널 추정 및 보상 방법 및 그 수신기
Zhang et al. Improved Doppler mitigation techniques for LTE uplink transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees