JP2008245121A - 撮像装置、およびイメージセンサデバイス - Google Patents

撮像装置、およびイメージセンサデバイス Download PDF

Info

Publication number
JP2008245121A
JP2008245121A JP2007085488A JP2007085488A JP2008245121A JP 2008245121 A JP2008245121 A JP 2008245121A JP 2007085488 A JP2007085488 A JP 2007085488A JP 2007085488 A JP2007085488 A JP 2007085488A JP 2008245121 A JP2008245121 A JP 2008245121A
Authority
JP
Japan
Prior art keywords
signal
circuit
analog
digital
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007085488A
Other languages
English (en)
Inventor
Shoji Kawahito
祥二 川人
Nobuhiro Kawai
信宏 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2007085488A priority Critical patent/JP2008245121A/ja
Publication of JP2008245121A publication Critical patent/JP2008245121A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

【課題】ランダムテレグラフノイズを低減し、低ノイズの撮像装置を提供する。
【解決手段】撮像装置11では、画素13は、トランジスタM1を介して、フォトダイオードPDに受けた光Lに対応した電気信号Sを提供する。ヒストグラム回路17は、ヒストグラムのための計数値SHISを生成するために、アナログ・ディジタル変換器15の出力ディジタル値の範囲の少なくとも一部分を区分した複数の出力セグメントを用いる。信号生成回路19は、計数値に応じて補正用信号SCOLLECTを生成する。補正回路21は、補正用信号SCOLLECT用いて、アナログ・ディジタル変換器15からの出力信号SA/Dを補正して、補正されたディジタル信号SOUTを生成する。信号生成回路19は、ヒストグラム回路17からの計数値を用いて補正用信号を生成SCOLLECTすると共に、補正回路21は、A/D変換器からの出力信号SA/Dを補正する。
【選択図】図1

Description

本発明は、撮像装置、およびイメージセンサデバイスに関する。
ランダムテレグラフノイズが、4トランジスタのCMOSイメージセンサ(CIS)ピクセルで観測された。このピクセルは、0.187マイクロメートルルールのCMOSプロセスで作製された。ピクセルからの支配的な読み出しノイズは、フォトダイオードCMOSピクセル中のソースフォロアからのものである。
"Random Telegraph Signal in CMOS Image Sensor Pixels," X. Wang, P.R. Rao, A. Mierop*, A.J.P. Theuwissen, Delft University ofTechnology, Delft, The Netherlands, *DALSA B.V., Eindhoven, The Netherlands Technical Digest,International Electron Device Meeting, 2006.
CMOSイメージセンサの画素では、埋め込みフォトダイオードを用いることによりフォトダイオードの暗電流が低減されると共に、またリセットノイズがキャンセルされた結果、画素の読み出しトランジスタが発生するノイズが支配的になっている。特に、ランダムテレグラフノイズ(RTN:Random Telegraph Noise)が観測されている。このノイズは、微小なトランジスタにおいて発生される。画素によっては、極端に大きなランダムテレグラフノイズを発生することがあり、その低減が、例えば極低照度でのCMOSイメージセンサの応用において重要である。本発明は、ランダムテレグラフノイズを低減可能であり低ノイズの撮像装置を提供することを目的とし、また撮像装置のためのCMOSイメージセンサを提供することを目的とする。
本発明の一側面に係る撮像装置およびイメージセンサデバイスは、(a)受けた光に対応した電気信号をトランジスタを介して提供する画素と、(b)受けたアナログ信号の複数回のサンプリングを行うと共に、サンプリングに対応する複数のディジタル信号を生成し、画素から読み出しを行うためのアナログ・ディジタル変換器とを含む。
アナログ・ディジタル変換器は、ヒストグラムのための計数値を生成するための複数回のサンプリングを画素からの単一の読み出しアナログ信号に対して行う。また、アナログ・ディジタル変換器は、複数回のサンプリングに対応した複数のディジタル信号を生成する。
また、本発明に係る撮像装置およびイメージセンサデバイスは、(c)アナログ・ディジタル変換器の出力ディジタル値の範囲の少なくとも一部分を区分しており出力ディジタル値に関連づけて番地付けた複数の出力セグメントそれぞれにおけるの出現頻度を計数して、ヒストグラムのための計数値を生成するためのヒストグラム回路を含むことができる。
ヒストグラム回路は、アナログ・ディジタル変換器からの複数のディジタル信号の出現頻度を出力セグメント毎に計数するので、ヒストグラムのための計数値が生成される。
さらに、本発明に係る撮像装置は、(d)計数値に応じて補正用信号を生成するための信号生成回路と、(e)補正用信号を用いて、画素の読み出し信号に対応するアナログ・ディジタル変換器からの出力信号を補正する補正回路とを備えることができる。
この撮像装置によれば、信号生成回路は、ヒストグラム回路からの計数値を用いて補正用信号を生成すると共に、補正回路は、アナログ・ディジタル変換器からの出力信号を補正する。これ故に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
本発明に係る撮像装置およびイメージセンサデバイスは、ヒストグラム回路からの計数値の情報量をデータ圧縮して、計数値に関する圧縮信号を生成するための圧縮回路を備えることができる。
この撮像装置およびイメージセンサデバイスによれば、計数値の情報量が圧縮されるので、所望の場所に設置される信号生成回路および補正回路へ計数値情報が転送可能になる。これ故に、計数値情報の転送の後に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの画像装置が提供される。
本発明に係る撮像装置では、信号生成回路は、出力セグメントのうち計数値が非ゼロである出力セグメントから番地付けにおける最大番地および最小番地の出力セグメントを検出して、ヒストグラムにおけるメジアンに対応するメジアン信号を補正用信号として生成することが好ましい。
この撮像装置によれば、ヒストグラムにおけるメジアンに対応するメジアン信号によりアナログ・ディジタル変換出力信号を補正するので、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
本発明に係る撮像装置では、信号生成回路は、出力セグメントのうち計数値が非ゼロである出力セグメントから番地付けにおける最大番地および最小番地の出力セグメントを検出して、ヒストグラムにおけるメジアンに対応するメジアン信号を生成し、信号生成回路は、出力セグメントの番地付けでメジアン信号に対応するメジアン出力セグメントを含む部分的な範囲内の出力セグメントの番地の平均値に対応する信号を補正用信号として生成することが好ましい。
この撮像装置によれば、所定の範囲内の出力セグメントの番地の平均値による補正用信号によりアナログ・ディジタル変換出力信号を補正するので、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、画素からの信号を受けるプリアンプと、プリアンプによって処理された信号を受けるA/D変換回路とを含むことができる。帯域を抑えた大きな利得のプリアンプを用いることにより、低周波領域の増幅率を大きくしまた高周波領域における増幅率を小さくできるので、画素からの読み出し信号における高周波ノイズを低減できる。このため、熱雑音が低減される。
本発明に係る撮像装置は、画素は、リセットレベルおよび信号レベルを提供し、複数回のサンプリングは、リセットレベルの複数回のサンプリングおよび信号レベルの複数回のサンプリングを含むことができる。この撮像装置によれば、画素のリセットノイズをキャンセルできる。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、A/D変換回路と、リセットレベルのためのサンプリングに対応するA/D変換回路からのディジタル変換値を格納する複数の記憶回路と、信号レベルのためのサンプリングに対応するA/D変換回路からのディジタル変換値の各々と記憶回路に格納されリセットレベルの対応するディジタル変換値との差信号を生成する差分回路とを備え、該差信号は記憶回路の一つに格納される。この撮像装置によれば、リセットレベルおよび信号レベルそれぞれのサンプリングをA/D変換回路によって行った後に、リセットノイズをキャンセルすることができる。
本発明に係る撮像装置では、ヒストグラム回路は、リセットレベルの複数回のサンプリンの信号から第1の計数値を生成すると共に、信号レベルの複数回のサンプリングの信号から第2の計数値を生成できる。信号生成回路は、第1および第2の計数値に応じて第1および第2の補正用信号をそれぞれ生成と共に、第1の補正信号と第2の補正信号との差信号を補正用信号として生成できる。信号生成回路は、リセットレベルに対応したアナログ・ディジタル変換器からの第1の出力信号と信号レベルに対応したアナログ・ディジタル変換器からの第2の出力信号との差信号を生成すると共に、補正用信号を用いて該差信号を補正できる。この撮像装置によれば、リセットレベルおよび信号レベルについてそれぞれのヒストグラムの計数値を用いて、個々の計数値から第1および補正信号から差信号を生成すると共に、この差信号を用いて、リセットレベルおよび信号レベルにそれぞれ対応した第1および第2の出力信号の差信号を補正できる。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、A/D変換回路と、A/D変換回路から提供された第1回サンプリング信号を格納するための第1の記憶回路と、A/D変換回路から提供された第2回〜第M回サンプリング信号の各々と第1の記憶回路に格納された信号との差分信号を生成する差分回路と、差分信号を格納するための複数の第2の記憶回路とを含むことができる。
この撮像装置によれば、第2回サンプリング以降のサンプリング信号の各々は、第1の記憶回路に格納された第1回サンプリング信号との差分を取られて、差分値は順に第2の記憶回路に格納される。ヒストグラム回路は差分信号に対応する計数値を生成し、該計数値に基づいた補正値を用いて、A/D変換回路からのディジタル変換値を補正できる。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、A/D変換回路と、A/D変換回路から提供された第1回サンプリング信号を格納するための第1の記憶回路と、複数の第2の記憶回路と、第1〜第3のディジタル差分回路とを含み、第1のディジタル差分回路は、A/D変換回路の出力からの信号と第1の記憶回路からの信号との差分信号を生成し該差分信号を第1の記憶回路に提供し、第2のディジタル差分回路は、A/D変換回路の出力からの信号と第1の記憶回路からの信号との差分信号を生成し該差分信号を第2の記憶回路に提供し、第3のディジタル差分回路は、複数の第2の記憶回路の出力から順に選択的に提供される信号と第2のディジタル差分回路からの信号との差分を生成し該差分信号を複数の第2の記憶回路のうちの対応する第2の記憶回路に提供する。
この撮像装置によれば、リセットレベルの1回目サンプリング信号は、第1のディジタル差分回路をパススルーして第1の記憶回路に格納される。第2のディジタル差分回路は、A/D変換回路から順に提供されるディジタル変換値と第1の記憶回路からの信号との差分信号を生成し該差分信号を第2の記憶回路に提供するので、リセットレベルの2回目以降のサンプリング値の各々と第1回サンプリング信号との差分が、第3のディジタル差分回路をパススルーして第2の記憶回路に順に格納される。第1のディジタル差分回路は、第1の記憶回路に格納されたリセットレベルの1回目サンプリング信号と信号レベルの1回目サンプリング信号とのRS差分を生成し、このRS差分値は、第1の記憶回路に再格納される。第2のディジタル差分回路は、RS差分値と信号レベルの2回目以降のサンプリング値の各々との差分を生成し、第3のディジタル差分回路は、さらに、この差分信号と第2の記憶回路の出力から順に選択的に提供される信号との差分を生成する。この差分信号は、対応する第2の記憶回路に再格納される。このアナログ・ディジタル変換器によって、リセットノイズのキャンセルのためにリセットレベルと信号レベルとの差分が生成され、また複数回のサンプリング値は、第1回サンプリング信号と、第2回目以降のサンプリング値の各々と第1回サンプリング信号との差分として格納される。
アナログ・ディジタル変換器として、巡回型A/D変換回路を用いることが好ましい。巡回型A/D変換回路の回路規模はそれほど大きくなく、画素の近傍にアナログ・ディジタル変換器を配置できる。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、画素からの信号を受けており該信号に処理を施すアナログ処理回路と、アナログ処理回路によって処理された信号を受けるA/D変換回路とを含み、アナログ処理回路は、画素から提供され第1回サンプリング信号のためのサンプル/ホールド(S/H)回路と、画素から提供され第2回サンプリング以降のサンプリング信号の各々とS/H回路に保持された信号との差分信号を生成するアナログ差分回路とを含むことができる。この撮像装置では、A/D変換に先だって、第1回サンプリング信号をS/H回路に保持すると共に、この第1回サンプリング信号と第2回目以降のサンプリング信号とのアナログ差分が生成される。また、本発明に係る撮像装置では、アナログ・ディジタル変換器は積分型A/D変換回路を有することが好ましい。この撮像装置では、第1回サンプリング信号はフルレベルスケールにわたって積分方式のA/Dを行うけれども、第2回目以降のサンプリングについてはアナログ差分値をA/D変換するので、積分型A/D変換回路によって変換時間を短縮できる。
本発明に係る撮像装置では、アナログ・ディジタル変換器は、複数のサンプリングに対応しておりA/D変換器からのディジタル変換値を格納するための複数のディジタル記憶回路を更に含むことができる。この撮像装置によれば、ディジタル記憶回路は、フルレベルスケールのディジタル変換値と、M−1個の差分値のディジタル変換値とを格納する。
以上説明したように、本発明によれば、撮像装置およびCMOSイメージセンサが提供される。この撮像装置によれば、ランダムテレグラフノイズが低減される。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、本発明の撮像装置およびCMOSイメージセンサの実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1(a)は、本発明の実施の形態に係る撮像装置およびイメージセンサデバイスのブロックを概略的に示す図面である。図1(b)は一回の読み出し期間TREADのタイミングチャートを示す図面である。図2に示されるように、ランダムテレグラフノイズは、様々なパターンを示す。図3(a)および図3(b)は、典型的なランダムテレグラフノイズの測定値とそのヒストグラムとを示す図面である。この画素(Pixel#007)では、全体的に見て、2つのピークが観測される。図3(c)および図3(d)は、詳細にランダムテレグラフノイズを測定した結果であり、それぞれ、画素のリセットレベルおよび信号レベルの変化の様子と複数回のサンプリングによるヒストグラムを示す。「Center」は、全てのサンプリング値にわたる平均値を示す。全体的に見て、2つのピークが観測されており、各ピークには「○」が描かれている。いずれにしても、ランダムテレグラフノイズの大きさは、非常に小さく、10−4ボルト程度に大きさである。これらの図面から理解されるように、ランダムテレグラフノイズによる分布は、ガウス関数により示されるような単一ピークを有するものではなく、その補正は単純には行えない。このため、ヒストグラムを用いることが有効である。
図1(a)を参照すると、撮像装置11では、画素13は、トランジスタM1を介して、フォトダイオードPDに受けた光Lに対応した電気信号Sを提供する。フォトダイオードPDとして、例えば埋め込みフォトダイオードを使用できる。アナログ・ディジタル変換器15は、画素13から信号Sの読み出しを行うためのものである。このため、アナログ・ディジタル変換器15は、受けたアナログ信号の複数回のサンプリングを行うと共に、サンプリングに対応する複数のディジタル信号を生成する。このアナログ・ディジタル変換器15は、単一の光学サンプリングLに対応した電気信号Sの複数回のサンプリングを行って、引き続く説明から理解されるように、ランダムテレグラフノイズを低減するためのディジタル値の列を提供する。この撮像装置11では、画素からの単一の読み出しアナログ信号に複数回のサンプリングを行って、これらのサンプリング値を用いて、いわゆるヒストグラムのための計数値SHISを生成する。このために、アナログ・ディジタル変換器15は、複数回のサンプリングに対応した複数のディジタル信号を生成する。
ヒストグラム回路17は、アナログ・ディジタル変換器15からのディジタル信号を受ける。ヒストグラム回路17は、ヒストグラムのための計数値SHISを生成するために、アナログ・ディジタル変換器15の出力ディジタル値の範囲の少なくとも一部分を区分した複数の出力セグメントを用いる。出力セグメントは、例えば図3に示されたヒストグラムの電圧軸における度数の一つ分に対応すると考えられる。ヒストグラム回路17の出力セグメントは、出力ディジタル値の大きさに関連づけて番地付けている。ヒストグラム回路17は、アナログ・ディジタル変換器15からのディジタル信号を分類すると共に出力セグメント毎のディジタル値の出現頻度を計数して、ヒストグラムのための計数値SHISを生成する。
図1(b)を参照すると、CMOSイメージセンサ用の画素が示される。画素13では、ソースフォロア(SF)トランジスタM1は、浮遊半導体領域FDに接続されたゲートを有し、浮遊半導体領域FDの信号を増幅してカラム線に信号Sを提供する。選択トランジスタM2は、信号Sのスイッチを行う。カラム線には、バイアスVbを受ける電流源トランジスタMが接続されている。画素13は、SFトランジスタM1に直列に接続された選択トランジスタM2を含む。リセット信号Rに応答するリセットトランジスタM3を用いてリセット期間TRSに浮遊半導体領域FDをリセットする。SFトランジスタM1は、期間Tにリセットレベルを提供する。リセットの後に、フォトダイオードPDからの電荷は、転送信号TXに応答する転送トランジスタM4を介して浮遊半導体領域FDに移動する。SFトランジスタM1は、期間Tに信号レベルを提供する。このように、画素13はリセットレベルおよび信号レベルを提供するので、画素のリセットノイズをキャンセルできる。複数回のサンプリングは、図1(b)に示されるように、リセットレベルのM回のサンプリング及び信号レベルのM回のサンプリングを含むことができる。
再び図1(a)を参照する。撮像装置11では、信号生成回路19は、計数値に応じて補正用信号SCOLLECTを生成する。補正回路21は、補正用信号SCOLLECT用いて、アナログ・ディジタル変換器15からの出力信号SA/Dを補正して、補正されたディジタル信号SOUTを生成する。アナログ・ディジタル変換器からの出力信号SA/Dは、信号生成回路19からの補正用信号SCOLLECTを用いて補正回路21によって補正されるので、画素13の読み出し信号におけるランダムテレグラフノイズが低減される。
図4(a)は、一例のCMOSイメージセンサデバイスのブロックを示す。CMOSイメージセンサデバイス31は、行および列に配列された複数の画素13を含む画素アレイ33と、カラム線にそれぞれ接続された電流源トランジスタを含む負荷35と、アレイ33の行を選択する垂直スキャナ37と、カラム線に接続されたアナログ・ディジタル変換器15のアレイを含むアナログ・ディジタル変換器アレイ39と、アレイ39内の個々のアナログ・ディジタル変換器からの信号を受けるヒストグラム回路17のアレイを含むディジタル信号処理回路41とを含むことができる。このとき、信号生成回路19および補正回路21は、CMOSイメージセンサデバイスの外側の装置(例えば、信号処理プロセッサ)で行われる。好ましくは、イメージセンサデバイスは、ヒストグラム回路17からの計数値SHISの情報量をデータ圧縮して、計数値SHISに関する圧縮信号を生成するための計数値処理回路を備えることができる。計数値SHISの情報量が圧縮されるので、所望の場所に設置される信号生成回路19および補正回路21へ計数値情報が転送可能になる。これ故に、計数値情報の転送の後に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
或いは、CMOSイメージセンサデバイス31は、画素アレイ33、負荷35、およびアナログ・ディジタル変換器アレイ39に加えて、信号生成回路19および補正回路21のアレイを含むノイズ処理回路41を更に備えることができる。これらの集積により、読み出し信号をカラム毎の並列処理することにより、画素13内のアンプが発生するノイズを低減した後に、補正されたディジタル信号を出力できる。アレイ39は、アナログ信号処理回路39a、A/D変換回路39bおよびディジタル信号処理回路39cを含む。
図4(b)は、ヒストグラム回路を用いて補正によるノイズ(ランダムテレグラフノイズ)の低減効果を示す図面であり、以下の方式における、測定したRTNノイズの slow relaxation time に対するものである。シンボル「□」は、CDS方式(Corrected DoubleSampling)におけるヒストグラム補正に結果を示し、CDS(補正二重サンプリング)方式は、信号レベルとリセットレベルとの差分を生成した後に、ヒストグラムのための計数値を用いてノイズ補正を行う。シンボル「●」は、CMSDA(CascadedMulti-Stage Distributed Amplifier)におけるヒストグラム補正に結果を示し、CMSDA方式はリセットレベルに対する多数回のサンプルと加算、信号レベルに対する多数回のサンプルと 加算を行い、両者の差を求める処理である。シンボル「▼」は、HB−CMSDA(Histgram-based CMSDA)におけるヒストグラム補正に結果を示し、A/D変換されたデジタル値によるヒストグラムのための計数値を用いてノイズ補正を行う。HB−CMSDAは、例えば図7のブロック図に沿った処理により、信号レベルとリセットレベルの多数回の差に対するヒストグラムを求め、その中央値(メデイアン)付近のみを取り出して平均値処理を行う処理である。このHB−CMSDA方式の一例では、8個を超えるサンプリング回数では、ノイズ低減効果が明らかになる。また、16個以上のサンプリング回数では、ノイズ低減効果が良好になる。32個以上のサンプリング回数では、ノイズ低減効果が顕著に優れる。つまり、本実施の形態に示された撮像装置11によれば、ランダムテレグラフノイズの低減が可能である。このグラフおよび以下の説明から理解されるように、HB−CMSDA(中央値及び平均値を利用する処理)は、単なる平均値処理(CMSDA)に比べて、より高いノイズの低減効果を有する。
図5は、撮像装置のアナログ・ディジタル変換器の例を示す図面である。図5(a)を参照すると、アナログ・ディジタル変換器15aは、アナログ・ディジタル変換回路23と、多重サンプリングによりアナログ・ディジタル変換回路23によって生成されたディジタル変換値を格納するディジタル処理回路24と、プリアンプ27とを含む。アナログ・ディジタル変換回路23は、プリアンプ27によって処理された信号を受ける。帯域を抑えた大きな利得のプリアンプ27を用いることにより、低周波領域の増幅率を大きくしまた高周波領域における増幅率を小さくできるので、画素13からの読み出し信号における高周波ノイズを低減できる。プリアンプ27は、画素13からの信号を受けており該信号における熱雑音を低減できる。例えば、プリアンプ27は、演算増幅回路27aと、演算増幅回路27aの入力と出力との間に接続された帰還キャパシタ27bと、演算増幅回路27aの入力と出力との間に接続されたリセットスイッチ27cと、演算増幅回路27aの入力に接続され電気信号Sを受ける入力キャパシタ27dと、演算増幅回路27aの出力に接続された負荷キャパシタ27eとを含む。
図5(b)を参照すると、ディジタル処理回路24は、第1の記憶回路45と、差分回路47と、複数の第2の記憶回路49a〜49lとを含むことができる。第1の記憶回路45は、A/D変換回路23から提供されM回のサンプリングのうちの第1回サンプリング信号S1を格納する。差分回路47は、A/D変換回路23から提供され第2回サンプリング以降のサンプリング信号Snの各々と第1の記憶回路45に格納された信号との差分信号を生成する。第2の記憶回路49a〜49lは、差分信号を格納する。第2回サンプリング以降のサンプリング信号の各々は、第1の記憶回路45に格納された第1回サンプリング信号との差分を取られて、差分値は順に第2の記憶回路49a〜49lに格納される。ヒストグラム回路17は差分信号に対応する計数値を生成し、該計数値に基づいた補正値を用いて、A/D変換回路23からのディジタル変換値を補正できる。
図5(c)を参照すると、アナログ・ディジタル変換器15bは、アナログ・ディジタル変換回路23aと、多重サンプリングによりアナログ・ディジタル変換回路23によって生成されたディジタル変換値を格納するディジタル処理回路25と、画素13からの信号Sを受けており該信号Sに処理を施すアナログ処理回路29とを含む。
アナログ処理回路29は、サンプル/ホールド(S/H)回路29aと、アナログ差分回路29bとを含む。S/H回路29aは、画素13から提供され第1回サンプリング信号S1を格納する。アナログ差分回路29bは、画素13から提供され第2回サンプリング以降のサンプリング信号の各々とS/H回路29aに保持された信号との差分信号SDIFFを生成する。S/H回路29aとA/D変換回路23aとの間には、クロックφ1に応答するスイッチ29cが接続されている。アナログ差分回路29bとA/D変換回路23aとの間には、クロックφnに応答するスイッチ29dが接続されている。第1回サンプリング信号S1は、スイッチ29cを介してA/D変換回路23に提供される。差分信号SDIFFはスイッチ29dを介してA/D変換回路23aに提供される。
図5(d)を参照すると、記憶回路25の一例が示されている。記憶回路25は、第1回サンプリング信号S1および第2回サンプリング以降のサンプリング信号Smを順に格納するためにM個の記憶回路(例えば、レジスタ)25a〜25mを含む。記憶回路25a〜25mは、クロックφL1、φL2、φLMに応じて、A/D変換回路23aからのディジタル変換値を受ける。A/D変換に先だって、第1回サンプリング信号S1をS/H回路29に保持すると共に、第1回サンプリング信号S1と第2回目以降のサンプリング信号Smとのアナログ差分が生成される。
図6(a)は、積分型A/D変換回路の一例を示す図面である。アナログ差分を生成する撮像装置11では、アナログ・ディジタル変換器15が積分型A/D変換回路40を有することが好ましい。積分型A/D変換回路40は、比較器40aと、比較器40aからの出力を受けるカウンタ40bとを含む。比較器40aの一入力は、A/D変換の対象となるアナログ信号を受ける。比較器40aの他入力は、ランプ信号生成回路40cからのランプ信号を受ける。カウンタ40bは、比較器40aからのラッチ信号を受けるまでクロック信号φcを計数する。この計数値がA/D変換値を与える。
アナログ差分回路29bからは、第1回サンプリング信号S1と第2回目以降のサンプリング信号Smとのアナログ差分が提供されるので、ランプ信号生成回路40cは、図6(b)に示されるフルスイングのランプ信号FSと、部分スイングの複数のランプ信号PSとの列からなるランプ信号を生成する。故に、第1回サンプリング信号はフルレベルスケールにわたって積分方式のA/D変換を行うけれども、第2回目以降のサンプリングについてはアナログ差分値をA/D変換するので、積分型A/D変換によって変換時間を短縮できる。A/D変換結果は、1つのフルレベルスケールのディジタル変換値とM−1個の差分値のディジタル変換値とからなり、ディジタル処理回路25に格納される。
図6(c)は、アナログ・ディジタル変換器の一例を示す図面である。アナログ・ディジタル変換器15cは、A/D変換回路23bと、第1の記憶回路51と、複数の第2の記憶回路53と、第1〜第3のディジタル差分回路55、57、59とを含むことができる。第1のディジタル差分回路55は、A/D変換回路23bの出力からの信号と第1の記憶回路51からの信号との差分信号を生成し該差分信号を第1の記憶回路51に提供する。第2のディジタル差分回路57は、A/D変換回路23bの出力からの信号と第1の記憶回路51からの信号との差分信号を生成し該差分信号を第2の記憶回路53に提供する。第3のディジタル差分回路59は、複数の第2の記憶回路53の出力から順にスイッチSW〜SWを介して選択的に提供される信号と第2のディジタル差分回路57からの信号との差分を生成し該差分信号を複数の第2の記憶回路53のうちの対応する第2の記憶回路53に提供する。
このアナログ・ディジタル変換器15bによれば、リセットレベルの1回目サンプリング信号は、第1のディジタル差分回路53をパススルーして第1の記憶回路51に格納される。第2のディジタル差分回路57は、A/D変換回路23bから順に提供されるディジタル変換値と第1の記憶回路51からの信号との差分信号を生成し該差分信号を第2の記憶回路53に提供するので、リセットレベルの2回目以降のサンプリング値の各々と第1回サンプリング信号との差分が、第3のディジタル差分回路59をパススルーして第2の記憶回路53に順に格納される。第1のディジタル差分回路55は、第1の記憶回路51に格納されたリセットレベルの1回目サンプリング信号と信号レベルの1回目サンプリング信号とのRS差分を生成し、RS差分値は、第1の記憶回路51に格納される。第2のディジタル差分回路57は、RS差分値と信号レベルの2回目以降のサンプリング値の各々との差分を生成し、第3のディジタル差分回路59は、さらに、この差分信号と第2の記憶回路53の出力から選択的に提供されるリセットレベル差分信号との再差分を生成する。再差分信号は、対応する第2の記憶回路53に格納される。このアナログ・ディジタル変換器15bによって、リセットノイズのキャンセルのためにリセットレベルと信号レベルとの差分が生成される。残りのサンプリング値は、第1回サンプリング信号と、第2回目以降のサンプリング値の各々との差分として格納される。
図1(b)に示された参照符合を用いて、M回のリセットレベルサンプリングとM回の信号レベルサンプリングのキャンセルについて説明する。例えば、信号レベルサンプリング1、2、・・・Mは、それぞれ、リセットレベルサンプリングM・・・2、1とキャンセルさせることが好ましい。或いは、信号レベルサンプリング1、2・・・Mは、それぞれ、リセットレベルサンプリング1、2・・・Mとキャンセルさせることが好ましい。これらの対応付けは、レジスタへのラッチパルスを制御することによってキャンセル対象の信号を格納するレジスタの選択により実現される。この対応付けは必要に応じて変更されることができる。
アナログ・ディジタル変換器15a、15bは、A/D変換回路23bとして巡回型A/D変換回路を用いることが好ましい。巡回型A/D変換回路の回路規模はそれほど大きくなく、画素の近傍にアナログ・ディジタル変換器を配置することに好適である。
図7(a)は、信号生成回路の一例を示す図面である。信号生成回路19aは、計数値が非ゼロである出力セグメントのうち出力セグメントの番地付けにおける最大番地および最小番地の出力セグメントを検出して、ヒストグラムにおけるメジアン(中央値)に対応するメジアン信号を補正用信号として生成することが好ましい。補正回路21aは、この補正用信号を変換器15からの変換値に演算(加算或いは減算)する。
ランダムテレグラフノイズはガウス分布等に従わないので、単なる平均値を用いてはランダムテレグラフノイズの影響を適切に補正できない。メジアン信号を用いてアナログ・ディジタル変換器からの出力信号を補正することにより、ランダムテレグラフノイズによるの影響を低減できる。画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
図7(b)は、信号生成回路の一例を示す図面である。信号生成回路19bは、第1演算部20aおよび第2演算部20bを含むことが好ましい。第1演算部20aは、計数値が非ゼロである出力セグメントのうち出力セグメントの番地付けにおける最大番地および最小番地の出力セグメントを検出して、ヒストグラムにおけるメジアンに対応するメジアン信号を生成する。また、第2演算部20bは、出力セグメントの番地付けにおいてメジアン信号に対応するメジアン出力セグメントから所定の範囲内の出力セグメントの番地の平均値に対応する信号を補正用信号として生成する。補正回路21bは、この補正用信号を変換器15bからの変換値に演算(加算或いは減算)する。所定の範囲を示す信号は、第3演算部20cによって提供される。この信号は、中央値付近で選択されたヒストグラム分布が1つの山(ピーク)だけを含むように決定されることが望ましい。
所定の範囲内の出力セグメントの番地の平均値から補正用信号によりアナログ・ディジタル変換器からの出力信号を補正する。このため、中央値から極端に離れた番地からのノイズの影響を除くことができる。これ故に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。
図8は、ヒストグラム回路の一例を示す図面である。ヒストグラム回路17は、アナログ・ディジタル変換器15からのディジタル変換値を受けるデコーダ61含む。デコーダ61の出力(−NMAX〜+NMAX)の各々は、番地付けられたカウンタ63が接続されている。番地づけられたカウンタ63は、入力に受けたイベントの数を計数する。カウンタ63の数は、出力セグメントの数(例えば2×NMAX+1)に対応している。出力セグメントの電圧幅(ヒストグラムの度数幅)は、ディジタル変換値のLSBまたはビット長の大きさに依る。アナログ・ディジタル変換器15からのディジタル変換値が直接にデコーダ61に提供されるとき、出力セグメントの電圧幅はディジタル変換値のLSBである。各カウンタ63の出力は、フラグ回路65と、マルチプレサ67とに接続されている。マルチプレサ67は、番地付けのためのアドレズAdd(アドレズAddの値はデコーダ61の入力値に対応する)に応答して、カウンタ63の計数値を提供する。フラグ回路65の出力C(i)は、
カウンタ63の計数値がゼロのとき、C(i)=0、
カウンタ63の計数値が非ゼロのとき、C(i)=1
を提供する(i=−NMAX〜+NMAX)。フラグ回路65の出力信号C(i)は、信号生成回路19a、20aに提供され、信号生成回路19a、20aは、出力信号C(−N)を受ける最大番地回路69aおよび最小番地回路69bを含む。最大番地回路69aおよび最小番地回路69bは、それぞれ、最大番地および最小番地に対応する値N、Nを生成する。メジアン回路69cは、値N、Nからメジアン値に対応する信号N=(N+N)/2を生成する。信号Nは、例えば、信号Nおよび信号Nの加算と、この加算値のビットシフトとにより実現される。
図9は、最大番地回路69aおよび最小番地回路69bの一例を示す図面である。図9(a)を参照すると、最小番地回路69bは、複数の論理和71a、71b、71c、71dと、エンコーダ73とを含む。エンコーダ73は、最小アドレスに対応するC(−NMAX)と、全ての論理和71a、71b、71c、71dの出力値を受ける。論理和71aは、最小アドレスC(−NMAX)及び次に大きいアドレズC(−NMAX+1)を受ける。論理和71bは、論理和71aの出力値と次に大きいアドレズC(−NMAX+2)を受ける。論理和71dは、前段の論理和の出力値と最大アドレズC(NMAX)を受ける。この回路は、アドレズ番地の小さい方から順にカウンタの計数値の非ゼロを調べる。
図9(b)を参照すると、最大番地回路69aは、複数の論理和75a、75b、75c、75dと、エンコーダ77とを含む。エンコーダ77は、最大アドレスに対応するC(+NMAX)と、全ての論理和75a、75b、75c、75dの出力値を受ける。論理和73aは、最大アドレスC(+NMAX)及び次に小さいアドレズC(+NMAX−1)を受ける。論理和75bは、論理和75aの出力値と次に小さいアドレズC(+NMAX−2)を受ける。論理和75dは、前段の論理和の出力値と最大アドレズC(−NMAX)を受ける。この回路は、アドレズ番地の大きい方から順にカウンタの計数値を調べる。
図10は、ヒストグラム回路17によって生成された計数値をヒストグラムとして描いた図面である。図10は、リセットレベルと信号レベルとの差分のヒストグラムであり、3つのピークを有する。最大番地回路69aおよび最小番地回路69bから値N、Nが提供される。第2演算部20bは、マルチプレサ67を通してカウンタ63の計数値Hiを受ける。第2演算部20bは、出力セグメントの番地付けを基にメジアン信号Nに対応するメジアン出力セグメントから所定の範囲(N−N〜N+N)内の出力セグメントの番地の平均値YAVGに対応する信号を補正用信号として生成する。この演算により、極端に大きい或いは極端に小さいサンプリング値は除かれる。これ故に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。また、ヒストグラムの中央部分の度数の平均化により熱雑音の影響も低減される。
図11は、イメージセンサデバイスの一例を示す図面である。図11(a)に示されるように、イメージセンサデバイス10は、ヒストグラム回路17からの計数値SHISの情報量をデータ圧縮して、計数値SHISに関する圧縮信号を生成するための圧縮回路18を備えることができる。計数値SHISの情報量が圧縮されるので、別の装置に設置される信号生成回路19および補正回路21へ計数値情報が転送可能になる。これ故に、計数値情報の転送の後に、画素の読み出し信号におけるランダムテレグラフノイズが低減され、また低ノイズの撮像装置が提供される。圧縮回路18として様々な構成があるが、図11(b)に示されるように、比較的簡単な構成としてルックアップテーブルLUTを用いることができる。ルックアップテーブルLUTは、カウンタ63の計数値がコードに対応付けられている。このようなコード化によれば、出力すべき情報量が低減される。この回路によれば、多数のサンプリング値からヒストグラムを作り、そのヒストグラムを符号化して情報量を減らすと共に、外部に出力した後に補正を行う。或いは、水平スキャン後にノイズ低減処理を行い、最終的に補正を行う。
ノイズ除去のために、リセットレベルの一連のサンプリングに関するヒストグラムと信号レベルの一連のサンプリングに関するヒストグラムとを別々に作成してもよい。図12は、撮像装置11bを示す図面である。撮像装置11bでは、ヒストグラム回路17は、リセットレベルの複数回のサンプリングの信号から第1の計数値Hを生成すると共に、信号レベルの複数回のサンプリングの信号から第2の計数値Hを生成できる。レジスタ93とディジタル差分回路93を用いて、第1サンプリング値と第2回目以降のサンプリング値との差分を生成できる。この差分信号がヒストグラム回路17に提供される。
撮像装置11bの信号生成回路19cは、それぞれ、第1及び第2の計数値H(R)、H(S)に応じて第1及び第2の補正用信号SCR、SCSを生成される。第1及び第2の補正用信号SCR、SCSはレジスタ89a、89bに格納される。差分回路81が、第1および第2の補正信号SCR、SCSの差信号を補正用信号SCOLLECTとして生成する。
撮像装置11bの補正回路21cは、リセットレベルに対応したアナログ・ディジタル変換器からの第1の出力信号SOUT(R)を格納するレジスタ回路85aと、信号レベルに対応したアナログ・ディジタル変換器からの第2の出力信号SOUT(S)を格納するレジスタ回路85bとを含む。なお、レジスタ回路85bは、レジスタ93によって代用される。第1の出力信号SOUT(R)と第2の出力信号SOUT(S)との差信号を差分回路83が生成すると共に、補正用信号を用いて該差信号を補正器87が補正する
図13の回路により、第1の補正用信号SCRが生成された後に、第2の補正用信号SCSが生成される。ヒストグラム回路17は、差分信号に基づいてリセットレベルのためのヒストグラムH(R)を生成した後に、差分信号に基づいて信号レベルのためのヒストグラムH(S)を生成する。ヒストグラムH(R)、H(S)は、図13に示されるように、例えば2つのピークを有する。ヒストグラムH(R)に対して、第1演算部20aが、最大番地N (R)、最小番地N (R)、中央値N (R)を生成した後に、ヒストグラムH(S)に対して最大番地N (S)、最小番地N (S)、中央値N (S)を生成する。
演算回路91(91a、91b)は、計数値(以下、ヒストグラムとも記載する)H(R)、H(S)を順に処理する。中央値を境にして各ヒストグラムを2つの部分に分けて、それぞれの部分において計数値の部分和S、Sを求める。平均値計算回路93は、部分和S、Sを比較すると共に、いずれか一方の半部分(例えば、大きい半部分)を選択する。リセットレベル及び信号レベルの一方のヒストグラムにおいて選択した半部分を他方でも選択する。つまり、大きい半部分(S又はS)に対するアドレズの平均値Y (R)、Y (S)を求める。この半部分に対するアドレス平均値を用いるディジタル変換値の補正によってランダムテレグラフノイズを低減できる。この撮像装置によれば、リセットレベル及び信号レベルについてそれぞれの計数値(ヒストグラム)を用いて、個々の計数値に対する第1及び第2の補正信号から差信号を生成すると共に、この差信号を用いてリセットレベルの出力信号と信号レベルの出力信号の差信号を補正できる。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
図1は、本実施の形態に係る撮像装置およびイメージセンサデバイスを概略的に示す図面である。 図2は、ランダムテレグラフノイズ(RTN)の測定値を示す図面である。 図3は、典型的なRTNの測定値とそのヒストグラムとを示す図面である。 図4は、一例のCMOSイメージセンサデバイスのブロックおよびヒストグラム回路による補正によるRTN低減効果を示す図面である。 図5は、アナログ・ディジタル変換器の例を示す図面である。 図6は、積分型A/D変換回路及びアナログ・ディジタル変換器の一例を示す図面である。 図7は、信号生成回路の一例を示す図面である。 図8は、ヒストグラム回路の一例を示す図面である。 図9は、最大番地回路および最小番地回路の一例を示す図面である。 図10は、ヒストグラム回路によって生成された計数値をヒストグラムとして描いた図面である。 図11は、イメージセンサデバイスの一例を示す図面である。 図12は、撮像装置を示す図面である。 図13は、リセットレベルの一連のサンプリングに関するヒストグラムと信号レベルの一連のサンプリングに関するヒストグラムとを別々に作成する回路図である。
符号の説明
11…撮像装置、13…画素、M1…トランジスタ、PD…フォトダイオード、15…アナログ・ディジタル変換器、17…ヒストグラム回路、19…信号生成回路、21…補正回路、31…CMOSイメージセンサデバイス、33…画素アレイ、35…負荷、37…垂直スキャナ、39…アナログ・ディジタル変換器アレイ、41…ディジタル信号処理回路、43…ノイズ処理回路

Claims (14)

  1. 受けた光に対応した電気信号をトランジスタを介して提供する画素と、
    受けたアナログ信号の複数回のサンプリングを行い、前記サンプリングに対応する複数のディジタル信号を生成すると共に、前記画素から読み出しを行うためのアナログ・ディジタル変換器と、
    前記アナログ・ディジタル変換器の出力ディジタル値の範囲の少なくとも一部分を区分すると共に前記出力ディジタル値に関連づけて番地付けた複数の出力セグメントにおける前記出力ディジタル値の出現頻度を計数して、ヒストグラムのための計数値を生成するためのヒストグラム回路と、
    前記計数値に応じて補正用信号を生成するための信号生成回路と、
    前記補正用信号を用いて、前記画素の読み出し信号に対応する前記アナログ・ディジタル変換器からの出力信号を補正する補正回路とを備える、ことを特徴とする撮像装置。
  2. 前記信号生成回路は、前記出力セグメントのうち前記計数値が非ゼロである出力セグメントから前記番地付けにおける最大番地および最小番地の出力セグメントを検出して、前記ヒストグラムにおけるメジアンに対応するメジアン信号を前記補正用信号として生成する、ことを特徴とする請求項1に記載された撮像装置。
  3. 前記信号生成回路は、前記出力セグメントのうち前記計数値が非ゼロである出力セグメントから前記番地付けにおける最大番地および最小番地の出力セグメントを検出して、前記ヒストグラムにおけるメジアンに対応するメジアン信号を生成し、
    前記信号生成回路は、前記出力セグメントの番地付けで前記メジアン信号に対応するメジアン出力セグメントを含む部分的な範囲内の出力セグメントの番地の平均値に対応する信号を前記補正用信号として生成する、ことを特徴とする請求項1に記載に記載された撮像装置。
  4. 受けた光に対応した電気信号をトランジスタを介して提供する画素と、
    受けたアナログ信号の複数回のサンプリングを行い、前記サンプリングに対応する複数のディジタル信号を生成すると共に、前記画素から読み出しを行うためのアナログ・ディジタル変換器と、
    前記アナログ・ディジタル変換器の出力ディジタル値の範囲の少なくとも一部分を区分すると共に前記出力ディジタル値の大きさで番地付けた複数の出力セグメントにおける前記出力ディジタル値の出現頻度を計数して、ヒストグラムのための計数値を生成するためのヒストグラム回路と、
    前記計数値の情報量をデータ圧縮して、前記計数値に関する圧縮信号を生成するための圧縮回路とを備える、ことを特徴とする撮像装置。
  5. 前記アナログ・ディジタル変換器は、前記画素からの信号を受けるプリアンプと、前記プリアンプによって処理された信号を受けるA/D変換回路とを含む、ことを特徴とする請求項1〜請求項4のいずれか一項に記載された撮像装置。
  6. 前記画素は、リセットレベルおよび信号レベルを提供し、
    前記複数回のサンプリングは、前記リセットレベルの複数回のサンプリングおよび前記信号レベルの複数回のサンプリングを含む、ことを特徴とする請求項1〜請求項5のいずれか一項に記載された撮像装置。
  7. 前記アナログ・ディジタル変換器は、A/D変換回路と、前記リセットレベルのためのサンプリングに対応する前記A/D変換回路からのディジタル変換値を格納する複数の記憶回路と、前記信号レベルのためのサンプリングに対応する前記A/D変換回路からのディジタル変換値の各々と前記記憶回路に格納され前記リセットレベルの対応するディジタル変換値との差信号を生成する差分回路とを備え、
    該差信号は前記記憶回路の一つに格納される、ことを特徴とする請求項6に記載された撮像装置。
  8. 前記ヒストグラム回路は、前記リセットレベルの前記複数回のサンプリンの信号から第1の計数値を生成すると共に、前記信号レベルの複数回のサンプリングの信号から第2の計数値を生成し、
    前記信号生成回路は、前記第1および第2の計数値に応じて第1および第2の補正用信号をそれぞれ生成すると共に、前記第1の補正用信号と前記第2の補正用信号との差信号を前記補正用信号として生成し、
    前記補正回路は、前記リセットレベルに対応した前記アナログ・ディジタル変換器からの第1の出力信号と前記信号レベルに対応した前記アナログ・ディジタル変換器からの第2の出力信号との差信号を生成すると共に、前記補正用信号を用いて該差信号を補正する、ことを特徴とする請求項6に記載された撮像装置。
  9. 前記アナログ・ディジタル変換器は、A/D変換回路と、前記A/D変換回路から提供された第1回サンプリング信号を格納するための第1の記憶回路と、前記A/D変換回路から提供された第2回〜第M回サンプリング信号の各々と前記第1の記憶回路に格納された信号との差分信号を生成する差分回路と、前記差分信号を格納するための複数の第2の記憶回路とを含む、ことを特徴とする請求項1〜請求項6および請求項8のいずれか一項に記載された撮像装置。
  10. 前記アナログ・ディジタル変換器は、A/D変換回路と、前記A/D変換回路から提供された第1回サンプリング信号を格納するための第1の記憶回路と、複数の第2の記憶回路と、第1〜第3のディジタル差分回路とを含み、
    前記第1のディジタル差分回路は、前記A/D変換回路の出力からの信号と前記第1の記憶回路からの信号との差分信号を生成し該差分信号を前記第1の記憶回路に提供し、
    前記第2のディジタル差分回路は、前記A/D変換回路の出力からの信号と前記第1の記憶回路からの信号との差分信号を生成し該差分信号を前記第2の記憶回路に提供し、
    前記第3のディジタル差分回路は、前記複数の第2の記憶回路の出力から順に選択的に提供される信号と前記第2のディジタル差分回路からの信号との差分を生成し該差分信号を前記複数の第2の記憶回路のうちの対応する第2の記憶回路に提供する、ことを特徴とする請求項1〜請求項6および請求項9のいずれか一項に記載された撮像装置。
  11. 前記アナログ・ディジタル変換器は巡回型A/D変換回路を有する、ことを特徴とする請求項1〜請求項10のいずれか一項に記載された撮像装置。
  12. 前記アナログ・ディジタル変換器は、前記画素からの信号を受けており該信号に処理を施すアナログ処理回路と、前記アナログ処理回路によって処理された信号を受けるA/D変換回路とを含み、
    前記アナログ処理回路は、前記画素から提供され第1回サンプリング信号のためのS/H回路と、前記画素から提供され第2回サンプリング以降のサンプリング信号の各々と前記S/H回路に保持された信号との差分信号を生成するアナログ差分回路とを含む、ことを特徴とする請求項1〜請求項10のいずれか一項に記載された撮像装置。
  13. 前記アナログ・ディジタル変換器は積分型A/D変換回路を有する、ことを特徴とする請求項12に記載された撮像装置。
  14. 受けた光に対応した電気信号をトランジスタを介して提供する画素と、
    受けたアナログ信号の複数回のサンプリングを行い、前記サンプリングに対応する複数のディジタル信号を生成すると共に、前記画素から読み出しを行うためのアナログ・ディジタル変換器と、
    前記アナログ・ディジタル変換器の出力ディジタル値の範囲の少なくとも一部分を区分しており前記出力ディジタル値の大きさで番地付けた複数の出力セグメントにおける前記出力セグメントの出現頻度を計数して、ヒストグラムのための計数値を生成するためのヒストグラム回路と
    を備える、ことを特徴とするイメージセンサデバイス。
JP2007085488A 2007-03-28 2007-03-28 撮像装置、およびイメージセンサデバイス Pending JP2008245121A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085488A JP2008245121A (ja) 2007-03-28 2007-03-28 撮像装置、およびイメージセンサデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085488A JP2008245121A (ja) 2007-03-28 2007-03-28 撮像装置、およびイメージセンサデバイス

Publications (1)

Publication Number Publication Date
JP2008245121A true JP2008245121A (ja) 2008-10-09

Family

ID=39915863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085488A Pending JP2008245121A (ja) 2007-03-28 2007-03-28 撮像装置、およびイメージセンサデバイス

Country Status (1)

Country Link
JP (1) JP2008245121A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082484A (ja) * 2014-10-20 2016-05-16 株式会社ニコン 撮像装置
WO2016117034A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
WO2016117035A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
WO2016147325A1 (ja) * 2015-03-17 2016-09-22 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
US9531977B2 (en) 2014-02-14 2016-12-27 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and image sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276430A (ja) * 1992-03-26 1993-10-22 Matsushita Electric Ind Co Ltd カメラ信号延長装置
JPH10191169A (ja) * 1996-12-24 1998-07-21 Canon Inc 電荷転送素子の出力信号処理装置及び画像処理装置
JP2000324399A (ja) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 撮像装置
JP2000353800A (ja) * 1999-06-14 2000-12-19 Canon Inc 半導体装置
JP2003037780A (ja) * 2001-07-24 2003-02-07 Fuji Photo Film Co Ltd 画像データ取得方法および装置
JP2004220553A (ja) * 2002-12-27 2004-08-05 Nikon Corp 画像処理装置および画像処理プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276430A (ja) * 1992-03-26 1993-10-22 Matsushita Electric Ind Co Ltd カメラ信号延長装置
JPH10191169A (ja) * 1996-12-24 1998-07-21 Canon Inc 電荷転送素子の出力信号処理装置及び画像処理装置
JP2000324399A (ja) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 撮像装置
JP2000353800A (ja) * 1999-06-14 2000-12-19 Canon Inc 半導体装置
JP2003037780A (ja) * 2001-07-24 2003-02-07 Fuji Photo Film Co Ltd 画像データ取得方法および装置
JP2004220553A (ja) * 2002-12-27 2004-08-05 Nikon Corp 画像処理装置および画像処理プログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531977B2 (en) 2014-02-14 2016-12-27 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and image sensor
JP2016082484A (ja) * 2014-10-20 2016-05-16 株式会社ニコン 撮像装置
WO2016117034A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
WO2016117035A1 (ja) * 2015-01-20 2016-07-28 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
JPWO2016117035A1 (ja) * 2015-01-20 2017-06-08 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
JPWO2016117034A1 (ja) * 2015-01-20 2017-07-06 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
US10158811B2 (en) 2015-01-20 2018-12-18 Olympus Corporation Image processing apparatus, image processing method, and computer-readable recording medium
US10791288B2 (en) 2015-01-20 2020-09-29 Olympus Corporation Image processing apparatus, image processing method, and computer-readable recording medium
WO2016147325A1 (ja) * 2015-03-17 2016-09-22 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
JPWO2016147325A1 (ja) * 2015-03-17 2018-01-18 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
US10270991B2 (en) 2015-03-17 2019-04-23 Olympus Corporation Image processing apparatus, image processing method, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
US10116320B2 (en) Photoelectric conversion apparatus and image capturing system
US9247162B2 (en) System and method for digital correlated double sampling in an image sensor
US7830436B2 (en) Method of controlling semiconductor device, signal processing method, semiconductor device, and electronic apparatus
JP5378945B2 (ja) X線画素検出器の読出し回路及び集積回路
JP5034610B2 (ja) 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
US8218049B2 (en) Solid-state image sensing device, method for reading signal of solid-state image sensing device, and image pickup apparatus
US7002408B2 (en) Data signal amplifier and processor with multiple signal gains for increased dynamic signal range
KR100639642B1 (ko) 촬상 장치, 촬상 장치의 제어 방법 및 cmos 이미지 센서
US9787927B2 (en) Solid-state imaging apparatus
EP3078188A1 (en) Variable gain column amplifier adapted for use in imaging arrays
JPWO2007122665A1 (ja) 固体撮像素子及び撮像方法
US20150102206A1 (en) Readout circuit for image sensors
US10687005B2 (en) Analog-to-digital converters for phase-detection autofocus image sensors
JP2008245121A (ja) 撮像装置、およびイメージセンサデバイス
US8189079B2 (en) Imaging apparatus and method
JP4370407B2 (ja) イメージセンサ
US20160295150A1 (en) Counting apparatus and image sensor including the same
Xhakoni et al. PTC-based sigma-delta ADCs for high-speed, low-noise imagers
US20170223295A1 (en) Analog-digital converter and method, and image sensor including the same
Son et al. A one-shot digital correlated double sampling with a differential difference amplifier for a high speed CMOS image sensor
US9247165B2 (en) Pixel signal processing apparatus for removing noise in an image sensor having a column parallel structure and CMOS image sensor using the same
JP2007049686A (ja) イメージセンサ用読み出し回路およびそのアナログ−デジタル変換方法
JP2010109607A (ja) 固体撮像装置
US10785436B1 (en) Image sensor and transfer circuit and transfer method thereof
US11843891B2 (en) Ad conversion device, imaging device, endoscope system, and ad conversion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306