JP4827627B2 - 撮像装置及びその処理方法 - Google Patents

撮像装置及びその処理方法 Download PDF

Info

Publication number
JP4827627B2
JP4827627B2 JP2006167750A JP2006167750A JP4827627B2 JP 4827627 B2 JP4827627 B2 JP 4827627B2 JP 2006167750 A JP2006167750 A JP 2006167750A JP 2006167750 A JP2006167750 A JP 2006167750A JP 4827627 B2 JP4827627 B2 JP 4827627B2
Authority
JP
Japan
Prior art keywords
correction coefficient
correction
analog
digital
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167750A
Other languages
English (en)
Other versions
JP2007336374A (ja
Inventor
雄一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006167750A priority Critical patent/JP4827627B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP11168649.9A priority patent/EP2364015A3/en
Priority to EP07745528A priority patent/EP2036332A1/en
Priority to PCT/JP2007/062361 priority patent/WO2007145364A1/en
Priority to US12/303,259 priority patent/US8169498B2/en
Priority to CN200780022179.9A priority patent/CN101467437B/zh
Publication of JP2007336374A publication Critical patent/JP2007336374A/ja
Application granted granted Critical
Publication of JP4827627B2 publication Critical patent/JP4827627B2/ja
Priority to US13/418,722 priority patent/US8451361B2/en
Priority to US13/871,781 priority patent/US8970758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Description

本発明は、撮像装置及びその処理方法に関する。
CMOSイメージセンサにおいて、センサからの信号を高速に読み出すために、列に並列にAD(アナログデジタル)変換器を有するものがある。以後、列に並列に配列されるAD変換器を略してカラムADCと呼ぶ。
図15は、AD変換器の入出力特性を模式的に表した図である。増幅時のアナログ回路の精度が理想通りの場合は、1501に示すような直線を示すが、点線のように理想からずれてしまう場合は1502のように、どのようなアナログデータが入力されても現れないデジタルコード(ミスコード)が生じてしまう。
その課題に対する先行技術の一例として、特許文献1は、イメージセンサの各列毎に巡回型AD変換器を有し、巡回型AD変換器に用いる容量のバラツキによる誤差を低減するため、2回AD変換を行う。特許文献1では、回路に用いられている容量を入れ替えながら2回AD変換を行い、それらをレジスタに保持した後に平均化して出力する。
また、特許文献2には、複数のA/D変換器を有する撮像装置において、A/D変換器の出力信号を、基準信号を発生する基準信号発生手段を用い、A/D変換器の出力信号を基準信号発生手段の基準信号に合わせて補正する技術が開示されている。
特開2006−025189号公報 特開2005−210480号公報
しかしながら、特許文献1に示したような手法による補正には、問題が3つ存在する。1つ目は、必ずAD変換を2回する必要があるので、原理的に変換速度が1/2に低下するという点である。高速シャッターを要求するデジタルカメラアプリケーションや、動画アプリケーションにおいて、この問題は致命的となる。
2つ目の問題は、回路の接続を切り替えるために、余分な配線、容量、スイッチ等を配置しなくてはならないということである。カラムADCはイメージセンサの画素とほぼ同等か、多くてもその数倍の幅でレイアウトしなくてはならず、配線、容量、スイッチなどの増加は、画素サイズ縮小の阻害要因や、もしくは特性劣化の原因となりうる。
3つ目の問題は、補正が完全ではない、という点である。図16は、その原理を説明するためのアナログ入力とデジタル出力の関係を示すグラフである。1601の一点鎖線で示したアナログ−デジタル変換特性、及び1602の破線で示したアナログ−デジタル変換特性の2回の変換により、その平均をとることで、1603の実線のような理想的なアナログ−デジタル変換特性を得ることを行っている。
例えば、1604の点Aにおいては、同一のアナログ値に対し、2度の変換で、2度とも理想からずれた1605及び1606のような変換結果が得られるが、それらを平均することで1607のような理想の特性を得ることができる。ただし、1608の点Bのような、デジタル出力の不連続が大きいところに相当するアナログ値が入った場合、1609及び1610のような2回の変換結果が得られれば理想の特性となる。しかし、画素や読み出し回路のランダムノイズなどによる外乱によって、1610の代わりに1611のような変換結果が得られてしまうと、平均しても理想の特性とは一致せず、補正誤りとなる。
また特許文献2においては、A/D変換器1つあたりに補正手段が1つ必要である。いわゆるルックアップテーブルを用いているが、そのルックアップテーブルはA/D変換器ごとに異なるため、複数のA/D変換器に対して共通化することができない。
画素が2次元状に配されたセンサは、最終的には複数の信号線からの出力をマルチプレクス、もしくはシリアル化して出力するのが通常である。特に、カラムADCのように、多数のA/D変換器を有するような場合には、本補正回路を出力がマルチプレクスされる前段にA/D変換器ごとに設けることとなり、A/D変換器の数が増えるにしたがって実現するのが困難となる。特に、光電変換素子を含む画素が複数配された画素領域とA/D変換器を含む読み出し部を、同一の半導体基板上に配した場合には、素子のレイアウトの制約も厳しく、補正回路の増加による、回路規模の極端な増加は特に問題となる場合がある。
本発明は、上記の問題のうち少なくとも1つを解決するためになされるものであり、1度のAD変換のデータで完全に補正できること、余分なスイッチやアナログ素子等を極力不要とすること、及び/又は補正誤りを防止することを目的とする。
本発明の撮像装置は、2回以上のステップに分けて上位ビットのデジタル信号から変換結果を確定させるアナログデジタル変換器を複数有するイメージセンサと、前記アナログデジタル変換器の非直線性誤差を補正するための複数の補正係数ベクトルを前記複数のアナログデジタル変換器に対応して有し、各アナログデジタル変換器に対応した複数の補正係数ベクトルを基に、前記各アナログデジタル変換器から出力されるデジタル信号の非直線性誤差を補正する第1の補正手段とを有し、前記第1の補正手段は、前記複数のアナログデジタル変換器からの前記デジタル信号をシリアル出力に変換した後に、前記変換した後のデジタル信号と前記複数の補正係数ベクトルとの演算により、前記非直線性誤差の補正を行うことを特徴とする。
また、本発明の撮像装置の処理方法は、2回以上のステップに分けて上位ビットのデジタル信号から変換結果を確定させるアナログデジタル変換器を複数有するイメージセンサを有する撮像装置の処理方法であって、前記アナログデジタル変換器の非直線性誤差を補正するための複数の補正係数ベクトルを前記複数のアナログデジタル変換器に対応して有し、各アナログデジタル変換器に対応した複数の補正係数ベクトルを基に、前記各アナログデジタル変換器から出力されるデジタル信号の非直線性誤差を補正する第1の補正ステップを有し、前記第1の補正ステップでは、前記複数のアナログデジタル変換器からの前記デジタル信号をシリアル出力に変換した後に、前記変換した後のデジタル信号と前記複数の補正係数ベクトルとの演算により、前記非直線性誤差の補正を行うことを特徴とする。
イメージセンサの出力デジタル信号に対して補正することにより、2回のアナログデジタル変換結果を用いる場合に比べ、高速に補正を行うことができる。また、2回のアナログデジタル変換を行うための回路の接続を切り替える必要がないので、余分なスイッチ又はアナログ素子等を極力不要とすることができる。また、補正誤りを防止し、適切な補正を行うことができる。
(第1の実施形態)
図1及び図2は、本発明の第1の実施形態を説明するための図である。図1(a)は、カラムADCに用いる巡回型ADC(アナログデジタル変換器)の構成例を示す回路ブロック図である。図1(b)は、アナログ入力Vinに対応するデジタル出力DoutをプロットしたADCの入出力特性の例を示す。入出力特性は説明のために連続的な線で書かれているが、ここでは3ビットを想定しており、あるアナログ値に対して量子化された3ビット精度のデジタル値が得られているとする。実際には3ビットのAD変換で補正が必要になるのはまれであるが、原理を簡易的に説明するために、図をシンプルにするための仮定である。
入力端子101に入力された画素からの信号Vinは、比較器102において参照レベルVrefと比較され、その比較結果がデジタルコードになる。比較結果が0の場合はそのまま、1の場合は入力信号から参照レベルVrefを減算した後、その信号を増幅器103のゲインGで電圧増幅し、それを再度入力端子101に戻す。AD変換器のビット精度がnビット精度であるとき、本比較はn回行われ、k回目の比較結果がn−k番目のビットとして出力端子104から出力される。以上のように、このADCは、2回以上のステップに分けて上位ビットのデジタル信号から変換結果を確定させ、アナログ信号をデジタル信号に変換する。
ここで、増幅器103のゲインが正確に2の場合、105に示されるように理想的な入出力特性を得ることが出来るが、たとえばゲインが1.95のように、2より小さい場合は、波線で示した特性106のように、所々にミスコードが生じる。
ここで、補正係数として、入出力特性107〜109にC1、C2、C3と示したデジタルコードの大きさを実デバイスから抽出し、デジタル値の補正係数ベクトルC=(C3,C2,C1)を用意する。ここでの補正係数ベクトルとは、特許文献2におけるような、理想の参照電圧入力に対する実際の出力値の対応データのようなものとは異なっている。この補正係数ベクトルは、AD変換器の特性を高々十数個の数値で表した特徴量の集合体である。
C2は特性107と110の和、C3は特性107,110,111,112の和となっている。もしAD変換をnビット精度で行う場合は、この考え方を拡張して、n個の要素からなるベクトルを補正係数として有する。ここで、C3,C2,C1の値は、増幅器103のゲインの値に依存している。補正係数C1,C2,C3は、ADCの微分非直線性誤差を補正するための係数である。この補正係数を得るためには、実デバイスを最低2回余分にAD変換を行うのみで取得可能である。
特許文献2においては、基準電圧を生成するデジタル・アナログ変換器(DAC)の絶対精度の影響をそのまま受けてしまう。それは、A/D変換器の絶対精度をDACの絶対精度と一致させる、という考えのもとに補正が行われているためである。そのため、たとえばA/D変換器を14ビット等の高ビットとした場合には、DACにも14ビットの精度が要求される。実際の動作には用いないそのような高精度のDACを、センサもしくはシステム内に設けるのは、コストの大幅な上昇につながる。これに対して本発明においては、絶対精度には着目せず、非直線性誤差を解消するという考え方で補正を行い、補正係数をベクトル値として得ているので、高い絶対精度を有するDACはなくてもよい。
また本発明の補正係数取得方法によれば、最低2回のAD変換を行えばよく、時間にしておよそ10μs程度ですむ。したがって、垂直ブランキング期間や、垂直OB読み出し期間、もしくは高速撮影の合間に補正係数を再取得することが可能であり、動作中の再補正が実現できる。
これに対して、特許文献2の構成では、補正係数を求める時間が長くかかる。たとえば14ビット精度のAD変換を実現しようとした場合、AD変換の動作におよそ5μs程度かかるとすると、補正係数取得に5μs×214の時間、つまり81msecの時間が費やされる。動作中に補正係数を算出しようとした場合に、およそ100msecの補正係数取得時間が必要となることは、通常の動画、もしくは静止画の高速撮影の実現は困難である。
図2は、本実施形態によるカラムADCを有するCMOSセンサ201と、デジタル信号処理装置207からなる撮像装置の一例を示す図である。上記で得られた補正係数が、図2の撮像装置においてどのように用いられるかを説明する。201はCMOSイメージセンサであり、202は行列状に配置された画素である。画素202は、光電変換素子を有し、光電変換により、アナログ画素信号を生成する。このような画素が2次元状に配され画素領域を構成している。イメージセンサ201は、列毎にADC203を有する。各列は図1(a)で示したようなADC203と、そのADCから上位ビットから順に出力されるデータを記憶する3ビットメモリ204を有する。その3ビットメモリにおさめられたデータは順次水平シフトレジスタ205により指示をうけて3ビットの端子206に出力される。画素領域とADCは同一半導体基板上に配されている。207はデジタル信号処理装置、208は基準タイミング発生器である。基準タイミング発生器208からのクロックをうけて水平シフトレジスタ205は209に示すように3ビットのデジタル信号Iをデジタル信号処理装置207に出力する。デジタル信号処理装置207は、基準タイミングパルスを基にセンサ201からのデジタル信号Iを3ビットラッチ210にてラッチし、そののちに補正部211にて補正を行い、その後補正したデータAを出力端子212に出力する。
補正部211は、CMOSセンサ201からの出力データIと、あらかじめ記憶していた補正係数Cの内積をとる演算を行うことにより、CMOSセンサ201の出力データIに対して微分非直線性誤差を補正する。こうすることで、補正後の入出力特性は、図1(b)中の113に示したような直線を示し、微分非直線性誤差が補正される。なお、内積をとる際は、出力データIの各ビットを各要素とみなす。たとえばIが3ビットならば、各要素が0もしくは1の1ビットで、かつ3要素から構成されるベクトルと考える。特許文献2においては、マルチプレクス前に補正を行う必要があり、そのために補正回路をA/D変換器と同一チップに配している。これに対して本発明においては、マルチプレクス後の出力に対して補正を行うことが可能であるため、補正回路を光電変換領域とAD変換器を含む読み出し部と異なるチップに配置することが可能となる。
また、補正のために必要な補正係数メモリの容量は、1列あたり256bitと、従来の1000分の1程度ですみ、3000列のカラムADCを想定しても0.8Mbitとなる。たとえチップ内に納めたいという要求があったとしても、十分対応が可能である。
これに対して特許文献2においては、たとえば、3000列を有するセンサにおけるカラムADCにおいて、補正手段を列ごとに持たせたとする。また、一列あたりのAD変換器精度を14ビットとする。その際に、1つのAD変換器が有する補正手段のメモリサイズはおよそ230kbitになる。1列がたとえば5μm幅からなるAD変換器の場合、230kbitという無視できない大きさのメモリを、5μm幅で各列に並べていかなくてはならない。また、チップ内に必要となる補正手段のメモリ総容量は、0.69Gbitとなり、相当の面積が必要となる。したがって、画素領域とADCを同一半導体基板上に配する場合に本発明は特に有効となる。
ここで、基準タイミング発生器208で作成したクロックで、センサ201とデジタル信号処理装置207を同期して動作させることで、誤り無く補正が可能となっている。
本実施形態の効果は以下の通りである。まず、第1に、特許文献1のように、回路の接続を2度切り替えてセンサの信号を変換しなくて良い。そのために、変換速度が原理的に2倍に高速になる。
また、回路の接続を組み替えてAD変換を行うことが不要になったため、レイアウトをより簡素化出来、画素ピッチの縮小、レイアウト面積の削減が可能となる。
また、特許文献1では、ランダムノイズの影響などにより補正されない場合が存在したが、本実施形態によればノイズが存在しても非連続性が補正される。ゆえにより高精度な変換が可能となる。
ここで、本実施形態では、CMOSイメージセンサ201とデジタル信号処理装置207、および基準タイミング発生器208は、それぞれが分かれているように記述しているが、この形態には限定されない。たとえばイメージセンサ201とデジタル信号処理装置207が同一基板上に配置されていたり、マルチチップパッケージになっていたりしてもよい。その実装形態自身には本実施形態の効果は影響されないことからも、このことは自明である。
また、ここで、補正のための演算は1基準クロックで完了しても、また、パイプライン処理により数クロックを用いて完了するようにしてもよい。パイプライン処理を用いる場合はパイプラインディレイが生じるが、実使用上は問題がない。
また、本実施形態の補正動作の説明は、あくまでも一例である。本実施形態の本質は、カラムADCの補正を、AD変換器自身から抽出した補正係数をもとに、センサからの画素出力のレートと同一のスピードで行うことで、読み出しの高速化を図ることにある。本実施形態のような、内積により補正をする、という考え方以外の補正でも、本実施形態の効果を得られることは自明である。またADCは列ごとに設けられていてもよいし、複数の列に共通のADCを設けられていてもよい。少なくとも複数のADCを有しており、各ADCに対応した補正係数により、微分非直線性誤差を補正することが重要である。
(第2の実施形態)
前述の通り、カラムADCは画素と同等か、画素の高々数倍の幅でレイアウトされる。そのために、アナログ素子の局所的精度を確保することが困難となる。局所的精度が各列でばらつくために、第1の実施形態における増幅器103のゲインは各列でばらつき、同一の補正係数を利用してしまうと補正後の精度が確保出来ない。補正係数を各列毎に準備し、各カラムADC別に独自の補正係数を用いて補正を行うことが必要となる。
図3は、上記の課題を解決するための本発明の第2の実施形態によるカラムADCを有する撮像装置の構成例を示す図であり、図2と同等の部位には同一の番号をふっている。本実施形態が第1の実施形態と異なる点は、補正係数記憶メモリ301が追加された点であり、そのメモリ301は基準タイミング発生器208から制御信号302を入力して動作する。
係数記憶メモリ(補正係数メモリ)301は、各列のADC203と同じ個数の補正係数を記憶可能である。補正部211は、各列のADC203と同じ個数の補正係数のうちの対応する列のADC203の補正係数を基に、列毎に微分非直線性誤差を補正する。
図4は、図3の回路の動作を示すタイミング図である。401において、基準タイミングクロックに同期してセンサ201の第1列目のADCが変換したセンサ出力を補正部211に入力し、それと同時に第1列目のADCの出力を補正する補正係数ベクトル402を係数記憶メモリ301から補正部211に読み込む。その次の基準タイミングクロックで演算が終了し、タイミング403で補正後出力Aを得る。
補正部211では、1列目の補正を終えたタイミングで、2列目のセンサ出力Iと補正係数ベクトルCをそれぞれタイミング404及び405で入力し、次の補正を行う。
本実施形態では、補正部211は、イメージセンサ201の出力周期に同期して係数記憶メモリ301から補正係数を入力する。
本実施形態における追加の効果は以下の通りである。まず、各列に対応した補正係数を用いて補正することにより、各列に対してより正確な微分非直線性誤差の補正が可能となり、精度が向上した。また、その際に、補正係数は、実際のCMOSセンサから抽出された係数を用いることで、補正の精度を向上させることができる。
また、補正部211を単一とし、補正係数を画素に同期して更新することで、演算部の面積を大幅に削減でき、かつ、イメージセンサからの出力と同期した正しい補正を行うことが出来るようになる。
(第3の実施形態)
本発明の第3の実施形態は、前述の補正係数を実際のCMOSイメージセンサから取得する補正係数取得手段について説明する。図5は、本実施形態の補正の対象となるAD変換器の入出力特性であり、図6は、本実施形態の補正係数を得ることが可能なカラムADCの構成の一例を示す図であり、図1と同一の部位には同じ番号を振っている。
図5(a)は、ちょうど入力ダイナミックレンジの中央でのみミスコードが発生している例である。以降、501で示した補正係数の一要素Cnを求める方法を述べる。図6が、Cnを求めることが可能な、補正可能なカラムADC回路の一例である。
まず、入力に、列からの信号601,602,603を入力するパスと自身の信号を巡回させるパスの他に、604の基準電圧Vrefを入力するパスを設ける。そのためにスイッチ605は、3種の信号から選択できるように変更する。
次に、コマンド信号606として、基準電圧Vrefとの減算の有無を指定する比較結果を外部から強制的に指示して上書きするための、2ビットのコマンド信号CMDを用意する。コマンド信号CMDの中身であるが、1ビットは比較結果を乗っ取るかどうかの指示、もう1ビットは、乗っ取った際の比較結果を0にするか1にするかの指定である。
本回路の動作を説明する。まず、基準電圧Vrefを強制的に入力し、その際にコマンド信号CMDに、強制的に比較結果を0とする指示を与える。すると、各ADCの変換結果は、図5中の502の点の値X1を示す。この全列分のX1をまずは保持する。次に、強制的に比較結果を1とし、再度AD変換する。すると、各ADCの出力は、503の点の値X2に相当する値となる。
先ほど保持していたX1から、今回のX2を減算することで、各列のCnに相当する値を得ることが出来る。
ただし、実際のミスコードは、図5(b)のように、様々なところで生じている。しかしながら、真ん中にのみミスコードがある入出力特性の補正係数を求めることができれば、下位ビットから補正係数の要素を求めていくことで、補正係数の全要素を得ることが可能となる。その理由を以下に述べる。
図5(b)のような特性を示すAD変換器において、まず下位ビットの補正係数をもとめる。504で枠に囲んだ部分が下位ビットの入出力特性であるが、まだ中央以外に飛びがあるのでさらに再帰的に下位ビットにおりていくと、505にて中央のみにミスコードが生じている入出力特性に帰結する。
この部分に対して、まず補正係数の一要素C0を求め、つぎにC0を基に、再帰的に上位ビットの補正をして図5(c)に示した506の入出力特性をえる。その後も、下位ビットの補正係数を得た後に、補正された下位ビットを基にした上位ビットの補正係数の算出を行うことで、全補正要素をえることが可能である。
以上のように、イメージセンサ201は、図6のAD変換器を用いて補正係数を取得する補正係数取得手段を有する。
ここでは、巡回型のカラムADCの補正の一例を示したが、その他、様々なカラムADC形式、および様々な補正アルゴリズムに対しても本実施形態の効果は同様に得られることは自明である。
また、本補正を行うタイミングであるが、あまり精度を要求されないような用途の場合は、工場から出荷するときなど、初めに一度補正係数を求めて、その値をその後の撮影に用いるようにする。
温度変化や経年変化を気を付けなくてはならない用途の場合には、機器のスイッチをオンさせた後に、最初の撮影の前までに補正係数を取得するようにする。すなわち、補正係数取得手段は、撮像装置の初期化時に補正係数を取得する。
また、補正係数取得手段は、動作中に補正係数を更新したい場合、たとえば動画を撮影する場合は、フレーム又はフィールドの間に、垂直ブランキング期間という、画素出力を必要としない期間があるので、その間に補正動作を行い、補正係数を再取得すればよい。また、静止画を撮影する場合は、撮影する前に補正係数を取得すれば良い。もし補正係数を取得する時間を実効的に0にしたい場合は、補正係数取得手段は、シャッターを開いている間、つまり被写体の露光を行うイメージセンサ201の光電変換による電荷蓄積期間と呼ばれる間に補正係数を取得すればよい。
再取得した補正係数は、たとえば既存の補正係数を全て上書きするようにする。ただし、外乱などが予測される環境下では、補正係数に突発的な外乱による誤りを有する可能性があるので、1度に全部を書き換えないで、既存の値と重み付け平均をとる形で補正係数を更新するとよい。その重みは、どれだけ新しく取得された補正係数が信頼できるかという、設計パラメーターとなる。
すなわち、係数記憶メモリ301は、新たに取得した補正係数と係数記憶メモリ301内の補正係数との重み付け平均を行った補正係数を更新記憶する。
また、補正係数の取得に必要な演算を、デジタル信号処理装置207のみで行うようにする。そうすることで、起動の高速化や、処理回路の負荷軽減という効果が得られる。すなわち、デジタル信号処理装置207は、イメージセンサ201の出力デジタル信号を基に補正係数を算出する補正係数算出手段を有する。
たとえば上に述べたように、機器のスイッチをオンさせたあとに補正係数を取得しようとした場合、機器のメインのコンピュータはシステムの起動のための別な処理をしている場合がほとんどである。得られたセンサ201からの出力を基に補正係数を算出する処理を行うことは、新たな演算を起動の際のシーケンスに加えることになり、起動時間が比較的長くなってしまう。
また、垂直ブランキング期間においても、メインのコンピュータは、次のフレームの撮影条件などを決定するための仕事をしている。その期間に補正係数の演算をさせるためには、読み出す行数を減らし、垂直ブランキング期間を長くしなくてはならない。
上記の2つのケースにおいても、本実施形態を適用すれば、イメージセンサ201とデジタル信号処理装置207の間で局所的に補正係数の算出が可能であれば、メインのコンピュータでの処理が不要となり、起動までの時間を長くせずにすむ効果が得られる。
また、各列において補正係数が異なると言うことは、たとえば3ビットAD変換で(1,1,1)という最大値のデジタルコードを得たとしても、その意味合いが異なることを意味する。画素からのデータ(1,1,1)と、補正係数(C3,C2,C1)の内積は、C3+C2+C1となり、その補正係数の要素の総和となる。ここで、補正係数が各列毎に異なることから、各列ごとに補正値の最大値が異なるということになり、それが明時の光反応に対する不均一性となって画質に影響する。
ゆえに、補正部211は、前記補正後の信号に対して、その補正に用いた補正係数の構成要素の総和を一定にするための係数との積をとることで正規化し、明時の光反応不均一性を補正する事が可能となる。もしくは、構成要素の総和が一定になるように正規化された補正係数を係数記憶メモリ301に記憶させるようにしても、同様の効果を得ることが出来る。また、補正部211とは別に、補正部211により補正されたデジタル信号に対して明時反応不均一性補正を行う明時反応不均一性補正手段を設けてもよい。ここで、明時反応不均一性(PRNU:Photo Response Non-uniformity)とは、同じ光量が入力された場合、すべての画素からの出力は均一になるはずであるが、画素そのものの感度のばらつきや、読み出し系のゲインのばらつきなどの要因で均一にならない。その度合いを割合で表現したものとなる。本実施形態においては、AD変換器で、おなじ電圧が入力されても、同じデジタル値が出力されないことから、補正しない場合は光に対する反応が不均一になることがある。これに対して本実施形態ではPRNUを補正することが可能となる。
また、補正部211は、出力ダイナミックレンジが一定になるように補正後の信号を正規化するようにしてもよい。ここでは、出力ダイナミックレンジを一定にする手段として、補正係数を基に正規化のための係数を算出するという手段を用いたが、本手法には限定されない。たとえば、同一の電圧値や、同一の光量によって出力される画素信号を、全カラムADCに入力した際のデジタル出力値を取得後、それらが一定になるような補正係数を作成する手法を用いてもよい。
(第4の実施形態)
図7は、本発明の第4の実施形態による撮像装置の構成例を示す図であり、図3と同一の部位には同じ番号を振っている。本実施形態では、デジタル信号処理装置207の具体的な設計例について述べる。図7は、デジタル信号処理装置207のクロックとCMOSイメージセンサ201からの画素データ出力のクロックを異なるクロックで動作させる場合の回路図の例を示す。
701は、3ビットのデータを数ワード貯めておくことができるFIFO(先入先出)バッファであり、イメージセンサ201及び補正部211の間に設けられる。本FIFO701は、基準タイミング発生器208の基準タイミングパルスを入力し、イメージセンサ201のデジタルデータを同期して取り込む。
FIFO701のデータは、ラッチ702でタイミング調節された後、補正部211に出力される。その際、補正部211は、タイミング調整に、信号処理用タイミング発生器703からのクロック704を用いる。補正部211の働きは、第2の実施形態とほぼ同じであるが、同期に用いるクロックが信号処理用タイミング発生器703からのものであるという点が異なる。
本実施形態では、補正部211は、FIFO701の出力周期に同期して係数記憶メモリ301から補正係数を入力する。
本実施形態による追加の効果は以下の通りである。たとえば保持用のメモリ301や、補正部211は、本図では専用のブロックとして書かれているが、ハードウェアへの実装を考えたときには汎用の算術演算装置や主記憶を用いる場合がある。その場合、その汎用部を常に補正機能実現のみに占有させることは困難となる。
そのようなケースにおいて、FIFO701に画素からのデータを保持させることが出来れば、保持させる間、補正を行う必要はないので、その期間に算術演算装置や主記憶にて他の役割を割り当てることが可能となる。
また、FIFO701に貯まったデータを処理するために、基準タイミングパルスよりも高速に補正を行わなくてはならなくなるが、信号処理向けに別な高速クロックを本実施形態のように用いることで、高速で、確実に同期が保証された正確な補正が可能となる。
なお、本実施形態では、FIFO701を用いていたが、たとえばFIFO701の代わりにフレームメモリや、ラインメモリ等のランダムアクセスメモリ(RAM)を用いても良い。その場合、補正部211は、ランダムアクセスメモリの読み出し周期に同期して係数記憶メモリ301から補正係数を入力する。
(第5の実施形態)
次に、特殊なシリアルデジタル出力を行うようなイメージセンサを用いた際の本発明の第5の実施形態を説明する。図8は、本発明の第5の実施形態のシリアルデジタル出力を行う、カラムADC内蔵のイメージセンサ801と、デジタル信号処理装置207によって構成される撮像装置の一例を示し、上記実施形態と同一の部位には同じ番号を振っている。
イメージセンサ801は、図2、図3及び図7の各列に3ビット保有していたメモリ204が、メモリ802のように1ビットになっている点、及び外部へのデータ出力端子803の幅が1ビットになっている点が上記実施形態のイメージセンサ201と異なる。
巡回型カラムADCでは、各ビットの上位ビットから順次に出力されてくるので、センサ801では、あるビットの変換が終了したら、全ビットの結果が出るのを待たずに順次出力していく。すなわち、センサ801は、各列の確定した上位ビットから順次デジタル信号を出力する。
デジタル信号処理装置207においては、そのシリアルデータ出力をメモリ804で保持する。ただし、イメージセンサ801からのデータは図9で示したような順番でメモリ804に格納されているので、そのまま3ビットずつ補正部211に出力してしまうと正しい補正が行われない。そこで、再配列手段805においては、901で例示するように、同一の列に属するビットのデータをメモリ804から抜き出してそれを上位ビットから下位ビットまで正しい順番に並び替えるという操作をおこない、補正部211に出力するようにする。たとえば、再配列手段805は、1列明の第3ビット、第2ビット及び最下位ビットのデータをメモリ804から抜き出して、補正部211に出力する。すなわち、再配列手段805は、イメージセンサ801の出力デジタル信号を画素毎の信号に再配列して補正部211に出力する。
本実施形態による追加の効果は以下の通りである。イメージセンサ801においては上位ビットから変換後すぐに外部に出力するようにして、イメージセンサ801が必要とするメモリ802の量を減らし、チップ面積が削減できている。そのようなイメージセンサ801においても、デジタル信号処理装置207に再配列手段805を持たせることで、正しいデータを補正部211に出力することが出来、正確な補正を実現することが可能となる。
(第6の実施形態)
