JP4788028B2 - 逆阻止型igbtを逆並列に接続した双方向igbt - Google Patents

逆阻止型igbtを逆並列に接続した双方向igbt Download PDF

Info

Publication number
JP4788028B2
JP4788028B2 JP2000257341A JP2000257341A JP4788028B2 JP 4788028 B2 JP4788028 B2 JP 4788028B2 JP 2000257341 A JP2000257341 A JP 2000257341A JP 2000257341 A JP2000257341 A JP 2000257341A JP 4788028 B2 JP4788028 B2 JP 4788028B2
Authority
JP
Japan
Prior art keywords
conductivity type
base layer
layer
type base
reverse blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000257341A
Other languages
English (en)
Other versions
JP2002076017A (ja
Inventor
祐一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000257341A priority Critical patent/JP4788028B2/ja
Publication of JP2002076017A publication Critical patent/JP2002076017A/ja
Application granted granted Critical
Publication of JP4788028B2 publication Critical patent/JP4788028B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力用スイッチング素子である逆阻止型IGBTを逆並列に接続した双方向IGBTに関する。
【0002】
【従来の技術】
現在スイッチング半導体素子として一般的にバイポーラトランジスタ(以下、BJTと称す:Bipolar Junction Transistor)、MOS型電界効果トランジスタ(以下、MOSFETと称す)、絶縁ゲート型バイポーラトタンジスタ(以下、IGBTと称す)がその用途に応じて使用されている。
【0003】
BJTは、飽和状態では伝導度変調を起こしていることから、オン抵抗は小さいが、スイッチング速度特にターンオフ時は少数キャリアの蓄積効果による過剰キャリアが存在するため、ターンオフ時間が長くなり、比較的低周波数領域で用いられる。また、電流駆動の素子であることから駆動回路での発生損失が大きくなる。
【0004】
これに対して、MOSFETは電圧駆動型の素子であることから駆動回路での発生損失が小さく、また本来少数キャリアが蓄積することがないのでスイッチング速度は速い。しかし、少数キャリアの注入に基づく伝導度変調が起こらないので、オン抵抗が大きくなるという問題がある。
IGBTは、MOSFETと同様に、電圧駆動型の素子であることから駆動回路での発生損失は小さく、また、BJTと同様に、少数キャリアの注入に基づく伝導度変調を起こしていることからオン抵抗は小さくできる。
【0005】
しかし、ターンオフ時は少数キャリアの蓄積効果に加えて、空乏層の広がりにより掃き出される多数キャリアにより、裏面からの少数キャリアの再注入があるために、ターンオフ時間が遅くなる。
従って、一般的には、スイッチング回路において、BJTやIGBTは、定常損失は小さいが、スイッチング損失が大きいために、比較的低周波数で用いられることが多く、一方、MOSFETは、逆に、定常損失は大きいが、スイッチング損失が小さいために、比較的高周波数で用いられることが多い。
【0006】
MOSFETは、その構造上耐圧特性が得られるpn接合部は1箇所であることから耐圧特性は順耐圧にしか示さない。これに対し、BJTとIGBTは2箇所のpn接合を有している。
しかし、BJTは、エミッタ層からのキャリアの注入を大きくするために、エミッタ層の濃度を高くしている。このため、ベース−エミッタ間のPN接合の降伏電圧が小さく、順逆双方に対して同等の耐圧特性を得ることはできない。
【0007】
一方、IGBTは第1導電型ベース層内に空乏層を広げることで耐圧特性を得ているため、表面側の第1導電型ベース層と第2導電型ベース層、裏面側の第1導電型ベース層と第2導電型コレクタ層のそれぞれのPN接合部分で、ほぼ同等の降伏電圧を確保できる。従って、IGBTは順逆双方の耐圧特性を得ることは原理的に可能である。しかし、通常のIGBTは、プレーナ型の周辺耐圧構造を採用しエミッタ層のある表面側のみに形成するため、順方向の耐圧特性しか有さない。
【0008】
これに対して、図11に示す特開平7−307469号公報に開示されている逆阻止型IGBTは、素子側壁のNベース層51にP層57を形成することにより逆阻止耐圧特性を得ることができる。尚、図中の符号で、52はPベース層、53はNエミッタ層、54はゲート絶縁膜、55はゲート電極、56はPコレクタ層、58はエミッタ電極、59はコレクタ電極、60は金属膜である。
【0009】
また、この逆阻止型IGBTを逆並列接続することにより双方向IGBTとすることができる。この双方向IGBTを用いると直流電流ばかりでなく交流電流の制御も可能となる。
【0010】
【発明が解決しようとする課題】
つぎに、この双方向IGBTを、交流から交流へ直接変換する回路に用いた場合について説明する。この直接変換回路のアームは、双方向IGBTで構成され、この双方向IGBTを構成する一方の逆阻止型IGBTは還流ダイオードとしての動作モードがある。
【0011】
この逆阻止型IGBTは、逆阻止能力があるために、ゲートを常時オン状態とすることで、逆阻止耐圧があるダイオードとして動作させることができる。しかし、前記の直接変換回路で、この逆阻止型IGBTを還流ダイオードとして動作させる場合は、逆回復電流を小さくすることが要求される。
しかし、前記の公報では、前記逆阻止型IGBTをダイオードとして動作させることは開示されておらず、従って、ダイオードとして動作させた場合の逆回復電流を小さくする方法についても開示されていない。
【0012】
この発明の目的は、逆阻止型IGBTの良好なターンオフ特性を維持しながら、ダイオード動作させた場合に良好な逆回復特性を示す逆阻止型IGBTを逆並列に接続した双方向IGBTを提供することである。
【0013】
【課題を解決するための手段】
前記の目的を達成するために、第1導電型ベース層と、該第1導電型ベース層の表面に選択的に形成された第2導電型ベース層と、該第2導電型ベース層の表面に選択的に形成された第1導電型ソース層と、前記第1導電型ベース層と前記第1導電型ソース層に挟まれた前記第2導電型ベース層上にゲート絶縁膜を介して形成されたゲート電極と、前記第1導電型ソース層と第2導電型ベース層に接触して形成された第1主電極と、前記第1導電型ベース層の裏面に形成された第2導電型コレクタ層と、該コレクタ層上に形成された第2主電極と、前記第1導電型ベース層の外周部表面を取り囲むように形成された第2導電型の第1半導体層と、該第1半導体層に接し、前記第2導電型コレクタ層と接する第2導電型の第2半導体層を備えた耐圧構造を具備し、順阻止耐圧と同等の逆阻止耐圧を有する逆阻止型IGBTを逆並列に接続した双方向IGBTにおいて、一方の逆阻止型IGBTのゲート電極に正の電圧を印加してゲートを常時オン状態とし、第1導電型ベース層と第2導電型コレクタ層を逆阻止耐圧を有するPNダイオードとして動作させる際の第1導電型ベース層のキャリア濃度を小さくするためのライフタイムキラーを第1導電型ベース層と第2導電型コレクタ層の接合近傍にヘリウムイオンもしくは水素イオンの照射によって局在化させる構成とする。
【0014】
前記ライフタイムキラーの分布のピーク位置が、前記第1導電型ベース層と前記第2導電型ベース層で形成されるPN接合に印加される逆バイアス電圧で、空乏層が到達しない前記第1導電型ベース層内とするとよい。
前記ライフタイムキラーの分布のピークが、前記第1導電型ベース層内に存在し、前記ピークの位置と前記PN接合の位置との距離が0μmないし40μmであるとよい。
【0015】
記逆阻止耐圧を得るために、前記第2導電型の第2半導体層に換えてベベル構造である耐圧構造としてもよい。
【0016】
前記のように、ライフタイムキラーを裏面側の第1導電型ベース層と第2導電型コレクタ層の接合部分付近に局在化させることにより、逆阻止型IGBTのターンオフ時間を短縮できて、かつ、ダイオードとして動作させた場合に、逆回復電流を小さくすることができる。
【0017】
【発明の実施の形態】
以下、図を参照しながらこの発明の実施例を説明する。以下の実施例ではすべて第1導電型をN型、第2導電型をP型とするがこれを逆にしても構わない。
図1は、この発明の第1実施例の半導体装置の要部断面図である。ここでは、半導体装置は逆阻止型IGBTである。
【0018】
高比抵抗のNベース層2の表面にPベース層3を形成し、裏面側にPコレクタ層1を形成する。活性領域のPベース層3の表面部にはNエミッタ層4を形成する。
2つのNエミッタ層4で挟まれた領域のPベース層3とNベース層2の上にはゲート絶縁膜5を形成し、さらにゲート絶縁膜5の上にゲート電極6を形成する。表面から形成された各層およびゲート電極6が形成されたエミッタ側表面は層間絶縁膜7で覆われ、これにコンタクト孔が開けられさらにPベース層3およびNエミッタ層4に接触するエミッタ電極8を形成し、裏面のPコレクタ層1上にコレクタ電極9を形成する。つぎに、耐圧構造16の外周部とPコレクタ層1に接するように、Nベース層2の側壁にはP層11を形成する。
【0019】
前記のコレクタ電極9を形成する前に、ライフタイム制御を行う。このライフタイム制御は、従来のように、電子線照射などの素子全体に対して均一なライフタイムキラーを用いるのではなく、任意の深さに局所的にライフタイムキラーを存在させることのできるHe照射やプロトン照射などを用い、Pコレクタ層1とNベース層2との接合付近に局在化させる。
【0020】
このように、ライフタイムキラーを接合付近に局在化させることで、ターンオフ時は空乏層が拡がった状態でもライフタイムキラーが有効に働くことから高速なターンオフ特性となる。また、Pコレクタ層1とNベース層2からなるPNダイオードの逆回復特性は、Nベース層2内の接合付近のキャリア濃度が小さくなるために逆回復ピーク電流(Irp)が小さくソフトリカバリの良好な特性を示す。図2にターンオフ波形、図3にダイオード動作させた時の逆回復波形を示す。ここでAは本発明品、Bは従来品である。
【0021】
また、側壁部分にP層11を設けることにより、Nベース層2とPコレクタ層1のPN接合部分が逆バイアス状態(逆阻止状態)になった場合、空乏層はNベース層2内を上方向に向かって広がるとともに、P層11より素子の内側に向かって横方向に広がる。横方向に広がる空乏層は表面に形成されたプレーナ型の耐圧構造を利用して、逆向きに広がることで、素子の逆阻止耐圧を得ることができる。
【0022】
図4は、この発明における素子の耐圧特性の波形図である。順阻止耐圧(順耐圧)ばかりでなく、逆阻止耐圧(逆耐圧)があるため、この逆阻止型IGBTのゲートを常時オン状態にすることで、Pコレクタ層1とNベース層2からなる、逆阻止耐圧を有するPNダイオードとして動作させることができる。
図5は、本発明品を逆並列接続した双方向IGBTのモデル図である。このように接続した場合、耐圧特性は図4で示した耐圧波形を示し、且つ、順逆方向のスイッチング動作を行わせることができる双方向スイッチング素子となる。例えば、主端子T1を接地し主端子T2に正の電圧が印加された場合、ゲート端子G1に正の電圧を印加すると、左側の素子(第1逆阻止型IGBT41)がオン動作して正方向に電流が流れる。これとは逆に、主端子T2を接地し主端子T1に正の電圧を印加した場合、ゲート端子G2に正の電圧を印加することで右側の素子(第2逆阻止型IGBT42)がオン動作して、逆方向に電流が流れる。つまり、双方向スイッチング動作を行なわせることができる。
【0023】
この双方向IGBTは、これを構成する逆阻止型IGBT41、42のターンオフ特性やダイオード動作時の逆回復特性などと同等の特性を有することは勿論である。
図6は、この本発明の第2実施例の半導体装置の要部断面図である。ここでは、半導体装置は逆阻止型IGBTである。
【0024】
ライフタイムキラーを局在化させる位置として、Nベース層2とPベース層3のPN接合31が逆バイアスされた時(順方向耐圧時)に空乏化しない領域(空乏層32が広がらない領域)のNベース層2内とする。この素子は、第1実施例で説明した効果と同様の効果が期待できる。
図7は、この発明の第3実施例の半導体装置の要部断面図である。ここでは、半導体装置は逆阻止型IGBTである。
【0025】
ライフタイムキラーを局在化させた場合の分布のピーク位置Lを、PN接合31からライフタイムキラーの密度分布のピーク(分布のピーク33)までの距離と定義したとき、ピーク位置Lを40μm以下とする。また、ライフタイムキラーの分布の幅X(ピーク値の10%の範囲)は20μmである。この素子は、第1実施例で説明した効果と同様の効果が期待できる。
【0026】
図8は、ダイオード動作時の逆回復ピーク電流Irpのピーク位置L依存性を示す。ピーク位置Lを40μm以下にすると、均一なライフタイムキラー(点線のレベル)分布をさせた場合よりも、Irpが小さく、ソフトリカバリー波形の良好な逆回復特性を示す。
図8から、このピーク位置Lを、PN接合31に近づけると、さらに良好な逆回復特性を示し、ピーク位置Lを20μm以下とすると、Irpは、均一なライフタイムキラー分布とした場合の1/2程度に低減される。
【0027】
図9は、この本発明の第4実施例の半導体装置の要部断面図である。ここでは、半導体装置は逆阻止型IGBTである。
ライフタイムキラーを局在化させる位置は、前記第1実施例から第3実施例と同様であるが、これらと異なるのは、逆方向耐圧を得る構造としてベベル構造21を適応している点である。
【0028】
図10は、この本発明の第5実施例の半導体装置の要部断面図である。ここでは、半導体装置は逆阻止型IGBTある。
ライフタイムキラーを局在化させる位置は第1実施例から第3実施例と同様であるが、これらと異なるのは逆方向耐圧を得る構造として図9と異なるベベル構造22を適応した点である。そして、このベベル構造22を形成する方法として、表面プレーナ耐圧構造の外側に表面よりPコレクタ層1に達する溝23を形成する。
【0029】
【発明の効果】
この発明によれば、コレクタ層側のベース層に局部的にライフタイムキラーを導入することにより、良好なスイッチング特性を維持しながら、ダイオード動作時にも良好な逆回復特性を示す逆阻止型IGBTが得られる。さらに、この逆阻止型IGBTを逆並列に接続する双方向IGBTとすることで、良好な特性の双方向スイッチング素子を製作することができる。
【図面の簡単な説明】
【図1】 この発明の第1実施例の半導体装置の要部断面図
【図2】 本発明品と従来品のターンオフ波形図
【図3】 本発明品と従来品の逆回復波形図
【図4】 この発明における素子の耐圧特性の波形図
【図5】 本発明品を逆並列接続した双方向IGBTのモデル図
【図6】 この本発明の第2実施例の半導体装置の要部断面図
【図7】 この発明の第3実施例の半導体装置の要部断面図
【図8】 ダイオード動作時の逆回復ピーク電流Irpのピーク位置L依存性を示す図
【図9】 この本発明の第4実施例の半導体装置の要部断面図
【図10】 この本発明の第5実施例の半導体装置の要部断面図
【図11】 従来の逆阻止型IGBTの要部断面図
【符号の説明】
1 Pコレクタ層
2 Nベース層
3 Pベース層
4 Nエミッタ層
5 ゲート絶縁膜
6 ゲート電極
7 層間絶縁膜
8 エミッタ電極
9 コレクタ電極
11、12、13 P層
14 金属膜
15 絶縁膜
16 耐圧構造
17 活性領域
20 ライフタイムキラー
21、22 ベベル構造
31 PN接合
32 空乏層
33 分布のピーク
41 第1逆阻止型IGBT
42 第2逆阻止型IGBT
G ゲート端子
E エミッタ端子
C コレクタ端子
T1、T2 主端子
G1、G2 ゲート端子
L ピーク位置
X 分布の幅

Claims (4)

  1. 第1導電型ベース層と、該第1導電型ベース層の表面に選択的に形成された第2導電型ベース層と、該第2導電型ベース層の表面に選択的に形成された第1導電型ソース層と、前記第1導電型ベース層と前記第1導電型ソース層に挟まれた前記第2導電型ベース層上にゲート絶縁膜を介して形成されたゲート電極と、前記第1導電型ソース層と第2導電型ベース層に接触して形成された第1主電極と、前記第1導電型ベース層の裏面に形成された第2導電型コレクタ層と、該コレクタ層上に形成された第2主電極と、前記第1導電型ベース層の外周部表面を取り囲むように形成された第2導電型の第1半導体層と、該第1半導体層に接し、前記第2導電型コレクタ層と接する第2導電型の第2半導体層を備えた耐圧構造を具備し、順阻止耐圧と同等の逆阻止耐圧を有する逆阻止型IGBTを逆並列に接続した双方向IGBTにおいて、一方の逆阻止型IGBTのゲート電極に正の電圧を印加してゲートを常時オン状態とし、第1導電型ベース層と第2導電型コレクタ層を逆阻止耐圧を有するPNダイオードとして動作させる際の第1導電型ベース層のキャリア濃度を小さくするためのライフタイムキラーを第1導電型ベース層と第2導電型コレクタ層の接合近傍にヘリウムイオンもしくは水素イオンの照射によって局在化させることを特徴とする逆阻止型IGBTを逆並列に接続した双方向IGBT
  2. 第1導電型ベース層と、該第1導電型ベース層の表面に選択的に形成された第2導電型ベース層と、該第2導電型ベース層の表面に選択的に形成された第1導電型ソース層と、前記第1導電型ベース層と前記第1導電型ソース層に挟まれた前記第2導電型ベース層上にゲート絶縁膜を介して形成されたゲート電極と、前記第1導電型ソース層と第2導電型ベース層に接触して形成された第1主電極と、前記第1導電型ベース層の裏面に形成された第2導電型コレクタ層と、該コレクタ層上に形成された第2主電極と、前記第1導電型ベース層の外周部表面を取り囲むように形成された第2導電型の第1半導体層と、前記第1導電型ベース層の外周部表面がベベル構造である耐圧構造を具備し、順阻止耐圧と同等の逆阻止耐圧を有する逆阻止型IGBTを逆並列に接続した双方向IGBTにおいて、一方の逆阻止型IGBTのゲート電極に正の電圧を印加してゲートを常時オン状態とし、第1導電型ベース層と第2導電型コレクタ層を逆阻止耐圧を有するPNダイオードとして動作させる際の第1導電型ベース層のキャリア濃度を小さくするためのライフタイムキラーを第1導電型ベース層と第2導電型コレクタ層の接合近傍にヘリウムイオンもしくは水素イオンの照射によって局在化させることを特徴とする逆阻止型IGBTを逆並列に接続した双方向IGBT
  3. 前記ライフタイムキラーの分布のピーク位置が、前記第1導電型ベース層と前記第2導電型ベース層で形成されるPN接合に印加される逆バイアス電圧で、空乏層が到達しない前記第1導電型ベース層内とすることを特徴とする請求項1または請求項2に記載の逆阻止型IGBTを逆並列に接続した双方向IGBT
  4. 前記ライフタイムキラーの分布のピークが、前記第1導電型ベース層内に存在し、前記ピークの位置と前記PN接合の位置との距離が0μmないし40μmであることを特徴とする請求項3に記載の逆阻止型IGBTを逆並列に接続した双方向IGBT
JP2000257341A 2000-08-28 2000-08-28 逆阻止型igbtを逆並列に接続した双方向igbt Expired - Fee Related JP4788028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257341A JP4788028B2 (ja) 2000-08-28 2000-08-28 逆阻止型igbtを逆並列に接続した双方向igbt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257341A JP4788028B2 (ja) 2000-08-28 2000-08-28 逆阻止型igbtを逆並列に接続した双方向igbt

Publications (2)

Publication Number Publication Date
JP2002076017A JP2002076017A (ja) 2002-03-15
JP4788028B2 true JP4788028B2 (ja) 2011-10-05

Family

ID=18745814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257341A Expired - Fee Related JP4788028B2 (ja) 2000-08-28 2000-08-28 逆阻止型igbtを逆並列に接続した双方向igbt

Country Status (1)

Country Link
JP (1) JP4788028B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4781616B2 (ja) * 2002-09-26 2011-09-28 三菱電機株式会社 半導体基板の製造方法及び半導体装置の製造方法
JP4899290B2 (ja) * 2003-04-10 2012-03-21 富士電機株式会社 逆阻止型半導体装置
DE102004017723B4 (de) 2003-04-10 2011-12-08 Fuji Electric Co., Ltd In Rückwärtsrichtung sperrendes Halbleiterbauteil und Verfahren zu seiner Herstellung
US7157785B2 (en) 2003-08-29 2007-01-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
JP4791704B2 (ja) * 2004-04-28 2011-10-12 三菱電機株式会社 逆導通型半導体素子とその製造方法
CN100405738C (zh) * 2004-07-09 2008-07-23 清华大学 逆阻式绝缘栅双极型晶体管的驱动保护电路
JP4982948B2 (ja) 2004-08-19 2012-07-25 富士電機株式会社 半導体装置の製造方法
JP5382098B2 (ja) * 2004-08-19 2014-01-08 富士電機株式会社 半導体装置の製造方法
US7776672B2 (en) 2004-08-19 2010-08-17 Fuji Electric Systems Co., Ltd. Semiconductor device and manufacturing method thereof
DE102006009961B4 (de) * 2005-03-25 2013-07-11 Fuji Electric Co., Ltd Verfahren zur Herstellung eines Halbleiterbauteils
JP2007240904A (ja) * 2006-03-09 2007-09-20 Hitachi Ltd プラズマディスプレイ装置
JP5499692B2 (ja) * 2009-12-24 2014-05-21 トヨタ自動車株式会社 半導体装置及びその製造方法
JP2011187916A (ja) 2010-02-12 2011-09-22 Fuji Electric Co Ltd 逆阻止型絶縁ゲートバイポーラトランジスタの製造方法
JP5549532B2 (ja) 2010-10-21 2014-07-16 富士電機株式会社 半導体装置の製造方法
CN103329255A (zh) 2011-01-18 2013-09-25 富士电机株式会社 反向阻断型半导体元件的制造方法
US8999768B2 (en) 2011-03-14 2015-04-07 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
JP5866827B2 (ja) 2011-06-30 2016-02-24 富士電機株式会社 逆阻止型絶縁ゲート型バイポーラトランジスタの製造方法
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
CN104009072A (zh) * 2013-02-25 2014-08-27 中国科学院微电子研究所 一种绝缘栅双极型晶体管及其制作方法
CN107731901B (zh) * 2017-11-20 2024-02-23 电子科技大学 一种逆阻型igbt
CN108110057B (zh) * 2017-12-13 2021-11-05 深圳市晶特智造科技有限公司 超结金属氧化物场效应晶体管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494023B2 (ja) * 1998-07-28 2004-02-03 株式会社日立製作所 半導体装置および半導体装置の駆動方法並びに電力変換装置

Also Published As

Publication number Publication date
JP2002076017A (ja) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4788028B2 (ja) 逆阻止型igbtを逆並列に接続した双方向igbt
US10361191B2 (en) Semiconductor device
EP0450082B1 (en) Insulated gate bipolar transistor
JP5875680B2 (ja) 絶縁ゲート型バイポーラトランジスタ
JPH0387068A (ja) ゲートターンオフパワー半導体素子
KR20000015138A (ko) 트렌치 절연 게이트 바이폴라 트랜지스터
JPH10261791A (ja) 半導体整流装置
JPH0851202A (ja) 半導体双方向性スイッチおよびその駆動方法
JP2021052078A (ja) 半導体装置及びその製造方法
JPH03194974A (ja) Mos型半導体装置
JP2004342718A (ja) 半導体装置及びコンバータ
JP2007150121A (ja) 電力用半導体装置およびそれを用いた電力変換装置
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
KR101052498B1 (ko) 반도체장치 및 그 제조방법
JP3695249B2 (ja) 半導体装置及びそれを用いた電力変換装置
US9461116B2 (en) Method of formation of a TI-IGBT
CN111933687B (zh) 具有高安全工作区的横向功率器件
JP3206395B2 (ja) 半導体装置
JP3111725B2 (ja) デュアルゲート半導体装置
JP2021128993A (ja) 半導体装置およびスイッチングシステム
JP2000049337A (ja) 半導体装置
KR100424450B1 (ko) 횡형 트렌치 전극 이중 채널 에미터 스위치 사이리스터
JP3607468B2 (ja) 高耐圧半導体装置及びその駆動方法
WO2023188577A1 (ja) 半導体装置および電力変換装置
JPH04320377A (ja) 絶縁ゲート型バイポーラトランジスタ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees