JP4857408B2 - 正弦波発生回路 - Google Patents

正弦波発生回路 Download PDF

Info

Publication number
JP4857408B2
JP4857408B2 JP2001266794A JP2001266794A JP4857408B2 JP 4857408 B2 JP4857408 B2 JP 4857408B2 JP 2001266794 A JP2001266794 A JP 2001266794A JP 2001266794 A JP2001266794 A JP 2001266794A JP 4857408 B2 JP4857408 B2 JP 4857408B2
Authority
JP
Japan
Prior art keywords
current
transistor
transistors
charging
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001266794A
Other languages
English (en)
Other versions
JP2003078395A (ja
Inventor
和男 長谷川
大輔 高井
裕久 鈴木
正明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
On Semiconductor Trading Ltd
Original Assignee
On Semiconductor Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by On Semiconductor Trading Ltd filed Critical On Semiconductor Trading Ltd
Priority to JP2001266794A priority Critical patent/JP4857408B2/ja
Publication of JP2003078395A publication Critical patent/JP2003078395A/ja
Application granted granted Critical
Publication of JP4857408B2 publication Critical patent/JP4857408B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Analogue/Digital Conversion (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば角速度センサなどの振動子を駆動するための駆動信号を生成する正弦波発生回路に係わり、特に温度変化の影響を受けずに精度の高い正弦波を生成できるようにした正弦波発生回路に関する。
【0002】
【従来の技術】
図5Aは従来の第1の正弦波発生回路を示す回路構成図、同図Bは位相遅れの様子を示す図、図5は従来の第2の正弦波発生回路における正弦波の生成方法の概念を示し、V1,V2,V3は入力信号、Voは正弦波出力を示す図である。
【0003】
図5Aに示す正弦波発生回路は、演算増幅手段A1に抵抗Ra,RbおよびコンデンサCa,Cbを付加したいわゆる電圧ソース型のローパス・フィルタとして構成されている。前記正弦波発生回路では、演算増幅手段A1の非反転側の入力端子に矩形波状の基準信号Vsが与えられると出力端子からは正弦波状の出力信号Voが出力される。
【0004】
一方、図6に示すものでは、元となる矩形波信号V1と、正方向のパルスについて源信号の立ち上り時刻および立ち下がり時刻の両端から一定の時間だけパルス幅を狭めた第1の基準信号V2と、同様に負方向のパルス幅を狭めた第2の基準信号V3の3種類の矩形波が用意され、これらを公知の加算回路(図示せず)で加算することにより、階段状の擬似的な正弦波出力Voを生成するというものである。
【0005】
【発明が解決しようとする課題】
しかし、上記図5に示す正弦波発生回路では、ローパスフィルタが抵抗とコンデンサとで構成されている。このため、回路周辺の温度が変化すると抵抗の大きさが変動し、出力信号Voに波形の崩れが生じたり、または図5Bに示すように温度変化後の出力信号Vo′が、常温時の出力信号Voに対して位相の遅れが生じるという問題がある。特に位相差検出型の角速度センサでは、基準信号と出力信号との間の位相差に対する許容精度の幅が狭く、振動子の駆動信号生成用の正弦波発生回路としては適するものではないという問題がある。
【0006】
また上記図6に示すものでは、複数の矩形波を加算して正弦波出力を疑似的な階段状の波形として生成するものである。しかし、矩形波には立上がりエッジと立下がりエッジとが必ず存在し、これらは分解能を高めるほど多くなるという性質のものである。そして、前記各エッジにおいてヒゲ状の高調波成分からなるノイズNが発生し、他の回路部門にノイズNによる悪影響を及ぼしやすいという問題がある。
【0007】
また図6の方法で生成した出力信号を図5のローパスフィルタに通すと、前記高調波成分を除去できるようになる。しかしながら、上述の温度変化に対する位相遅れの問題は解消されない。
【0008】
本発明は上記従来の問題を解決するためのものであり、温度変動に対する影響を受けない正弦波発生回路を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明は、充放電を行うコンデンサ(C)と、複数のカレントミラー回路(K3,K4)を有して前記コンデンサ(C)に充電電流を与える充電部(2)と、複数のカレントミラー回路(K1,K2)を有して前記コンデンサ(C)から放電電流を放出させる放電部(1)と、
前記充電部(2)のそれぞれのカレントミラー回路(K3,K4)の電流を個別に制御して前記充電電流の大きさを調整する充電電流調整部(CC1,CC2)と、前記放電部(1)のそれぞれのカレントミラー回路(K1,K2)の電流を個別に制御して前記放電電流の大きさを調整する放電電流調整部(DC1,DC2)と、
複数のトランジスタが並列に接続された共通トランジスタQ60と、共通トランジスタ(Q60)のそれぞれのトランジスタのコレクタに電流を与える電流源とを有し、
前記充電電流調整部(CC1,CC2)では、前記充電部(2)のそれぞれのカレントミラー回路(K3,K4)の電流を個別に切り替える複数の充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)を構成する複数のトランジスタのベース間が接続されてカレントミラーが構成され、充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)とのエミッタ電流比が、それぞれの充電用トランジスタ(Q26,Q36)ごとに相違し、
前記放電電流調整部(DC1,DC2)では、前記放電部(1)のそれぞれのカレントミラー回路(K1,K2)の電流を個別に切り替える複数の放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)を構成する複数のトランジスタのベース間が接続されてカレントミラーが構成され、放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)とのエミッタ電流比が、それぞれの放電用トランジスタ(Q6,Q16)ごとに相違しており、
充電用トランジスタ(Q26,Q36)を順番に切り替え、次に放電用トランジスタ(Q6,Q16)を順番に切り替えて、前記コンデンサ(C)の電位を正弦波形状に近似した出力信号に設定する制御信号生成手段(20)が設けられていることを特徴とするものである。
【0011】
本発明では、充電電流と放電電流の大きさを組み合せてコンデンサの充放電を行なうことにより、コンデンサの電位の勾配を調整して疑似的な正弦波を生成するものである。前記コンデンサの充電電流および放電電流の大きさが、トランジスタのエミッタ電流比、すなわち前記カレントミラー回路を構成するトランジスタのエミッタ面積比やエミッタに接続される抵抗比で決定される回路構成としたことにより、温度の影響を受けることなく精度の高い充電電流および放電電流を生成できる。よって、温度変化に対するコンデンサの電位の勾配の変動を防止することが可能となるため、精度の高い正弦波を生成することができる。
【0012】
例えば、前記両電流調整部がカレントミラー回路からなり、前記トランジスタのエミッタ電流比が、前記各カレントミラー回路の入力側と出力側に設けられたトランジスタの数又はIC内のトランジスタのpn接合部分のエミッタ面積比である。
【0013】
さらには前記両電流調整部がカレントミラー回路からなり、前記トランジスタのエミッタ電流比が、前記トランジスタのエミッタに接続される抵抗の比により決定されるものである。
【0014】
上記において、前記各カレントミラー回路の入力側のトランジスタには、温度センサの出力に応じた定電流が与えられるものが好ましく、さらには温度センサの出力が、トランジスタのベース−エミッタ間電圧であるものが好ましい。
【0017】
【発明の実施の形態】
以下、本発明について図面を参照して説明する。
【0018】
図1は、本発明における正弦波発生回路を示す回路構成図、図2は制御信号と正弦波出力信号とのタイミングチャート図である。
【0019】
図1に示す正弦波発生回路は、主として放電部1、充電部2、温度センサ3、充放電用のコンデンサC、クランプ手段4、バッファ手段5、可変電流源Ivarおよび制御信号生成手段20などから構成されている。
【0020】
前記放電部1はカレントミラー回路K1、K2および放電電流調整部DC1、DC2とから構成されている。また前記カレントミラー回路K1はトランジスタQ1,Q2,Q3,Q4およびQ5とから構成され、前記カレントミラー回路K2はトランジスタQ11,Q12,Q13,Q14およびQ15とから構成されている。なお、カレントミラー回路K1ではトランジスタQ1,Q3およびトランジスタQ6が入力側、トランジスタQ2,Q4が出力側のトランジスタであり、カレントミラー回路K2ではトランジスタQ11,Q13およびトランジスタQ16が入力側、トランジスタQ12,Q14が出力側である。
【0021】
また放電電流調整部DC1はトランジスタQ6とトランジスタQ60とからなるカレントミラー回路から、放電電流調整部DC2はトランジスタQ16とトランジスタQ60とからなるカレントミラー回路からそれぞれ構成されている。前記トランジスタQ6,Q16は、例えばIC回路内のpn接合部分のエミッタ面積を前記トランジスタQ60の1/4,2/4に設定されている。あるいは、図1に示すように複数のトランジスタの各共通端子どうしを互いに並列接続することにより、4ケからなるトランジスタQ60に対しトランジスタを1ケ又は2ケとして、実質的にエミッタ面積比を1/4,2/4とする構成であってもよい。
【0022】
なお、前記トランジスタQ60に対するトランジスタQ6,Q16のエミッタ面積比は、1/4や2/4に限られるものではなく、必要に応じて任意の組み合わせが可能である。
【0023】
前記カレントミラー回路K1のトランジスタQ5およびカレントミラー回路K2のトランジスタQ15の各コレクタ端子は、後述する制御信号生成手段20の後段に設けられた信号切換え用のトランジスタQ7およびQ17のコレクタ端子にそれぞれ接続されている。なお、前記トランジスタQ7およびQ17のベース端子には、それぞれ制御信号D1,D2が入力される。
【0024】
前記カレントミラー回路K1,K2では、入力側に電流I1,I11が流れると、その出力部にも同じ大きさのエミッタ電流I2,I12がそれぞれ流れる。
【0025】
充電部2は、前記放電部1とほぼ同様の構成である。すなわち、充電部2は、カレントミラー回路K3およびK4と、充電電流調整部CC1およびCC2とから構成されている。前記カレントミラー回路K3はトランジスタQ21,Q22,Q23,Q24およびQ25から構成され、カレントミラー回路K4はトランジスタQ31,Q32,Q33,Q34およびQ35から構成されている。なお、カレントミラー回路K3ではトランジスタQ21,Q23,Q26が入力側、トランジスタQ22,Q24が出力側のトランジスタであり、カレントミラー回路K4ではトランジスタQ31,Q33,Q36が入力側、トランジスタQ32,Q34が出力側である。
【0026】
前記充電電流調整部CC1はトランジスタQ26とトランジスタQ60とからなるカレントミラー回路で構成され、前記充電電流調整部CC2はトランジスタQ36とトランジスタQ60とからなるカレントミラー回路から構成されている。
【0027】
前記トランジスタQ26,Q36は、上記放電電流調整部DC1,DC2同様に、IC回路内のpn接合部分のエミッタ面積を前記トランジスタQ60の1/4,2/4に設定したものである。あるいは、図1に示すように複数のトランジスタの共通端子どうしを互いに並列接続することにより、4ケからなるトランジスタQ60に対しトランジスタを1ケ又は2ケとすることにより、実質的にエミッタ面積比を1/4,2/4とする構成であってもよい。なお、前記トランジスタQ60に対するトランジスタQ26,Q36のエミッタ面積比は、1/4や2/4に限られるものではなく、必要に応じて任意の組み合わせが可能である。
【0028】
前記カレントミラー回路K3のトランジスタQ25およびカレントミラー回路K4のトランジスタQ35の各コレクタ端子は、後述する制御信号生成手段20の後段に設けられた信号切換え用のトランジスタQ27およびQ37のコレクタ端子にそれぞれ接続されている。前記トランジスタQ27およびQ37のベース端子には、それぞれ制御信号D3,D4が入力される。