図10は、本発明の第6の実施形態による撮像装置の構成例を示す図であり、図7と同等の部位には同じ番号が振ってある。この撮像装置は、微分非直線性誤差以外の補正を行うことができる。
1001は、微分非直線性以外の様々なセンサ特性を補正する、第2の補正部である。1002は、補正の後に、隣接の画素同士のデータを足し合わせる、画素加算処理部である。
補正部211は、補正後データ1003を生成した後に、それを第2の補正部1001に出力する。第2の補正部1001は、たとえば補正部211により補正されたデジタル信号に対して、水平方向にみられる固定パターンノイズを除去するための固定パターンノイズ除去手段や水平シェーディング補正を行う水平シェーディング補正手段などである。もしくは、第2の補正部1001は、たとえば補正部211により補正されたデジタル信号に対して、垂直方向に見られる固定パターンノイズを除去するための固定パターン除去手段や垂直シェーディング補正を行う垂直シェーディング補正手段などである。その後、画素加算処理部1002は、加算指示信号1004により加算の指示を入力した場合、隣接画素同士のデータを加算してデータレートを落として出力する。
すなわち、画素加算処理部1002は、補正部211及び第2の補正部1001により補正されたデジタル信号に対して複数の画素のデジタル信号を加算する。
本実施形態における追加の効果は以下の通りである。微分非直線性誤差の補正をする前のデータに対してシェーディング補正や固定パターンノイズの補正、および、画素データの加算を行うことは、正しくないデータに対する演算であり、その結果に誤りが生じる。誤った結果に対して、図2などで説明した微分非直線性誤差の補正を行ったとしても、正しい結果を得ることが出来ない。
本実施形態によって、微分非直線性誤差の補正がされた、精度の高いデータに対して他の様々な補正や、画素データの加算処理を行うことで、正しいシェーディング補正や固定パターンノイズ補正、および加算処理が行えるようになる。
なお、加算処理であるが、たとえば色別に分けて、必ず同じ色が加算されるようにしたり、また、加算の際には、重み付け加算などを行ってモアレ軽減処理を行っても良い。また、数列分のラインメモリを加算ブロックに付加し、二次元のカーネルに対して加算処理を行っても良い。その加算の種類に本実施形態の効果は依存していない。
(第7の実施形態)
図11は、本発明の第7の実施形態による撮像装置の構成例を示す図であり、図2と同じ部位には同じ番号を付記している。本実施形態は、複数の出力チャンネルを有するイメージセンサ201とデジタル信号処理装置207を組み合わせた場合について説明する。本実施形態においては、1列おきのAD変換器をそれぞれ別の独立したチャンネルに接続している。偶数チャンネルは第1のチャンネル1101に、奇数チャンネルは第2のチャンネル1102に接続されている。イメージセンサ201は、複数チャンネル1101及び1102のデジタル信号を出力する。
それら2つのチャンネル1101及び1102は、マルチプレクサ1103においてマルチプレクスされた後に、単一の補正部211に接続される。マルチプレクサ1103は、複数チャンネル1101及び1102から同位相で出力される3ビットのデジタルデータに対して、位相をずらして補正部211に出力する。
本実施形態の効果は、複数のチャンネルが存在した場合でも、単一の補正部211ですむので、ハードウェアがコンパクトになるという点である。また、ここでは2つのチャンネル1101及び1102を一つにマルチプレクスする例を述べたが、2つ以上の場合でも同様の効果が得られる。
なお、マルチプレクサ1103を具体的にイメージセンサ201側、デジタル信号処理装置207側、どちらに配置するかについて、本実施形態では限定していない。まず、イメージセンサ201とデジタル信号処理装置207を一つの半導体基板上に作成する場合はそのような区別は必要ない。
また、もしイメージセンサ201側にマルチプレクサ1103を持たせることが可能であればイメージセンサ201とデジタル信号処理装置207の間の配線数が減少するという追加の効果が得られる。
また、デジタル信号処理装置207は一般的にイメージセンサ201よりも進んだ製造プロセスで作成される。そのために、デジタル信号処理装置207側にマルチプレクサ1103を持たせるならば、高速動作が要求されるマルチプレクサ1103を同一チップ内に配置しやすいという効果が得られる。とくにマルチプレクサ1103のチャンネル数が2チャンネル以上になり、マルチプレクサ1103へ求められる切り替え速度が上昇してくると、この効果は無視できなくなる。
(第8の実施形態)
本発明の第8の実施形態では、残渣の増幅率を変更した点について述べる。ここで残渣信号とは、AD変換の各ステップ終了後のアナログ信号から参照レベルを減算した後の信号である。
図12は、本発明の第8の実施形態の残渣の増幅の様子を示したResidue Transfer Function(RTF)特性のグラフである。横軸にAD変換器に入力される電圧、縦軸に、その入力がどのように変換されて再度マルチステップAD変換器の入力へ戻ってくるかを示している。
1201は、通常の巡回型AD変換器におけるRTF特性である。入力が−VREFから+VREFまで入力された場合、比較結果に基づいた処理ののち、入力のダイナミックレンジと同じ−VREFから+VREFまでのレンジに残渣は増幅される。
本実施形態においては、RTF特性を、1202のように、設計時に残渣が入力ダイナミックレンジ未満に増幅されるようにしている。
本発明の第8の実施形態の効果を説明する。設計時に1201のように作成しても、特にイメージセンサの列に挿入するようなAD変換器では、製造時のばらつきが通常のAD変換器よりも大きくなってしまう。そのようなとき、1203のように、増幅後の残渣が入力のダイナミックレンジを越えてしまうような場合、図13に示すように、異なるアナログ値が同一のデジタル値に対応させられてしまう重複コードが生じてしまい、デジタル回路による補正が不可能になる。
ゆえに本実施形態のように、設計時に、製造ばらつきを考慮して、最悪のケースでも1203のようなRTF特性を示さないように工夫することで、重複コードを生じさせず、常にデジタル補正が可能になる。
本実施形態では、AD変換器は、各ステップ終了後の残渣を電圧増幅後、その残渣のダイナミックレンジがAD変換器の入力ダイナミックレンジ以下になるようにする。
また、RTF特性のずれを生む要因は、製造ばらつきのみではない。特に、図6に示したようなAD変換器の回路ブロック図において、全差動型の演算増幅器103を用いないで、シングルエンド型の演算増幅器103を用いて構成した場合にも生じる。その場合は、ホールド時に生じるクロックフィードスルーや、増幅器の出力オフセット電圧のために、残渣の増幅後の電圧が入力ダイナミックレンジを越えてしまう。本実施形態を適用することにより、特にイメージセンサのようにレイアウトの際の条件が厳しい、精度の高いアナログ回路としての設計が困難なケースにおいても、デジタル補正が可能となる。
加えて、追加の効果として、シングルエンド型は一般的に全差動型の半分のレイアウト幅で済むので、イメージセンサへのレイアウトが容易であるという効果がえられる。
なお、このように、製造ばらつきを考慮したRTF特性の設計は、巡回型のみに限定されない。たとえば、4ビットのAD変換器において、上位2ビットと下位2ビットを分けて変換するような、比較ステップ数を減少させた二重積分型AD変換器や、おなじく比較ステップ数を減少させたランプ型AD変換器においても、デジタル補正が可能である。これらのAD変換器においても、図14のように、増幅後の残渣が、製造ばらつきやクロックフィードスルー、増幅時の出力オフセットを含めても入力のダイナミックレンジを超えないように設計すればよい。これにより、重複コードの生じない、デジタル補正可能なAD変換器を作成することができる。
以上のように、第1〜第8の実施形態によれば、イメージセンサの出力デジタル信号に対して補正することにより、2回のアナログデジタル変換結果を用いる場合に比べ、高速に補正を行うことができる。また、2回のアナログデジタル変換を行うための回路の接続を切り替える必要がないので、余分なスイッチ又はアナログ素子等を極力不要とすることができる。また、補正誤りを防止し、適切な補正を行うことができる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。また実施形態においては、各列にAD変換器を有する構成に関して説明したがこれに限らず、複数列ごとにAD変換器が設けられていてもよく、撮像装置として複数のA/D変換器を有していればよい。また、本発明は、直接的には微分非直線性誤差を補正するものであるが、同時に積分非直線性誤差も補正することが可能となる。
本発明の第1の実施形態によるAD変換器を示す図である。 本発明の第1の実施形態による撮像装置の構成例を示す図である。 本発明の第2の実施形態によるカラムADCを有する撮像装置の構成例を示す図である。 図3の回路の動作を示すタイミング図である。 本発明の第3の実施形態の補正の対象となるAD変換器の入出力特性を示す図である。 本発明の第3の実施形態の補正係数を得ることが可能なカラムADCの構成の一例を示す図である。 本発明の第4の実施形態による撮像装置の構成例を示す図である。 本発明の第5の実施形態による撮像装置の構成例を示す図である。 データ格納の順番を示す図である。 本発明の第6の実施形態による撮像装置の構成例を示す図である。 本発明の第7の実施形態による撮像装置の構成例を示す図である。 本発明の第8の実施形態の残渣の増幅の様子を示したRTF特性のグラフである。 アナログ信号とデジタル信号の関係を示すグラフである。 入力信号と増幅後信号の関係を示すグラフである。 AD変換器の入出力特性を模式的に表した図である。 アナログ入力とデジタル出力の関係を示すグラフである。
符号の説明
201 イメージセンサ
202 画素
203 アナログデジタル変換器
204 メモリ
205 水平シフトレジスタ
206 端子
207 デジタル信号処理装置
208 基準タイミング発生器
209 デジタルデータ
210 ラッチ
211 補正部
212 出力端子

