JP4857564B2 - 燃料電池システム制御装置及び燃料電池システム制御方法 - Google Patents

燃料電池システム制御装置及び燃料電池システム制御方法 Download PDF

Info

Publication number
JP4857564B2
JP4857564B2 JP2005015509A JP2005015509A JP4857564B2 JP 4857564 B2 JP4857564 B2 JP 4857564B2 JP 2005015509 A JP2005015509 A JP 2005015509A JP 2005015509 A JP2005015509 A JP 2005015509A JP 4857564 B2 JP4857564 B2 JP 4857564B2
Authority
JP
Japan
Prior art keywords
parameter
load parameter
fuel cell
load
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005015509A
Other languages
English (en)
Other versions
JP2006202683A (ja
Inventor
祥朋 淺井
隼人 筑後
敬介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005015509A priority Critical patent/JP4857564B2/ja
Publication of JP2006202683A publication Critical patent/JP2006202683A/ja
Application granted granted Critical
Publication of JP4857564B2 publication Critical patent/JP4857564B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システムを制御するための燃料電池システム制御装置及び燃料電池システム制御方法に係り、特に燃料電池への負荷要求が変化した場合に燃料ガスと酸化剤ガスとの圧力バランスが崩れることを防止するように制御する燃料電池システム制御装置及びその方法に関する。
燃料電池は、水素ガスなどの燃料ガスと空気などの酸化剤ガスとを電気化学反応によって反応させて起電力を発生させている。この起電力は燃料電池システムの外部負荷に供給されており、この外部負荷が急激に減少した場合には、燃料電池の出力もそれに合せて低下させる必要がある。そこで、燃料電池の出力の低下に合せて燃料ガスである水素ガスの供給も減少させる必要があるが、一般的に水素ガスの供給は循環系を構成することが多いので、水素ガスの供給を減少させても水素ガスの圧力減少は遅れてしまう。これにより、水素系と空気系の圧力バランスが崩れて、燃料電池の反応膜の耐久性を悪化させてしまう可能性がある。
そこで、従来から、このような圧力バランスが崩れることによる反応膜への悪影響を防止する燃料電池の制御方法が研究開発されている(例えば、特許文献1参照)
特許文献1では、電流目標値の減少率が所定の減少率を超えて急激に減少したときに、電流指令値を電流目標値の減少率よりもゆっくりと減少させ、電流指令値の上限となる電流限界値を電流目標値に応じて定めるようにしたものである。
これにより、燃料電池の出力の低下が遅れるため、燃料電池システム内における水素ガスの消費が増加するので、水素ガスの圧力減少を早めることができる。
特開2000−348748号公報
しかしながら、上述した特許文献1に開示された従来例では、燃料電池の出力低下を遅らせたことにより、余剰の電力が生じてしまうという問題点がある。この余剰電力を吸収するために2次電池を備えるようにすることが考えられるが、2次電池の充電状態によってはこの余剰電力を充電できない可能性もある。
また、水素と空気の圧力差を減少させるために、空気圧力を水素圧力に追従させるように空気圧力を高めることが考えられるが、空気圧力を高めるために空気流量を増量させる必要があり、この場合には空気コンプレッサ等の空気供給装置の消費電力の増加及び動作音の増大という問題点がある。
さらに、燃料電池への負荷が増加する場合には負荷の増加に伴って空気圧力及び水素圧力を増加させる必要があるので、負荷の増加が急激な場合には圧力も急激に増加させる必要がある。しかし、昇圧に必要な流量が一時的に確保できなくなり、圧力上昇に時間がかかってしまうという問題点もある。
また、空気と水素の圧力が上昇するときの特性は異なるので、水素系と空気系の圧力バランスが崩れて燃料電池の反応膜の耐久性を悪化させてしまうという問題点もある。さらに、空気あるいは水素の流量不足により燃料電池への負荷要求に対して十分な発電が行えないという問題点もある。
上述した課題を解決するために、本発明の燃料電池システム制御装置は、燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、前記第1負荷パラメータの位相を遅らせて第2負荷パラメータを生成する第2負荷パラメータ生成手段と、前記燃料電池への負荷要求に基づいて、前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替手段と、前記圧力制御用パラメータに基づいて燃料ガス及び酸化剤ガスの圧力を制御するガス圧力制御手段と、前記流量制御用パラメータに基づいて燃料ガス及び酸化剤ガスの流量を制御するガス流量制御手段と、前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出し手段とを備えることを特徴とする。
また、本発明の燃料電池システム制御方法は、燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、前記第1負荷パラメータの位相を遅らせて第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、前記燃料電池への負荷要求に基づいて、前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替ステップと、前記圧力制御用パラメータに基づいて燃料ガス及び酸化剤ガスの圧力を制御するガス圧力制御ステップと、前記流量制御用パラメータに基づいて燃料ガス及び酸化剤ガスの流量を制御するガス流量制御ステップと、前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出しステップとを含むことを特徴とする。
本発明に係る燃料電池システム制御装置では、燃料電池への負荷要求に基づいて第1負荷パラメータを生成し、第1負荷パラメータの位相を遅らせて第2負荷パラメータを生成して、第1及び第2負荷パラメータに基づいて水素及び空気の圧力と流量を制御するので、燃料電池の負荷が減少する場合には余剰電力の発生やコンプレッサの消費電力の増加及び動作音の増大を防止して水素と空気の圧力差を抑制することができ、燃料電池の負荷が増加する場合には水素圧力と空気圧力の差圧を小さくして燃料電池の劣化を抑制しながら、発電に必要となる空気および水素の流量を不足させることなく供給することができる。
<第1の実施形態>
[燃料電池システム制御装置の構成]
以下、本発明の第1の実施形態を図面に基づいて説明する。図1は本実施形態に係る燃料電池システム制御装置の構成を示すブロック図である。
図1に示すように、本実施形態の燃料電池システム制御装置1は、燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成部(第1負荷パラメータ生成手段)2と、第1負荷パラメータの位相を遅らせて第2負荷パラメータを生成する第2負荷パラメータ生成部(第2負荷パラメータ生成手段)3と、燃料電池への負荷要求に基づいて第1負荷パラメータと第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替部(負荷パラメータ切替手段)4と、圧力制御用パラメータに基づいて燃料ガス及び酸化剤ガスの圧力を制御するガス圧力制御部(ガス圧力制御手段)5と、流量制御用パラメータに基づいて燃料ガス及び酸化剤ガスの流量を制御するガス流量制御部(ガス流量制御手段)6と、電気的エネルギー取出し用パラメータに基づいて燃料電池を制御して発電させる電気的エネルギー取出し部(電気的エネルギー取出し手段)7とを備えている。
ここで、上述した燃料電池システム制御装置1の各部はCPUと周辺インターフェースを有するマイクロコンピュータによって実行される。
次に、本実施形態の燃料電池システム制御装置1を備えた燃料電池システムの構成を図2に基づいて説明する。図2は本実施形態に係る燃料電池システムの構成を示すブロック図である。
図2に示すように、本実施形態の燃料電池システム20は、燃料ガスと酸化剤ガスとが供給されて電気化学反応により発電する燃料電池21と、燃料電池システム20を制御する図1で説明した燃料電池システム制御装置1とを備えている。
燃料電池21では、アノードに燃料ガスである水素ガスが、カソードに酸化剤ガスである空気が供給されて以下に示す電気化学反応によって発電されている。
アノード(水素極):H2→2H++2e- (1)
カソード(酸素極):2H++2e-+(1/2)O2→H2O (2)
また、燃料電池システム20は、燃料電池21に水素ガスを供給する水素ガス供給系と、空気を供給する空気供給系と、燃料電池21を冷却する冷却系とを備えている。
まず、水素ガス供給系は、水素ガスを貯蔵する水素タンク22と、水素タンク22から水素ガスを供給する水素タンク元弁23と、水素タンク22から供給される高圧水素を減圧する減圧弁24と、水素ガスを燃料電池21に供給する水素供給弁25と、燃料電池21に供給される水素ガスの圧力を検出する水素ガス圧力センサ26と、燃料電池21で消費されなかった水素ガスを再循環させる水素循環装置27と、水素の排出をコントロールするパージ弁28と、排出された水素ガスの濃度を調整する排水素処理装置29とを備えている。
このように構成された水素供給系によって、水素タンク22から水素タンク元弁23、減圧弁24、水素供給弁25を通じて燃料電池21のアノードに水素ガスが供給される。水素タンク22から供給される高圧水素は、減圧弁24で機械的に所定の圧力まで減圧され、次に水素供給弁25によって燃料電池21における水素圧力が所望の圧力になるように制御される。また、水素循環装置27はポンプ等で構成され、燃料電池21のアノードで消費されなかった水素ガスを再循環させている。
そして、アノードにおける水素圧は、水素ガス圧力センサ26で検出された水素圧力を燃料電池システム制御装置1にフィードバックし、燃料電池システム制御装置1が水素供給弁25を駆動することによって制御されている。水素圧力を所望の目標圧力に制御することによって、燃料電池21が消費した分だけの水素が自動的に補われるようになっている。
次に、パージ弁28は、水素循環機能を確保するために水素供給系内に蓄積した窒素を排出しており、またセル電圧を回復させるために、ガス流路に詰まった水詰まりを吹き飛ばす機能も果たしている。また、燃料電池21の起動時には水素供給系を水素ガスで置換するために水素供給系内にあるガスの排出も行っている。
排水素希釈装置29は、パージ弁28から排出される水素ガスを可燃濃度未満の水素濃度になるように空気で希釈するか、あるいは水素ガスと空気を反応させて燃焼させることによって、水素の濃度を低下させてから燃料電池システム20の外へ排出する。
次に、空気供給系は、空気を加圧して燃料電池に供給するコンプレッサ30と、供給される空気を加湿する加湿装置31と、空気の圧力を検出する空気圧力センサ32と、燃料電池21における空気の圧力を調整する空気調圧弁33とを備えている。
このように構成された空気供給系によって、コンプレッサ30から送られた空気が加湿装置31で加湿され、燃料電池21のカソードに供給される。カソードにおける空気圧は、空気圧力センサ32で検出された空気圧力を燃料電池システム制御装置1にフィードバックし、燃料電池システム制御装置1がコンプレッサ30の回転数及び空気調圧弁33を駆動することによって制御されている。
次に、冷却系は、燃料電池21に冷却水を循環させる冷却水ポンプ34と、循環する冷却水から放熱させるラジエタ35と、ラジエタに冷却風を送風するラジエタファン36と、冷却水の流路をラジエタ方向とラジエタバイパス方向とに切り替える三方弁37と、燃料電池入口における冷却水の温度を検出する入口側温度センサ38と、燃料電池出口における冷却水の温度を検出する出口側温度センサ39とを備えている。
また、燃料電池21には、燃料電池21から電力や電流などの出力を取り出してモータなどの外部負荷に供給するパワーマネージャー40と、燃料電池21から出力される電圧を検出する電圧センサ41と、燃料電池21から出力される電流を検出する電流センサ42とが備えられている。そして、燃料電池システム制御装置1は電圧センサ41及び電流センサ42で検出された電圧と電流に基づいてパワーマネージャー40を制御して燃料電池21から電力あるいは電流を取り出している。
[燃料電池システムの制御処理]
次に、本実施形態の燃料電池システム制御装置1による燃料電池システムの制御処理を図3のフローチャートに基づいて説明する。図3は、燃料電池システムの制御処理全体を示すフローチャートであり、各ステップの詳細については後述する。また、図3に示す燃料電池システムの制御処理は所定時間周期(例えば10msec周期)で実行される。
まず、ステップS301において燃料電池21への負荷要求に基づいて第1負荷パラメータである第1の目標発電電力を算出し、ステップS302では第1の目標発電電力に対して位相を遅らせて、第2負荷パラメータである第2の目標発電電力を算出する。
次に、ステップS303において、水素ガス及び空気の流量を制御するための流量制御用パラメータと、水素ガス及び空気の圧力を制御するための圧力制御用パラメータと、電気的エネルギー取出し用パラメータである目標電力の選定を行う。これらのパラメータは第1の目標発電電力と第2の目標発電電力のいずれかから選定される。
そして、ステップS304では、ステップS303において選定された圧力制御用パラメータに基づいて水素ガス及び空気の圧力制御を行い、ステップS305では、ステップS303で選定された流量制御用パラメータに基づいて水素ガス及び空気の流量制御を行う。ステップS306では、ステップS303で選定された目標電力に基づいて燃料電池21の発電制御を行って本実施形態の燃料電池システム制御装置1による燃料電池システムの制御処理を終了する。ただし、上述した制御処理は空気及び水素ガスの両方の制御に適用してもよいし、空気あるいは水素ガスのどちらかの制御に限って適用してもよい。
次に、上述した燃料電池システムの制御処理におけるステップS301〜S306の各ステップの詳細について説明する。
まず、ステップS301における第1の目標発電電力の算出処理を説明する。ステップS301では、燃料電池21への負荷要求に基づいて第1負荷パラメータである第1の目標発電電力が算出される。ここで、燃料電池21への負荷要求としては、例えば本実施形態の燃料電池システム20が電気自動車に搭載されている場合にはモータの回転数に応じて燃料電池21に要求される電流指令値や電力指令値などがあり、これらの値を燃料電池21から取り出すために必要となる発電電力を算出して第1の目標発電電力とする。
また、第1の目標発電電力の代わりに電流指令値や電力指令値を第1負荷パラメータとしてもよい。このように電流指令値、あるいは電力指令値を第1負荷パラメータとすることにより、燃料電池21から取り出される電流あるいは電力と、負荷が必要とする電流あるいは電力とを一致させることができるので、余剰電力の発生を防止することができる。
次に、ステップS302における第2の目標発電電力の算出処理を説明する。第2負荷パラメータである第2の目標発電電力は、第1の目標発電電力に対して位相を遅らせる処理を実施することによって算出される。この位相を遅らせる処理は、第1の目標発電電力に対して変化率を制限することによって実現することができ、例えば、単位時間あたりの変化率の上限値及び下限値を設定し、この上限値及び下限値を超えないように変化率を制限する方法や、一次遅れなどのフィルタ処理を行う方法などがある。このとき、変化率の上限値及び下限値やフィルタの特性は、燃料電池21の出力電力の変化速度の上限を超えないように設定される。このようにして第2の目標発電電力を算出したことによって、第2の目標発電電力が第1の目標発電電力に対して所定の位相遅れを伴って変化するようになる。
ただし、本実施形態では第1の目標発電電力の位相を遅らせて第2の目標発電電力を算出したが、逆に第2の目標発電電力の位相を進ませて第1の目標発電電力を算出するようにしてもよい。
ここで、上述した第1及び第2負荷パラメータの一例を図4に示す。例えば、図4(a)に示すような負荷要求があった場合には、この負荷要求に基づいて第1負荷パラメータが算出されるので、第1負荷パラメータは図4(b)に示すように負荷要求と同様な変化をする。そして、この第1負荷パラメータの位相を遅らせて生成された第2負荷パラメータは、図4(c)に示すように負荷要求が変化すると、その変化に対して時間的に遅れて変化していく。
