JP2009158399A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009158399A
JP2009158399A JP2007337843A JP2007337843A JP2009158399A JP 2009158399 A JP2009158399 A JP 2009158399A JP 2007337843 A JP2007337843 A JP 2007337843A JP 2007337843 A JP2007337843 A JP 2007337843A JP 2009158399 A JP2009158399 A JP 2009158399A
Authority
JP
Japan
Prior art keywords
cell voltage
voltage
fuel cell
cell
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007337843A
Other languages
English (en)
Other versions
JP4424419B2 (ja
Inventor
Hiroyuki Imanishi
啓之 今西
Kota Manabe
晃太 真鍋
Tomoya Ogawa
朋也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007337843A priority Critical patent/JP4424419B2/ja
Priority to PCT/JP2008/073053 priority patent/WO2009084447A1/ja
Priority to DE112008003533.4T priority patent/DE112008003533B8/de
Priority to US12/810,127 priority patent/US9225028B2/en
Priority to CN2008801224869A priority patent/CN101911357B/zh
Publication of JP2009158399A publication Critical patent/JP2009158399A/ja
Application granted granted Critical
Publication of JP4424419B2 publication Critical patent/JP4424419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】急速暖機などによってセル電圧を低下させる場合であっても、適正な電流制限を実施することが可能な燃料電池システムを提供する。
【解決手段】急速暖機が開始されると、セル電圧許容値設定部80cは、燃料電池の運転状態に応じた最低セル電圧許容値を設定する。一方、セル電圧目標値設定部80dは、最低セル電圧目標値の初期値を設定する。その後、セル電圧目標値設定部80dは、セルモニタによって検出される最低セル電圧と、設定した最低セル電圧目標値とを比較し、最低セル電圧が最低セル電圧目標値の付近に一定時間連続して収束しているか否かを判定する。セル電圧目標値設定部80dは、肯定的な判定が得られると、最低セル電圧目標値Vthを更新幅ΔVだけ下げた値に更新する。
【選択図】図2

Description

本発明は、複数のセルを有する燃料電池を備えた燃料電池システムに関する。
水素と酸素との電気化学反応を利用して発電する燃料電池としては、例えば、固体高分子型燃料電池がある。この固体高分子型燃料電池は、複数のセルを積層して構成されたスタックを備えている。スタックを構成するセルは、アノード(燃料極)とカソード(空気極)とを備えており、これらのアノードとカソードとの間には、イオン交換基としてスルフォンサン基を有する固体高分子電解質膜が介在している。
アノードには燃料ガス(水素ガスまたは炭化水素を改質して水素リッチにした改質水素)を含む燃料ガスが供給され、カソードには酸化剤として酸素を含むガス(酸化剤ガス)、一例として、空気が供給される。アノードに燃料ガスが供給されることで、燃料ガスに含まれる水素がアノードを構成する触媒層の触媒と反応し、これによって水素イオンが発生する。発生した水素イオンは固体高分子電解質膜を通過して、カソードで酸素と電気反応を起こす。この電気化学反応によって発電が行われる構成となっている。
ここで、下記特許文献1には、燃料電池を始動する際にアノードに供給される燃料ガス及びカソードに供給される酸化ガスの少なくともいずれか一方を不足状態とし、電極の一部の過電圧を増加させてさらなる熱を発生させることで、燃料電池の温度を上昇させる急速暖機を行う技術が開示されている。
特表2003−504807号
ところで、急速暖機を行う際には、燃料電池のセル電圧を予め設定された閾値(許容値)まで下げる必要があるが、従来はセル電圧が許容値を下回るまで電流制限を行っていなかった。しかしながら、セル電圧が許容値を下回ってから電流制限したのでは急速暖機時のセル電圧の低下スピードが速いために、電流制限が追いつかず、セル電圧が許容値を大幅に下回ってしまうという題が生じていた。
本発明は以上説明した事情を鑑みてなされたものであり、急速暖機などによってセル電圧を低下させる場合であっても、適正な電流制限を実施することが可能な燃料電池システムを提供することを目的とする。
以上説明した課題を解決するために、本発明の燃料電池システムは、複数のセルを有する燃料電池と、セル電圧を検知する検知手段と、前記セル電圧の最低目標電圧を設定する設定手段と、検知されるセル電圧が前記最低目標電圧に達した場合に、前記燃料電池の電流制限を行う制御手段とを備え、前記設定手段は、検知されるセル電圧と前記最低目標電圧との関係が所定条件を満たす場合に、前記最低目標電圧を段階的に更新することを特徴とする。
かかる構成によれば、検知されるセル電圧と最低目標電圧との関係が所定条件を満たす場合(例えば、セル電圧が最低目標電圧の付近に一定時間連続して収束している場合や、セル電圧が最低目標電圧の付近から離れて一定時間連続して高くなっている場合など)に、最低目標電圧を段階的に更新する。電流制限の際には、このように更新される最低セル電圧目標値が利用されるため、セル電圧と最低目標電圧とが大きくかけ離れてしまい、セル電圧を制御し切れずにセル電圧が最低目標電圧を大幅に低下してしまう、といった問題を未然に防止することができる。
ここで、上記構成にあっては、前記設定手段は、前記セル電圧の最低目標電圧として、該セル電圧の最低許容値よりも高い値を設定する態様が好ましい。
さらにまた、上記構成にあっては、前記設定手段は、検知されるセル電圧が前記最低目標電圧の閾値範囲に入り、該状態が所定時間以上継続した場合に、現時点で設定されている最低目標電圧を下げる態様が好ましい。
また、上記構成にあっては、前記設定手段は、検知されるセル電圧が、所定回数以上、前記最低目標電圧の閾値範囲に入った場合に、前記最低目標電圧を下げる態様も好ましい。
さらに、上記構成にあっては、前記設定手段は、検知されるセル電圧が、前記最低目標電圧に更新マージンを加算した値を越え、該状態が所定時間以上継続した場合に、現時点で設定されている最低目標電圧を上げる態様も好ましい。
さらにまた、上記構成にあっては、前記設定手段は、検知されるセル電圧が、所定回数以上、前記最低目標電圧に更新マージンを加算した値を越えた場合に、前記最低目標電圧を上げる態様も好ましい。
また、上記構成にあっては、前記燃料電池の運転状態に基づいて、前記セル電圧の最低許容値を設定する許容値設定手段をさらに具備する態様も好ましい。
さらにまた、上記構成にあっては、前記燃料電池の運転状態は、前記燃料電池の関連温度、前記燃料電池の出力電流、または前記燃料電池に対する反応ガスの供給状態のいずれかである態様が好ましい。
また、本発明に係る別の燃料電池システムは、複数のセルを有する燃料電池と、セル電圧を検知する検知手段と、前記セル電圧の最低目標電圧を設定する設定手段と、検知されるセル電圧が前記最低目標電圧に到達した場合に、前記燃料電池の電流制限を行う制御手段とを備え、前記設定手段は、前記制御手段によって電流制限が行われている間、前記燃料電池に対する出力電流の指令値が、所定時間以上前記出力電流の下限値に設定されている場合には、現時点で設定されている最低目標電圧を、前記検知手段によって検知される実測セル電圧に更新することを特徴とする。
本発明によれば、急激なセル電圧の低下等が生じた場合であっても、適正な電流制限を実施することが可能となる。
A.本実施形態
図1は本実施形態に係る燃料電池システム10を搭載した車両の概略構成である。なお、以下の説明では車両の一例として燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)を想定するが、電気自動車やハイブリッド自動車にも適用可能である。また、車両のみならず各種移動体(例えば、船舶や飛行機、ロボットなど)や定置型電源、さらには携帯型の燃料電池システムにも適用可能である。
図1において、燃料電池システム10は、燃料電池20に水素を含む燃料ガスを供給するための燃料ガス供給系統4と、燃料電池20に酸素を含む酸化ガスを供給するための酸化ガス供給系統7と、燃料電池20を冷却するための冷却液供給系統3と、燃料電池20からの発電電力を充放電する電力系統9とを備えて構成されている。
燃料電池20は、フッ素系樹脂などにより形成されたプロトン伝導性のイオン交換膜などから成る高分子電解質膜21の両面にアノード極22とカソード極23をスクリーン印刷などで形成した膜・電極接合体(MEA)24を備えている。膜・電極接合体24の両面は、燃料ガス、酸化ガス、冷却水の流路を有するセパレータ(図示せず)によってサンドイッチされ、このセパレータとアノード極22およびカソード極23との間に、それぞれ溝状のアノードガスチャンネル25およびカソードガスチャンネル26を形成している。アノード極22は、燃料極用触媒層を多孔質支持層上に設けて構成され、カソード極23は、空気極用触媒層を多孔質支持層上に設けて構成されている。これら電極の触媒層は、例えば、白金粒子を付着して構成されている。
アノード極22では、次の(1)式の酸化反応が生じ、カソード極23では、次の(2)式の還元反応が生じる。燃料電池20全体としては、次の(3)式の起電反応が生じる。
2→2H++2e-・・・(1)
(1/2)O2+2H++2e-→H2O・・・(2)
2+(1/2)O2→H2O・・・(3)
なお、図1では説明の便宜上、膜・電極接合体24、アノードガスチャンネル25およびカソードガスチャンネル26からなる単位セルの構造を模式的に図示しているが、実際には、上述したセパレータを介して複数の単位セル(セル群)が直列に接続したスタック構造を備えている。
燃料電池システム10の冷却液供給系統3には、冷却液を循環させる冷却路31、燃料電池20から排水される冷却液の温度を検出する温度センサ32、冷却液の熱を外部に放熱するラジエータ(熱交換器)33、ラジエータ33へ流入する冷却液の水量を調整するバルブ34、冷却液を加圧して循環させる冷却液ポンプ35、燃料電池20に供給される冷却液の温度を検出する温度センサ36などが設けられている。
燃料電池システム10の燃料ガス供給系統4には、燃料ガス(アノードガス)、例えば、水素ガスを貯蔵する燃料ガス供給装置42、当該燃料ガス供給装置42からの燃料ガスをアノードガスチャンネル25に供給するための燃料ガス流路40、アノードガスチャンネル25から排気される燃料オフガスを燃料ガス流路40に循環させるための循環流路(循環経路)51が配管されており、これらのガス流路によって燃料ガス循環系統が構成されている。
燃料ガス供給装置42は、例えば、高圧水素タンク、水素吸蔵合金、改質器などより構成される。燃料ガス流路40には、燃料ガス供給装置42からの燃料ガス流出を制御する遮断弁(元弁)43、燃料ガスの圧力を検出する圧力センサ44、循環経路51の燃料ガス圧力を調整する調整弁(エジェクタ)45、燃料電池20への燃料ガス供給を制御する遮断弁46が設置されている。
循環流路51には、燃料電池20から循環流路51への燃料オフガス供給を制御する遮断弁52、燃料オフガスに含まれる水分を除去する気液分離器53および排出弁54、アノードガスチャンネル25を通過する際に、圧力損失を受けた燃料オフガスを圧縮して適度なガス圧まで昇圧させて、燃料ガス流路40に還流させる水素ポンプ(循環ポンプ)55、燃料ガス流路40の燃料ガスが循環流路51側に逆流するのを防止する逆流阻止弁56が設置されている。水素ポンプ55をモータによって駆動することで、水素ポンプ55の駆動による燃料オフガスは、燃料ガス流路40で燃料ガス供給装置42から供給される燃料ガスと合流した後、燃料電池20に供給されて再利用される。なお、水素ポンプ55には、水素ポンプ55の回転数を検出する回転数センサ57および水素ポンプ55前後の循環経路圧力を検出する圧力センサ58・59が設置されている。
また、循環流路51には、燃料電池20から排気された燃料オフガスを、希釈器(例えば水素濃度低減装置)62を介して車外に排気するための排気流路61が分岐して配管されている。排気流路61にはパージ弁63が設置されており、燃料オフガスの排気制御を行えるように構成されている。パージ弁63を開閉することで、燃料電池20内の循環を繰り返して、不純濃度が増加した燃料オフガスを外部に排出し、新規の燃料ガスを導入してセル電圧の低下を防止することができる。また、循環流路51の内圧に脈動を起こし、ガス流路に蓄積した水分を除去することもできる。
一方、燃料電池システム10の酸化ガス供給系統7には、カソードガスチャンネル26に酸化ガス(カソードガス)を供給するための酸化ガス流路71、およびカソードガスチャンネル26から排気されるカソードオフガスを排気するためのカソードオフガス流路72が配管されている。酸化ガス流路71には、大気からエアを取り込むエアクリーナ74、および、取り込んだエアを圧縮し、圧縮したエアを酸化剤ガスとしてカソードガスチャンネル26に送給するエアコンプレッサ75が設定されており、エアコンプレッサ75には、エアコンプレッサ75のエア供給圧力を検出する圧力センサ73が設置されている。酸化ガス流路71とカソードオフガス流路72との間には湿度交換を行う加湿器76が設けられている。カソードオフガス流路72には、カソードオフガス流路72の排気圧力を調整する調圧弁77、カソードオフガス中の水分を除去する気液分離器64、カソードオフガスの排気音を吸収するマフラー65が設けられている。気液分離器64から排出されたカソードオフガスは分流され、一方は、希釈器62に流れ込み、希釈器62内に滞留する燃料オフガスと混合希釈され、また分流された他方のカソードオフガスは、マフラー65にて吸音され、希釈器62により混合希釈されたガスと混合されて、車外に排出される。
また、燃料電池システム10の電力系統9には、一次側にバッテリ91の出力端子が接続され、二次側に燃料電池20の出力端子が接続されたDC−DCコンバータ90、二次電池として余剰電力を蓄電するバッテリ91、バッテリ91の充電状況を監視するバッテリコンピュータ92、燃料電池20の負荷または駆動対象となる車両走行用モータ94に交流電力を供給するインバータ93、燃料電池システム10の各種高圧補機96に交流電力を供給するインバータ95、燃料電池20の出力電圧を測定する電圧センサ97、および出力電流を測定する電流センサ98が接続されている。
さらに、燃料電池20には、燃料電池20の各セルにおける電圧を検出するセルモニタ101が燃料電池20に接続されている。セルモニタ(検知手段)101は、各セルのセル電圧を検出するようになっており、さらにセル電圧の最低値である最低セル電圧も検出するものである。
DC−DCコンバータ90は、燃料電池20の余剰電力または車両走行用モータ94への制動動作により発生する回生電力を電圧変換してバッテリ91に供給して充電させる。また、車両走行用モータ94の要求電力に対する、燃料電池20の発電電力の不足分を補填するため、DC−DCコンバータ90は、バッテリ91からの放電電力を電圧変換して二次側に出力する。
インバータ93および95は、直流電流を三相交流電流に変換して、車両走行用モータ94および高圧補機96にそれぞれ出力する。車両走行用モータ94には、モータ94の回転数を検出する回転数センサ99が設置されている。モータ94は、ディファレンシャルを介して車輪100が機械的に結合されており、モータ94の回転力を車両の推進力に変換可能となっている。
電圧センサ97および電流センサ98は、電力系統9に重畳された交流信号の電圧に対する電流の位相と振幅とに基づいて交流インピーダンスを測定するためのものである。交流インピーダンスの測定結果により、燃料電池20の状態(含水量や発電状態など)を把握する。
さらに、燃料電池システム10には、燃料電池12の発電を制御するための制御部80が設置されている。制御部80は、例えば、CPU(中央処理装置)、RAM、ROM、インターフェイス回路などを備えた汎用コンピュータで構成されており、温度センサ32、36、圧力センサ44、58、59、回転数センサ57、99からのセンサ信号や電圧センサ97、電流センサ98、イグニッションスイッチ82からの信号を取り込み、電池運転の状態、例えば、電力負荷に応じて各モータを駆動して、水素ポンプ55およびエアコンプレッサ75の回転数を調整し、さらに、各種の弁(バルブ)の開閉制御または弁開度の調整などを行うようになっている。本実施形態では、燃料電池20の冷却水の温度を測定するセンサとして温度センサ32、36を例示したが、燃料電池周辺の外気温度や部品温度など、燃料電池20に関わる温度(以下、スタック関連温度と総称)を検知しても良い。
制御部80は、燃料電池システム10の出力電力を制御するに際して、例えば、急速暖機中では、車両用補機損失パワー、バッテリ充電量、高圧補機96のパワー制限率に基づいて、車両システム要求パワー(システムに要求されるシステム要求電力)Preqを演算し、DC−DCコンバータ90の出力する二次側電圧でシステム要求パワーPreqを除して車両システム要求電流Ireqを演算する。その際、セルモニタ101が検出した最低セル電圧に基づく電流制限処理を行う。
本実施形態では、当該車両の運転を停止している状態(すなわち、車両走行前の起動準備段階;以下、起動準備状態という)において、スタック関連温度が所定温度(例えば0℃)未満であることが検知されると、低効率運転を開始し(すなわち起動準備状態から低効率運転状態へ移行し)、燃料電池20の急速暖機を行う。
ここで、低効率運転とは、通常運転に比してエアの供給量を絞る(例えば、エアストイキ比を1.0付近に設定する)ことにより、発電損失を高めて低い発電効率で運転することをいう。エアストイキ比を低く設定して低効率運転を実施すると、通常運転時よりも濃度過電圧が大きくなるので、水素と酸素との反応によって取り出せるエネルギーのうち熱損失(発電損失)が増大する。
このような低効率運転による急速暖機は、車両走行前(起動準備状態→低効率運転状態)だけでなく、車両走行中や車両停止時(通常運転状態→低効率運転状態)などにも実行される。また、低効率運転時のエアストイキ比(すなわち酸素余剰率)は1.0付近に限定する趣旨ではなく、通常運転に比して小さい値であれば任意に設定・変更可能である。
図2は、制御部80が所定のコンピュータプログラムを実行することにより実現される機能ブロック図である。
図2に示すように、制御部80は、急速暖機判定部80aと、要求電力算出部80bと、セル電圧許容値設定部80cと、セル電圧目標値設定部80dと、電流・電圧指令値算出部80eとを備えて構成されている。
急速暖機判定部80aは、温度センサ32、35によって検知されるスタック関連温度に基づき、急速暖機の実行開始・停止などを判定する。詳述すると、急速暖機判定部80aは、起動準備状態においてスタック関連温度が第1閾値温度(例えば0℃)未満であることを検知すると、急速暖機の実行を開始すべきと判断し、急速暖機の実行開始指示を、セル電圧許容値設定部80c、セル電圧目標値設定部80d、電流・電圧指令値算出部80eに出力する。一方、急速暖機判定部80aは、スタック関連温度が第2閾値温度(例えば0℃〜80℃)以上になったことを検知、あるいは急速暖機開始から所定時間以上経過したことを検知等すると、急速暖機の実行停止指示を電流・電圧指令値算出部80eに出力する。
要求電力算出部80bは、車両用補機損失パワー、バッテリ充電量、高圧補機96のパワー制限率等に基づいて、システム要求電力(ここでは燃料電池12に対する要求電力)を算出し、算出した要求電力を電流・電圧指令値算出部80eに出力する。
セル電圧許容値設定部(許容値設定手段)80cは、燃料電池20の運転状態に基づいて最低セル電圧許容値を設定する機能を備えている。最低セル電圧許容値とは、燃料電池の保護のため、低温時にセル電圧として許容できる電圧(セル電圧の最低許容値)をあらわすものであり、例えば燃料ガス欠乏時の逆電位と抵抗値によるカソード電位減少量などから算出される。この最低セル電圧許容値は、予め実験などによって求められ、実験結果に基づき最低セル電圧許容値を決定するための許容値マップが作成される。この許容値マップには、燃料電池20の運転状態、具体的にはスタック関連温度や、燃料電池20の出力電流、さらには燃料電池20に対する燃料ガスの供給状態(燃料ガスの供給状態が正常であるか、異常であるか)などに応じた最低セル電圧許容値が種々登録されている。
セル電圧許容値設定部80cは、温度センサ32、35によって検知されるスタック関連温度や、電流センサ98によって検知される燃料電池20の出力電流、圧力センサ44や流量計(図示略)などによって検知される単位時間あたりの燃料ガス流量などから、燃料電池20の運転状態を把握すると、許容値マップを参照し、該運転状態に応じた最低セル電圧許容値を設定する。そして、セル電圧許容値設定部80cは、設定した最低セル電圧許容値をセル電圧目標値設定部80dに通知する。
セル電圧目標値設定部(設定手段)80dは、最低セル電圧の目標値(最低目標電圧)を設定する機能や、検知されるセル電圧が最低セル電圧の目標値(以下、最低セル電圧目標値)との関係で所定条件を満たす場合に該最低セル電圧目標値を段階的に更新する機能、さらには更新した最低セル電圧目標値を電流・電圧指令値設定部80eに出力する機能を備えている。更新される最低セル電圧目標値は、常に最低セル電圧許容値以上の値に設定されるが、最低セル電圧目標値の設定、更新に関する動作は後に詳述するため、これ以上の説明は割愛する。
電流・電圧指令値設定部80eは、要求電力算出部80bから出力される要求電力や、セル電圧許容値設定部80c、セル電圧目標値設定部80dから出力される最低セル電圧目標値に基づき、DC−DCコンバータ90に電流指令値および電圧指令値を出力する。この電流指令値および電圧指令値は、燃料電池20における実際の出力電流・出力電圧を規定する制御信号となる。また、電流・電圧指令値設定部(制御手段)80eは、検知されるセル電圧(最低セル電圧)が最低セル電圧目標値に達した場合に、最低セル電圧目標値に対してPI制御で電流制限を行う。
図3は、従来の電流制限処理の動作を説明するためのタイミングチャートであり、図4は本実施形態の電流制限処理の動作を説明するためのタイミングチャートである。図3及び図4では、縦軸に燃料電池20のセル電圧、出力電流(車両システム要求電流I0)、出力電圧が示され、横軸に経過時間が示される。
図3に示すように、従来の電流制限処理では最低セル電圧許容値Vphのみが設定され、最低セル電圧目標値は設定されていなかった。このため、低効率運転による急速暖機が開始された後は、最低セル電圧が最低セル電圧許容値に到達するまで電流制限は行われないが、最低セル電圧許容値に到達してから電流制限が行われたのでは、低効率運転時のセル電圧の低下スピードが早いために、セル電圧が最低セル電圧許容値を大幅に下回ってしまうという問題が生じていた(図3に示すα参照)。
そこで、本実施形態では図4に示すように、最低セル電圧許容値Vph以上の最低セル電圧目標値Vthを設定し、この最低セル電圧目標値Vthを段階的に更新するとともに、更新される最低セル電圧目標値Vthを利用して電流制限を行う。具体的には、段階的に更新される最低セル電圧目標値Vthに対してPI制御で電流制限を行い、これにより、セル電圧が最低セル電圧許容値を大幅に下回ってしまうという問題を抑制することが可能となる。
以下、本実施形態の電流制限処理について図4を参照しながら詳細に説明する。
急速暖機判定部80aによって、起動準備状態においてスタック関連温度が第1閾値温度(例えば0℃)未満であることが検知され、低効率運転による急速暖機を開始すべき指示が出力されると、セル電圧許容値設定部80cは、当該時点での燃料電池20の運転状態を把握した後、許容値マップを参照することで該運転状態に応じた最低セル電圧許容値Vphを設定する(図4参照)。一方、セル電圧目標値設定部80dは、最低セル電圧目標値Vthの初期値(例えば−0.05V)を設定する(図4参照)。なお、最低セル電圧目的値の初期値は、固定値としても良いがFC関連温度などに応じて適宜変更しても良い。
一方、電流・電圧指令値算出部80eは、燃料電池20のセル電圧が最低セル電圧目標値Vthの初期値に向けて下がるように、DC−DCコンバータ90に電流指令値および電圧指令値を出力する。かかる制御が行われると、燃料電池20のセル電圧は最低セル電圧目標値Vthに向かって下降してゆく。
<最低セル電圧目標値を下げる場合の動作>
セル電圧目標値設定部80dは、セルモニタ101によって検出される最低セル電圧と、設定した最低セル電圧目標値Vthとを比較する。そして、セル電圧目標値設定部80dは、条件式(1)を利用して最低セル電圧が最低セル電圧目標値Vthの付近に一定時間(所定時間)連続して収束しているか否かを判定する。なお、閾値電圧Vr(≧0)や所定時間Tr(≧0)については、任意に設定・変更可能である。
|Vth−Vd| ≦ Vrが所定時間Tr以上継続 ・・・(1)
Vthは最低セル電圧目標値、Vdは最低セル電圧、Vrは閾値電圧(閾値範囲)を示す。
セル電圧目標値設定部80dは、条件式(1)が成立したと判断すると(図4に示すβ1参照)、下記式(2)に示すように、最低セル電圧目標値Vthを更新幅ΔV(例えば0.05V)だけ下げた値に更新する。
Vth = Vth−ΔV ・・・(2)
さらに、セル電圧目標値設定部80dは、更新した最低セル目標電圧値を電流・電圧指令値設定部80eに出力する。電流・電圧指令値設定部80eは、要求電力算出部80aから出力される要求電力や、セル電圧許容値設定部80cから出力されるセル電圧許容値、セル電圧目標値設定部80dから出力される最低セル電圧目標値に基づき、DC−DCコンバータ90に電流指令値および電圧指令値を出力する。かかる制御が行われると、燃料電池20のセル電圧は更新された最低セル電圧目標値Vthに向かって下降してゆく。このような制御が繰り返し行われることで、最低セル電圧目標値Vthは段階的に下がってゆく。
<最低セル電圧目標値を上げる場合の動作>
セル電圧目標値設定部80dは、条件式(3)を利用して最低セル電圧が最低セル電圧目標値Vthの付近から離れて一定時間(所定時間)連続して高くなったか否かを判定する。なお、条件式(1)と同様、目標値更新マージンVr’(≧0)や所定時間Tr’(≧0)については、任意に設定・変更可能である。
Vd > Vth+Vr’が所定時間Tr’以上継続 ・・・(3)
Vthは最低セル電圧目標値、Vdは最低セル電圧、Vr’は目標値更新マージン(更新マージン)を示す。
セル電圧目標値設定部80dは、条件式(3)が成立したと判断すると(図4に示すβ2参照)、下記式(4)に示すように、最低セル電圧目標値Vthを更新幅ΔV’(例えば0.05V)だけ上げた値に更新する。
Vth = Vth+ΔV’ ・・・(4)
このように、段階的に下げていった最低セル電圧目標値を再度上げる理由は、最低セル電圧と最低セル電圧目標値との差が大きくなると、その落差が大きいために、最低セル電圧が最低セル電圧目標値に向かって低下してゆくスピードが早く、セル電圧が制御しきれなくなってしまう(すなわち、セル電圧が最低セル電圧目標値を大幅に低下してしまう)からである。
よって、上記の如く、最低セル電圧が最低セル電圧目標値Vthの付近から離れて一定時間連続して高くなった場合には、最低セル電圧目標値Vthを更新幅ΔV’(例えば0.05V)だけ上げた値に更新するとともに、更新した最低セル目標電圧値を電流・電圧指令値設定部80eに出力する。
電流・電圧指令値設定部80eは、要求電力算出部80aから出力される要求電力や、セル電圧許容値設定部80c、セル電圧目標値設定部80dから出力される最低セル電圧目標値に基づき、DC−DCコンバータ90に電流指令値および電圧指令値を出力する。かかる制御が行われることで、最低セル電圧と最低セル電圧目標値とが大きくかけ離れてしまい、セル電圧を制御し切れずにセル電圧が最低セル電圧目標値を大幅に低下してしまう、といった問題を未然に抑制することが可能となる。
図5に、上記電流制限処理を説明するためのフローチャートを示す。以下、図5のフローチャートを使用して、制御部80の処理動作の流れを説明する。
急速暖機判定部80aは、まず、起動準備状態においてスタック関連温度が第1閾値温度(例えば0℃)未満であるか否かを検知する。急速暖機判定部80aは、温度センサ32、36によってスタック関連温度が第1閾値温度未満であることが検知されると、低効率運転による急速暖機を開始すべきと判断し、急速暖機の開始指示を、セル電圧許容値設定部80c、セル電圧目標値設定部80d、電流・電圧指令値算出部80eに出力する(ステップS10→ステップS20)。
セル電圧許容値設定部80cは、急速暖機の開始指示を受け取ると、当該時点での燃料電池20の運転状態を把握した後、許容値マップを参照することで該運転状態に応じた最低セル電圧許容値Vphを設定する(ステップS20)。一方、セル電圧目標値設定部80dは、最低セル電圧目標値Vthの初期値(例えば−0.05V)を設定する(ステップS30)。
(ステップ30;図4参照)。
電流・電圧指令値算出部80eは、燃料電池20のセル電圧が設定した最低セル電圧目標値Vth(ここでは、初期値)に向けて下がるように、DC−DCコンバータ90に電流指令値および電圧指令値を出力する(ステップS40)。かかる制御が行われると、燃料電池20のセル電圧は最低セル電圧目標値Vthに向かって下降してゆく。
その後、セル電圧目標値設定部80dは、セルモニタ101によって検出される最低セル電圧と、設定した最低セル電圧目標値Vthとを比較することにより、最低セル電圧目標値の更新タイミングが到来したか否かを判断する(ステップS50)。詳述すると、セル電圧目標値設定部80は、上記条件式(1)を利用して最低セル電圧が最低セル電圧目標値Vthの付近に一定時間連続して収束しているか否か(最低セル電圧目標値を下げるか否か)、あるいは上記条件式(3)を利用して最低セル電圧が最低セル電圧目標値Vthの付近から離れて一定時間連続して高くなったか否か(最低セル電圧目標値を上げるか否か)を判定する。
セル電圧目標値設定部80dは、上記条件式(1)、(3)がいずれも成立せず、最低セル電圧目標値の更新タイミングが到来していないと判断すると(ステップS50;NO)、ステップS40に戻る。一方、セル電圧目標値設定部80dは、上記条件式(1)、(3)のいずれかが成立すると、成立した条件式に応じて、最低セル電圧目標値Vthを下げる、または最低セル電圧目標値Vthを上げるための処理を行う。
詳述すると、セル電圧目標値設定部80dは、上記条件式(1)が成立すると(図4に示すβ1参照)、最低セル電圧目標値を下げるべく、最低セル電圧目標値Vthを更新幅ΔV(式(2)参照)だけ下げた値に更新する(ステップS50→ステップS60→ステップS80)。
一方、セル電圧目標値設定部80dは、上記条件式(3)が成立すると(図4に示すβ2参照)、最低セル電圧目標値を上げるべく、最低セル電圧目標値Vthを更新幅ΔV’(式(4)参照)だけ上げた値に更新する(ステップS50→ステップS60→ステップS70)。
セル電圧目標値設定部80dは、このようにしてセル電圧目標値を更新すると、更新したセル電圧目標値を電流・電圧指令値設定部80eに出力する。電流・電圧指令値設定部80eは、要求電力算出部80aから出力される要求電力や、セル電圧目標値設定部80dから出力される更新された最低セル電圧目標値などに基づき、DC−DCコンバータ90に電流指令値および電圧指令値を出力する(ステップS40)。かかる制御が行われることで、最低セル電圧と最低セル電圧目標値とが大きくかけ離れてしまい、セル電圧を制御し切れずにセル電圧が最低セル電圧目標値を大幅に低下してしまう、といった問題を未然に防止することができる。
B.変形例
本発明は、上記実施形態に限定される趣旨ではなく、種々に変更して適用することが可能である。
<変形例1>
上記実施形態では、条件式(1)、(3)のいずれかが成立した場合に、最低セル電圧目標値を更新したが、これに加えて(あるいは代えて)、下記条件式(5)が成立した場合に最低セル電圧目標値を更新しても良い。
電流制限実施中にIc = Ilがリセット時間Ts以上継続 ・・・(5)
Icは電流指令値、Ilは電流下限値を示す。
セル電圧目標値設定部80dは、条件式(5)が成立したと判断すると、下記式(6)に示すように、最低セル電圧目標値Vthを、現時点での最低セル電圧Vrに更新する。
Vth = Vr ・・・(6)
Vrは現時点での最低セル電圧Vrを示す。
このように、セル電圧目標値設定部(設定手段)80dは、電流制限を実施している間に燃料電池20の電流指令値がリセット時間(例えば500ms)以上、電流下限値(例えば10A)と一致する場合には、最低セル電圧目標値Vthを、現時点での最低セル電圧(実測セル電圧)Vrに更新する。かかる制御を行う理由は、電流制限を一定時間実施しても、最低セル電圧が最低セル電圧目標値まで上がらない場合、燃料電池20の電流指令値は電流下限値Ilで滞留してしまうからである。このような問題を解消するために、燃料電池20の電流指令値が一定時間(リセット時間)以上、電流下限値と一致する場合には、最低セル電圧目標値Vthを、現時点での最低セル電圧Vrに更新する。なお、電流下限値Ilや、リセット時間Tsについては、任意に設定変更可能である。
<変形例2>
また、上記条件式(1)、(3)の代わりに(あるいはこれに加えて)、下記条件式(1)’、(3)’が成立した場合に最低セル電圧目標値を更新しても良い。なお、所定回数Nr(≧1)、Nr’(≧1)については、任意に設定変更可能である。
|Vth−Vd| ≦ Vrを所定回数Nr以上検知 ・・・(1)’
Vd > Vth+Vr’を所定回数数Nr’以上検知 ・・・(3)’
具体的に説明すると、セル電圧目標値設定部(設定手段)80dは、条件式(1)’が成立したと判断すると、式(2)に示すように最低セル電圧目標値Vthを更新幅ΔVだけ下げた値に更新する一方、条件式(3)’が成立したと判断すると、式(4)に示すように最低セル電圧目標値Vthを更新幅ΔVだけ上げた値に更新する。このように、最低セル電圧が最低セル電圧目標値Vthの付近に収束した時間や最低セル電圧が最低セル電圧目標値Vthの付近から離れた時間ではなく、最低セル電圧が最低セル電圧目標値Vthの付近に収束した回数や最低セル電圧が最低セル電圧目標値Vthの付近から離れた回数に基づいて、最低セル電圧目標値を更新するか否かを判断しても良い。
本実施形態に係る燃料電池システムのシステム構成図である。 本実施形態に係る制御部のブロック構成図である。 従来の電流制限処理の動作を説明するためのタイミングチャートである。 本実施形態の電流制限処理の動作を説明するためのタイミングチャートである。 本実施形態の電流制限処理を説明するためのフローチャートである。
符号の説明
10・・・燃料電池システム、20・・・燃料電池、32,36・・・温度センサ、101・・・セルモニタ、80a・・・急速暖機判定部、80b・・・要求電力算出部、80c・・・セル電圧許容値設定部、80d・・・セル電圧目標値設定部、80e・・・電流・電圧指令値算出部。

Claims (9)

  1. 複数のセルを有する燃料電池と、
    セル電圧を検知する検知手段と、
    前記セル電圧の最低目標電圧を設定する設定手段と、
    検知されるセル電圧が前記最低目標電圧に達した場合に、前記燃料電池の電流制限を行う制御手段とを備え、
    前記設定手段は、検知されるセル電圧と前記最低目標電圧との関係が所定条件を満たす場合に、前記最低目標電圧を段階的に更新することを特徴とする燃料電池システム。
  2. 前記設定手段は、前記セル電圧の最低目標電圧として、該セル電圧の最低許容値よりも高い値を設定することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記設定手段は、検知されるセル電圧が前記最低目標電圧の閾値範囲に入り、該状態が所定時間以上継続した場合に、現時点で設定されている最低目標電圧を下げることを特徴とする請求項2に記載の燃料電池システム。
  4. 前記設定手段は、検知されるセル電圧が、所定回数以上、前記最低目標電圧の閾値範囲に入った場合に、前記最低目標電圧を下げることを特徴とする請求項2に記載の燃料電池システム。
  5. 前記設定手段は、検知されるセル電圧が、前記最低目標電圧に更新マージンを加算した値を越え、該状態が所定時間以上継続した場合に、現時点で設定されている最低目標電圧を上げることを特徴とする請求項2に記載の燃料電池システム。
  6. 前記設定手段は、検知されるセル電圧が、所定回数以上、前記最低目標電圧に更新マージンを加算した値を越えた場合に、前記最低目標電圧を上げることを特徴とする請求項2に記載の燃料電池システム。
  7. 前記燃料電池の運転状態に基づいて、前記セル電圧の最低許容値を設定する許容値設定手段をさらに具備することを特徴とする請求項2〜6のいずれか1の請求項に記載の燃料電池システム。
  8. 前記燃料電池の運転状態は、前記燃料電池の関連温度、前記燃料電池の出力電流、または前記燃料電池に対する反応ガスの供給状態のいずれかであることを特徴とする請求項7に記載の燃料電池システム。
  9. 複数のセルを有する燃料電池と、
    セル電圧を検知する検知手段と、
    前記セル電圧の最低目標電圧を設定する設定手段と、
    検知されるセル電圧が前記最低目標電圧に到達した場合に、前記燃料電池の電流制限を行う制御手段とを備え、
    前記設定手段は、前記制御手段によって電流制限が行われている間、前記燃料電池に対する出力電流の指令値が、所定時間以上前記出力電流の下限値に設定されている場合には、現時点で設定されている最低目標電圧を、前記検知手段によって検知される実測セル電圧に更新することを特徴とする燃料電池システム。
JP2007337843A 2007-12-27 2007-12-27 燃料電池システム Active JP4424419B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007337843A JP4424419B2 (ja) 2007-12-27 2007-12-27 燃料電池システム
PCT/JP2008/073053 WO2009084447A1 (ja) 2007-12-27 2008-12-18 燃料電池システム
DE112008003533.4T DE112008003533B8 (de) 2007-12-27 2008-12-18 Verfahren zum Steuern eines Brennstoffzellensystems
US12/810,127 US9225028B2 (en) 2007-12-27 2008-12-18 Fuel cell system
CN2008801224869A CN101911357B (zh) 2007-12-27 2008-12-18 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337843A JP4424419B2 (ja) 2007-12-27 2007-12-27 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2009158399A true JP2009158399A (ja) 2009-07-16
JP4424419B2 JP4424419B2 (ja) 2010-03-03

Family

ID=40824167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337843A Active JP4424419B2 (ja) 2007-12-27 2007-12-27 燃料電池システム

Country Status (5)

Country Link
US (1) US9225028B2 (ja)
JP (1) JP4424419B2 (ja)
CN (1) CN101911357B (ja)
DE (1) DE112008003533B8 (ja)
WO (1) WO2009084447A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111702A1 (ja) * 2010-03-11 2011-09-15 Jx日鉱日石エネルギー株式会社 燃料電池システム及びその電流制御方法
JP2013161602A (ja) * 2012-02-03 2013-08-19 Nissan Motor Co Ltd 燃料電池システム
US9908381B2 (en) 2009-12-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
KR101947888B1 (ko) 2017-01-09 2019-02-14 현대자동차주식회사 연료전지 차량의 에너지 공급 제어방법 및 제어시스템
US10224558B2 (en) 2014-11-14 2019-03-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and operation control method of the same
DE102018132731A1 (de) 2017-12-25 2019-06-27 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und Fahrzeug
JP2021174584A (ja) * 2020-04-20 2021-11-01 トヨタ自動車株式会社 燃料電池システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2740221C (en) * 2010-05-27 2013-05-07 Toyota Jidosha Kabushiki Kaisha Fuel cell with low-efficiency operation
WO2013065132A1 (ja) * 2011-11-01 2013-05-10 トヨタ自動車株式会社 燃料電池の出力制御装置
JP6447838B2 (ja) * 2016-11-21 2019-01-09 トヨタ自動車株式会社 燃料電池車両
CN111806373B (zh) * 2020-01-20 2021-09-03 北京嘀嘀无限科技发展有限公司 车载电子设备低压保护方法、装置、存储介质和电子设备
CN112713289B (zh) * 2020-12-25 2022-04-15 中国第一汽车股份有限公司 一种燃料电池控制方法、装置、设备及存储介质
CN116238391A (zh) * 2023-01-31 2023-06-09 中国第一汽车股份有限公司 燃料电池的控制方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378081B2 (ja) * 1994-03-30 2003-02-17 マツダ株式会社 燃料電池システムの制御装置
US5918246A (en) * 1997-01-23 1999-06-29 International Business Machines Corporation Apparatus and method for prefetching data based on information contained in a compiler generated program map
US6329089B1 (en) 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
JP3662872B2 (ja) * 2000-11-17 2005-06-22 本田技研工業株式会社 燃料電池電源装置
JP3982255B2 (ja) 2001-12-20 2007-09-26 トヨタ自動車株式会社 燃料電池の発電量制御
JP2004172055A (ja) 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池の出力制御システム、出力制御方法および車両
EP3133686B1 (en) * 2003-07-25 2018-03-14 Nissan Motor Co., Ltd. Method for controlling fuel cell system and fuel cell system
JP4340142B2 (ja) 2003-12-18 2009-10-07 本田技研工業株式会社 燃料電池システム
JP4171412B2 (ja) 2003-12-26 2008-10-22 本田技研工業株式会社 燃料電池システムにおける電流制限装置
JP2006309979A (ja) 2005-04-26 2006-11-09 Nissan Motor Co Ltd 燃料電池の制御装置及び燃料電池の制御方法
JP5099992B2 (ja) 2005-09-30 2012-12-19 三洋電機株式会社 燃料電池制御装置
JP2007188712A (ja) * 2006-01-12 2007-07-26 Yamaha Motor Co Ltd 燃料電池システムおよびそれを備えた電動車

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908381B2 (en) 2009-12-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus and vehicle control method
WO2011111702A1 (ja) * 2010-03-11 2011-09-15 Jx日鉱日石エネルギー株式会社 燃料電池システム及びその電流制御方法
JP2011187391A (ja) * 2010-03-11 2011-09-22 Jx Nippon Oil & Energy Corp 燃料電池システム及びその電流制御方法
US8808936B2 (en) 2010-03-11 2014-08-19 Jx Nippon Oil & Energy Corporation Fuel cell system and method for controlling electric current of same
JP2013161602A (ja) * 2012-02-03 2013-08-19 Nissan Motor Co Ltd 燃料電池システム
US10224558B2 (en) 2014-11-14 2019-03-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and operation control method of the same
KR101947888B1 (ko) 2017-01-09 2019-02-14 현대자동차주식회사 연료전지 차량의 에너지 공급 제어방법 및 제어시스템
US10367216B2 (en) 2017-01-09 2019-07-30 Hyundai Motor Company Method and system for controlling energy supply in fuel cell vehicle
CN109969041A (zh) * 2017-12-25 2019-07-05 丰田自动车株式会社 燃料电池系统和车辆
JP2019114431A (ja) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 燃料電池システムおよび車両
DE102018132731A1 (de) 2017-12-25 2019-06-27 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und Fahrzeug
US10693163B2 (en) 2017-12-25 2020-06-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and vehicle
CN109969041B (zh) * 2017-12-25 2022-07-05 丰田自动车株式会社 燃料电池系统和车辆
DE102018132731B4 (de) 2017-12-25 2023-03-09 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem und Fahrzeug
JP2021174584A (ja) * 2020-04-20 2021-11-01 トヨタ自動車株式会社 燃料電池システム
JP7238848B2 (ja) 2020-04-20 2023-03-14 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
CN101911357B (zh) 2013-12-04
DE112008003533T5 (de) 2010-10-28
DE112008003533B4 (de) 2014-02-20
US9225028B2 (en) 2015-12-29
US20100273075A1 (en) 2010-10-28
JP4424419B2 (ja) 2010-03-03
WO2009084447A1 (ja) 2009-07-09
CN101911357A (zh) 2010-12-08
DE112008003533B8 (de) 2014-04-24

Similar Documents

Publication Publication Date Title
JP4424419B2 (ja) 燃料電池システム
JP4831417B2 (ja) 燃料電池システム
JP4877656B2 (ja) 燃料電池システムおよびその電流制御方法
JP4320686B2 (ja) 燃料電池システムおよびその電流制限方法
JP4524804B2 (ja) 燃料電池システム
JP5120594B2 (ja) 燃料電池システム及びその運転方法
JP4905706B2 (ja) 燃料電池システム及びその制御方法
JP5126480B2 (ja) 燃料電池システム
JP5435320B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4543337B2 (ja) 燃料電池システム
JP6187774B2 (ja) 燃料電池システム及び燃料電池システムの運転制御方法
JP5120769B2 (ja) 燃料電池システム
JP2009129596A (ja) 燃料電池システム
JP4973138B2 (ja) 燃料電池システム
EP2937925B1 (en) Fuel cell system and control method thereof
JP2007141744A (ja) 燃料電池システム
US8092947B1 (en) Fuel cell system
JP2008171770A (ja) 燃料電池システム
JP2008218242A (ja) 燃料電池システム
JP2008059933A (ja) 燃料電池システム及び水量推定方法
JP2008004431A (ja) 燃料電池システム
JP2006190571A (ja) 燃料電池の制御装置
JP2008146937A (ja) 燃料電池システム
JP2008282616A (ja) 燃料電池システム
JP5146715B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R151 Written notification of patent or utility model registration

Ref document number: 4424419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4