Claims (15)

  1. 2回以上のステップに分けて上位ビットのデジタル信号から変換結果を確定させるアナログデジタル変換器を複数有するイメージセンサと、
    前記アナログデジタル変換器の非直線性誤差を補正するための複数の補正係数ベクトルを前記複数のアナログデジタル変換器に対応して有し、各アナログデジタル変換器に対応した複数の補正係数ベクトルを基に、前記各アナログデジタル変換器から出力されるデジタル信号の非直線性誤差を補正する第1の補正手段とを有し、
    前記第1の補正手段は、前記複数のアナログデジタル変換器からの前記デジタル信号をシリアル出力に変換した後に、前記変換した後のデジタル信号と前記複数の補正係数ベクトルとの演算により、前記非直線性誤差の補正を行うことを特徴とする撮像装置。
  2. 前記イメージセンサは、前記アナログデジタル変換器を用いて前記補正係数ベクトルを取得する補正係数取得手段を有することを特徴とする請求項記載の撮像装置。
  3. さらに、前記補正係数ベクトルを記憶する補正係数メモリを有し、
    前記第1の補正手段は、前記イメージセンサの出力周期に同期して前記補正係数メモリから前記補正係数ベクトルを入力することを特徴とする請求項1又は2記載の撮像装置。
  4. さらに、前記補正係数ベクトルを記憶する補正係数メモリと、
    前記イメージセンサ及び前記第1の補正手段の間に設けられるFIFOバッファもしくはランダムアクセスメモリとを有し、
    前記第1の補正手段は、前記FIFOバッファもしくはランダムアクセスメモリのいずれかの出力周期に同期して前記補正係数メモリから前記補正係数ベクトルを入力することを特徴とする請求項1又は2記載の撮像装置。
  5. 前記補正係数ベクトルは、前記アナログデジタル変換器により出力されるデジタル信号の各ビットを要素とし、その要素と同じ数の要素から構成される補正係数ベクトルであり、
    前記第1の補正手段は、前記補正後の信号に対して、前記補正係数ベクトルを構成する要素の総和を一定にするための係数との積をとることで正規化することを特徴とする請求項1〜のいずれか1項に記載の撮像装置。
  6. 前記補正係数ベクトルは、前記アナログデジタル変換器により出力されるデジタル信号の各ビットを要素とし、その要素と同じ数の要素から構成される補正係数ベクトルであり、
    さらに、構成する要素の総和が一定になるように正規化された前記補正係数ベクトルを記憶する補正係数メモリを有することを特徴とする請求項1〜のいずれか1項に記載の撮像装置。
  7. 前記第1の補正手段は、出力ダイナミックレンジが一定になるように前記補正後の信号を正規化することを特徴とする請求項1〜のいずれか1項に記載の撮像装置。
  8. さらに、前記第1の補正手段により補正されたデジタル信号に対して固定パターンノイズ、水平シェーディング、垂直シェーディング、明時反応不均一性の少なくとも1つの補正を行う第2の補正手段と、
    前記第2の補正手段により補正された後の複数の画素のデジタル信号を加算する画素加算処理手段とを有することを特徴とする請求項1〜のいずれか1項に記載の撮像装置。
  9. さらに、撮像装置の初期化時、垂直ブランキング期間、前記イメージセンサの光電変換による電荷蓄積期間のいずれかにおいて前記補正係数ベクトルを取得する補正係数取得手段を有することを特徴とする請求項1記載の撮像装置。
  10. さらに、前記補正係数ベクトルを記憶する補正係数メモリを有し、
    前記補正係数メモリは、新たに取得した補正係数ベクトルと前記補正係数メモリ内の補正係数ベクトルとの重み付け平均を行った補正係数ベクトルを更新記憶することを特徴とする請求項1又は2記載の撮像装置。
  11. 前記イメージセンサは、各アナログデジタル変換器の確定した上位ビットから順次デジタル信号を出力し、
    さらに、前記イメージセンサの出力デジタル信号を画素毎の信号に再配列して前記第1の補正手段に出力する再配列手段を有することを特徴とする請求項1〜10のいずれか1項に記載の撮像装置。
  12. 前記イメージセンサは、複数チャンネルのデジタル信号を出力し、
    さらに、前記複数チャンネルの同位相のデジタル信号に対して位相をずらして前記第1の補正手段に出力するマルチプレクサを有することを特徴とする請求項1〜11のいずれか1項に記載の撮像装置。
  13. 前記アナログデジタル変換器は、各ステップ終了後のアナログ信号から参照レベルを減算した後の信号を電圧増幅後、その残渣のダイナミックレンジが前記アナログデジタル変換器の入力ダイナミックレンジ以下になることを特徴とする請求項1〜12のいずれか1項に記載の撮像装置。
  14. さらに、光電変換素子を有する画素が2次元状に配された画素領域を有し、
    前記複数のアナログデジタル変換器は、前記画素からのアナログ信号をデジタル信号に変換し、
    前記画素領域と前記複数のアナログデジタル変換器とは同一半導体基板上に配されていることを特徴とする請求項1〜13のいずれか1項に記載の撮像装置。
  15. 2回以上のステップに分けて上位ビットのデジタル信号から変換結果を確定させるアナログデジタル変換器を複数有するイメージセンサを有する撮像装置の処理方法であって、
    前記アナログデジタル変換器の非直線性誤差を補正するための複数の補正係数ベクトルを前記複数のアナログデジタル変換器に対応して有し、各アナログデジタル変換器に対応した複数の補正係数ベクトルを基に、前記各アナログデジタル変換器から出力されるデジタル信号の非直線性誤差を補正する第1の補正ステップを有し、
    前記第1の補正ステップでは、前記複数のアナログデジタル変換器からの前記デジタル信号をシリアル出力に変換した後に、前記変換した後のデジタル信号と前記複数の補正係数ベクトルとの演算により、前記非直線性誤差の補正を行うことを特徴とする撮像装置の処理方法。
JP2006167750A 2006-06-16 2006-06-16 撮像装置及びその処理方法 Expired - Fee Related JP4827627B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006167750A JP4827627B2 (ja) 2006-06-16 2006-06-16 撮像装置及びその処理方法
EP07745528A EP2036332A1 (en) 2006-06-16 2007-06-13 Image pickup device and signal processing method thereof
PCT/JP2007/062361 WO2007145364A1 (en) 2006-06-16 2007-06-13 Image pickup device and signal processing method thereof
US12/303,259 US8169498B2 (en) 2006-06-16 2007-06-13 Nonlinear error correction processor for an image sensor
EP11168649.9A EP2364015A3 (en) 2006-06-16 2007-06-13 Image pickup device and signal processing method thereof
CN200780022179.9A CN101467437B (zh) 2006-06-16 2007-06-13 图像拾取装置及其信号处理方法
US13/418,722 US8451361B2 (en) 2006-06-16 2012-03-13 Image pickup device and signal processing method thereof
US13/871,781 US8970758B2 (en) 2006-06-16 2013-04-26 Image pickup device and signal processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167750A JP4827627B2 (ja) 2006-06-16 2006-06-16 撮像装置及びその処理方法

