JP4897894B2 - 調整器による流量測定装置及びその方法 - Google Patents

調整器による流量測定装置及びその方法 Download PDF

Info

Publication number
JP4897894B2
JP4897894B2 JP2010000764A JP2010000764A JP4897894B2 JP 4897894 B2 JP4897894 B2 JP 4897894B2 JP 2010000764 A JP2010000764 A JP 2010000764A JP 2010000764 A JP2010000764 A JP 2010000764A JP 4897894 B2 JP4897894 B2 JP 4897894B2
Authority
JP
Japan
Prior art keywords
pressure
fluid
flow rate
measuring
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010000764A
Other languages
English (en)
Other versions
JP2010113733A (ja
Inventor
ポール アール. アダムス,
デーヴィッド イー. ウーラムス,
ジョン ビー. ミリケン,
Original Assignee
フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー filed Critical フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー
Publication of JP2010113733A publication Critical patent/JP2010113733A/ja
Application granted granted Critical
Publication of JP4897894B2 publication Critical patent/JP4897894B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power
    • G05D16/2095Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power using membranes within the main valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8326Fluid pressure responsive indicator, recorder or alarm

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Control Of Fluid Pressure (AREA)
  • Flow Control (AREA)
  • Measuring Fluid Pressure (AREA)
  • Details Of Flowmeters (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Pipeline Systems (AREA)

Description

本願は、1999年6月29日に出願された米国出願No.60/141,576に基づく優先権を主張しており、その出願の内容は本願に含まれている。本発明は調整器に関し、さらに詳しくは、調整器に関する操作パラメータを測定し、流量を計算するための装置および方法に関する。
石油やガスのパイプライン、化学プロセスなどの産業プロセスにおける流体の制御に関して、流体の圧力を減少し、制御することはしばしば必要である。調整器は、典型的には、流量を調整して制限するような作用を果たすために使用されている。ある用途における調整器の目的は、流量や他のプロセス変数を制御することである。しかし、流量を制限すれば、流量制御の結果として圧力が減少する。
例えば、調整器が使用される特定の用途は、天然ガスの運搬と分配である。天然ガス分配システムは、典型的には、天然ガスの産地から消費者まで延びる配管網を有している。大量のガスを移送するために、ガスは圧縮されてその圧力が高められる。ガスが配管網を経て最終的に消費者に近づくと、ガスの圧力は圧力減少ステーションで減少される。圧力減少ステーションは、典型的には、ガス圧力を減少するために調整器を使用する。
消費者に十分な量のガスを供給できることが天然ガス分配システムにとって重要である。このシステムの機能は、典型的には、システム圧力、配管径および調整器によって決定され、システムの機能は、しばしばシミュレーションモデルを使って評価される。システムモデルの正確さは、入力ポイント、圧力減少ポイントおよび出力ポイントにおける流量データを使って決められる。圧力減少ポイントは、ガス分配システムの機能に重要な影響を与える。それゆえ、圧力減少ポイントを正確にシミュレートすることは、システムモデルにとって重要である。しかし、圧力減少ポイントは、分配システム内にある。それゆえ、管理移送ポイント(すなわち、ガス流量の制御が分配システムから消費者に切り替わる点)は考慮されない。その結果、流量の測定は圧力減少ポイントでは行われない。さらに、圧力減少ポイントは管理移送ポイントではないので、正確さを高めるために付加的なコストは必要とされない。天然ガスの分配に関する上記に類似した流量測定問題は、他の調整器の用途(すなわち、工業プロセス、化学プロセスなど)においても存在する。
さらに、調整器は使用中の摩耗によって損傷するので、パイプラインの圧力を制御する機能が低下する。損傷した調整器は、流体の漏れを招き、流体を浪費し、危険な場所を作ることにつながる。損傷した調整器を修理するかまたは取り替える間において、調整器がいつ動かなくなるかを検知し、調整器がどの程度損傷しているかを定めることは困難である。調整器の損傷を検知し、損傷程度を定めることは、パイプラインが数マイルにもわたる典型的な天然ガス搬送システムにおいてはより難しい。
従って、装置の損傷程度を検知し、損傷部位を特定する装置が求められている。
本発明によって、流体流路に配置された圧力調整器であって、流路内を移動可能な絞り要素を有する圧力調整器を通る流体流量を定める装置が提供される。その装置は、絞り要素の上流の流体通路にある上流圧力P1 を測定するための第一圧力センサと、絞り要素の下流の流体通路にある下流圧力P2 を測定するための第二圧力センサと、絞り要素の位置Yを定めるための作動指示計とを備えている。プロセッサには、第一圧力センサ、第二圧力センサおよび作動センサが組み込まれており、該プロセッサは、上流圧力P1 と下流圧力P2 と絞り要素の位置Yに基づいて流量Fを定めるための記憶されたプログラムを有している。
本発明によれば、さらに、流体流路に配置された圧力調整器であって、流路内を移動可能な絞り要素を有する圧力調整器を通る流体流量を定める方法が提供される。その方法は、絞り要素の上流の流体圧力を測定することによって上流圧力値P1 を得、絞り要素の下流の流体圧力を測定することによって下流圧力値P2 を得、絞り要素の位置を定めることによって作動距離値Yを得るステップを有している。流体流量Fは、上流圧力値P1 、下流圧力値P2 および作動距離値Yに基づいて計算される。
図1は、本発明の流量測定装置とともに調整器を示す概略構成図である。 図2は、本発明の流量測定装置を組み込んだ調整器の別の実施例の概略構成図である。 図3は、本発明の流量測定装置の斜視図である。 図4は、本発明の流量測定装置の側面の断面図である。 図5は、アラームルーチンのユーザ固有制限部分を概略的に示すフローチャートある。 図6は、論理アラームサブルーチンを概略的に示すフローチャートである。 図7Aは、論理アラームサブルーチンの固有部分を概略的に示すフローチャートである。 図7Bは、論理アラームサブルーチンの固有部分を概略的に示すフローチャートである。 図7Cは、論理アラームサブルーチンの固有部分を概略的に示すフローチャートである。 図7Dは、論理アラームサブルーチンの固有部分を概略的に示すフローチャートである。 図7Eは、論理アラームサブルーチンの固有部分を概略的に示すフローチャートである。
新規であると思われる本発明の特徴は、添付図面に記載されている。本発明は、添付図面と詳細な説明を参照することによって十分に理解される。
図1は流体圧力調整器の好ましい実施例を示し、10は本発明によるガス圧力調整器である。ガス圧力調整器10は、後記するように、上流圧力、下流圧力およびオリフィス開口度が流量と他の情報を計算するために使用されるガス流量測定装置を含んでいる。図示されたガス圧力調整器は、本発明に従った流体圧力調整器の単なる一実施例にすぎないので、液体圧力調整器も本発明の原理に従って提供しうることが理解できる。
図1に示す調整器は、調整器本体12、隔膜ハウジング14、および上部ハウジング16を有している。調整器本体12内に上流パイプラインと接続するための入口18と下流パイプラインと接続するための出口20が備えられている。調整器本体12内のオリフィス22は、入口18と出口20の間を接続する役目をする。
隔膜26が隔膜ハウジング14内にあって、ハウジング14を上部14aと下部14bに分割している。圧力ばね28が隔膜26の中心に取り付けられて隔膜の下部ハウジング14b内にあって、隔膜26を上方に偏倚させている。
軸30が隔膜26に取り付けられて隔膜26とともに移動する。弁体32のような絞り要素が軸30の下端部に取り付けられて、オリフィス22の下方に位置している。弁体32は、完全にオリフィス22を封鎖する大きさであって、それによって入口18から出口20への伝搬を遮断する。従って、圧力ばね28は弁体32を上方へ偏倚させてオリフィス22を閉じることが分かる。弁体32の断面積は変化しており、弁体32が下方に移動すると、オリフィス22の未封鎖(または開放)面積が次第に増加する。その結果、オリフィス22の開口度は弁体32の位置に直接関連している。
隔膜の上部ハウジング14a内のガス圧は、弁体32を閉鎖位置と開放位置との間を移動させることによって制御される。上部ハウジング14a内の圧力は、種々の異なった方法で変えられる。本実施例において、上部ハウジング14a内の圧力は、負荷パイロット(図示せず)によって制御される。しかし、ガス圧力調整器10としては、無負荷パイロットのような異なるタイプの作動手段を使用したものを採用することもできる。また、ガス圧力調整器10は、本発明の範囲を逸脱しない範囲において、自己作動式または圧力負荷式のものとすることもできる。
隔膜の上部ハウジング14a内のガス圧を制御する別の方法は、上流の配管から隔膜の上部ハウジング14aまでつながっている第一配管を有し、その第一配管に第一電磁ガス流量制御弁を備えている。隔膜の上部ハウジング14aから下流の配管まで第二配管がつながっている。第二配管はガス流量を制御する第二電磁弁を有している。パーソナルコンピュータ(PC)が第一および第二電磁弁を制御するために、それらの弁に接続されている。隔膜の上部ハウジング14a内の圧力を増すために、第一電磁弁が開放されて上流側の高圧ガスを上部ハウジング内に導入し、それによって隔膜26を押し下げてオリフィス22を開口する。ガスは第二電磁弁を経て排出され、それによって上部ハウジング14a内の圧力を減少して隔膜26を上昇させてオリフィス22を閉鎖する。圧力の供給および制御方法にかかわらず、圧力が増すと隔膜26を移動させて弁体32を押し下げてオリフィス22を開口し、圧力が減少するとオリフィス22を閉鎖する。図1に示す配置は一実施例にすぎず、本発明はこの実施例に限定されるものではなく、当業者なら他の配置を採用することもできる。
本発明によれば、上流および下流の圧力レベルP1 とP2 を測定するために、絞り要素の上流と下流に圧力センサが配置される。図1に示すように、第一圧力センサ34と第二圧力センサ35が、上部ハウジング16に取りつけられている。配管36が、第一圧力センサ34と入口18の上流側の配管とを接続している。別の配管37が、第二圧力センサ35と出口20の下流側の配管とを接続している。従って、第一圧力センサ34と第二圧力センサ35が上部ハウジング16に取りつけられており、配管36と37は、それぞれ上流側のガス圧と下流側のガス圧を第一圧力センサ34と第二圧力センサ35に伝達する。これに代えて、第一圧力センサ34と第二圧力センサ35をそれぞれ上流側の配管内と下流側の配管内に配置し、それらの圧力センサと上部ハウジング16を配線で接続することもできる。もし必要ならば、温度を補正するために、プロセスの温度を測定するプロセス流体温度伝達体48が上流配管に設置される。
上部ハウジング16はさらに、弁体位置を定めるためのセンサを有している。軸30が弁体32に取りつけられて隔膜26に連結されている。好ましくは軸30の延長部である作動指示計40が隔膜26から延びて上部ハウジング16内に進入しており、弁体32の位置は作動指示計40の位置に対応している。それゆえ、センサは作動指示検知メカニズム、好ましくはホール効果センサを含んでいる。ホール効果センサは、作動指示計40の上端に取りつけられたホール効果磁石42を有している。磁石センサ44が、ホール効果磁石42の位置を検知するために、上部ハウジング16内に配置されている。磁石42の位置を検知することによって、弁体32の位置およびオリフィス22の開口面積が定められる。第二の作動指示計(図示せず)が作動指示計40に連結されて、弁体32の作動位置を目視できるようになっている。第二の作動指示計は、作動指示計40から上方に向かって延び、上部ハウジング16を通って上部ハウジング16の頂面の上方に達している。
弁体32の作動距離を測定する別の方法としては、上部ハウジング16内の作動指示計40の上方にレーダートランシーバー(図示せず)を配置することによって行える。レーダートランシーバーは、作動指示計40の位置を検知して作動指示計に位置を指示する信号を伝達する。
弁体32の位置は、上記磁石42とセンサ44の他に異なる種々の方法で定めることができる。例えば、レーザセンサ(図示せず)を、作動指示計40の位置を測定するために上部ハウジング16内に設置することができ、また、そのレーザセンサを、隔膜26の位置を直接測定するために隔膜ハウジング14内に設置することもできる。レーザセンサが後者の位置にあるとき、作動指示計40は必要とされない。さらに、超音波センサを弁体の位置を定めるために使用できる。
また、図2に示すように、弁体の位置を推定するために、隔膜の上部ハウジング14a内に負荷された圧力を測定することもできる。弁体32の位置は、隔膜の上部ハウジング14a内の圧力によって変化することが分かる。本実施例において、負荷圧力センサ46が、隔膜の上部ハウジング14a内の圧力を測定するために上部ハウジング16内に設置されている。測定された負荷圧力は弁体位置を定めるために使用できる。
図1に戻って、第一圧力センサ34と第二圧力センサ35と作動センサ44の出力は、電子モジュール50に供給される。電子モジュール50は、図1に示す上部ハウジング16内にあって、圧力調整器と一体に組み込まれているが、離れた位置に設置することもできる。入口圧力、出口圧力および弁体位置は、圧力調整器10のオリフィスを通る流体の流量を定めるために使用される。亜臨界のガス流れに対して、流量は次式を使って計算される。
Figure 0004897894
ここで、Fは流量、K1 は絶対温度定数、Gは流体の比重、Tは流体の絶対温度、K2 は軸の位置定数、Yは軸の位置、P1 は上流の絶対圧、K3 はトリムの形状定数、P2 は下流の絶対圧である。
軸の位置定数K2 とトリムの形状定数K3 は、圧力調整器の特定の大きさおよび形式に固有のものであり、トリムの固有の大きさと形状に依存している。当業者には理解できることであるが、K2 とYの積は、流量サイズ係数と等価である。上記数式は、線形で金属トリム弁形式の圧力調整器を通る亜臨界(即ち、P1−P2<0.5P1) のガス流量を計算するために適している。
臨界ガス流れに対しては、その計算は正弦関数を削除することによって修正される。非線形金属トリム形式および弾性スタイルの圧力調整器のような他の形式の圧力調整器に対しても、同様の数式が使用できるが、軸の位置定数K2 は圧力低下△P(上流圧力P1 と下流圧力P2 との差)および/または弁の軸位置とに関連する関数になることは、当業者によく知られている。液体に対して、その式は次式のようになる。
Figure 0004897894
ここで、Fは流量、K1 は絶対温度定数、Gは流体の比重、Tは流体の絶対温度、K2 は軸の位置定数、Yは軸の位置、P1 は上流の絶対圧、P2 は下流の絶対圧である。
同様の計算を、図2の実施例において行うことができるが、この実施例では、負荷圧力定数K4 とゲージ負荷圧力PL が、軸の位置定数K2 と軸の位置Yに代わるという点を除いて、弁体の位置を推定するために隔膜の上部ハウジング14a内の負荷圧力が測定される。負荷圧力定数K4 は用途に固有のものであり、圧力調整器10の各タイプごとに定めなければならない。非線形弾性絞り部材に対しては、負荷圧力定数K4 は△PとPL の関数である。
好ましい実施例として、ローカル流体モジュール52が上部ハウジング16内に設置されている。ローカル流体モジュール52は、計算された流体情報を提供する電子計算機を含んでいる。ローカル流体モジュール52は出力ポートを有しており、その出力ポートに通信装置によるアクセスが可能で、通信装置が流体情報にアクセスし、計算機のローカル流体情報をリセットする。好ましい実施例として、ローカル流体モジュール52は、上部ハウジング16内に封入された液晶ディスプレイ読み出し装置を含んでいる。上部ハウジング16の頂部に取り付けられたキャップ17は透明なプラスチックの窓を有しており、その窓を通して液晶ディスプレイ読み出し装置を見ることができる。
通信モジュール54が、遠隔端末ユニット(RTU)、パソコン(PC)または圧力調整器の制御に割り込む機能を有する装置のような補助通信装置55に、流体データを伝達する。通信モジュール54は、遠隔計量読み取りシステム(図示せず)に流体情報を伝達するためのアンテナ53を有している。パワーモジュール56が流体測定メカニズムに電力を供給するために設置されている。パワーモジュール56は、装置全体に調整された電圧を供給することができ、パワーモジュール56は、太陽、電池、直流電源または交流電源のような公知の電源から電力を供給される。
電子モジュール50、ローカル流体モジュール52、通信モジュール54およびパワーモジュール56は、図1に示すように別々に設置することもできるし、上部ハウジング16内に配置した単一の主回路ボードに設置することもできる。
圧力調整器10による計算流量は、別の流量計58を使って素早く且つ容易に修正できる。流量計58は、タービンまたは他の形式の計器とすることができ、一時的に下流のパイプラインに挿入し、実際の流体流量を測定できる。流量計58は、補助通信装置55(RTU、PCなど)または直接主回路ボードにフィードバックをする。そのフィードバックは、観察された流体条件に基づく誤差関数を得るために使用される。その誤差関数は、圧力調整器10によって行われる流体の計算過程に組み込まれ、より正確な流体のデータを得ることができる。
流量測定および診断装置の好ましい実施例が図3に示されており、参照番号100が付されている。図3に示すように、装置100は、圧力調整器(図示せず)に接続可能な第一端102を有する円筒体101を備えている。上記実施例と同様に、圧力調整器は上流セクションと下流セクションを有する流体流路に配置されている。円筒体101は、圧力調整器内の隔膜(図示せず)に接続された作動指示計103(図4)を内蔵している。ホール効果センサは作動指示計103の位置を検出するために使用される。作動指示計103の一部104は、磁極片を有する磁性材料で形成されている。穴要素105(図4)が、磁性材料部分104を検知し、作動指示計103の位置に従って位置信号を発するために設けられている。
ハウジング106が円筒体101に取りつけられて、第一圧力ポート107、第二圧力ポート108、補助圧力ポート109および補助ポート110(図3)を有している。第一圧力センサアセンブリ111が第一圧力ポート107内に挿入され、配管(図示せず)がアセンブリ111を流路の上流セクションに接続している。第二圧力センサアセンブリ114が第二圧力ポート108内に挿入され、配管(図示せず)がアセンブリ114を流路の下流セクションに接続している。第三圧力センサアセンブリ115が、第三圧力ポイントにおける圧力を測定するために補助圧力ポート109内に挿入されている。第三圧力センサアセンブリ115が、上記実施例において詳細に説明したように、プラグの作動距離を推定するために、流路内や圧力調整器内を含む様々な位置における圧力を測定するために使用される。好ましい実施例として、第四圧力ポート117が大気圧を測定するために使用される。補助ポート110は、図1に示す温度伝達体48のように、別の装置からの不連続又はアナログ入力を受けるために設置されている。さらに、以下に詳細に説明するように、入力/出力ポート112が、外部装置と接続するために設置されている。
複数の回路ボード120a−eが、装置100の様々な演算を制御するために、ハウジング106内に設置されている(図4)。図示の実施例では、第一(または主)回路ボード120aは、第一、第二、第三圧力センサおよび大気圧センサのためのインターフェースと、ホール効果センサ105のための接続部を備えている。第二(または通信)回路ボード120bは、外部装置との通信のためのインターフェースを提供する。第二回路ボード120bは、モデムカード、RF232 通信ドライバ、およびCDPDモデムのような配線された伝達手段のための接続部を備えている。さらに、無線通信のためにトランシーバを備えることができる。第三(または主)回路ボード120cは、プロセッサ、メモリ、実時間クロックおよび2つの通信チャネルのための通信ドライバを備えるのが好ましい。プロセッサは、流量を計算するために、上記のアルゴリズムの中の1つまたは2つ以上のものを備えている。一方、メモリはそれぞれの日における高圧および低圧のような選択されたパラメータを記憶する。第四回路ボード120dは、補助通信装置55のためのインターフェースを提供する。電源調整器、フィールドターミネーション(入・出力装置への接続)、バックアップ電源および他のボード120a−dがつながれる接続部を有する第五(または終端)ボード120eが提供される。5つの回路ボード120a−eが図示されているが、単一の回路ボード、5つより少ない回路ボードまたは5つより多い回路ボードを、本発明の範囲を逸脱しない範囲で使用することができる。
それゆえ、装置100と外部装置との通信は、RFモデム、イーサネット(登録商標)または他の公知の類似の通信手段によって行うことができる。そのプロセッサによって、外部装置が、所望圧力設定値およびアラーム条件のような情報を装置100に入力することができ、メモリーに記憶されたデータを検索することができる。検索されたデータは、アラームログおよび記憶された演算パラメータを含むことができる。例えば、検索された情報は、メモリーに定期的に記憶された上流圧力と下流圧力の履歴を含むことができる。そこで、装置100は、圧力レコーダーとしての機能も果たす。
本発明によれば、プロセッサーは、アラーム信号を生成するためのルーチンを含む。そのルーチンの第一部分は、図5に示すように、測定されたパラメータ(すなわち、上流圧力、下流圧力および作動位置)をあるユーザ固有の制限値と比較する。さらに、測定されたパラメータの中の少なくとも2つを比較し、固有の論理演算に基づくアラーム信号を生成する1つまたはそれ以上の論理サブルーチンがランされ、その例が図6および図7A−7Dに示されている。
まず、レベルアラームについて、ユーザによってレベル制限値が入力されているかどうかを定めるために、150を始動させて検査される。圧力、作動距離、流量およびバッテリー値が、まず、ユーザが入力した高−高制限値と比較される(151)。もし、その値のいずれかが高−高制限値を上回れば、その日付と時間が読み出され(152)、対応する高−高アラーム値がロギングされる(153)。次に、測定された値が、ユーザが入力した高制限値と比較される(154)。もし、その値のいずれかが高制限値を上回れば、その日付と時間が読み出され(155)、対応する高アラーム値がロギングされる(156)。それから、その値が、ユーザが入力した低制限値と比較される(157)。もし、その値のいずれかがユーザが入力した低制限値を下回れば、その日付と時間が読み出され(158)、対応する低アラーム値がロギングされる(159)。最後に、その値が、ユーザが入力した低−低制限値と比較される(160)。もし、その値のいずれかが低−低制限値を下回れば、その日付と時間が読み出され(161)、対応する低−低アラーム値がロギングされる(162)。
付加的な制限アラーム値を、計算された流量Fに基づいて設定することができる。例えば、ユーザは、瞬時にかつ蓄積された流量のための制限値を入力することができる。計算された流量Fが、これらの制限値のいずれかを上回ると、アラームが発せられる。さらに、軸の作動距離に基づいてアラームを発することもできる。ユーザは蓄積された軸の作動距離に対する制限値を入力することができる。蓄積された軸の作動距離が、その制限値を上回ると、アラームが発せられる。
ユーザが入力した制限アラーム値を検査した後、論理アラーム条件が存在しているかどうかを定めるために、1つまたはそれ以上の論理サブルーチンがランされる。好ましい実施例において、各論理サブルーチンは1つに結合され、合成論理サブルーチンは図6に示されている。図6に示すように、すべての圧力および作動データを集めることによってサブルーチンは始まり、圧力調整器を通る流量を計算する(165)。各測定パラメータは、他の測定パラメータおよびユーザ固有の設定値と比較される。論理アラーム値が、上流圧力(166)、下流圧力(167)、補助圧力(168)、軸の作動距離(169)および流量(170)のためにモニタされる。付加的な論理アラーム値を、第三の圧力センサアセンブリおよび入・出力接続部112に接続された補助装置からのフィードバックのために設けることもできる。各パラメータに関連する値を得た後、以下に詳細に記載するように、論理アラームが検査される。
上流圧力(ステップ166)に基づく論理アラームを定めるための好ましい演算シーケンスが図7Aに示されている。まず、上流圧力に関して入力された値のサブルーチンが検査される(172)。もしある値が上流圧力に関して入力されれば、測定された上流圧力が、ユーザが入力した値に比べて大きいか(173)、小さいか(174)、または等しいか(175)を、サブルーチンが定める。各々の場合(すなわち、ステップ173、174および175)に対して、一連のサブステップが図7B−7Dに示されている。
もしアラームが、ある値より上流圧力が大きいことを必要とするならば、サブルーチンは、まず、ユーザによって入力された固有の上流圧力値のために検査する(図7B)。もし、ユーザが上流圧力に対してある値を入力すれば、測定された上流圧力がその入力された値と比較される(177)。もし測定された値が入力された値より大きければ、フラグより大きい上流圧力が設定される(178)。もし、ユーザが入力した固有の値が使用されなければ、下流圧力が上流圧力と比較されるべきかどうかを知るためにサブルーチンが検査する(179)。もしそうならば、上流圧力が下流圧力より大きいかどうかをサブルーチンが定める(180)。もしそうならば、下流圧力フラグより大きい上流圧力が設定される(181)。もし下流圧力が論理アラームとして使用されなければ、補助圧力に基づく論理アラームのためにサブルーチンが検査する(182)。もし補助圧力が論理アラームとして使用されるならば、上流圧力が下流圧力より大きいかどうかをサブルーチンが検査する(183)。もしそうならば、補助圧力フラグより大きい上流圧力が設定される(184)。
図7Cおよび図7Dに示すように、上流圧力が論理アラーム値より小さいか又は等しいかを定めるために、サブルーチンが同様のステップを実行する(185−202)。さらに、下流圧力および補助圧力が固有の論理アラーム値より大きいか、小さいか又は等しいかを定めるために、図7B−図7Dに示す演算と同一の演算が下流圧力および補助圧力のために実行される。これらの演算は同じなので、これらのステップを示すフローチャートは図示されていない。
作動距離に基づく論理アラームに戻って(169、図6)、論理シーケンスフローチャートが図7Eに示されている。従って、作動距離論理値が入力されていないかどうかをサブルーチンがまず検査する(203)。もし、作動距離論理値が入力されていれば、測定された値が論理値より大きいかどうかをサブルーチンが定める(204)。もし、論理演算子が制限値より大きければ、測定された作動距離が入力された値より大きいかどうかをサブルーチンが定める(205)。もしそうならば、フラグより大きい作動距離が設定される(206)。もし、制限値より大きくない論理演算子が作動距離のために使用されれば、サブルーチンは、論理演算子が制限値より小さいかどうかを検査する(207)。もし、制限値より小さい論理演算子が作動距離のために使用されれば、測定された作動距離が入力された値より小さいかどうかをサブルーチンが定める(208)。もしそうならば、フラグより小さい作動距離が設定される(209)。もし、制限値より小さい論理演算子が作動距離のために使用されなければ、サブルーチンは論理演算子が制限値に等しいかどうかを検査する(210)。もし、制限値に等しい論理演算子が作動距離のために使用されれば、測定された作動距離が入力された値に等しいかどうかをサブルーチンが定める(211)。もしそうならば、フラグに等しい作動距離が設定される(212)。図6のステップ170に示されるように、計算された流量が論理流量アラーム値より大きいか、小さいか又は等しいかを定めるために、類似のステップのシーケンスが使用できる。
設定された論理フラグに基づいて、測定された2つのパラメータの比較に基づく論理アラームが発せられる。例えば、作動距離がゼロに等しく、下流圧力が増加するとき(現在の下流圧力が以前に測定された下流圧力より大きいとき)、閉鎖アラームが発せられる。適当な演算条件が対応する論理フラグを設定するために存在するとき、閉鎖アラームが発せられ、流体が絞り要素の損傷によって圧力調整器から漏れていることを指摘する。作動距離がゼロより大きく、下流圧力信号が減少しているとき、別の論理アラームを発することができ、軸が破損したことを指摘する。作動距離がゼロより大きく、上流圧力信号が増加しているとき、さらに別の論理アラームを発することができ、軸が破損したか又は圧力調整器に別の問題が発生したことを指摘する。作動距離がゼロより大きく、下流圧力信号がユーザが入力した下流圧力制限値より大きいとき、さらに別の論理アラームを発することができ、圧力調整器を制御するパイロットに問題が発生したことを指摘する。他の論理アラームは、種々の測定値や計算値を考慮して入力することができる。そこで、圧力調整器についての他の潜在的な問題を指摘することができる。
プロセッサと一体になったメモリが、日付、時刻およびアラームの形式を読み出すアラーム論理を含むのが好ましい。アラーム論理は、アラームの履歴を検索しうるように、外部の通信装置によってアクセスすることが可能である。さらに、プロセッサは、離れたところにあるホストコンピュータに自動的にアラーム条件を伝達する例外レポート(RBX)回路を含むのが好ましい。従って、パイプラインにおける潜在的な問題は、すばやくレポートされ、特定要素または損傷領域を明らかにすることができる。
調整器による流量測定装置と診断装置が結合したものを説明したが、本発明に従って、調整器による流量測定装置と調整器による診断装置を別々のものにすることもできる。
上記の詳細な説明は本発明の理解のためにのみなされたものであり、何ら不必要な限定はされるべきでなく、当業者にとって修正は容易である。
10…ガス圧力調整器
12…調整器本体
14…隔膜ハウジング
16…上部ハウジング
18…入口
20…出口
22…オリフィス
26…隔膜
28…圧力ばね
30…軸
32…弁体
34…第一圧力センサ
35…第二圧力センサ
40、103…作動指示計
42…ホール効果磁石
44…磁石センサ
46…負荷圧力センサ
106…ハウジング
111…第一圧力センサアセンブリ
114…第二圧力センサアセンブリ
115…第三圧力センサアセンブリ

Claims (17)

  1. 圧力調整器による流体流量測定装置であって、該圧力調整器は、
    流体通路を定める本体と、
    その中に配置されたアクチュエータを有し且つ上記本体に取り付けられたアクチュエータハウジングであって、上記アクチュエータが流体通路と連通しているアクチュエータハウジングと、
    流体通路内を移動可能であって上記アクチュエータに取り付けられた絞り要素と、
    絞り要素に接続された隔膜と、
    絞り要素の上流の流体通路にある上流圧力P1 を測定するための第一圧力センサと、
    絞り要素の下流の流体通路にある下流圧力P2 を測定するための第二圧力センサと、
    隔膜上のゲージ負荷圧力P L を測定するための第三圧力センサと、
    第一圧力センサ、第二圧力センサおよび第三圧力センサを組み込まれたプロセッサとを備えており、
    該プロセッサは、上流圧力P1 と下流圧力P2 ゲージ負荷圧力P L に基づいて流量Fを定めるために記憶されたプログラムを有しているもの。
  2. 流体の温度Tを測定するための温度センサを有しており、記憶されたプログラムは次式に従って流量Fを定める請求項1記載の装置。
    流体が臨界であるとき、下記の数式3によって流量Fが定められ、
    Figure 0004897894
    流体が亜臨界であるとき、下記の数式4によって流量Fが定められる。
    Figure 0004897894
    ここで、K1 は温度定数、Gは流体の比重、 3 はトリムの形状定数、K 4 は負荷圧力定数である。
  3. 絞り要素は可撓性の部材を有し、第三圧力センサは可撓性の部材上のゲージ負荷圧力P L を測定する請求項1記載の装置
  4. 負荷圧力定数K4 は、上流圧力P1 から下流圧力P2 を引いた差の関数である請求項3記載の装置。
  5. 絞り要素は非線形のトリム形式弁部材を有し、第三圧力センサは非線形のトリム形式弁部材上のゲージ負荷圧力P L を測定する請求項1記載の装置
  6. 負荷圧力定数K4 は、ゲージ負荷圧力PL の関数である請求項5記載の装置。
  7. 圧力調整器の操作に関係するデジタルデータを記憶するためにプロセッサに接続されたメモリと、記憶されたデジタルデータの中の少なくともいくらかを外部通信装置に伝達するためにプロセッサに接続された通信回路とを有する請求項2記載の装置。
  8. プロセッサは、圧力調整器の操作に対応する診断データを得るために、記憶されたデジタルデータを現在のデジタルデータと比較するための論理サブルーチンを実行する請求項7記載の装置。
  9. 論理サブルーチンは、流量Fがユーザが入力した流量制限値より大きいときにアラームを発する請求項8記載の装置。
  10. 流体は液体であって、記憶されたプログラムは、次式に従って液体の流量Fを定める請求項1記載の装置。
    Figure 0004897894
    ここで、K1 は温度定数、Gは液体の比重、Tは液体の温度、 4 は負荷圧力定数である。
  11. 流体流路に配置された圧力調整器を通る流体流量を測定する方法であって、該圧力調整器は、流体通路内を移動可能な絞り要素と該絞り要素に接続された可撓性の隔膜を有し、
    当該方法は、
    絞り要素の上流の流体圧力を測定することによって上流圧力値P1 を得
    絞り要素の下流の流体圧力を測定することによって下流圧力値P2 を得
    隔膜上のゲージ負荷圧力P L を得、
    上流圧力値P1 と下流圧力値P2 ゲージ負荷圧力P L に基づいて流体の流量Fを計算するステップを有するもの。
  12. 流体の温度を測定することによって絶対温度Tを得、流体の流量Fは次式に従って計算される請求項11記載の方法。
    流体が臨界であるとき、下記の数式6によって流量Fが定められ、
    Figure 0004897894
    流体が亜臨界であるとき、下記の数式7によって流量Fが定められる。
    Figure 0004897894
    ここで、K 1 は絶対温度定数、Gは流体の比重、K 3 はトリムの形状定数、K 4 は負荷圧力定数である
  13. 絞り要素は非線形のトリム形式弁部材を有する請求項12記載の方法。
  14. 絞り要素は可撓性の部材を有し、第三圧力センサは可撓性の部材上のゲージ負荷圧力P L を測定する請求項11記載の方法
  15. 負荷圧力定数K4 は、上流圧力P1 から下流圧力P2 を引いた差の関数である請求項14記載の方法。
  16. 絞り要素は非線形のトリム形式弁部材を有し、第三圧力センサは非線形のトリム形式弁部材上のゲージ負荷圧力を測定する請求項11記載の方法
  17. 負荷圧力定数K4 は、ゲージ負荷圧力PL の関数である請求項16記載の方法。
JP2010000764A 1999-06-29 2010-01-05 調整器による流量測定装置及びその方法 Expired - Lifetime JP4897894B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14157699P 1999-06-29 1999-06-29
US60/141,576 1999-06-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001507161A Division JP2003503786A (ja) 1999-06-29 2000-06-26 調整器による流量測定装置

Publications (2)

Publication Number Publication Date
JP2010113733A JP2010113733A (ja) 2010-05-20
JP4897894B2 true JP4897894B2 (ja) 2012-03-14

Family

ID=22496284

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2001507160A Pending JP2003503785A (ja) 1999-06-29 2000-06-26 調整器による診断システムおよび方法
JP2001507161A Pending JP2003503786A (ja) 1999-06-29 2000-06-26 調整器による流量測定装置
JP2010000764A Expired - Lifetime JP4897894B2 (ja) 1999-06-29 2010-01-05 調整器による流量測定装置及びその方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2001507160A Pending JP2003503785A (ja) 1999-06-29 2000-06-26 調整器による診断システムおよび方法
JP2001507161A Pending JP2003503786A (ja) 1999-06-29 2000-06-26 調整器による流量測定装置

Country Status (10)

Country Link
US (2) US6441744B1 (ja)
EP (2) EP1198740B1 (ja)
JP (3) JP2003503785A (ja)
CN (2) CN1241082C (ja)
AR (2) AR024877A1 (ja)
AU (2) AU5767800A (ja)
BR (2) BRPI0012034B1 (ja)
CA (2) CA2377540C (ja)
DE (2) DE60029326T2 (ja)
WO (2) WO2001001215A1 (ja)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895351B2 (en) * 1999-06-29 2005-05-17 Fisher Controls International Llc Regulator flow measurement apparatus
US6685668B1 (en) * 2000-07-31 2004-02-03 Abbott Laboratories Closed-loop IV fluid flow control
US7197407B2 (en) * 2001-02-02 2007-03-27 Fisher Controls International Llc. Fuel tank level monitoring system and method
US7621293B2 (en) * 2001-04-05 2009-11-24 Fisher Controls International Llc Versatile emergency shutdown device controller implementing a pneumatic test for a system instrument device
US6830061B2 (en) * 2001-04-27 2004-12-14 Fisher Controls International Llc Intelligent regulator with input/output capabilities
US6725167B2 (en) * 2002-01-16 2004-04-20 Fisher Controls International Llc Flow measurement module and method
US6889705B2 (en) * 2002-02-05 2005-05-10 Alternative Fuel Systems, Inc. Electromagnetic valve for regulation of a fuel flow
US6678584B2 (en) * 2002-05-03 2004-01-13 Fisher Controls International Llc Method and apparatus for performing diagnostics in a control loop of a control valve
US20040046670A1 (en) * 2002-09-05 2004-03-11 Adams Paul R. Gas blanket management system and method
US20170138154A1 (en) * 2003-01-10 2017-05-18 Woodward, Inc. Wireless Control Valve
DE20304894U1 (de) * 2003-03-26 2003-07-31 Bürkert Werke GmbH & Co., 74653 Ingelfingen Fluid-Mengen-Regelsystem
US7131451B2 (en) * 2003-09-04 2006-11-07 Rivatek Incorporated Apparatus for controlling and metering fluid flow
US20050080366A1 (en) * 2003-10-09 2005-04-14 Cushman William B. Pneumatic stimulator array
US7286945B2 (en) * 2003-11-19 2007-10-23 Honeywell International Inc. Apparatus and method for identifying possible defect indicators for a valve
US7274995B2 (en) * 2003-11-19 2007-09-25 Honeywell International Inc. Apparatus and method for identifying possible defect indicators for a valve
DE102004004903A1 (de) * 2004-01-30 2005-08-18 Samson Ag Antrieb zum Stellen eines Stellorgans, wie eines Ventils, und Einrichtung zum Regeln einer Stellbewegung
US6973375B2 (en) * 2004-02-12 2005-12-06 Mykrolis Corporation System and method for flow monitoring and control
US7740024B2 (en) * 2004-02-12 2010-06-22 Entegris, Inc. System and method for flow monitoring and control
US7082842B2 (en) 2004-06-25 2006-08-01 Rivatek Incorporated Software correction method and apparatus for a variable orifice flow meter
WO2006004674A2 (en) * 2004-06-25 2006-01-12 Rivatek Incorporated Software correction method and apparatus for a variable orifice flow meter
JP2006190118A (ja) * 2005-01-07 2006-07-20 High Pressure Gas Safety Institute Of Japan 圧力調整器監視システム
US20090078905A1 (en) * 2005-04-25 2009-03-26 Joseph Peter Marcilese Versatile valve
US20070016333A1 (en) * 2005-07-12 2007-01-18 Edwards Grant B Method and apparatus for controlling the valve position of a variable orifice flow meter
US7604019B2 (en) * 2005-07-22 2009-10-20 B/E Intellectual Property Electromechanical regulator with primary and backup modes of operation for regulating passenger oxygen
ES2534428T3 (es) 2005-07-26 2015-04-22 Rutgers, The State University Of New Jersey Perfiles de anticuerpos específicos de un estado tuberculoso
US7421374B2 (en) * 2005-11-17 2008-09-02 Honeywell International Inc. Apparatus and method for analyzing model quality in a process control environment
US7257501B2 (en) * 2005-11-17 2007-08-14 Honeywell International Inc. Apparatus and method for identifying informative data in a process control environment
US7894473B2 (en) * 2006-04-12 2011-02-22 Honeywell International Inc. System and method for monitoring valve status and performance in a process control system
CN100394099C (zh) * 2006-05-29 2008-06-11 重庆灵鉴检测仪器有限公司 管道泄漏信号传感装置
US7530278B2 (en) * 2006-11-02 2009-05-12 Rivatek, Inc. Fluid flow blender and methods
US7886766B2 (en) * 2006-12-27 2011-02-15 Eltav Wireless Monitoring Ltd. Device and system for monitoring valves
US7786878B2 (en) * 2007-01-24 2010-08-31 Honeywell International Inc. Advanced transmitter isolation feature
JP2009115271A (ja) * 2007-11-09 2009-05-28 Yamatake Corp 流量計測バルブ
US9026370B2 (en) 2007-12-18 2015-05-05 Hospira, Inc. User interface improvements for medical devices
DE102008028733B4 (de) * 2008-06-17 2016-02-04 Drägerwerk AG & Co. KGaA Vorrichtung zur Bestimmung eines Strömungszustandes in einem Atemsystem
US9618037B2 (en) 2008-08-01 2017-04-11 Honeywell International Inc. Apparatus and method for identifying health indicators for rolling element bearings
JP5252718B2 (ja) * 2008-10-23 2013-07-31 パナソニック株式会社 流体遮断装置
US7945397B2 (en) * 2009-04-02 2011-05-17 Honeywell International Inc. System and method for gearbox health monitoring
US8958995B2 (en) 2009-04-02 2015-02-17 Honeywell International Inc. System and method for monitoring rotating and reciprocating machinery
US8620622B2 (en) * 2009-04-02 2013-12-31 Honeywell International Inc. System and method for determining health indicators for impellers
JP5761881B2 (ja) * 2009-08-12 2015-08-12 株式会社テイエルブイ 弁類の作動状態監視装置
FR2949812B1 (fr) 2009-09-10 2012-03-30 Peugeot Citroen Automobiles Sa Dispositif et procede de regulation de l'injection d'une quantite de reducteur en phase gaz
US8473252B2 (en) 2010-06-09 2013-06-25 Honeywell International Inc. System and method for conflict resolution to support simultaneous monitoring of multiple subsystems
US8896437B2 (en) 2011-01-24 2014-11-25 Honeywell International Inc. Asset-specific equipment health monitoring (EHM) for industrial equipment using standardized asset models
IT1404264B1 (it) * 2011-01-28 2013-11-15 Zambon Gruppo valvolare, particolarmente per l'impiego in reti pneumatiche
CH704831A1 (de) 2011-04-14 2012-10-15 Belimo Holding Ag Verfahren sowie System zur automatisierten Funktionskontrolle in einer Heizungs-, Lüftungs- und Klimaanlage.
US9310790B2 (en) 2011-05-23 2016-04-12 Honeywell International Inc. Large-scale comprehensive real-time monitoring framework for industrial facilities
AU2012299169B2 (en) 2011-08-19 2017-08-24 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US8963733B2 (en) 2012-02-13 2015-02-24 Honeywell International Inc. System and method for blind fault detection for rotating machinery
JP6306566B2 (ja) 2012-03-30 2018-04-04 アイシーユー・メディカル・インコーポレーテッド 注入システムのポンプ内の空気を検出するための空気検出システムおよび方法
CN103425064B (zh) 2012-05-09 2017-12-22 布里斯托尔D/B/A远程自动化解决方案公司 通过过程控制设备显示信息的方法和装置
WO2014007047A1 (ja) * 2012-07-02 2014-01-09 株式会社テイエルブイ 流量計機能付き調節弁
WO2014022513A1 (en) 2012-07-31 2014-02-06 Hospira, Inc. Patient care system for critical medications
US9989394B2 (en) * 2013-02-15 2018-06-05 Metropolitan Industries, Inc. Automatic shut off valve
US9709998B2 (en) 2013-03-14 2017-07-18 Marshall Excelsior Co. Pressure regulator
AU2014268355B2 (en) 2013-05-24 2018-06-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
CA2913915C (en) 2013-05-29 2022-03-29 Hospira, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
WO2014194065A1 (en) 2013-05-29 2014-12-04 Hospira, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
RU2531072C1 (ru) * 2013-07-29 2014-10-20 Руслан Маликович Ахметзянов Регулятор малых расходов жидкости
TWI567347B (zh) * 2013-10-18 2017-01-21 Grand Mate Co Ltd Gas regulator
ES2776363T3 (es) 2014-02-28 2020-07-30 Icu Medical Inc Sistema de infusión y método que utiliza detección óptica de aire en línea de doble longitud de onda
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
CN104236640B (zh) * 2014-08-22 2018-05-04 承德承钢工程技术有限公司 利用安装在管道中的流量调节阀间接测量气体流量方法
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
CN104807510A (zh) * 2015-04-14 2015-07-29 陕西中天阳光仪表有限公司 落差式流量计和流量计量方法
DE102015210204A1 (de) * 2015-06-02 2016-12-08 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Verfahren zum Betreiben eines Membranventils, sowie System und Ausleseeinrichtung
US10503181B2 (en) * 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
DE102016108448B4 (de) * 2016-05-06 2022-12-08 Witt Gmbh & Co. Holding Und Handels-Kg Domdruckregler
EP4085944A1 (en) 2016-05-13 2022-11-09 ICU Medical, Inc. Infusion pump system with common line auto flush
CA3027176A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
DE102017002034A1 (de) * 2016-07-20 2018-01-25 Lubing Maschinenfabrik Ludwig Bening Gmbh & Co. Kg Druckminderer für Tiertränken sowie Verfahren zum Verstellen mindestens eines Druckminderers für Tiertränken
US10634003B2 (en) * 2017-01-20 2020-04-28 Emerson Process Management Regulator Technologies, Inc. Methods and apparatus to control the actuation of regulators including a loading chamber
US9857803B1 (en) * 2017-02-02 2018-01-02 Water Dimmer, LLC Water conservation system
CN106802676B (zh) * 2017-03-08 2019-12-17 成都九门科技有限公司 一种驱动调压器
CN107781001A (zh) * 2017-08-16 2018-03-09 吉林省众鑫汽车装备有限公司 车辆及其尾气处理系统
CN108088619A (zh) * 2017-12-22 2018-05-29 北京航天计量测试技术研究所 一种实时动态压力测量及闭环反馈控制系统
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11719358B2 (en) 2017-12-30 2023-08-08 Itt Manufacturing Enterprises Llc Switch for diaphragm valve actuator
CN110185929A (zh) * 2019-06-12 2019-08-30 青岛荣轩达检测服务有限公司 燃气调压装置的预警系统及其方法
US11275393B2 (en) * 2019-11-07 2022-03-15 Pittway Sarl Air spring pressure regulating valve
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
CA3189781A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
CN111811590A (zh) * 2020-08-11 2020-10-23 苏州昇萨特传感技术有限公司 喷嘴流量表
EP3979035B1 (de) * 2020-09-30 2023-11-01 Witt GmbH & Co. Holding und Handels-KG Domdruckregler
US11402247B2 (en) 2020-11-02 2022-08-02 Honeywell International Inc. Gas meter system and method for diagnosing grid pressure from pressure regulator
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11977399B2 (en) 2021-03-25 2024-05-07 Romet Limited Fluid pressure monitoring system using flow data
CN113641118B (zh) * 2021-06-28 2024-04-26 上海叁零肆零科技有限公司 一种本安型燃气管网物联高精度数据采集终端
CN218094478U (zh) * 2022-04-12 2022-12-20 松下知识产权经营株式会社 压力调节器
CN218122521U (zh) * 2022-04-18 2022-12-23 松下知识产权经营株式会社 压力调节器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536000A (en) * 1947-12-26 1950-12-26 Foxboro Co Reversible air-operated motor
US3633416A (en) * 1970-05-07 1972-01-11 Columbia Gas Syst Method and apparatus for controlling and metering gas flow
SE371017B (ja) 1972-02-11 1974-11-04 H Thorbard
US4206902A (en) * 1977-06-13 1980-06-10 Vapor Corporation Inner element for a flow regulator
GB2077434B (en) 1980-05-30 1984-04-26 Millar John Ascertaining flow rate through valves or pumps
JPS61136113A (ja) * 1984-12-06 1986-06-24 Kurimoto Iron Works Ltd 流量計測機能を具えた流量調整弁
JPS63316111A (ja) * 1987-06-19 1988-12-23 Hitachi Metals Ltd 流量計付流体圧力制御装置
JPH01216051A (ja) * 1988-02-22 1989-08-30 Nippon Denso Co Ltd 車両用内燃機関のフェールセーフ装置
US5197328A (en) 1988-08-25 1993-03-30 Fisher Controls International, Inc. Diagnostic apparatus and method for fluid control valves
US5047965A (en) 1989-01-05 1991-09-10 Zlokovitz Robert J Microprocessor controlled gas pressure regulator
JP2637248B2 (ja) * 1989-09-14 1997-08-06 株式会社日立製作所 ガス弁装置の制御装置
US5251148A (en) * 1990-06-01 1993-10-05 Valtek, Inc. Integrated process control valve
DE4025323C2 (de) 1990-08-10 1993-12-02 Oventrop Sohn Kg F W Vorrichtung zur Durchflußmessung an Heizkörpern
JP3392148B2 (ja) * 1991-09-17 2003-03-31 大阪瓦斯株式会社 ガスガバナの異常検出装置
JPH0619554A (ja) * 1991-12-19 1994-01-28 Shimizu Corp 弁装置
IT1265319B1 (it) 1993-12-22 1996-10-31 Nuovo Pignone Spa Sistema perfezionato di comando dell'attuatore di una valvola pneumatica
DE9404829U1 (de) 1994-03-22 1994-05-19 Arca Regler GmbH, 47918 Tönisvorst Armatur
EP0708389B1 (en) 1994-10-18 2000-02-16 Neles-Jamesbury Oy Method and apparatus for detecting a fault of a control valve assembly in a control loop
JP3069265B2 (ja) * 1995-04-07 2000-07-24 松下電器産業株式会社 ガス安全装置
JP3394114B2 (ja) * 1995-06-20 2003-04-07 東京瓦斯株式会社 ガスガバナ負荷シミュレータ
US5728942A (en) 1995-11-28 1998-03-17 Boger; Henry W. Fluid pressure measuring system for control valves
US5636653A (en) 1995-12-01 1997-06-10 Perception Incorporated Fluid metering apparatus and method
US6055831A (en) * 1997-05-31 2000-05-02 Barbe; David J. Pressure sensor control of chemical delivery system
US6035878A (en) 1997-09-22 2000-03-14 Fisher Controls International, Inc. Diagnostic device and method for pressure regulator
US6056008A (en) 1997-09-22 2000-05-02 Fisher Controls International, Inc. Intelligent pressure regulator
JPH11282543A (ja) * 1998-03-30 1999-10-15 Osaka Gas Co Ltd 多系列整圧器の遮断弁制御方法

Also Published As

Publication number Publication date
CN1237426C (zh) 2006-01-18
WO2001001214A1 (en) 2001-01-04
CA2377540C (en) 2005-04-12
CA2378100C (en) 2005-04-26
CN1241082C (zh) 2006-02-08
CA2378100A1 (en) 2001-01-04
JP2003503785A (ja) 2003-01-28
WO2001001215A1 (en) 2001-01-04
AR024877A1 (es) 2002-10-30
US6539315B1 (en) 2003-03-25
EP1196834B1 (en) 2006-07-12
CN1371493A (zh) 2002-09-25
AU6055600A (en) 2001-01-31
AR025185A1 (es) 2002-11-13
BR0012029A (pt) 2002-03-19
JP2010113733A (ja) 2010-05-20
DE60029326T2 (de) 2007-07-05
DE60005840T2 (de) 2004-07-22
EP1198740B1 (en) 2003-10-08
EP1196834A1 (en) 2002-04-17
DE60005840D1 (de) 2003-11-13
BR0012034A (pt) 2002-03-19
US6441744B1 (en) 2002-08-27
BRPI0012034B1 (pt) 2016-03-15
JP2003503786A (ja) 2003-01-28
AU5767800A (en) 2001-01-31
EP1198740A1 (en) 2002-04-24
CN1371494A (zh) 2002-09-25
CA2377540A1 (en) 2001-01-04
DE60029326D1 (de) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4897894B2 (ja) 調整器による流量測定装置及びその方法
JP3943026B2 (ja) 線形移動測定デバイスにおいて使用する自動芯出しマグネット組立体
EP1599773B1 (en) Regulator flow measurement apparatus
US5251148A (en) Integrated process control valve
AU2002232592A1 (en) Self-centering magnet assembly for use in a linear travel measurement device
US8209039B2 (en) Process control system having on-line and off-line test calculation for industrial process transmitters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term