【0029】
前記カレントミラー回路K3,K4では、入力側に定電流I21,I31が流れると、その出力部にも同じ大きさのエミッタ電流I22,I32がそれぞれ流れる。
【0030】
なお、信号切換え用のトランジスタQ7,Q17,Q27およびQ37のコレクタ端子(トランジスタQ5,Q15,Q25及びQ35のコレクタ端子)には、プルアップ手段が接続されている。前記プルアップ手段は、トランジスタQ71,Q72,Q73およびQ74とから構成される入力側のトランジスタと、トランジスタQ75からなる出力側のトランジスタとから構成されたカレントミラー回路K6である。カレントミラー回路K6の出力側には定電流源6が設けられている。そして、入力側の各トランジスタQ7,Q17,Q27およびQ37の各ベース端子にHレベル信号が与えられ、各トランジスタがON状態に設定されられると、これらに対応するトランジスタQ5,Q15,Q25,Q35のコレクタ電流を各トランジスタQ7,Q17,Q27およびQ37で引き込むことができるようになっている。
【0031】
可変電流源Ivarの出力端子が接続されている。前記可変電流源Ivarは、基本的には温度変化の影響を受けずに一定の電流を安定して供給可能な定電流源であり、その入力電圧に応じた定電流を流すことが可能な電流源である。可変電流源Ivarに入力される信号としては温度センサ3の出力などであり、例えばトランジスタのベース−エミッタ間電圧を利用することができる。このような温度センサ3を使用すると、温度変化に応じて前記放電電流調整部DC1,DC2および充電電流調整部CC1,CC2を構成するカレントミラー回路の入力側のトランジスタQ60に流れ込む電流I0を温度に応じて増減調整することができる。よって、各トランジスタQ6,Q16,Q26およびQ36に流れる定電流I1,I11,I21およびI31の温度変動を防止できるようになる。このため、カレントミラー回路K1,K2の出力側に流れるエミッタ電流I2,I12、およびカレントミラー回路K3,K4の出力側に流れるエミッタ電流I22,I32の温度変動も抑制できる。
【0032】
また正弦波発生回路には、コンデンサCの充電電流ICおよび放電電流IDの調整を行うカレントミラー回路K5設けられている。前記カレントミラー回路K5はトランジスタQ41,Q42およびQ43とから構成されている。前記トランジスタQ42とトランジスタQ43のベース端子どうしが接続され、この接続部にトランジスタQ41のエミッタ端子が接続されている。また前記トランジスタQ42のコレクタ端子とトランジスタQ41のベース端子とが接続され、トランジスタQ43のコレクタ端子とグランドとの間にコンデンサCが設けられている。なお、トランジスタQ41のコレクタ端子は電源Vccに接続されている。
【0033】
前記トランジスタQ42のコレクタ端子(トランジスタQ41のベース端子)には、前記放電部1のカレントミラー回路K1,K2の出力部のトランジスタQ4,Q14のコレクタ端子がそれぞれ接続されている。よって、前記放電部1のカレントミラー回路K1,K2の出力部に流れるエミッタ電流I2,I12が、カレントミラー回路K5のトランジスタQ42に流れ込むことが可能とされている。
【0034】
またトランジスタQ43のコレクタ端子(コンデンサCの端子)には、前記充電部2のカレントミラー回路K3,K4の出力部のトランジスタQ24,Q34のコレクタ端子がそれぞれ接続されている。よって、前記放電部2のカレントミラー回路K3,K4の出力部に流れるエミッタ電流I22,I32が、カレントミラー回路K5のトランジスタQ43およびコンデンサCに流れ込むことが可能とされている。
【0035】
カレントミラー回路K5では、トランジスタQ42にコレクタ電流が流れると、トランジスタQ43にも同じ大きさのコレクタ電流が流れる。
【0036】
また前記トランジスタQ43のコレクタ端子(コンデンサC)には、クランプ手段4およびバッファ手段5が接続されている。前記クランプ手段4は、トランジスタQ51とQ52とから構成されている。前記トランジスタQ51とQ52は、それぞれNPN型およびPNP型のトランジスタからなり、各コレクタ端子どうし及びエミッタ端子どうしが互いに接続され、一方の接続点4aには下限電圧源Vminに接続され、他方の接続点4bは抵抗R11を介して前記トランジスタQ43のコレクタ端子(コンデンサC)に接続されている。またトランジスタQ51とQ52の各ベース端子には、後述の制御信号生成手段20に接続され、それぞれ制御信号D5,D6が入力される。
【0037】
前記バッファ手段5は、高入力および低出力インピーダンスを有するものであればよく、一般的に演算増幅器を使用した電圧フォロアなどから構成されている。そして、このバッファ手段5の出力端子OUTから正弦波状の出力信号Voが出力される。なお、前記下限電圧源Vminは、この正弦波発生回路の出力である正弦波出力信号の下限側の電圧値である。
【0038】
制御信号生成手段20は、図示しない複数のフリップフロップや論理回路を組みあわせて構成されている。そして、図2に示すようにある基準信号Vsに対して所定のタイミングからなる各制御信号D1,D2,D3,D4,D5およびD6を生成する。前記制御信号生成手段20において生成された各制御信号D1,D2,D3,D4,D5およびD6は、前記トランジスタQ7,Q17,Q27,Q37,Q51およびQ52のベース端子にそれぞれ与えられる。
【0039】
以下、本発明の動作と正弦波の生成過程について説明する。
(充電時)
先ず、時刻t0では、制御信号D5において正論理のパルス信号が出力され、制御信号D6においては負論理のパルス信号が出力される。これによりクランプ手段4のトランジスタQ51およびQ52が同時にON状態に設定される。
【0040】
前記クランプ手段4の接続点4aには、下限電圧源Vminが接続されている。よって、前記コンデンサCの電位Vcが前記下限電圧源Vminの電圧よりも高い場合(Vc>Vmin)には、コンデンサCから抵抗R11およびトランジスタQ51を介して下限電圧源Vminの方向に放電電流ID1が流れるため、、コンデンサCの電位を下限電圧源Vminに設定される。また前記コンデンサCの電位Vcが前記下限電圧源Vminの電圧よりも低い場合(Vc<Vmin)には、下限電圧源VminからトランジスタQ25および抵抗R8を介してコンデンサCの方向に充電電流IC1が流れるため、コンデンサCの電位を下限電圧源Vminに設定される。すなわち、正弦波出力Voの負方向の極値(電位Vc)が、下限電圧源Vminよりも高い状態および低い状態のいずれにおいても、常に正弦波出力Voの負方向の極値を下限電圧源Vminに設定することが可能とされている。
【0041】