Publications (2)

Publication Number Publication Date
JP2007336374A JP2007336374A (ja) 2007-12-27
JP4827627B2 true JP4827627B2 (ja) 2011-11-30

Family

ID=38573336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167750A Expired - Fee Related JP4827627B2 (ja) 2006-06-16 2006-06-16 撮像装置及びその処理方法

Country Status (5)

Country Link
US (3) US8169498B2 (ja)
EP (2) EP2364015A3 (ja)
JP (1) JP4827627B2 (ja)
CN (1) CN101467437B (ja)
WO (1) WO2007145364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146749B2 (en) 2018-03-07 2021-10-12 Samsung Electronics Co., Ltd. Image sensor, electronic system including the same, and method of operating the same

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154268B2 (ja) * 2003-03-27 2008-09-24 キヤノン株式会社 撮像装置
JP4827627B2 (ja) * 2006-06-16 2011-11-30 キヤノン株式会社 撮像装置及びその処理方法
JP4101281B1 (ja) 2007-03-15 2008-06-18 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP5164509B2 (ja) * 2007-10-03 2013-03-21 キヤノン株式会社 光電変換装置、可視光用光電変換装置及びそれらを用いた撮像システム
JP5094498B2 (ja) * 2008-03-27 2012-12-12 キヤノン株式会社 固体撮像装置及び撮像システム
JP4478723B2 (ja) 2008-03-31 2010-06-09 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP5127536B2 (ja) * 2008-03-31 2013-01-23 キヤノン株式会社 固体撮像装置の駆動方法及び撮像システム
JP5213501B2 (ja) * 2008-04-09 2013-06-19 キヤノン株式会社 固体撮像装置
JP4494492B2 (ja) * 2008-04-09 2010-06-30 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP4500862B2 (ja) * 2008-04-11 2010-07-14 キヤノン株式会社 固体撮像装置の駆動方法
JP5328224B2 (ja) 2008-05-01 2013-10-30 キヤノン株式会社 固体撮像装置
JP4759590B2 (ja) 2008-05-09 2011-08-31 キヤノン株式会社 光電変換装置及びそれを用いた撮像システム
JP2009278241A (ja) 2008-05-13 2009-11-26 Canon Inc 固体撮像装置の駆動方法および固体撮像装置
JP5077091B2 (ja) * 2008-06-23 2012-11-21 コニカミノルタビジネステクノロジーズ株式会社 固体撮像装置
JP5371330B2 (ja) * 2008-08-29 2013-12-18 キヤノン株式会社 固体撮像装置
JP5451051B2 (ja) * 2008-12-12 2014-03-26 キヤノン株式会社 撮像装置及び撮像システム
JP5258551B2 (ja) 2008-12-26 2013-08-07 キヤノン株式会社 固体撮像装置、その駆動方法及び撮像システム
JP5272860B2 (ja) * 2009-04-08 2013-08-28 ソニー株式会社 固体撮像素子およびカメラシステム
CN101964654A (zh) * 2009-07-22 2011-02-02 Lsi公司 用于高阶非对称性校正的系统和方法
JP4881987B2 (ja) * 2009-10-06 2012-02-22 キヤノン株式会社 固体撮像装置および撮像装置
JP5290923B2 (ja) * 2009-10-06 2013-09-18 キヤノン株式会社 固体撮像装置および撮像装置
JP5645505B2 (ja) * 2010-06-29 2014-12-24 キヤノン株式会社 撮像装置及びその制御方法
JP5885401B2 (ja) 2010-07-07 2016-03-15 キヤノン株式会社 固体撮像装置および撮像システム
JP5656484B2 (ja) 2010-07-07 2015-01-21 キヤノン株式会社 固体撮像装置および撮像システム
JP5697371B2 (ja) 2010-07-07 2015-04-08 キヤノン株式会社 固体撮像装置および撮像システム
JP5645513B2 (ja) 2010-07-07 2014-12-24 キヤノン株式会社 固体撮像装置及び撮像システム
JP5751766B2 (ja) 2010-07-07 2015-07-22 キヤノン株式会社 固体撮像装置および撮像システム
JP5643555B2 (ja) 2010-07-07 2014-12-17 キヤノン株式会社 固体撮像装置及び撮像システム
JP5730527B2 (ja) * 2010-10-08 2015-06-10 シャープ株式会社 光検出装置、及び光検出装置を搭載した電子機器
JP5721489B2 (ja) * 2011-03-22 2015-05-20 キヤノン株式会社 Ad変換回路、光電変換装置、撮像システム、およびad変換回路の駆動方法
US8822898B2 (en) * 2011-09-28 2014-09-02 Aptina Imaging Corporation Imager row control-signal tester
JP5864990B2 (ja) 2011-10-03 2016-02-17 キヤノン株式会社 固体撮像装置およびカメラ
JP5425156B2 (ja) * 2011-10-07 2014-02-26 キヤノン株式会社 Ad変換器、光電変換装置、および撮像システム
JP6023437B2 (ja) 2012-02-29 2016-11-09 キヤノン株式会社 固体撮像装置及びカメラ
JP5847737B2 (ja) 2012-03-30 2016-01-27 キヤノン株式会社 光電変換装置および撮像システム
JP5865272B2 (ja) * 2012-03-30 2016-02-17 キヤノン株式会社 光電変換装置および撮像システム
JP6021626B2 (ja) * 2012-12-14 2016-11-09 キヤノン株式会社 撮像装置の駆動方法、撮像装置、撮像システム
US9445027B2 (en) * 2014-02-20 2016-09-13 Semiconductor Components Industries, Llc Image sensors with column memory repair circuitry
CN104980153B (zh) * 2014-04-01 2018-02-16 扬智科技股份有限公司 模拟数字转换模块、传输函数补偿方法与装置
US10009557B2 (en) * 2014-04-16 2018-06-26 Sony Corporation Imaging element, control method, program, and electronic device
ES2744924T3 (es) * 2015-01-14 2020-02-26 Saronikos Trading & Services Unipessoal Lda Aparato y procedimiento para detectar entidades en una imagen
JP6628497B2 (ja) * 2015-05-19 2020-01-08 キヤノン株式会社 撮像装置、撮像システム、および画像処理方法
US11393867B2 (en) 2017-12-06 2022-07-19 Facebook Technologies, Llc Multi-photodiode pixel cell
US11233085B2 (en) 2018-05-09 2022-01-25 Facebook Technologies, Llc Multi-photo pixel cell having vertical gate structure
US11089241B2 (en) 2018-06-11 2021-08-10 Facebook Technologies, Llc Pixel cell with multiple photodiodes
US11463636B2 (en) 2018-06-27 2022-10-04 Facebook Technologies, Llc Pixel sensor having multiple photodiodes
US10931884B2 (en) 2018-08-20 2021-02-23 Facebook Technologies, Llc Pixel sensor having adaptive exposure time
US11956413B2 (en) 2018-08-27 2024-04-09 Meta Platforms Technologies, Llc Pixel sensor having multiple photodiodes and shared comparator
US11595602B2 (en) * 2018-11-05 2023-02-28 Meta Platforms Technologies, Llc Image sensor post processing
US11218660B1 (en) 2019-03-26 2022-01-04 Facebook Technologies, Llc Pixel sensor having shared readout structure
JP2021121060A (ja) * 2020-01-30 2021-08-19 キヤノン株式会社 半導体装置、システム、および機器
US11910114B2 (en) 2020-07-17 2024-02-20 Meta Platforms Technologies, Llc Multi-mode image sensor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014679D0 (en) * 1990-07-02 1990-08-22 Sarnoff David Res Center Sequential successive approximation a/d converter
US5164726A (en) * 1991-06-12 1992-11-17 Eastman Kodak Company Self calibrating dual range a/d converter
US5198816A (en) * 1991-08-30 1993-03-30 Eg&G, Inc. General purpose system for digitizing an analog signal
US6115066A (en) * 1997-06-12 2000-09-05 International Business Machines Corporation Image sensor with direct digital correlated sampling
US5982318A (en) * 1997-10-10 1999-11-09 Lucent Technologies Inc. Linearizing offset cancelling white balancing and gamma correcting analog to digital converter for active pixel sensor imagers with self calibrating and self adjusting properties
WO2000019711A1 (de) * 1998-09-30 2000-04-06 Infineon Technologies Ag Verfahren und vorrichtung zur belichtungsabhängigen rausch-korrektur bei zeilen- und spaltenadressierbaren bildsensoren
US6137432A (en) * 1998-11-04 2000-10-24 I C Media Corporation Low-power column parallel ADC in CMOS image sensors
EP1349383A4 (en) * 2000-12-01 2006-10-11 Honda Motor Co Ltd IMAGE SENSOR OUTPUT CORRECTION DEVICE
JP3808349B2 (ja) * 2001-01-12 2006-08-09 三菱電機株式会社 黒レベル補正装置
US20030202111A1 (en) * 2002-04-30 2003-10-30 Jaejin Park Apparatus and methods for dark level compensation in image sensors using dark pixel sensor metrics
JP4022862B2 (ja) * 2002-06-11 2007-12-19 ソニー株式会社 固体撮像装置及びその制御方法
US6903670B1 (en) * 2002-10-04 2005-06-07 Smal Camera Technologies Circuit and method for cancellation of column pattern noise in CMOS imagers
JP2004343623A (ja) * 2003-05-19 2004-12-02 Minolta Co Ltd 固体撮像装置
JP2005210480A (ja) * 2004-01-23 2005-08-04 Canon Inc A/d変換回路及びその出力補正方法、それを用いた撮像装置、放射線撮像装置、放射線撮像システム
JP4334372B2 (ja) * 2004-02-19 2009-09-30 株式会社リコー 画像読取装置、画像形成装置及び画像読取方法
US7633539B2 (en) * 2004-06-07 2009-12-15 Canon Kabushiki Kaisha Image pickup device with analog-to-digital converter
JP4230967B2 (ja) * 2004-07-02 2009-02-25 富士通マイクロエレクトロニクス株式会社 撮像装置、撮像装置の制御方法、cmosイメージセンサ
JP4366501B2 (ja) * 2004-07-08 2009-11-18 国立大学法人静岡大学 ディジタルノイズキャンセル機能をもつイメージセンサ
JP4157083B2 (ja) * 2004-09-09 2008-09-24 マイクロン テクノロジー,インコーポレイテッド オンチップ半列並列パイプラインアナログ‐デジタル変換器を具えるイメージセンサ
JP4363308B2 (ja) * 2004-11-02 2009-11-11 ソニー株式会社 固体撮像素子の信号処理装置及び方法並びに撮像装置
JP4760004B2 (ja) 2004-12-15 2011-08-31 村田機械株式会社 プレス機械の昇降装置
JP4827627B2 (ja) * 2006-06-16 2011-11-30 キヤノン株式会社 撮像装置及びその処理方法
JP4194633B2 (ja) * 2006-08-08 2008-12-10 キヤノン株式会社 撮像装置及び撮像システム
JP5053737B2 (ja) * 2007-07-06 2012-10-17 キヤノン株式会社 光電変換装置
US7808417B2 (en) * 2007-09-14 2010-10-05 Clariphy Communications, Inc. Analog-to-digital converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146749B2 (en) 2018-03-07 2021-10-12 Samsung Electronics Co., Ltd. Image sensor, electronic system including the same, and method of operating the same