次に、ステップS303におけるパラメータの選定処理を図5のフローチャートに基づいて説明する。ここで選定するパラメータとしては、水素ガス及び空気の圧力制御を行うための圧力制御用パラメータ、水素ガス及び空気の流量を制御するための流量制御用パラメータ、パワーマネージャー40が燃料電池21から取り出す電気的エネルギーを制御するための電気的エネルギー取出し用パラメータである。
図5に示すように、まずステップS501において電気的エネルギー取出し用パラメータとして目標電力の選定を行う。そして、ステップS302で算出された第2の目標発電電力を目標電力として選定する。ただし、パワーマネージャー40の仕様によっては、目標電力の代わりにパワーマネージャー40が燃料電池21から取り出す目標電流を電気的エネルギー取出し用パラメータとして選定しても同等の性能を得ることができる。
次に、ステップS502において、第1の目標発電電力と第2の目標発電電力のうち小さい方を、水素ガス及び空気の圧力制御を行うための圧力制御用パラメータとして選定する。また、圧力制御用パラメータとしてステップS501で選定した目標電力あるいは目標電流を選定するようにしてもよい。
次に、ステップS503において、第1の目標発電電力と第2の目標発電電力のうちの大きい方を、水素ガス及び空気の流量制御を行うための流量制御用パラメータとして選定する。
ここで上述した各パラメータを図6に示す。図6(a)〜(c)は図4(a)〜(c)と同一である。図6(a)に示すような負荷要求があった場合には、第1負荷パラメータは図6(b)に示すようになり、第2負荷パラメータは図6(c)に示すようになる。そして、圧力制御用パラメータは第1及び第2負荷パラメータのうち小さいほうが選定されるので、図6(d)に示すように負荷要求の増加時には第2負荷パラメータが選定され、減少時には第1負荷パラメータが選定される。
また、流量制御用パラメータは第1及び第2負荷パラメータのうち大きいほうが選定されるので、図6(e)に示すように負荷要求の増加時には第1負荷パラメータが選定され、減少時には第2負荷パラメータが選定される。
そして、電気的エネルギー取出し用パラメータは第2負荷パラメータが選定されるので、図6(f)に示すように第2負荷パラメータと同一の変化をすることになる。
次に、ステップS304における空気及び水素ガスの圧力の制御処理を説明する。まず、ステップS304では水素ガス及び空気の目標圧力を算出する。この目標圧力の算出は、ステップS303で選定された圧力制御用パラメータに基づいて図7に示すテーブルデータを用いて実施される。
図7は、圧力制御用パラメータと目標水素圧力との関係を示しており、図7に示すように圧力制御用パラメータが大きくなるにしたがって目標水素圧力も増加していく。ただし、目標水素圧力が所定値以上には増加しないように設定されている。なお、図7のテーブルデータは燃料電池21の発電効率などを考慮して設定されている。
一方、空気の目標圧力は水素ガス圧力センサ26によって検出された水素ガスの実際の圧力とする。また、水素ガスの目標圧力を空気圧力センサ32によって検出された空気の実際の圧力としてもよい。
そして、燃料電池システム制御装置1は、算出された目標圧力に基づいて空気調圧弁33と水素供給弁25とを操作して水素ガスと空気の圧力を目標圧力へと調整する。この空気調圧弁33の操作は、空気圧力センサ32で検出された燃料電池21内の空気圧力と設定した目標空気圧力との偏差に基づいて、一般的な制御手法によって空気調圧弁33の指令開度を決定することによって実行される。
また、水素供給弁25の操作は、水素ガス圧力センサ26で検出された燃料電池21内の水素圧力と水素の目標圧力との偏差に基づいて、一般的な制御手法によって水素供給弁26への指令開度を決定することによって実行される。こうしてステップS304における圧力の制御処理が完了する。
次に、ステップS305における空気及び水素ガスの流量の制御処理を説明する。まず、燃料電池システム制御装置1は、ステップS303で選定された流量制御用パラメータに基づいて、図8に示すテーブルデータを用いて目標流量を算出する。
図8は、流量制御用パラメータと目標空気流量との関係を示しており、図8に示すように流量制御用パラメータが大きくなるにしたがって目標空気流量も増加していく。ただし、目標空気流量が所定値以上には増加しないように設定されている。そして、このテーブルデータでは燃料電池内部で局所的な流量不足が起きないような利用率となるように設定されている。
次に、算出された空気の目標圧力と目標流量とに基づいて、図9に示したマップデータを用いてコンプレッサ30への指令回転数を算出する。図9は、目標ガス圧力毎に設定された目標空気流量とコンプレッサ指令回転数との関係を示したマップデータであり、このマップデータは、例えばコンプレッサ30の回転数と、圧力に対する空気流量との特性に基づいて設定すればよい。そして、図9に示すように目標空気流量が増加するにしたがってコンプレッサ指令回転数も増加する。
このようにして算出されたコンプレッサ指令回転数は、燃料電池システム制御装置1からコンプレッサ30の駆動回路に指示され、コンプレッサ30は指令回転数に従って駆動される。
同様に、水素の目標ガス圧力と目標水素流量とに基づいて、図10に示したマップデータを用いて水素循環装置27への指令回転数を算出する。このマップデータは、例えば水素循環装置27の回転数と、圧力に対する水素流量との特性に基づいて設定すればよい。
そして、ここで算出された水素循環装置27の指令回転数は、燃料電池システム制御装置1から水素循環装置27に対して指示され、水素循環装置27は指令回転数に従って駆動されて、ステップS305における流量の制御処理は完了する。
次に、ステップS306における燃料電池21の発電電力の制御処理を説明する。燃料電池システム制御装置1は、パワーマネージャー40に対してステップS303で選定された目標電力を指示し、パワーマネージャー40は指示された目標電力に基づいて燃料電池21の発電電力を制御して電力を取り出してステップS306における発電電力の制御処理は完了し、本実施形態の燃料電池システム制御装置1による燃料電池システム20の制御処理は終了する。
[第1実施形態の作用]
次に、本発明の燃料電池システム制御装置1による作用を図11に基づいて説明する。
図11(a)は、従来の燃料電池システムの制御方法を実施した場合における燃料電池の負荷変動時における目標発電電力、取り出し電流、目標ガス圧力、目標ガス流量、ガス圧力の変化を示した図である。
図11(a)では、燃料電池の負荷が増加した場合に、取り出し電流の変化と目標ガス圧力の変化と目標ガス流量の時間的な変化の仕方が一致しているので、空気のガス圧力の上昇に必要なガス流量が足りなくなり、空気のガス圧力の上昇に時間がかかっていることが分かる。これは、ガス圧力を上昇させる場合に水素ガスは高圧タンクから供給されるので速やかに圧力が上昇するのに対して、空気の圧力はコンプレッサを用いて大気中の空気を加圧する必要があるため、コンプレッサの過渡応答特性あるいは空気系システムの過渡特性により水素ガスの圧力に比べて上昇しにくいためである。
逆に、図11(a)において燃料電池の負荷が減少した場合には、取り出し電流と目標ガス圧力の時間的な変化が一致しているので、取り出し電流が低下したときの水素圧力の減少が遅く、空気と水素ガスとの差圧が大きくなってしまっている。これは、水素ガスが水素循環装置を設けていることにより圧力が下がりにくいのに対して、空気は循環装置を設けずに空気調圧弁で空気の圧力を調整しているので、水素圧力に比べて低下しやすいためである。
一方、図11(b)は、本実施形態の燃料電池システム制御装置1による制御処理を行った場合の図であり、燃料電池の負荷が変動した場合における目標発電電力、取り出し電流、目標ガス圧力、目標ガス流量、ガス圧力の変化を示した図である。
図11(b)に示すように、本実施形態の燃料電池システム制御装置1では目標発電電力として第1の目標発電電力と第2の目標発電電力が設定されており、取出し電流の変化に対して目標ガス圧力及び目標ガス流量の変化は一致していない。燃料電池の負荷が増加する場合には、取り出し電流の変化に対して目標ガス流量の変化が時間的に進んでいるので、コンプレッサで供給されている空気のガス流量も遅れることなく供給されるため、空気のガス圧力も短時間で水素ガスと同時に所望の圧力まで上昇させることができる。
一方、燃料電池の負荷が減少する場合には、取り出し電流の変化に対して目標ガス圧力の変化が時間的に進んでいるので、水素循環装置が設置されている水素ガスの圧力も空気の圧力に対して遅れることなく減少する。これにより、水素ガスの圧力と空気の圧力との差圧を減少させることができるので、燃料電池の反応膜の悪化を防止することができる。
尚、図11(b)は、第1及び第2の目標発電電力に基づいて、空気の目標圧力と水素の目標圧力とを同じ値として算出した場合の結果であるので、空気の目標圧力を水素の実際の圧力として制御した場合には、燃料電池の負荷が減少した場合における水素の圧力と空気の圧力との差圧をさらに減少させることが可能である。
[第1実施形態の効果]
このように、本実施形態の燃料電池システム制御装置1では、燃料電池21への負荷要求に基づいて第1負荷パラメータを生成し、第1負荷パラメータの位相を遅らせて第2負荷パラメータを生成して、第1及び第2負荷パラメータに基づいて水素及び空気の圧力と流量を制御するので、燃料電池21の負荷が減少する場合には余剰電力の発生やコンプレッサの消費電力の増加及び動作音の増大を防止して水素と空気の圧力差を抑制することができ、燃料電池21の負荷が増加する場合には水素圧力と空気圧力の差圧を小さくして燃料電池の劣化を抑制しながら、発電に必要となる空気および水素の流量を供給することができる。
また、本実施形態の燃料電池システム制御装置1では、第1の目標発電電力(第1負荷パラメータ)と第2の目標発電電力(第2負荷パラメータ)のうち小さいほうをガス圧力制御用パラメータとして選定してガス圧力を制御するので、圧力の過渡応答性能を改善することができ、特に水素圧力を低下させたいときに効果が大きくなる。さらに、第1の目標発電電力と第2の目標発電電力のうち大きいほうをガス流量制御用パラメータとして選定してガス流量を制御するので、十分なガスの利用率を確保することができる。また、電気的エネルギー取出し用パラメータを流量制御用パラメータと同じ第2の目標発電電力としたので、発電に必要なガス流量を十分供給することができ、燃料電池21への負荷要求に応じた発電を行うことができる(請求項1、13の効果)。
さらに、本実施形態の燃料電池システム制御装置1では、圧力制御用パラメータに基づいて燃料ガスの圧力を制御し、燃料ガスの圧力に基づいて酸化剤ガスの圧力を制御するので、圧力が変化したときに応答性の悪い燃料ガスに応答性の良い酸化剤ガスを追従させることができ、これによって燃料ガスと酸化剤ガスとの圧力差を抑制することができる(請求項8、20の効果)。
また、本実施形態の燃料電池システム制御装置1では、燃料電池21から取り出される電流の値を指令するための電流指令値を第1負荷パラメータとすることにより、燃料電池21から取出す電流と負荷が必要とする電流を一致させることができ、余剰電力の発生を防止することができる(請求項11、23の効果)。
さらに、本実施形態の燃料電池システム制御装置1では、燃料電池21から取り出される電力の値を指令するための電力指令値を第1負荷パラメータとすることにより、燃料電池21から取出す電力と負荷が必要とする電力を一致させることができ、余剰電力の発生を防止することができる(請求項12、24の効果)。
<第2の実施形態>
次に、本発明の第2の実施形態を図12に基づいて説明する。図12は、図3に示した燃料電池システムの制御処理におけるステップS303のパラメータの選定処理を示すフローチャートである。ただし、パラメータの選定処理以外の処理については第1の実施形態と同様の処理が行われるので、詳しい説明は省略する。
図12に示すように、本実施形態のパラメータの選定処理は、まずステップS1201において燃料電池21への負荷要求が増加しているか否かの判断を行う。この判断方法としては、例えば前回演算した時の第1の目標発電電力と現在の第1の目標発電電力の大きさを比較すればよい。また、前回演算した時の第2の目標発電電力と現在の第2の目標発電電力の大きさを比較してもよい。
ここで、燃料電池21への負荷要求が増加していないと判断されたときには、次にステップS1202において燃料電池21への負荷要求が減少しているか否かの判断を行う。判断方法はステップS1201と同様に前回演算した時の第1の目標発電電力と現在の第1の目標発電電力の大きさを比較すればよい。
そして、燃料電池21への負荷要求が減少していないと判断されたときには、パラメータの選定処理を終了し、燃料電池21への負荷要求が減少していると判断されたときにはステップS1203において第1の目標発電電力を圧力制御用パラメータとして選定する。
次に、ステップS1204において第2の目標発電電力を流量制御用パラメータとして選定し、ステップS1205においてパワーマネージャー40が燃料電池21から取り出す目標電力として第2の目標発電電力を選定してパラメータの選定処理を終了する。
一方、ステップS1201において燃料電池21への負荷要求が増加していると判断されたときには、ステップS1206において第2の目標発電電力を圧力制御用パラメータとして選定する。
次に、ステップS1207において第1の目標発電電力を流量制御用パラメータとして選定し、ステップS1208においてパワーマネージャー40が燃料電池21から取り出す目標電力として第2の目標発電電力を選定して本実施形態のパラメータの選定処理を終了する。
このように、本実施形態の燃料電池システム制御装置1では、燃料電池21への負荷要求が増加するときには、第1負荷パラメータを流量制御用パラメータとして選定し、第2負荷パラメータを圧力制御用パラメータと電気的エネルギー取出し用パラメータとして選定するので、電気的エネルギー取出し用パラメータよりも流量制御用パラメータのほうが時間的に進んだ信号にすることができ、これによってコンプレッサ30による空気供給の遅れを防止することができる。したがって、燃料電池21の負荷の増加に伴って遅れることなくガス流量及びガス圧力を増加させることができる。
一方、燃料電池21への負荷要求が減少するときには、第1負荷パラメータを圧力制御用負荷パラメータとして選定し、第2負荷パラメータを流量制御用パラメータと電気的エネルギー取出し用パラメータとして選定するので、電気的エネルギー取出し用パラメータよりも圧力制御用パラメータのほうが時間的に進んだ信号にすることができ、これによって燃料電池21の発電量の減少に対して水素圧力の低下を早めることができる。したがって水素循環装置27による水素圧力低下の遅れを防止することができ、水素と空気の圧力差を抑制して圧力バランスが崩れることを防止できる。また、その際に、余剰電力が発生せず、空気供給を増量させる必要もないという効果もある(請求項2、14の効果)。
<第3の実施形態>
次に、本発明の第3の実施形態を説明する。本実施形態の燃料電池システムの制御処理では、第1負荷パラメータの代わりに第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成して用いることが第1の実施形態と異なっている。同様に、第2負荷パラメータの代わりに第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成して用いている。
換言すれば、第1負荷パラメータ生成部2は、第1負荷パラメータの代わりに第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、第2負荷パラメータ生成部3は、第2負荷パラメータの代わりに第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成する。
ただし、その他の点については第1の実施形態と同様なので、詳しい説明は省略する。
本実施形態の燃料電池システムの制御処理では、ステップS301において燃料電池21への負荷要求に基づいて第1の目標発電電力を算出し、この第1の目標発電電力の時間的な変化率を制限して変化率制限第1負荷パラメータである変化率制限第1目標発電電力を算出する。
ステップS302では、第1の目標発電電力に対して位相を遅らせて第2の目標発電電力を算出し、この第2の目標発電電力の時間的な変化率を制限して変化率制限第2負荷パラメータである変化率制限第2目標発電電力を算出する。
そして、ステップS303におけるパラメータの選定処理では、図5に示すフローチャートのステップS501において電気的エネルギー取出し用パラメータとして目標電力の選定を行うが、このとき変化率制限第2目標発電電力を目標電力として選定する。ただし、パワーマネージャー40の応答性能によっては第1の実施形態と同様に第2の目標発電電力を目標電力として選定してもよい。
次に、ステップS502では、変化率制限第1目標発電電力と変化率制限第2目標発電電力のうち小さい方を、水素ガス及び空気の圧力制御を行うための圧力制御用パラメータとして選定する。ただし、コンプレッサ30、空気調圧弁33、水素供給弁25、パージ弁28の過渡応答特性から第1の実施形態と同様に第1の目標発電電力あるいは第2の目標発電電力を、変化率制限第1目標発電電力と変化率制限第2目標発電電力の代わりに用いてもよい。
次に、ステップS503において、変化率制限第1目標発電電力と変化率制限第2目標発電電力のうちの大きい方を、水素ガス及び空気の流量制御を行うための流量制御用パラメータとして選定してステップS303におけるパラメータの選定処理は完了する。ただし、コンプレッサ30、空気調圧弁33、水素供給弁25、パージ弁28の過渡応答特性から第1の実施形態と同様に第1の目標発電電力あるいは第2の目標発電電力を、変化率制限第1目標発電電力と変化率制限第2目標発電電力の代わりに用いてもよい。
このように構成された本実施形態の燃料電池システムの制御処理において、燃料電池21の負荷が減少中に増加に転じた場合を図13に基づいて説明する。図13は、燃料電池の負荷が減少中に増加に転じた場合における変化率制限第1目標発電電力と第2の目標発電電力の変化を示した図である。図13に示すように、通常は負荷が増加する場合には第1の目標発電電力のほうが大きい値となるが、図13では変化率制限第1目標発電電力よりも第2の目標発電電力の方が大きい値となっている。しかし、目標ガス圧力および目標電力には2つの信号のうち小さな値となる変化率制限第1目標発電電力が選定される。また、目標ガス流量には2つの信号のうち大きな値となる第2の目標発電電力が選択され、燃料電池21への負荷が急激に変化しても、負荷に応じた目標ガス圧力、目標ガス流量、目標電力を設定することができる。
このように、本実施形態の燃料電池システム制御装置1では、第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、この変化率制限第1負荷パラメータと第2負荷パラメータのうち小さいほうを圧力制御用パラメータとして選定し、変化率制限第1負荷パラメータと第2負荷パラメータのうち大きいほうを流量制御用パラメータとして選定するので、燃料電池21への負荷要求が急激に変動して水素及び空気の圧力あるいは流量が十分に追従できないような場合でも、圧力制御用パラメータ及び流量制御用パラメータの急激な変動を抑えることができ、圧力制御及び流量制御において十分な追従性能を得ることができる(請求項4、16の効果)。
また、本実施形態の燃料電池システム制御装置1では、第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、この変化率制限第2負荷パラメータと第1負荷パラメータのうち大きいほうを流量制御用パラメータとして選定し、変化率制限第2負荷パラメータと第1負荷パラメータのうち小さいほうを圧力制御用パラメータとして選定するので、燃料電池21への負荷要求が急激に変動して水素及び空気の圧力あるいは流量が十分に追従できないような場合でも、圧力制御用パラメータ及び流量制御用パラメータの急激な変動を抑えることができ、圧力制御及び流量制御において十分な追従性能を得ることができる(請求項5、17の効果)。
さらに、本実施形態の燃料電池システム制御装置1では、第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、この変化率制限第2負荷パラメータを電気的エネルギー取出し用パラメータとして選定するので、パワーマネージャー40が十分に電力を取り出すことができないような急激な負荷要求の変動があった場合でも、電気的エネルギー取出し用パラメータの急激な変動を抑えることができ、電力の取出し制御において十分な追従性能を得ることができる(請求項6、18の効果)。
また、本実施形態の燃料電池システム制御装置1では、第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成するとともに、第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、変化率制限第1負荷パラメータと変化率制限第2負荷パラメータのうち小さいほうを圧力制御用パラメータとして選定し、変化率制限第1負荷パラメータと変化率制限第2負荷パラメータのうち大きいほうを流量制御用パラメータとして選定し、変化率制限第2負荷パラメータを電気的エネルギー取出し用パラメータとして選定する。
これにより、燃料電池21への負荷要求が急激に変動して水素及び空気の目標圧力及び目標流量が急激に変動した場合でも、圧力制御系および流量制御系のそれぞれの動特性に応じて変化率を設定することができ、これによって圧力制御及び流量制御において十分な追従性能を得ることができる。また、水素と空気の差圧を小さくできるので圧力バランスが崩れることを防止でき、燃料電池21が要求するガス流量を十分に供給することができる。さらに、パワーマネージャー40が十分に電力を取り出すことのできないような急激な負荷要求の変動があった場合でも、電気的エネルギー取出し用パラメータの急激な変動を抑えることができ、電力の取出し制御において十分な追従性能を得ることができる(請求項7、19の効果)。
<第4の実施形態>
次に、本発明の第4の実施形態を図14に基づいて説明する。図14は、図3に示した燃料電池システムの制御処理におけるステップS301の目標発電電力の算出処理を示すフローチャートである。ただし、第1の目標発電電力の算出処理以外の処理については第1の実施形態と同様の処理が行われるので、詳しい説明は省略する。
本実施形態の第1の目標発電電力の算出処理では燃料電池システム20が搭載されている車両の運転状態を操作するアクセル操作量から第1の目標発電電力を算出する。このようにアクセル操作量から第1の目標発電電力を算出すると、アクセル操作量に応じてモータが動作して燃料電池21に負荷要求が出力されるので、負荷要求から第1の目標発電電力を算出した場合よりも容易に第1の目標発電電力を算出することができる。
ここで、燃料電池システム20をハイブリッド型電気自動車に搭載した場合における処理の一例を図14のフローチャートに基づいて説明する。
図14に示すように、ステップS1401では車両に搭載されているアクセルセンサの出力を取得して運転者のアクセル操作量を検出し、ステップS1402では車両に搭載されている車速センサの出力を取得して車両の速度を検出する。
そして、ステップS1403において、検出したアクセル操作量と車両速度とから図15に示したマップデータに基づいて第1の目標発電電力を算出する。
図15は、アクセル操作量と第1の目標発電電力との関係を示す図であり、図15に示すように、各車両速度に応じてアクセル操作量と第1の目標発電電力との関係が示されており、アクセル操作量が増加するにしたがって第1の目標発電電力も増加する。尚、ここでは運転者のアクセル操作量に基づいて第1の目標発電電力の算出を行ったが、燃料電池21の発電を行うために稼動させる必要のある補機類の消費電力を考慮して第1の目標発電電力の算出を行ってもよい。
こうして第1の目標発電電力の算出を行ってステップS301における第1の目標発電電力の算出処理を完了する。
上述したように、本実施形態の燃料電池システム制御装置1では、当該装置を搭載した車両の運転状態を操作する操作量に基づいて、第1負荷パラメータを生成するので、容易に検出することのできる値を用いて制御システムを構成することができる(請求項9、21の効果)。
<第5の実施形態>
次に、本発明の第5の実施形態を説明する。本実施形態の燃料電池システムの制御処理では、第2負荷パラメータに基づいてガス圧力制御部5とガス流量制御部6と電気的エネルギー取出し部7が制御する燃料電池システム20各部の動作特性を補償することができるような第1負荷パラメータを生成することが第1の実施形態と異なっている。ただし、その他の点については第1の実施形態と同様なので、詳しい説明は省略する。
本実施形態の燃料電池システムの制御処理では、コンプレッサ30やパワーマネージャー40、空気調圧弁33、水素供給弁25の数学モデルを予め実験などによって求めておき、その逆システムに、ステップS302で算出した第2の目標発電電力を入力して第1の目標発電電力を求めるようにする。これによりアクチュエータの過渡応答特性を改善することができるので、ガス圧力やガス流量、取出し電流の過度応答特性を改善することができる。
このように本実施形態の燃料電池システム制御装置では、第2負荷パラメータに基づいてガス圧力制御部5とガス流量制御部6と電気的エネルギー取出し部7によって制御される燃料電池システム20各部の動作特性を補償する第1負荷パラメータを生成するので、ガス圧力制御部5、ガス流量制御部6、電気的エネルギー取出し部7の過渡応答性能を向上させることができる(請求項10、22の効果)。
以上、本発明の燃料電池システム制御装置について、図示した実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は同様の機能を有する任意の構成のものに置き換えることができる。
燃料電池システムを制御する燃料電池システム制御装置に係り、特に燃料電池への負荷要求が変化した場合に燃料ガスと酸化剤ガスとの圧力バランスを一定に保つように制御するための技術として極めて有用である。
本発明の第1の実施形態に係る燃料電池システム制御装置の構成を示すブロック図である。 本発明の第1の実施形態に係る燃料電池システムの構成を示すブロック図である。 本発明の第1の実施形態に係る燃料電池システム制御装置による燃料電池システムの制御処理を示すフローチャートである。 本発明の燃料電池システム制御装置によって生成された第1負荷パラメータと第2負荷パラメータを説明するための信号波形図である。 本発明の燃料電池システムの制御処理におけるパラメータの選定処理を示すフローチャートである。 本発明の燃料電池システム制御装置によって生成された圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータを説明するための信号波形図である。 目標水素圧力と圧力制御用パラメータとの関係を示すマップデータである。 目標空気流量と流量制御用パラメータとの関係を示すマップデータである。 コンプレッサ指令回転数と目標空気流量との関係を示すマップデータである。 水素循環装置指令回転数と目標水素流量との関係を示すマップデータである。 本発明の燃料電池システム制御装置による作用を説明するための図である。 本発明の第2の実施形態に係る燃料電池システムの制御処理におけるパラメータの選定処理を示すフローチャートである。 本発明の第3の実施形態に係る燃料電池システム制御装置によって生成された変化率制限第1目標発電電力と第2の目標発電電力の変化を説明するための信号波形図である。 本発明の第4の実施形態に係る燃料電池システムの制御処理における第1の目標発電電力の算出処理を示すフローチャートである。 第1の目標発電電力とアクセル操作量との関係を示すマップデータである。
符号の説明
1 燃料電池システム制御装置
2 第1負荷パラメータ生成部(第1負荷パラメータ生成手段)
3 第2負荷パラメータ生成部(第2負荷パラメータ生成手段)
4 負荷パラメータ切替部(負荷パラメータ切替手段)
5 ガス圧力制御部(ガス圧力制御手段)
6 ガス流量制御部(ガス流量制御手段)
7 電気的エネルギー取出し部(電気的エネルギー取出し手段)
20 燃料電池システム
21 燃料電池
22 水素タンク
23 水素タンク元弁
24 減圧弁
25 水素供給弁
26 水素ガス圧力センサ
27 水素循環装置
28 パージ弁
29 排水素処理装置
30 コンプレッサ
31 加湿装置
32 空気圧力センサ
33 空気調圧弁
34 冷却水ポンプ
35 ラジエタ
36 ラジエタファン
37 三方弁
38 入口側温度センサ
39 出口側温度センサ
40 パワーマネージャー
41 電圧センサ
42 電流センサ

Claims (24)

  1. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成手段と、
    前記第1負荷パラメータと前記第2負荷パラメータのうち小さいほうを圧力制御用パラメータとして選定し、大きいほうを流量制御用パラメータとして選定する負荷パラメータ切替手段と、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御手段と、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御手段と、
    を備えることを特徴とする燃料電池システム制御装置。
  2. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成手段と、
    前記燃料電池への負荷要求が増加するときには、前記第1負荷パラメータを前記流量制御用パラメータとして選定し、前記第2負荷パラメータを前記圧力制御用パラメータとして選定し、前記燃料電池への負荷要求が減少するときには、前記第1負荷パラメータを前記圧力制御用負荷パラメータとして選定し、前記第2負荷パラメータを流量制御用パラメータとして選定する負荷パラメータ切替手段と、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御手段と、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御手段と、
    を備えることを特徴とする燃料電池システム制御装置。
  3. 前記第2負荷パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出し手段と
    を備えることを特徴とする請求項1又は2記載の燃料電池システム制御装置。
  4. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成手段と、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替手段と、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御手段と、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御手段と、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出し手段と
    を備え
    前記第1負荷パラメータ生成手段は、前記第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、
    前記負荷パラメータ切替手段は、前記変化率制限第1負荷パラメータと前記第2負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第1負荷パラメータと前記第2負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定する
    ことを特徴とする燃料電池システム制御装置。
  5. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成手段と、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替手段と、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御手段と、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御手段と、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出し手段と
    を備え
    前記第2負荷パラメータ生成手段は、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記負荷パラメータ切替手段は、前記変化率制限第2負荷パラメータと前記第1負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第2負荷パラメータと前記第1負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定する
    ことを特徴とする燃料電池システム制御装置。
  6. 前記第2負荷パラメータ生成手段は、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記電気的エネルギー取出し手段は、前記変化率制限第2負荷パラメータに基づいて前記燃料電池を制御して発電させる
    ことを特徴とする請求項、4、5のいずれか1項記載の燃料電池システム制御装置。
  7. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御装置であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成手段と、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成手段と、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替手段と、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御手段と、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御手段と、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出し手段と
    を備え
    前記第1負荷パラメータ生成手段は、前記第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、
    前記第2負荷パラメータ生成手段は、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記負荷パラメータ切替手段は、前記変化率制限第1負荷パラメータと前記変化率制限第2負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第1負荷パラメータと前記変化率制限第2負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定する
    ことを特徴とする燃料電池システム制御装置。
  8. 前記ガス圧力制御手段は、前記圧力制御用パラメータに基づいて前記燃料ガスの圧力を制御し、前記燃料ガスの圧力に基づいて前記酸化剤ガスの圧力を制御することを特徴とする請求項1から請求項7のいずれか1項記載の燃料電池システム制御装置。
  9. 前記第1負荷パラメータ生成手段は、当該装置を搭載した車両の運転状態を操作する操作量に基づいて、前記第1負荷パラメータを生成することを特徴とする請求項1から請求項8のいずれか1項記載の燃料電池システム制御装置。
  10. 前記第1負荷パラメータ生成手段は、前記第2負荷パラメータに基づいて前記ガス圧力制御手段と前記ガス流量制御手段と前記電気的エネルギー取出し手段とが制御する前記燃料電池システム各部の動作特性を補償する第1負荷パラメータを生成することを特徴とする請求項1から請求項8のいずれか1項記載の燃料電池システム制御装置。
  11. 前記第1負荷パラメータあるいは前記第2負荷パラメータは前記燃料電池から取り出される電流の値を指令するための電流指令値であることを特徴とする請求項1から請求項8のいずれか1項記載の燃料電池システム制御装置。
  12. 前記第1負荷パラメータあるいは前記第2負荷パラメータは前記燃料電池から取り出される電力の値を指令するための電力指令値であることを特徴とする請求項1から請求項8のいずれか1項記載の燃料電池システム制御装置。
  13. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、
    前記第1負荷パラメータと前記第2負荷パラメータのうち小さいほうを圧力制御用パラメータとして選定し、大きいほうを流量制御用パラメータとして選定する負荷パラメータ切替ステップと、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御ステップと、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御ステップと、
    を含むことを特徴とする燃料電池システム制御方法。
  14. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、
    前記燃料電池への負荷要求が増加するときには、前記第1負荷パラメータを前記流量制御用パラメータとして選定し、前記第2負荷パラメータを前記圧力制御用パラメータとして選定し、前記燃料電池への負荷要求が減少するときには、前記第1負荷パラメータを前記圧力制御用負荷パラメータとして選定し、前記第2負荷パラメータを流量制御用パラメータとして選定する負荷パラメータ切替ステップと、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御ステップと、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御ステップと、
    を含むことを特徴とする燃料電池システム制御方法。
  15. 前記第2負荷パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出しステップ
    を含むことを特徴とする請求項13又は14記載の燃料電池システム制御方法。
  16. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替ステップと、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御ステップと、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御ステップと、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出しステップと
    を含み、
    前記第1負荷パラメータ生成ステップは、前記第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、
    前記負荷パラメータ切替ステップは、前記変化率制限第1負荷パラメータと前記第2負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第1負荷パラメータと前記第2負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定することを特徴とする燃料電池システム制御方法。
  17. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替ステップと、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御ステップと、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御ステップと、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出しステップと
    を含み、
    前記第2負荷パラメータ生成ステップは、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記負荷パラメータ切替ステップは、前記変化率制限第2負荷パラメータと前記第1負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第2負荷パラメータと前記第1負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定する
    ことを特徴とする燃料電池システム制御方法。
  18. 前記第2負荷パラメータ生成ステップは、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記電気的エネルギー取出しステップは、前記変化率制限第2負荷パラメータに基づいて前記燃料電池を制御して発電させる
    ことを特徴とする請求項15、16、17のいずれか1項記載の燃料電池システム制御方法。
  19. 燃料電池に燃料ガスと酸化剤ガスとを供給して電気化学反応により発電させる燃料電池システムの制御を行う燃料電池システム制御方法であって、
    前記燃料電池への負荷要求に基づいて、第1負荷パラメータを生成する第1負荷パラメータ生成ステップと、
    前記第1負荷パラメータに対して位相が遅れた第2負荷パラメータを生成する第2負荷パラメータ生成ステップと、
    前記第1負荷パラメータと前記第2負荷パラメータのいずれかを圧力制御用パラメータ、流量制御用パラメータ、電気的エネルギー取出し用パラメータとして選定する負荷パラメータ切替ステップと、
    前記圧力制御用パラメータに基づいて燃料ガス又は酸化剤ガスの圧力を制御するガス圧力制御ステップと、
    前記流量制御用パラメータに基づいて燃料ガス又は酸化剤ガスの流量を制御するガス流量制御ステップと、
    前記電気的エネルギー取出し用パラメータに基づいて前記燃料電池を制御して発電させる電気的エネルギー取出しステップと
    を含み、
    前記第1負荷パラメータ生成ステップは、前記第1負荷パラメータの時間的な変化率を制限した変化率制限第1負荷パラメータを生成し、
    前記第2負荷パラメータ生成ステップは、前記第2負荷パラメータの時間的な変化率を制限した変化率制限第2負荷パラメータを生成し、
    前記負荷パラメータ切替ステップは、前記変化率制限第1負荷パラメータと前記変化率制限第2負荷パラメータのうち小さいほうを前記圧力制御用パラメータとして選定し、前記変化率制限第1負荷パラメータと前記変化率制限第2負荷パラメータのうち大きいほうを前記流量制御用パラメータとして選定し、前記変化率制限第2負荷パラメータを前記電気的エネルギー取出し用パラメータとして選定する
    ことを特徴とする燃料電池システム制御方法。
  20. 前記ガス圧力制御ステップは、前記圧力制御用パラメータに基づいて前記燃料ガスの圧力を制御し、前記燃料ガスの圧力に基づいて前記酸化剤ガスの圧力を制御することを特徴とする請求項13から請求項19のいずれか1項記載の燃料電池システム制御方法。
  21. 前記第1負荷パラメータ生成ステップは、当該装置を搭載した車両の運転状態を操作する操作量に基づいて、前記第1負荷パラメータを生成することを特徴とする請求項13から請求項20のいずれか1項記載の燃料電池システム制御方法。
  22. 前記第1負荷パラメータ生成ステップは、前記第2負荷パラメータに基づいて前記ガス圧力制御ステップと前記ガス流量制御ステップと前記電気的エネルギー取出しステップにおいて制御する前記燃料電池システム各部の動作特性を補償する第1負荷パラメータを生成することを特徴とする請求項13から請求項20のいずれか1項記載の燃料電池システム制御方法。
  23. 前記第1負荷パラメータあるいは前記第2負荷パラメータは前記燃料電池から取り出される電流の値を指令するための電流指令値であることを特徴とする請求項13から請求項20のいずれか1項記載の燃料電池システム制御方法。
  24. 前記第1負荷パラメータあるいは前記第2負荷パラメータは前記燃料電池から取り出される電力の値を指令するための電力指令値であることを特徴とする請求項13から請求項20のいずれか1項記載の燃料電池システム制御方法。
JP2005015509A 2005-01-24 2005-01-24 燃料電池システム制御装置及び燃料電池システム制御方法 Active JP4857564B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015509A JP4857564B2 (ja) 2005-01-24 2005-01-24 燃料電池システム制御装置及び燃料電池システム制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015509A JP4857564B2 (ja) 2005-01-24 2005-01-24 燃料電池システム制御装置及び燃料電池システム制御方法

Publications (2)

Publication Number Publication Date
JP2006202683A JP2006202683A (ja) 2006-08-03
JP4857564B2 true JP4857564B2 (ja) 2012-01-18

Family

ID=36960484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015509A Active JP4857564B2 (ja) 2005-01-24 2005-01-24 燃料電池システム制御装置及び燃料電池システム制御方法

Country Status (1)

Country Link
JP (1) JP4857564B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047944A1 (fr) * 2006-10-19 2008-04-24 Toyota Jidosha Kabushiki Kaisha Système de pile à combustible
JP5277596B2 (ja) * 2007-09-20 2013-08-28 日産自動車株式会社 燃料電池システム
JP4702708B2 (ja) 2009-09-30 2011-06-15 Toto株式会社 固体電解質型燃料電池
EP2789036B1 (en) 2011-12-09 2017-04-19 Audi AG Fuel cell assembly and method of control
FR3029017B1 (fr) * 2014-11-24 2017-01-06 Areva Stockage D'energie Procede de pilotage d'une pile a combustible et systeme de pile a combustible associe
JP6330832B2 (ja) * 2016-03-04 2018-05-30 トヨタ自動車株式会社 燃料電池システム及びその制御方法
CN113903954A (zh) * 2021-11-17 2022-01-07 中汽研新能源汽车检验中心(天津)有限公司 一种氢燃料电池水故障在线诊断测试装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144569A (ja) * 1987-12-01 1989-06-06 Toshiba Corp 燃料電池発電システムの圧力・流量制御装置
JPH03276573A (ja) * 1990-03-26 1991-12-06 Fuji Electric Co Ltd 車両搭載用燃料電池の制御方式
JPH0458463A (ja) * 1990-06-25 1992-02-25 Fuji Electric Co Ltd 燃料電池発電システムの出力制御装置
JP4456197B2 (ja) * 1999-06-08 2010-04-28 本田技研工業株式会社 燃料電池の発電制御方法
JP5140894B2 (ja) * 2000-05-15 2013-02-13 トヨタ自動車株式会社 燃料電池と充放電可能な蓄電部とを利用した電力の供給
JP3807263B2 (ja) * 2001-07-24 2006-08-09 日産自動車株式会社 燃料電池の発電量制御装置
JP3940839B2 (ja) * 2002-08-02 2007-07-04 株式会社日立産機システム 車両用の燃料電池システム
JP4423553B2 (ja) * 2004-08-20 2010-03-03 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP2006202683A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4857564B2 (ja) 燃料電池システム制御装置及び燃料電池システム制御方法
JP3724365B2 (ja) 燃料電池システムの制御装置及び方法
JP4379749B2 (ja) 燃料電池システム
JP4993293B2 (ja) 燃料電池システム及び移動体
US20080193804A1 (en) Power Generation Control System for Fuel Cell
US8394517B2 (en) Fuel cell system and control method of the system
US9905866B2 (en) Fuel cell system and fuel cell system control method
WO2007063783A1 (ja) 燃料電池システム
JP2009200005A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2009158399A (ja) 燃料電池システム
JP4525112B2 (ja) 燃料電池車両の制御装置
JP4876502B2 (ja) 燃料電池システム
JP5140960B2 (ja) 燃料電池システム
JP2006210100A (ja) 電源装置
JP4682572B2 (ja) 燃料電池の発電量制御装置
JP4372523B2 (ja) 燃料電池の制御装置
JP2004193063A (ja) 燃料電池システム
JP2009099342A (ja) 燃料電池システムおよびコンプレッサの回転数制御方法
JP4935125B2 (ja) 流体制御システム
JP2007134106A (ja) 燃料電池システムおよびその制御方法
JP7180509B2 (ja) 燃料電池車両
JP2008084603A (ja) 燃料電池システム及びそのパージ方法
JP2007329104A (ja) 燃料電池システム
JP2007059348A (ja) 燃料電池システムおよび燃料電池システムの起動方法
JP2007109469A (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Ref document number: 4857564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3