また時刻t0では、制御信号D1,D2、D3およびD4がLレベル信号に設定されているため、トランジスタQ7,Q17、Q27およびQ37はすべてOFF状態である。よって、放電部1および充電部2はともにOFF状態にあり、充電電流ICおよび放電電流IDはともに遮断状態にある。このため、正弦波出力Voは、下限電圧源Vminを基準に振幅として生成することができ、常に正弦波出力Voを一定のダイナミックレンジ内に納めることが可能となる。なお、前記放電電流ID1又は充電電流IC1が流れるのときの時定数は、コンデンサCの容量と抵抗R11との積C・R11となるため、抵抗R11を適度な大きさに設定しておくことにより、瞬時にコンデンサCの電位を下限電圧源Vminに設定することが可能である。
【0042】
次に、時刻t1で、制御信号生成手段20が制御信号D3のみをHレベル信号に切り換える。これにより、トランジスタQ27のみがON状態に設定され、トランジスタQ7,Q17,Q37はOFF状態が維持される。よって、充電部2のカレントミラー回路K1,K2の各トランジスタがOFFの状態に設定され、充電部2のカレントミラー回路K3のトランジスタQ25,Q21,Q23,Q26に定電流I21が流れる。このとき、定電流I21の大きさは、温度センサ3によって設定された可変電流源Ivarから充電電流調整部CC1のを構成するカレントミラー回路のトランジスタQ26とトランジスタQ60とのエミッタ面積比によって決定される。充電電流調整部CC1では、前記トランジスタQ60に対するトランジスタQ26のエミッタ面積比は4:1であるので、トランジスタQ26にはトランジスタQ60に流れる電流I0の1/4倍の定電流I21(=1/4×I0)が流れる。
【0043】
またこのときには、放電部1では前記定電流I1,I2が流れないため、カレントミラー回路K5の全てのトランジスタQ41,Q42およびQ43がOFF状態に設定される。またクランプ手段4のトランジスタQ51およびQ52もOFF状態に設定される。よって、前記エミッタ電流I22は、全てコンデンサCに充電電流ICとして流れ込み、コンデンサCを充電しはじめる。このため、図2の正弦波出力Voに示すように、時刻t1から徐々にコンデンサCの電位が上昇しはじめる。
【0044】
ここで図2に示される時刻t1以降の正弦波出力Voの勾配θ1は、コンデンサCの静電容量と単位時間当たりの充電電流IC(充電電流の勾配)の大きさにより定まるが、前記充電電流ICはカレントミラー回路K3のエミッタ電流I22であるので、上記のように温度センサ3の出力によって決定することができる。そして、このような状態は次に制御信号D4が切り換わる時刻t2まで維持される。
【0045】
時刻t2では、制御信号D4がHレベル信号に切り換わるため、トランジスタQ27とトランジスタQ37がともにON状態に設定させられる。よって、充電部2のカレントミラー回路K4のトランジスタQ35のコレクタ電流がトランジスタQ37に引き込まれ、入力側に定電流I31が流れ、これと等量のエミッタ電流I32が出力側に流れる(I31=I32)。
【0046】
前記定電流I31の大きさは、トランジスタQ36(充電電流調整部CC2)とトランジスタQ60とからなるカレントミラー回路のエミッタ面積比によって決定される。すなわち、前記トランジスタQ60に対するトランジスタQ36とのエミッタ面積比は4:2であるので、トランジスタQ36にはカレントミラー回路K3に比べ2倍の定電流I31(=2/4×I0)が流れる。そして、コンデンサCの充電電流ICは、前記カレントミラー回路K3のエミッタ電流I22とカレントミラー回路K4のエミッタ電流I32とを加算した電流であり、これは制御信号D3のみを与えた場合の電流(1/4×I0)の3倍の大きさの電流である(IC=I22+I32=3/4×I0)。
【0047】
よって、コンデンサCは3倍の充電電流ICで充電されるため、時刻t2以降の正弦波出力Voの勾配θ2を時刻t1−t2間の勾配θ1に比べ3倍程度大きく設定することができる(θ2>θ1)。そして、正弦波出力Voは、次に制御信号D4がLレベルに切り換わる時刻t3まで前記勾配θ2に基づいて生成され、時刻t2−t3の間では、コンデンサCの電位が勾配θ2にしたがって上昇する。
【0048】
時刻t3では、制御信号D4のみがLレベル信号に切り換えられ、制御信号D3はHレベル信号が維持される。よって、トランジスタQ27がON状態、トランジスタQ37がOFF状態に設定され、この状態は時刻t1−t2間の場合と同様となるので正弦波出力Voの勾配をθ1に設定できる。そして、正弦波出力Voは、次の時刻t4まで前記勾配θ1に基づいて生成される。よって、時刻t3−t4の間では、コンデンサCの電位が勾配θ1にしたがって上昇する。
【0049】
次に時刻t4では、制御信号D3がLレベル信号に切り換えられる。このため、トランジスタQ27及びQ37がともにOFF状態に切り換えられ、カレントミラー回路K3及びk4のエミッタ電流I22及びI32が遮断させられる。よって、コンデンサCに流れ込む充電電流IC(エミッタ電流I22)がカットされるため、コンデンサCの電位VCは正弦波出力Voの最大値であるVmax[V]に設定される。
【0050】
(放電時)
時刻t5において、制御信号D1がLレベル信号からHレベル信号に切り換えられる。このHレベル信号が放電部1のトランジスタQ7のベース端子に与えられて、トランジスタQ7がON状態に切り換えられる。よって、トランジスタQ5がON状態に設定されるため、カレントミラー回路K1の入力側のトランジスタQ1,Q3およびQ6に定電流I1が流れる。
【0051】
なお、定電流I1の大きさは、温度センサ3と可変電流源Ivarにより設定され、放電電流調整部DC1を構成するカレントミラー回路の入力側のトランジスタQ60に与えられる。ここで、前記放電電流調整部DC1のカレントミラー回路の入力側(Q60)と出力側(Q6)のエミッタ面積比は4:1であるため、トランジスタQ60に流れる電流をI0とすると、出力側のトランジスタQ6に流れる電流I1はI1=1/4×I0である。
【0052】
またカレントミラー回路K1では、出力側のトランジスタQ2、Q4にエミッタ電流I2が流れるが、このエミッタ電流I2の大きさは前記定電流I1と同じ大きさである(I2=I1=1/4×I0)。
【0053】
なお、このときカレントミラー回路K2では、制御信号D2がLレベル信号であるため、トランジスタQ17がOFF状態である。よって、カレントミラー回路K2全体がOFF状態にあり、定電流I11およびエミッタ電流I12はともに0である。よって、カレントミラー回路K5のトランジスタQ42には、カレントミラー回路K1のエミッタ電流I2のみが流れる。
【0054】
またこのとき、トランジスタQ27,Q37に与えられる制御信号D3およびD4もLレベル信号であるため、充電部2全体もOFF状態にある。よって、充電部2のカレントミラー回路K3およびK4の出力部に流れるエミッタ電流I22,I32も0であり、コンデンサCに充電電流Icは流れない状態にある。
【0055】
前記カレントミラー回路K5では、前記エミッタ電流I2が流れてトランジスタQ41がON状態となるため、トランジスタQ43のベース端子にベース電流Ibが流れ込みトランジスタQ43がON状態に設定される。ところが、上述の通り充電電流IcはIc=0であるため、コンデンサCに蓄積されていた電荷が、前記トランジスタQ43を介して放出され、コンデンサCからトランジスタQ43の方向に放電電流IDが流れる。よって、時刻t5から徐々にコンデンサCの電位が下降し始めるため、図2に示すように正弦波出力Voが下降し始める。
【0056】
ここで正弦波出力Voの勾配(コンデンサの電位の勾配)θ3は、コンデンサCの静電容量と単位時間当たりの放電電流ID(放電電流の勾配)の大きさにより定まるが、前記放電電流IDはトランジスタQ43に流れ込むベース電流Ibの大きさに比例する。またベース電流Ib自体は、トランジスタQ41に流れ込むベース電流の大きさ、すなわち放電部1から出力されるエミッタ電流I2の大きさに依存する。さらにエミッタ電流I2の大きさは、エミッタ電流I2の大きさを決定するカレントミラー回路K1の入力側に流れる定電流I1、さらには定電流I1の大きさを決定する放電電流調整部DC1のカレントミラー回路の入力側のトランジスタQ60と出力側のトランジスタQ6のエミッタ面積比によって決定される。しかも放電電流調整部DC1のカレントミラー回路の入力側に流れる定電流I0は、可変電流源Ivar、すなわち温度センサ3の出力により決定できる。
【0057】
つまり、前記正弦波出力Voの勾配θ3は、温度センサ3の出力で決定することができ、従来のように電流調整用の抵抗RとコンデンサCの時定数RCによって決定される構成ではない。よって、前記抵抗Rの大きさが温度変化に伴って変動した場合であっても、放電電流IDが温度センサ3の出力以外の影響を受けて温度変動するのを防止することが可能である。なお、前記正弦波出力Voの勾配θ3は、次に制御信号D2が切り換わる時刻t6まで維持される。よって、時刻t5−t6間では、正弦波出力Voが勾配θ3にしたがうものとなる。
【0058】
次に時刻t6において、制御信号D1に続いて制御信号D2がHレベル信号に切り換えられると、トランジスタQ17がON状態に切り換えられる。これにより、トランジスタQ15のコレクタ電流がトランジスタQ17に引き込まれるため、カレントミラー回路K2の入力側に定電流I11が流れ、出力側にこれと同じ大きさのエミッタ電流I12が流れる(I11=I12)。この際、入力側の定電流I11の大きさは、放電電流調整部DC2を構成するカレントミラー回路の入力側のトランジスタQ60と出力側のトランジスタQ16とのエミッタ面積比により決定される。すなわち、トランジスタQ60に流れる電流をI0とすると、トランジスタQ16側に流れる電流値は、2/4×I0である。そして、カレントミラー回路K5の入力部のトランジスタQ42には、前記出力電流I11とエミッタ電流I12とを加算した定電流が流れるが、これは制御信号D1のみを与えた場合の電流(1/4×I0)の3倍の大きさの電流である(I2+I12=3/4×I0)。
【0059】
よって、カレントミラー回路K5の出力側のトランジスタQ43にも3倍のベース電流Ibが流すことができるため、コンデンサCの放電電流IDを3倍の大きさに設定できる。このため、コンデンサCの電位の勾配θ4を前記勾配θ3の3倍の傾きに設定することができる。すなわち、図2に示すように、時刻t6以後の正弦波出力Voの勾配θ4を前記勾配θ3に比べ3倍程度大きく設定することができる。なお、前記勾配θ4の状態は次に制御信号D2がLレベルに切り換わる時刻t7まで維持される。
【0060】
次に時刻t7において、制御信号D2がLレベル信号に切り換えられると、前記トランジスタQ17がOFF状態に設定される。よって、前記時刻t5−t6間同様の状態に設定されるため、正弦波出力Voの勾配をθ3に戻すことができ、この状態が時刻t8まで維持される。よって、時刻t7−t8の間では、コンデンサCの電位が勾配θ3にしたがうものとなる。
【0061】
そして、時刻t8では、前記時刻t0同様に、正論理のパルス信号が制御信号D5として出力され、負論理のパルス信号が制御信号D6として出力される。これにより、正弦波出力Voが下限電圧源Vminに設定される。
【0062】
上記正弦波発生回路では、正弦波出力Voを、制御信号生成手段20による時間軸が正確な各制御信号D1,D2,D3,D4,D5およびD6によって生成することができる。しかも、前記充・放電電流の大きさが、時定数CRで決定される構成ではないため、温度変動に対する影響を受けにくい正弦波出力Voを生成できる。すなわち、正弦波出力Voを、基準となる制御信号に対して位相遅れのない波形とすることができる。
【0063】
上記においては、前記放電電流調整部DC1のトランジスタQ6と充電電流調整部CC1のトランジスタQ26のトランジスタQ60に対するエミッタ面積が等しく、且つ放電電流調整部DC1のトランジスタQ16と充電電流調整部CC1のトランジスタQ36のトランジスタQ60に対するエミッタ面積が等しいものが好ましい。このように設定すると、充電時および放電時の充放電電流の勾配、すなわち正弦波出力Voの勾配θ1とθ3および勾配θ2とθ4を等しくすることができるため、均整のとれた正弦波を生成することが可能となる。
【0064】
上記のように生成された正弦波出力Voは、バッファ手段5を介して外部に出力される。そして、前記正弦波出力Voは、必要に応じ増幅手段を介して信号増幅がなされ、例えば角速度センサの振動子を駆動するドライブ信号として使用される。
【0065】
図3は本発明における他の正弦波発生回路を示す回路構成図である。図3に示す正弦波発生回路は、図1に示した正弦波発生回路において各カレントミラー回路を構成しているトランジスタQ60,Q6,Q16,Q26およびQ36のエミッタ端子とグランド間に抵抗R21,R22,R23,R24およびR25を挿入した回路構成である。
【0066】
図3に示すに正弦波発生回路おいては、前記抵抗R21に対する抵抗R22,R23,R24およびR25の各抵抗比によって前記コンデンサの充電電流および放電電流の大きさを決定することができる。つまり、トランジスタの出力電流はトランジスタのエミッタ電圧によって算出できる。
【0067】
通常、各カレントミラー回路を構成するトランジスタのベース・エミッタ間電圧Vbeで同一であるから、各エミッタにそれぞれ抵抗R21,R22,R23,R24およびR25を挿入すると、各カレントミラー回路K1,K2、K3、K4を構成する出力側のトランジスタのエミッタ電流比(I2:I12:I22:I32)は前記抵抗比で設定でき、この抵抗比によってコンデンサーの充電電流および放電電流を設定できる。特に、抵抗の温度特性の変化率がトランジスタのベース・エミッタ間電圧Vbeの温度特性の変化率よりも小さい場合、すなわちトランジスタのエミッタ電圧がベース・エミッタ間電圧Vbeに支配されている場合に有効である。
【0068】
なお、各カレントミラー回路の入力側に流れる電流が等しくなるように各抵抗のバランスをとった状態で前記カレントミラー回路をIC化した場合、IC化された抵抗の温度特性は同一であるため、カレントミラー回路に接続された抵抗の温度特性はキャンセルされ、抵抗比は変化せず、その結果カレントミラー回路の出力電流比は変化しない。よって、温度変化があっても、コンデンサーの充電電流および放電電流の大きさを精度良く設定することができる。
【0069】
このため、上記構成ではトランジスタ自体に流れる電流の温度変動を防止できるようになる。よって、カレントミラー回路で生成される充電電流および放電電流の温度変動を小さくできる。
【0070】
よって、図3に示す正弦波発生回路においても図1の正弦波発生回路同様に精度の高い正弦波を生成することが可能である。
【0071】
図4は上記正弦波発生回路を使用した角速度センサ用の振動子の駆動装置の構成を示すブロック図である。
【0072】
図4に示す角速度センサでは、感知手段(センサ)としての振動子51と、この振動子51を所定の駆動周波数からなるドライブ信号SDで振動駆動させるための駆動制御部50、振動子51から出力される角速度の検出を行なうための検出制御部などから構成されている。
【0073】
前記振動子51は、例えば圧電型の振動子又は静電容量型の振動子などであり、長手方向に延びる振動子51の一方の先端には分岐形成された複数の振動脚(例えば3脚)を有するものである。各振動脚の一方(Y1側)の面内には、長手方向(Z方向)に延びる入力電極aがそれぞれ形成されており、他方(Y2側)の面内には一対の出力電極c,dが形成されている。前記振動子51では、各振動脚の各入力電極aに前記ドライブ信号SDがドライブ手段57より与えられると、振動脚が並ぶ方向(X方向)に各振動脚が振動駆動させられる。この状態で前記振動子51が、長軸Oを中心とする軸回りに置かれると、回転の大きさに応じて生じるコリオリ力により前記振動子51が振動方向(X方向)と直交方向(Y方向)に撓み変形させられる。この変形により、振動子51に形成されている他方の面に形成された一対の出力電極c,dからそれぞれ位相の異なる出力信号Sc,Sdが前記コリオリ力の大きさに応じ出力される。
【0074】
上記駆動制御部50では、振動子51が二値化手段52と、位相検出部53、ローパスフィルタ(LPF)54,VCO(電圧制御発振器)55、分周器56とからなるPLL(フェーズロックループ)とドライブ手段57により駆動される。前記ドライブ手段57から振動子51に正弦波状のドライブ信号SDが与えられると、振動子51の検出電極c,dからも正弦波状の出力信号Sc,Sdが出力される。そして、前記振動子51が回転系に置かれると、前記出力信号ScとSdとの間には回転により生じたコリオリ力に相当する位相差が発生する。
【0075】
前記二値化手段52では、振動子51の出力信号(正弦波出力)Sc,Sdが所定のスレッショルド電圧を基準に二値信号Dc,Ddに変換される。
【0076】
位相差検出部53では、前記二値信号Dc,DdとVCO55から出力される基準信号Vsを分周器56で分周した分周信号Vrとがそれぞれ位相比較され、位相差をパルス状の差信号として出力する。前記パルス状の差信号は、LPF54において直流化(積分と高周波成分の遮断)され、VCO制御電圧としてVCO55の制御端子(図示せず)に与えられる。VCO55は、一定の自走周波数を持ち、前記VCO制御電圧が与えられると、前記VCO制御電圧に応じた発振周波数を調整し、前記二値信号Dc,Ddの位相差に相当する時間幅の中点にロックする基準信号Vsを出力する。これにより、振動子51への入力信号であるドライブ信号SDが、常に振動子51の正弦波状の出力信号(出力信号ScとSdの位相差に相当する時間幅の中点)にロックするように駆動される。
【0077】
前記分周器56は、VCO55の発振周波数を振動子51の駆動周波数まで分周した分周信号Vrを生成する。また前記ドライブ手段57には上記図1に示す正弦波発生回路および信号増幅部(図示せず)などが設けられている。
【0078】
前記分周器56から出力された分周信号Vrは、ドライブ手段57内の制御信号生成手段20に与えられる。前記制御信号生成手段20では、前記分周信号Vrから前記制御信号D1,D2,D3,D4,D5およびD6を生成する。そして、上述のように正弦波発生回路が正弦波出力Voを生成し、前記信号増幅部が前記正弦波出力Voを増幅することによって振動子51を駆動するドライブ信号SDが生成される。
【0079】
前記正弦波出力Voを増幅したドライブ信号SDは、温度変動の影響の少ない精度の高い信号であるため、振動子51の出力信号Sc,Sd間に生じる位相差に相当する時間幅を確実に検出することができるようになる。そして、この位相差に相当する時間を積分平滑することにより、精度の高い角速度出力を得ることができることが可能となる。 なお、上記においては正弦波を生成する実施形態を示したが、制御信号生成手段の制御信号を様々に組み合せることにより、その他の波形(例えば三角波、台形波など)を任意の波形に生成することも可能である。
【0080】
さらに、前記制御信号生成手段をマイコン制御で構成してもよい。この場合、ソフトウエアにより、任意に各制御信号を生成することが可能である。
【0081】
【発明の効果】
以上詳述した本発明によれば、温度変化の影響を小さくした精度の高い正弦波を生成することができる。
【0082】
さらに角速度センサに上記正弦波発生回路を使用することにより、振動子を高い精度で駆動することができる。よって、精度の高い角速度を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明における正弦波発生回路を示す回路構成図、
【図2】制御信号と正弦波出力信号とのタイミングチャート図、
【図3】本発明における他の正弦波発生回路を示す回路構成図、
【図4】正弦波発生回路の実施形態として、角速度センサ用の振動子の駆動装置の構成を示すブロック図、
【図5】Aは従来の第1の正弦波発生回路を示す回路構成図、同図Bは位相遅れの様子を示す図、
【図6】従来の第2の正弦波発生回路における正弦波の生成方法の概念を示し、V1,V2,V3は入力信号、Voは正弦波出力を示す図、
【符号の説明】
1 放電部
2 充電部
3 温度センサ
4 クランプ手段
20 制御信号生成手段
C 充放電用のコンデンサ、
CC1、CC2 充電電流調整部
DC1、DC2 放電電流調整部
D1,D2,D3,D4,D5、D6 制御信号
K1、K2、K3、K4、K5 カレントミラー回路
I2,I12,I22,I32 エミッタ電流
Ivar 可変電流源
Q トランジスタ
R 抵抗
Vo 正弦波出力