Also Published As

Publication number Publication date
JP2007336374A (ja) 2007-12-27
WO2007145364B1 (en) 2008-03-27
EP2364015A3 (en) 2013-11-06
US8169498B2 (en) 2012-05-01
US20090244328A1 (en) 2009-10-01
US8451361B2 (en) 2013-05-28
US8970758B2 (en) 2015-03-03
US20130235244A1 (en) 2013-09-12
EP2036332A1 (en) 2009-03-18
EP2364015A2 (en) 2011-09-07
US20120169896A1 (en) 2012-07-05
CN101467437A (zh) 2009-06-24
CN101467437B (zh) 2013-08-07
WO2007145364A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
JP4827627B2 (ja) 撮像装置及びその処理方法
US8208055B2 (en) Solid-state imaging apparatus and imaging system
JP6478467B2 (ja) 撮像装置、撮像装置の駆動方法、撮像システム
EP2104235B1 (en) Analog-to-digital converter, analog-to-digital converting method, solid-state image pickup device.
JP6226551B2 (ja) 撮像装置
US20020167611A1 (en) Image sensor ADC and CDS per column
JP4588787B2 (ja) 固体撮像素子及び撮像方法
JP6998995B2 (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
JP4366501B2 (ja) ディジタルノイズキャンセル機能をもつイメージセンサ
US8149150B2 (en) Cyclic analog/digital converter
US6473124B1 (en) RAM line storage for fixed pattern noise correction
JP4370407B2 (ja) イメージセンサ
US20160295150A1 (en) Counting apparatus and image sensor including the same
US20060055576A1 (en) Analog to digital conversion with offset cancellation
US20100110231A1 (en) Output control circuit and imaging device
JP4469989B2 (ja) Nビットa/d変換器
JP2008245121A (ja) 撮像装置、およびイメージセンサデバイス
JP4478798B2 (ja) オフセット低減機能をもつ巡回型a/d変換器、およびオフセット電圧を低減する方法
KR100801013B1 (ko) Cmos이미지 센서에서 고정 패턴 잡음을 제거할 수 있는방법과 장치
JP6824678B2 (ja) 撮像素子、撮像装置、及び撮像素子の信号処理方法
JP7198835B2 (ja) Ad変換装置、撮像装置、内視鏡システム、およびad変換方法
CN117674846A (zh) 校准来自一组模数转换器的adc输出代码的校准电路和方法
US20160134297A1 (en) Method and device for analog/digital conversion of an analog signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees