JP4920135B2 - 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途 - Google Patents

電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途 Download PDF

Info

Publication number
JP4920135B2
JP4920135B2 JP2001032697A JP2001032697A JP4920135B2 JP 4920135 B2 JP4920135 B2 JP 4920135B2 JP 2001032697 A JP2001032697 A JP 2001032697A JP 2001032697 A JP2001032697 A JP 2001032697A JP 4920135 B2 JP4920135 B2 JP 4920135B2
Authority
JP
Japan
Prior art keywords
carbon fiber
boron
grown carbon
coated
vapor grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001032697A
Other languages
English (en)
Other versions
JP2002235279A (ja
Inventor
利夫 森田
斉 井上
竜之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001032697A priority Critical patent/JP4920135B2/ja
Priority to US10/067,266 priority patent/US7150911B2/en
Publication of JP2002235279A publication Critical patent/JP2002235279A/ja
Application granted granted Critical
Publication of JP4920135B2 publication Critical patent/JP4920135B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高い熱伝導性を有しかつ電気絶縁性を有する熱伝導材と合成樹脂、合成ゴム等の組成物からなる複合材に使用される、電気絶縁性がある熱伝導性フィラーとして適した窒化ホウ素で被覆された気相法炭素繊維及びその製造方法に関する。
【0002】
【従来の技術】
一般に炭素繊維(以下「CF」と略す。)は、その高強度、高弾性率、高導電性、高熱伝導性等の優れた性質を有するところからそれらの特性を利用した各種の複合材料に広く使用されている。またCFは高強度、高弾性率などの機械的特性を利用した分野の製品ばかりでなく、近年のエレクトロニクス技術の発展に伴うパソコン、携帯電話等の電子機器の小型化、高密度化、高性能化等による発熱のトラブルを、CFあるいは炭素材料に備わった高い熱伝導性を生かし、これら電子デバイスや部品等からの放熱用のフィラーへの応用、またその高導電性を利用して電磁波シールド材、静電防止材等のための導電性樹脂フィラーとして、あるいは自動車の軽量化に伴い樹脂への静電塗装のためのフィラーとしての用途が期待されてきている。また、炭素材料としての化学的安定性、熱的安定性と微細構造との特徴を生かし、フラットディスプレー等の電界電子放出素材としての用途が期待されている。
【0003】
従来のCFは、PAN、ピッチ、セルロース等の繊維を熱処理し炭化することにより製造される、いわゆる有機系カーボンファイバーとして生産されている。これらを繊維強化複合材のフィラーとして用いる場合、補強効果を高めるために、繊維径を細くすること、繊維長を長くすること等により母材との接触面積を大きくすることが行われている。
【0004】
しかし、これらのCFの製造方法によっては、その原料となる有機繊維の糸径がせいぜい5〜10μmが限度であるため、繊維径1μm以下、特に10〜200nm程度の微細なCFの製造は不可能であった。また、このような微細なCFにおいては、仮に生産できたとしても繊維径に対する長さの比(アスペクト比)に限界があり経済的に製造することはできず、細くてアスペクト比の大きいCFが要望されているにもかかわらず工業的に生産されていなかった。
【0005】
一方、1980年代後半に、これら有機系繊維と製法を全く異にするものとして、気相法炭素繊維(Vapor Grown Carbon Fiber)が研究されるようになった。この気相法炭素繊維(以下「熱分解CF」と略す。)は、炭化水素等のガスを金属触媒の存在下で気相熱分解することによって直径1μm以下、数10nm程度の熱分解CFが得られることが知られている。
【0006】
たとえば、ベンゼン等の有機化合物を原料とし、これをフェロセン等の有機遷移金属化合物の触媒とともにをキャリアーガスを用いて高温の反応炉に導入し、基板上に熱分解CFを生成させる方法(特開昭60−27700号公報)、浮遊状態で熱分解CFを生成させる方法(特開昭60−54998号公報)、あるいは反応炉壁に熱分解CFを成長させる方法(特許2778434号公報)等が提案されている。これらの方法により生産された熱分解CFは付着熱分解物の除去、結晶性の向上のために高温で熱処理を行い、最終の気相法炭素繊維(以下この炭素繊維を「VGCF」と略記する。なお熱分解CFおよびVGCFなどを一括して「気相法炭素繊維」ということもある。)とし、各種の用途に供されていた。
【0007】
これら製法により、導電性や熱伝導性に優れ、微細な繊維径を有しアスペクト比の大きいフィラー材に適した気相法炭素繊維が得られるようになった。これらのVGCFは10〜200nm程度の直径で、アスペクト比10〜500程度のものが容易に量産化され、導電性あるいは熱伝導性フィラー材として導電性樹脂用フィラーや鉛蓄電池の添加材等に使用されるようになった。
【0008】
これら気相法炭素繊維は、形状や結晶構造に特徴があり、炭素六角網面の結晶が年輪状に円筒形に巻かれ積層した構造を示し、その中心部には極めて細い中空部を有する繊維である。
これら気相法炭素繊維は、従来のPAN系CF、ピッチ系CFに比べ黒鉛化により結晶性が向上し易いが、繊維径が10〜200nm程度と小さくなった分、黒鉛結晶の成長が困難となり、天然黒鉛に比べ結晶性は劣る。
そこで我々は先にこれらのVGCFの結晶性を向上させるために、熱分解CFを黒鉛化する際にホウ素化合物を添加し、ホウ素をVGCFにドーピングさせることにより黒鉛結晶の成長を促進し、結晶性の向上したVGCFを得る方法を開発した。
【0009】
また、電子デバイスの放熱性の向上には、熱伝導性が高い電気絶縁物質が放熱性フィラーとして必要となるため、主にアルミナ等が用いられている。特に近年の電子デバイスの小型化、高密度化に伴い、これまで以上の熱伝導性の高い放熱性フィラーが求められており、アルミナを真球状にして、複合体中での充填密度を向上させ熱伝導性を向上させたり、アルミナより更に熱伝導性の良い窒化アルミ等も放熱フィラーとして用いられてきている。特に電子デバイスの放熱用部材としては電気絶縁性が必要であることが多く、放熱性フィラーとしても電気絶縁性の高熱伝導性の放熱フィラーが望まれている。
【0010】
現状では、電気絶縁性を必要とする場合には熱伝導性に若干不満はあるとしてもアルミナや窒化アルミ等の無機系の微粒子が放熱性フィラーとして用いられている。放熱はこれらフィラーの微粒子間の接触点を経由する伝熱により行われるが、これが放熱量を律速しているものであり、これが伝熱のネックとなっている。一方フィラーは微粒子であるため、伝熱のための接触面積は小さく、かつ経由すべき接触点が多くなり、放熱性を大きく減殺している。従って放熱性の改良には、その接触点数を減らす、例えば細い繊維状の放熱フィラーを用いることが望ましいことになる。
【0011】
【発明が解決しようとする課題】
本発明は、電子デバイス、電子部品などに使用される、高い熱伝導性を有しかつ電気絶縁性である複合材のための放熱性フィラーとして、微細繊維状の電気絶縁体で被覆された気相法炭素繊維(以下「被覆VGCF」という。)及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、熱分解CFの熱処理により結晶性を向上させ、熱伝導性や導電性を向上させるとともに、表面を電気絶縁体で被覆することにより、電気絶縁性を有しながら全体としては熱伝導性に優れた繊維径が極度に小さい被覆VGCFの開発に成功した。
【0013】
すなわち、本発明は、
[1] 繊維径0.01〜0.5μmの気相法炭素繊維の表面の一部または全部の体積固有抵抗(Ωcm)が10 12 以上の電気絶縁体で被覆された気相法炭素繊維であって、嵩密度0.8g/cm3に圧密した際の比抵抗が103Ω・cm以上、熱伝導率が150Wm-1-1以上である電気絶縁体被覆気相法炭素繊維、
[2] 電気絶縁体が窒化ホウ素であることを特徴とする上記[1]に記載の電気絶縁体被覆気相法炭素繊維、
[3] 窒化ホウ素が、気相法炭素繊維の表面においてホウ素化合物と窒素化合物の反応により得られたものである上記[2]に記載の電気絶縁体被覆気相法炭素繊維、
[4] 気相法炭素繊維全量に対して、窒化ホウ素含有量が2質量%以上、C0が0.680nm以下である上記[2]または[3]に記載の電気絶縁体被覆気相法炭素繊維、
[5] 気相法炭素繊維の表面から1nmの深さにおけるホウ素含有量が10質量%以上であることを特徴とする上記[2]〜[4]のいずれか1項にに記載の電気絶縁体被覆気相法炭素繊維、
【0014】
[6] 繊維径0.01〜0.5μmの気相法炭素繊維とホウ素化合物を混合し、該混合物を圧縮し、窒素化合物の存在下、2000℃以上で熱処理を行う窒化ホウ素で被覆された電気絶縁体被覆気相法炭素繊維の製造方法、
[7] 窒素化合物が窒素であることを特徴とする上記[6]に記載の電気絶縁体被覆気相法炭素繊維の製造方法、
[8] ホウ素化合物が元素状ホウ素、ホウ酸、ホウ酸塩、酸化ホウ素、B4Cおよび窒化ホウ素からなる群から選ばれた少なくとも1種である上記[6]または[7]に記載の電気絶縁体被覆気相法炭素繊維の製造方法、
[9] ホウ素化合物と気相法炭素繊維との混合物のホウ素濃度が、ホウ素元素として1質量%以上、30質量%以下であることを特徴とする上記[6]〜[8]のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維の製造方法、
【0015】
[10] 上記[1]〜[5]のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維を含む合成樹脂または合成ゴム組成物からなる電気絶縁性複合材、
[11] 電気絶縁体が窒化ホウ素である上記[10]に記載の電気絶縁性複合材、
[12] 上記[1]〜[5]のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維を含む放熱材料、
を開発することにより上記の目的を達成した。
【0016】
【発明の実施の形態】
以下、本発明について詳細に説明する。
(気相法炭素繊維)
本発明で用いるCFは、原料としてベンゼン等の有機化合物を、触媒としてフェロセン等の有機遷移金属化合物とともに、キャリアーガスを用いて高温の反応炉に導入し、気相熱分解することにより熱分解CFを製造する。その繊維径は、0.01〜0.5μmで、アスペクト比10〜500程度のものである。
例えば、この製造方法としては、基板上に熱分解CFを生成させる方法(特開昭60−27700号公報)、浮遊状態で熱分解CFを生成させる方法(特開昭60−54998公報号)、あるいは反応炉壁に熱分解CFを成長させる方法(特許2778434号公報)等があり、本発明で使用するCFはこれらの方法により製造したものであってよい。
【0017】
このようにして製造された熱分解CFは、このまま電気絶縁体被覆用原料としてもかまわないが、この段階では、その表面に原料の有機化合物等に由来する熱分解物が付着していることやあるいはCFを形成する繊維構造の結晶性が不十分である。従ってそれら熱分解物などの不純物を除いたり、CFとしての結晶構造を向上させるために、通常は不活性ガス雰囲気下で熱処理が行われたものを原料としてもよい。
原料に由来する熱分解物等の不純物を処理するためには、約800〜1500℃、アルゴン等の不活性ガス中で熱処理を行う。また、炭素構造の結晶性を向上させるためには、約2000〜3000℃でアルゴン等の不活性ガス中で熱処理を行われVGCFとして市販品されている。
【0018】
電気絶縁体としては、ゴム、プラスチック、ガラスなどの有機または無機の化合物または組成物が知られているが、耐熱性、耐薬品性の点で無機化合物または組成物が好ましく、溶融体、焼結体あるいは膜などの形で使用できる。
電気絶縁体の体積固有抵抗(Ωcm)としては、1012以上、好ましくは1015以上あれば良く、例えばアルミナ、サファイヤ、マイカ、シリカ、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、サイアロン、酸化マグネシウム、酸化ベリリウム、酸化ジルコニウムなどが使用できるが、好ましくは窒化ホウ素、窒化ケイ素、炭化ケイ素、より好ましくは窒化ホウ素である。
【0019】
VGCFの表面の少なくとも一部を電気絶縁体で被覆する方法としては、VGCFに電気絶縁物を塗布、蒸着あるいは浸漬することで可能である。特に、本発明の窒化ホウ素でVGCF表面を被覆するためには、好ましくはホウ素源となるホウ素化合物と気相法炭素繊維を混合し、これを窒素源となる窒素化合物、例えばN2、NH3、尿素、N24、またはNH3/NO、NH3/NO2のような反応してN2を発生するものと、特に窒素ガス(N2)を含む雰囲気下、好ましくは窒素ガス単独の雰囲気下で、約2000〜3000℃で熱処理を行う。N2の純度としては、98%程度以上であれば使用できるが99.8%以上、好ましくは99.99%以上がよい。また、被覆条件としては閉鎖系でもあるいはN2気流下の開放系でも必要なN2濃度が保持できればよい。ここで用いるホウ素化合物は、VGCF表面を被覆する窒化ホウ素源となるばかりでなく、VGCFの炭素の結晶性を向上させる働きをする。
【0020】
ホウ素源となるホウ素化合物は、ホウ素を含有する化合物なら殆どの化合物が適用できる。これらの化合物は2000℃以上の条件において、雰囲気の窒素ガスと反応し、CF表面に窒化ホウ素を生成する化合物が好ましく、この様な化合物としては例えば、元素状ホウ素、ホウ酸、ホウ酸塩、酸化ホウ素、B4C、BN等を挙げることができ、中でもB4C、酸化ホウ素が望ましい。
【0021】
使用するホウ素化合物量は、ホウ素化合物と気相法炭素繊維との混合物中のホウ素濃度が、ホウ素元素として1質量%以上、30質量%以下好ましくは、2質量%以上25質量%以下さらに好ましくは、5質量%以上20質量%以下の範囲が望ましい。ホウ素濃度が1質量%未満であると、VGCFの結晶性は向上するが、生成する窒化ホウ素量が少なくVGCF表面の被覆量が不足し、電気絶縁性が不足する。一方ホウ素濃度が30質量%以上の場合は、窒化ホウ素がVGCF表面を被覆するばかりでなく、繊維表面に窒化ホウ素の粒子が生成してしまい、繊維としての機能性を低下させてしまう。
【0022】
原料の微細な繊維としては、原料気相法炭素繊維をあらかじめ解砕または粉砕したものを用いることはできる。解砕または粉砕の程度はホウ素またはホウ素化合物と混合ができる程度で十分である。すなわち、絶縁体被覆処理(「BN被覆処理」ともいう。)した後にも解砕または粉砕あるいは分級等のフィラー化処理をするので、BN被覆処理の前に用途に適した適正な長さにしなくても該炭素繊維とホウ素またはホウ素化合物と混合ができれば良い。気相成長法で一般的に得られるCFは、太さ(直径)0.01〜1μm程度、長さ0.5〜400μm程度であり、そのまま用いることができる。またこれらはフロック状の凝集によって生ずる(独立した粒子とみなし得るような)粒子集合体になっていてもよい。
【0023】
原料の微細な気相法炭素繊維は3次元の立体構造を持ち、フロック状を形成し易いだけでなく、嵩密度が極めて小さく空隙率が非常に大きい。しかも添加するホウ素化合物との比重差が大きいので、単に両者を混合しただけでは両者を均一に接触させることは難しい。
ホウ素の導入反応を効率よく行うには繊維とホウ素またはホウ素化合物をよく混合し、できるだけ均一に接触させる。そのためには、ホウ素化合物の粒子はできるだけ粒径の小さいものを使用する必要がある。また、粒子が大きいと部分的に高濃度領域が発生することになり、固結化の原因になりかねない。具体的には粒度は平均粒径で100μm以下、好ましくは50μm以下、より好ましくは20μm以下である。
【0024】
また、ホウ素化合物がホウ酸などのように水溶性であるときはこれを水溶液としてCFに添加し、水分を蒸発させる方法や加熱過程で水分を蒸発する方法も用いることができる。水溶液を均一に混合すれば水分蒸発後はホウ素化合物を繊維表面に均一に付着させることができる。
【0025】
気相法炭素繊維は先に述べたように、嵩密度が小さく、製造されたままの集合体では約0.01g/cm3以下、またこれを熱処理し、解砕、粉砕、分級した通常品でも0.01〜0.08g/cm3程度である。従ってこの微細な炭素繊維は多くの空隙率を持つので、これをそのままの状態で窒化ホウ素被覆処理するには非常に容量の大きな熱処理炉が必要となり、設備コストが高くなるだけでなく、生産性も悪い。
従って、通常の炭素材料の場合と異なり、より効率的な方法で窒化ホウ素被覆処理をする必要がある。
【0026】
例えば、繊維とホウ素またはホウ素化合物を均一に混合し、そのまま熱処理することもできるが、好ましくは高密度化し、且つその状態をできるだけ維持(固定化)して熱処理する。その好ましい方法として、本発明では熱処理前に、繊維とホウ素またはホウ素化合物を混合した後、混合物を加圧、圧縮し、高密度化して固定化する。
この場合、繊維とホウ素またはホウ素化合物の混合は、均一性が保持できればいずれの方法でも良い。混合装置としては、均一に混合できれば市販の混合装置の何れでもよいが、微細な炭素繊維はフロック状になり易いので、これを解砕するためにチョッパー付きのヘンシェルミキサータイプのものであればより好ましい。使用する原料繊維は先に述べたように製造されたままのものでも、その繊維の1500℃以下の温度での熱処理品でもよい。ただ、経済的にも、性能的にも製造されたままのものを混合する方法が好ましい。
【0027】
繊維とホウ素またはホウ素化合物の混合物を高密度化し、両者が分離しないように固定化する方法としては、成形法、造粒法、あるいは、混合物をルツボ等にいれて一定の形状に圧縮して、詰め込む方法等何れの方法でも良い。また成形法の場合、成形体の形状は円柱状、板状や直方体等何れの形状でもよい。
【0028】
高密度化し、固定された混合物の嵩密度は0.02g/cm3以上、好ましくは0.03g/cm3以上とする。
混合物を圧縮して成形体とした後、圧力を開放すると多少容積が膨らみ、嵩密度が下がることもあるが、その場合は圧縮時の嵩密度を圧力開放後の固定化の嵩密度が0.02g/cm3以上になるようにする。また繊維を容器に入れる場合も、処理効率を上げるために、加圧板等を用いて嵩密度が0.02g/cm3以上になるように圧縮したり、また圧縮したまま熱処理することもできる。
【0029】
このようにしてホウ素化合物を添加し、かつ嵩密度を高めた繊維は次に熱処理する。
窒化ホウ素でVGCF表面を被覆するための熱処理温度は、2000〜3000℃、好ましくは2000〜2500℃が必要である。処理温度が低いと窒化ホウ素が生成せず、また、VGCFの黒鉛結晶の発達が不十分となる。
【0030】
熱処理方法は、通常の抵抗加熱炉、高周波炉やアチソン炉等の黒鉛化炉を用いることができる。熱処理温度までの昇温時間は、ホウ素化合物の分解によるホウ素生成、ホウ素の拡散が起こるため、短い方が好ましい。また、ホウ素の拡散をしやすくするために、ホウ素化合物とVGCFとの混合物を黒鉛ルツボ等の容器に入れて熱処理することもできる。
ホウ素化合物との熱処理をする前の気相法炭素繊維としては、製造後繊維表面に付着するタール等熱分解物の除去のための熱処理を行う前の熱分解CFそのもの、これを約800〜1500℃でアルゴン等の不活性ガス中で熱処理を行ったもの、また炭素構造の結晶性を向上させるために約2000〜3000℃で黒鉛化を行った後のVGCFのいずれでも用いることができる。
【0031】
熱処理時の窒素雰囲気は、例えば、黒鉛円筒を発熱体とする高周波加熱炉では、窒素雰囲気が保持できれば良い。
本発明で「被覆」とは、VGCF表面において少なくとも一部に窒化ホウ素が存在していれば良く、好ましくは、全表面の70%以上、より好ましくは80%以上存在しており、均一でも不均一でも良く、密度としては密でも粗でもよいが部分的よりは全体的に窒化ホウ素が存在するのがよい。表面から1nm程度の深さにおいてX−線光電子分析法により表面のホウ素含有量が10質量%以上、好ましくは20質量%、より好ましくは30質量%以上、これをVGCF全体での含有量とすると窒化ホウ素で2質量%以上あればよい。また、BあるいはNはVGCF表面ばかりでなく、VGCF内部に存在してもよい。
【0032】
本発明の窒化ホウ素で被覆されたVGCFの電気絶縁性は、その比抵抗で評価できる。比抵抗の測定方法は、被覆VGCFは粉体状であるため、それを嵩密度0.8g/cm3に圧密したときの粉体の比抵抗を測定している。本発明の被覆VGCFの比抵抗は103Ω・cm以上、好ましくは105Ω・cm以上、さらに好ましくは106Ω・cm以上である。また、本発明の窒化ホウ素で被覆されたVGCFの熱伝導率は、不純物や空孔率などに大きく影響されるが、室温で150Wm-1-1(150Jm-1-1-1)以上が好ましい。
【0033】
本発明のVGCFは炭素繊維の結晶性を向上させたものであり、さらに被覆されている窒化ホウ素も熱伝導性が良いが、熱伝導性はVGCFの結晶性が支配的であるので、その熱導電性は炭素の黒鉛構造の指標であるCoで評価することができ、そのCo値は0.680nm以下が好ましい。Coがこれより大きいと良好な熱伝導性が得られない。合成樹脂に本発明の炭素繊維を含めて、電気絶縁性複合材とする場合は合成樹脂として、プラスチック、合成ゴムなどを用いることができる。また、プラスチックなどに本発明の窒化ホウ素被覆VGCFを放熱フィラーとして用いた場合は該VGCFの含有量により材料の熱伝導率は変化するが、材料の熱伝導率はJIS A−1412の平板比較法、円筒法、平板直接法やレーザーフラッシュ法などの非定常法で測定できる。
本発明により、熱伝導性が良く、電気絶縁性の高い被覆VGCFを提供することができ、特に電子デバイス等の放熱板等の複合材料の放熱フィラーとして極めて有利に用いることができる。
【0034】
【実施例】
以下に、本発明の実施例を説明する。
(実施例1)
特許2778434号に開示された方法で繊維径0.1〜0.2μm、アスペクト比20〜500程度の熱分解CFを製造した。この熱分解CFを黒鉛ルツボに詰めてアルゴン雰囲気下1200℃×20分の熱処理を行った。
この熱処理CFを取り出し、B4C(和光純薬製)を10質量%添加し混合して、再度黒鉛ルツボに詰め、窒素雰囲気下、約2時間で2400℃に昇温し、黒鉛ルツボの中心まで温度が均一になるのに必要な保持時間として、本実施例の場合は60分保持し、熱処理を行った。
【0035】
熱処理後、後処理として被覆VGCF製造の際に副生した炭素粒子等を分級操作で除き、これを窒化ホウ素被覆VGCF試料とした。
本試料の評価として、VGCF全量に対するホウ素含有量、比抵抗およびCoを測定し、その結果を表1に示す。また、本発明の窒化ホウ素で被覆された気相法炭素繊維の表面のホウ素と窒素の含有量は、X線光電子分析法で求め表面から1nm程度の深さまでのホウ素含有量及び窒素含有量は、ホウ素が39質量%、また窒素が50質量%であった。
【0036】
(実施例2)
4Cの添加量を20質量%として、実施例1同様の処理を行い、その評価結果を表1に示した。
【0037】
(比較例1)
4Cを添加しないで、実施例1同様の処理を行い、その評価結果を表1に示した。
(比較例2)
実施例1において、窒素雰囲気の代わりにアルゴン雰囲気下で同様に処理を行い、その結果を表1に示す。
【0038】
【表1】
Figure 0004920135
【0039】
(実施例3)
実施例1で得られた窒化ホウ素被覆VGCFを用いて、それを30質量%含むPETとの複合体を調整し、レーザーフラッシュ法で熱伝導率を測定した。
窒化ホウ素被覆VGCF配向方向の室温での熱伝導率は45Wm-1-1であった。
【0040】
【発明の効果】
本発明により、熱伝導性が良い、電気絶縁性のVGCFを提供することができ、特に電子デバイス等の放熱板等の複合材料の放熱フィラーとして用いることができる。
繊維径0.01〜0.5μmのVGCFの表面が電気絶縁体、特に、窒化ホウ素で被覆されることで、該繊維の嵩密度0.8g/cm3に圧密したときの非抵抗が103Ω・cm以上になる。
また、該繊維の室温での熱伝導率が150Wm-1-1以上を示し、高い熱伝導性を有することができる。

Claims (12)

  1. 繊維径0.01〜0.5μmの気相法炭素繊維の表面の一部または全部の体積固有抵抗(Ωcm)が10 12 以上の電気絶縁体で被覆された気相法炭素繊維であって、嵩密度0.8g/cm3に圧密した際の比抵抗が103Ω・cm以上、熱伝導率が150Wm-1-1以上である電気絶縁体被覆気相法炭素繊維。
  2. 電気絶縁体が窒化ホウ素であることを特徴とする請求項1に記載の電気絶縁体被覆気相法炭素繊維。
  3. 窒化ホウ素が、気相法炭素繊維の表面においてホウ素化合物と窒素化合物の反応により得られたものである請求項2に記載の電気絶縁体被覆気相法炭素繊維。
  4. 気相法炭素繊維全量に対して、窒化ホウ素含有量が2質量%以上、C0が0.680nm以下である請求項2または3に記載の電気絶縁体被覆気相法炭素繊維。
  5. 気相法炭素繊維の表面から1nmの深さにおけるホウ素含有量が10質量%以上であることを特徴とする請求項2〜4のいずれか1項にに記載の電気絶縁体被覆気相法炭素繊維。
  6. 繊維径0.01〜0.5μmの気相法炭素繊維とホウ素化合物を混合し、該混合物を圧縮し、窒素化合物の存在下、2000℃以上で熱処理を行う窒化ホウ素で被覆された電気絶縁体被覆気相法炭素繊維の製造方法。
  7. 窒素化合物が窒素であることを特徴とする請求項6に記載の電気絶縁体被覆気相法炭素繊維の製造方法。
  8. ホウ素化合物が元素状ホウ素、ホウ酸、ホウ酸塩、酸化ホウ素、B4Cおよび窒化ホウ素からなる群から選ばれた少なくとも1種である請求項6または7に記載の電気絶縁体被覆気相法炭素繊維の製造方法。
  9. ホウ素化合物と気相法炭素繊維との混合物のホウ素濃度が、ホウ素元素として1質量%以上、30質量%以下であることを特徴とする請求項6〜8のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維の製造方法。
  10. 請求項1〜5のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維を含む合成樹脂または合成ゴム組成物からなる電気絶縁性複合材。
  11. 電気絶縁体が窒化ホウ素である請求項10に記載の電気絶縁性複合材。
  12. 請求項1〜5のいずれか1項に記載の電気絶縁体被覆気相法炭素繊維を含む放熱材料。
JP2001032697A 2001-02-08 2001-02-08 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途 Expired - Lifetime JP4920135B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001032697A JP4920135B2 (ja) 2001-02-08 2001-02-08 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途
US10/067,266 US7150911B2 (en) 2001-02-08 2002-02-07 Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032697A JP4920135B2 (ja) 2001-02-08 2001-02-08 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途

Publications (2)

Publication Number Publication Date
JP2002235279A JP2002235279A (ja) 2002-08-23
JP4920135B2 true JP4920135B2 (ja) 2012-04-18

Family

ID=18896580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032697A Expired - Lifetime JP4920135B2 (ja) 2001-02-08 2001-02-08 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途

Country Status (1)

Country Link
JP (1) JP4920135B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296007B2 (en) 2016-01-14 2022-04-05 Dexerials Corporation Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150911B2 (en) * 2001-02-08 2006-12-19 Showa Denko Kabushiki Kaisha Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
JP5166689B2 (ja) * 2005-10-17 2013-03-21 昭和電工株式会社 シリカ被覆炭素繊維の製造方法
JP2007291346A (ja) * 2006-03-31 2007-11-08 Toyoda Gosei Co Ltd 低電気伝導性高放熱性高分子材料及び成形体
JP5076531B2 (ja) * 2007-02-09 2012-11-21 株式会社デンソー 樹脂複合材料
JP5198137B2 (ja) * 2007-05-11 2013-05-15 東洋ゴム工業株式会社 スチールコード接着用ゴム組成物
JP5050989B2 (ja) * 2007-09-12 2012-10-17 住友化学株式会社 絶縁性樹脂組成物およびその用途
JP4577385B2 (ja) * 2008-03-14 2010-11-10 株式会社デンソー 導線及びその製造方法
JP4973569B2 (ja) * 2008-03-28 2012-07-11 株式会社豊田中央研究所 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
KR101687394B1 (ko) * 2013-06-17 2016-12-16 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
CN112411173A (zh) * 2020-11-18 2021-02-26 湖南顶立科技有限公司 一种高纯碳纤维硬毡的制备方法
CN113957702B (zh) * 2021-10-27 2023-04-07 大连理工大学 一种基于高石墨化沥青基碳纤维的热界面材料的制备方法及应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672018B2 (ja) * 1989-07-06 1997-11-05 日機装株式会社 ウィスカーの表面改質方法
US5427986A (en) * 1989-10-16 1995-06-27 Corning Incorporated B-N-Cx hydrid coatings for inorganic fiber reinforcement materials
JPH0789776A (ja) * 1993-07-27 1995-04-04 Hitachi Chem Co Ltd 窒化硼素被覆炭素材料の製造法
JP2778434B2 (ja) * 1993-11-30 1998-07-23 昭和電工株式会社 気相法炭素繊維の製造方法
JPH07197264A (ja) * 1993-12-29 1995-08-01 Tonen Corp 繊維の表面処理方法、強化繊維及び応用
JP3600640B2 (ja) * 1994-08-17 2004-12-15 昭和電工株式会社 気相法炭素繊維の熱処理方法
JP3512519B2 (ja) * 1995-04-10 2004-03-29 大塚化学ホールディングス株式会社 高熱伝導性樹脂組成物及びそのフィルム
JP3502490B2 (ja) * 1995-11-01 2004-03-02 昭和電工株式会社 炭素繊維材料及びその製造法
JPH09283955A (ja) * 1996-04-10 1997-10-31 Matsushita Electric Works Ltd 放熱シート
JPH09321185A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子シートの製法
JP3461805B2 (ja) * 1999-03-25 2003-10-27 昭和電工株式会社 炭素繊維、その製造方法及び電池用電極
JP2005015339A (ja) * 2000-04-12 2005-01-20 Showa Denko Kk 微細炭素繊維及びその製造方法並びに該微細炭素繊維を含む導電性材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296007B2 (en) 2016-01-14 2022-04-05 Dexerials Corporation Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device

Also Published As

Publication number Publication date
JP2002235279A (ja) 2002-08-23

Similar Documents

Publication Publication Date Title
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US7390593B2 (en) Fine carbon fiber, method for producing the same and use thereof
EP2537801B1 (en) Method for producing a carbon material
JP4362276B2 (ja) 微細炭素繊維、その製造方法及びその用途
JP3461805B2 (ja) 炭素繊維、その製造方法及び電池用電極
US7402340B2 (en) High thermal conductive element, method for manufacturing same, and heat radiating system
JP3502490B2 (ja) 炭素繊維材料及びその製造法
JP4920135B2 (ja) 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途
US6890986B2 (en) Substantially pure bulk pyrocarbon and methods of preparation
Yang et al. Simple catalyst-free method to the synthesis of β-SiC nanowires and their field emission properties
EP1588385A1 (en) Carbonaceous material for forming electrically conductive material and use thereof
JP6714616B2 (ja) カーボンナノチューブ接合シートおよびカーボンナノチューブ接合シートの製造方法
JP2004003097A (ja) 炭素繊維、その製造方法及び電池用電極
JP2004143652A (ja) 微細黒鉛化炭素繊維及びその製造方法並びにその用途
KR101413996B1 (ko) 카본 하이브리드 필러를 포함하는 방열 복합체 및 그 제조방법
Peng et al. An optimized process for in situ formation of multi-walled carbon nanotubes in templated pores of polymer-derived silicon oxycarbide
JP3606782B2 (ja) 導電性塗料
JP2003020527A (ja) 炭素繊維とその製造方法及びその用途
Kong et al. Conformal BN coating to enhance the electrical insulation and thermal conductivity of spherical graphite fillers for electronic encapsulation field
JP4246557B2 (ja) 金属−炭素複合材料
KR20050095828A (ko) 나노구조물
JP2020200195A (ja) 黒鉛材料の製造方法
CN116162445A (zh) 导热复合材料及其制备方法、应用
JPH0415167B2 (ja)
JP2022078711A (ja) 熱伝導材およびその製造方法

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

EXPY Cancellation because of completion of term