Claims (4)

  1. 充放電を行うコンデンサ(C)と、複数のカレントミラー回路(K3,K4)を有して前記コンデンサ(C)に充電電流を与える充電部(2)と、複数のカレントミラー回路(K1,K2)を有して前記コンデンサ(C)から放電電流を放出させる放電部(1)と、
    前記充電部(2)のそれぞれのカレントミラー回路(K3,K4)の電流を個別に制御して前記充電電流の大きさを調整する充電電流調整部(CC1,CC2)と、前記放電部(1)のそれぞれのカレントミラー回路(K1,K2)の電流を個別に制御して前記放電電流の大きさを調整する放電電流調整部(DC1,DC2)と、
    複数のトランジスタが並列に接続された共通トランジスタQ60と、共通トランジスタ(Q60)のそれぞれのトランジスタのコレクタに電流を与える電流源とを有し、
    前記充電電流調整部(CC1,CC2)では、前記充電部(2)のそれぞれのカレントミラー回路(K3,K4)の電流を個別に切り替える複数の充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)を構成する複数のトランジスタのベース間が接続されてカレントミラーが構成され、充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)とのエミッタ電流比が、それぞれの充電用トランジスタ(Q26,Q36)ごとに相違し、
    前記放電電流調整部(DC1,DC2)では、前記放電部(1)のそれぞれのカレントミラー回路(K1,K2)の電流を個別に切り替える複数の放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)を構成する複数のトランジスタのベース間が接続されてカレントミラーが構成され、放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)とのエミッタ電流比が、それぞれの放電用トランジスタ(Q6,Q16)ごとに相違しており、
    充電用トランジスタ(Q26,Q36)を順番に切り替え、次に放電用トランジスタ(Q6,Q16)を順番に切り替えて、前記コンデンサ(C)の電位を正弦波形状に近似した出力信号に設定する制御信号生成手段(20)が設けられていることを特徴とする正弦波発生回路。
  2. それぞれの充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)とのエミッタ電流比、およびそれぞれの放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)とのエミッタ電流比は、
    共通トランジスタ(Q60)と充電用トランジスタ(Q26,Q36)、または共通トランジスタ(Q60)と放電用トランジスタ(Q6,Q16)との、トランジスタの数の比またはトランジスタのpn接合部分のエミッタ面積比で決定される請求項1記載の正弦波発生回路。
  3. それぞれの充電用トランジスタ(Q26,Q36)と前記共通トランジスタ(Q60)とのエミッタ電流比、およびそれぞれの放電用トランジスタ(Q6,Q16)と前記共通トランジスタ(Q60)とのエミッタ電流比は、
    それぞれのトランジスタのエミッタに接続される抵抗の比により決定される請求項1記載の正弦波発生回路。
  4. 前記共通トランジスタ(Q60)を構成するそれぞれのトランジスタのコレクタに、温度センサの出力に応じた定電流が与えられる請求項1ないし3のいずれかに記載の正弦波発生回路。
JP2001266794A 2001-09-04 2001-09-04 正弦波発生回路 Expired - Fee Related JP4857408B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266794A JP4857408B2 (ja) 2001-09-04 2001-09-04 正弦波発生回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266794A JP4857408B2 (ja) 2001-09-04 2001-09-04 正弦波発生回路

Publications (2)

Publication Number Publication Date
JP2003078395A JP2003078395A (ja) 2003-03-14
JP4857408B2 true JP4857408B2 (ja) 2012-01-18

Family

ID=19093017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266794A Expired - Fee Related JP4857408B2 (ja) 2001-09-04 2001-09-04 正弦波発生回路

Country Status (1)

Country Link
JP (1) JP4857408B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365795B2 (ja) * 2005-02-18 2009-11-18 株式会社ルネサステクノロジ パルス発生器及びそれを用いた送信機
JP2009017003A (ja) * 2007-07-02 2009-01-22 Sony Corp 無線送信装置、無線受信装置、トランシーバ及び無線通信方法
JP2009281888A (ja) 2008-05-22 2009-12-03 Panasonic Corp 物理量検出回路およびそれを備える物理量センサ装置、並びに物理量検出方法
EP3208923B1 (en) * 2016-02-17 2018-09-12 ams AG Sensor arrangement and method for operating a sensor arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668029A (en) * 1979-11-08 1981-06-08 Matsushita Electric Ind Co Ltd Digital-analog converter
JPH04208716A (ja) * 1990-11-30 1992-07-30 Yokogawa Hewlett Packard Ltd ディジタル―アナログ変換回路
JPH05252041A (ja) * 1992-03-06 1993-09-28 Toshiba Corp Da変換回路
JP2001050752A (ja) * 1999-05-28 2001-02-23 Alps Electric Co Ltd 振動子の駆動装置
JP4889849B2 (ja) * 2000-09-27 2012-03-07 オンセミコンダクター・トレーディング・リミテッド 正弦波発生回路

Also Published As

Publication number Publication date
JP2003078395A (ja) 2003-03-14

Similar Documents

Publication Publication Date Title
JPS5843932B2 (ja) デジタル位相比較器
CN102564411B (zh) 振动型陀螺传感器和振动型陀螺电路
US4714900A (en) Current output circuit having well-balanced output currents of opposite polarities
JP4857408B2 (ja) 正弦波発生回路
JP4889849B2 (ja) 正弦波発生回路
US6081166A (en) Voltage controlled oscillator including a plurality of buffer circuits diodes, current sources, MIS capacitors
JPH01106525A (ja) 周波数発生回路装置
JPH08274635A (ja) 位相ロック回路
JPH0530089B2 (ja)
EP0957584B1 (en) Phase locked loop circuit and control method thereof
JP3534379B2 (ja) 振幅制御発振器
JP2000292172A (ja) 圧電振動子の駆動および検出装置
JPH02277311A (ja) ゲート処理発振器
JP2003130646A (ja) 振動子の駆動装置
JPH05191276A (ja) 位相検出器
KR0151100B1 (ko) 다중 동기용 수평 전압 제어 발진 회로
JPH08228132A (ja) 逓倍回路
JP3794080B2 (ja) Pll回路
JP4421754B2 (ja) 位相比較回路及びこの位相比較回路を用いたpll回路並びにこのpll回路を用いた振動子の駆動装置
JP3616180B2 (ja) 位相制御回路およびこれを用いるデジタルビデオテープ再生装置
JPH08298438A (ja) 半導体集積回路装置
JP2003078353A (ja) 正弦波発生回路およびこの正弦波発生回路を用いた振動子の駆動装置
JPH06268514A (ja) 位相検波回路
JPH10126234A (ja) パルス遅延回路及び遅延パルス信号生成方法
JPH0611087B2 (ja) 電圧制御発振回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees