JP4780951B2 - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
JP4780951B2
JP4780951B2 JP2004340350A JP2004340350A JP4780951B2 JP 4780951 B2 JP4780951 B2 JP 4780951B2 JP 2004340350 A JP2004340350 A JP 2004340350A JP 2004340350 A JP2004340350 A JP 2004340350A JP 4780951 B2 JP4780951 B2 JP 4780951B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
translucent
cover body
layer
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004340350A
Other languages
English (en)
Other versions
JP2005183945A (ja
Inventor
豪 京田
浩文 千田
健一 岡田
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004340350A priority Critical patent/JP4780951B2/ja
Publication of JP2005183945A publication Critical patent/JP2005183945A/ja
Application granted granted Critical
Publication of JP4780951B2 publication Critical patent/JP4780951B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は光電変換装置に関し、特に、太陽光発電などに使用される粒状結晶半導体を用いた光電変換装置に関する。
従来の粒状結晶半導体を用いた光電変換装置を図6に示す。この光電変換装置は、第1のアルミニウム箔23に開口を形成し、その開口にp型中心核21の上にn型外郭22を持つシ
リコン球を挿入し、このシリコン球の裏側のn型外郭22を除去し、第1のアルミニウム箔23及びn型外郭22を除去したシリコン球表面に絶縁体層24を形成し、シリコン球の裏側頂上部の絶縁体層を除去した後に、シリコン球と第2のアルミニウム箔26とを接合したものであり、さらに、n型外郭22と第1のアルミニウム箔23との上に球状レンズ27が配設されている。このようにシリコン球のような粒状結晶半導体を用いた場合、粒状結晶半導体間に隙間が生じてしまい、結果として光電変換ロスとなる。そこで、粒状結晶半導体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に引き込むために、粒状結晶半導体上に球状レンズ27を形成する光電変換装置が開示されている(例えば、特許文献1を参照)。
米国特許第5419782号明細書
しかしながら、図6に示すような光電変換装置においては、第1のアルミニウム箔23に孔を開けてシリコン球を挿入することから、第1のアルミニウム箔23の箔形状を維持するために、シリコン球間の間隔を開けざるを得なく、光電変換装置の面積に対する全シリコン球の投影面積比が75%程度となってしまう。間隔が広くなったことによるシリコン球間の隙間(25%程度)に入射した光エネルギーを隙間に隣接するシリコン球に引き込むために、球状レンズ同士の接触している形状を急激に変化させる必要があった。しかしながら、電極である第1のアルミニウム箔23の形状に沿わず、球状レンズ同士の接触している形状を急激に変化させる形状は、第1のアルミニウム箔23の保護としては信頼性的に不十分であり、場合によっては第1のアルミニウム箔23の表面が腐食して第1のアルミニウム箔23からの光エネルギーの反射を得られなくなって光電変換効率を低下させるという問題があった。
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は、信頼性を保ちながら、粒状結晶半導体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に引き込むことによって、より光電変換特性が高い光電変換装置を提供することにある。
上記目的を達成するために、本発明の光電変換装置は、1)一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設け、該他方の電極の上にその表面に沿って透光性カバー体を設け、該透光性カバー体における隣接する前記粒状光電変換体の頂上部同士の間に対応する部位において空気層を介するとともに前記透光性カバー体における前記頂上部に対応する部位において接着された透光性保護板を設けてなることを特徴とする。
また、上記構成において、2)前記透光性保護板は前記透光性カバー体側の面に透光性緩衝層および透光性樹脂フィルムが順次積層されており、前記透光性カバー体および前記透光性緩衝層は熱可塑性材料から成り、前記透光性樹脂フィルムは前記透光性カバー体および前記透光性緩衝層よりも軟化温度が高いことを特徴とする。
また、上記2)の構成において、3)前記透光性樹脂フィルムは、前記透光性カバー体側の面が前記透光性カバー体と同じ熱可塑性材料で被覆されていることを特徴とする。
本発明によれば、他方の電極の上に透光性カバー体を比較的均一に覆うことによって、
他方の電極の露出を無くし、湿度等の直接的な攻撃を防止することができ、信頼性を保ちながら、粒状光電変換体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に効率よく引き込むことができ、これにより光電変換特性が高く信頼性の高い光電変換装置を提供することが可能となる。
また、上記2)、3)の光電変換装置によれば、粒状光電変換体の粒径のばらつきや透光性保護板の微小なうねりを吸収しながら信頼性を保ち、粒状光電変換体間の隙間に入射した光を隙間を介して隣接する粒状光電変換体に引き込むことによって、より光電変換特性が高い光電変換装置を提供することが可能となる。
以下、本発明の実施形態を模式的に示した図面に基づいて詳細に説明する。
図1は、参考としての光電変換装置の一実施形態を示す断面図である。図1において、1は基板、2は粒状光電変換体を構成する粒状結晶半導体、3は絶縁物質からなる絶縁体層、4は粒状光電変換体を構成する半導体層、5は透明導電層、6は基板の例えばアルミニウムと粒状結晶半導体のシリコンとの合金層、7は透光性カバー体である。なお、基板1は絶縁体の上にアルミニウムから成る電極層を設けたものとしてもよい。
基板1はアルミニウムの融点以上の融点を有する金属、セラミックスであればよく、例えばアルミニウム、アルミニウム合金、鉄、ステンレス、ニッケル合金、アルミナ等が用いられる。基板1の材料がアルミニウム以外の場合、その材料とアルミニウムから成る電極層(不図示)との構成とする。
まず、第一導電型の粒状結晶半導体2を基板1上に多数配設する。この粒状結晶半導体2は、Siにp型を呈するためのB、Al、Ga等、またはn型を呈するためのP、As等の元素が微量含まれているものである。粒状結晶半導体2の形状としては多面体状や丸みを帯びた角部を有するもの、曲面を有するもの等であり、その粒径分布としては均一、不均一を問わないが、均一の場合は粒径を揃えるための工程が必要になるため、より安価にするためには不均一の方が有利である。さらに凸曲面を持つことによって入射光の光線角度の依存性も小さくできる。
粒状結晶半導体2の粒径は、0.2〜0.8mmがよい。なぜなら、0.8mmを超えると切削
部も含めた従来の結晶板型の光電変換装置のシリコン使用量と変わらなくなり、粒状結晶半導体を用いるメリットがなくなるからであり、また、0.2mmよりも小さいと基板1へ
のアッセンブルがしにくくなるという別の問題が発生するからである。したがって、粒状結晶半導体2の粒径は、シリコン使用量との関係から0.2〜0.6mmがより好適である。
基板1上に粒状結晶半導体2を多数配設した後、一定の加重をかけて基板1のアルミニウムと粒状結晶半導体2のシリコンとの共晶温度577℃以上に加熱することによって、基
板1と粒状結晶半導体2の合金層6を介して基板1と粒状結晶半導体2を接合させる。
絶縁体層3は、正極と負極の分離を行うための絶縁材料からなり、例えばSiO、B、Al、CaO、MgO、P、LiO、SnO、ZnO、BaO、TiO等を任意な成分とする主材料の低温焼成用ガラス材料単体、上記材料の1種または複数種から成るフィラーを複合したガラス組成物、或いはシリコーン樹脂等の有機系の絶縁物質などを用いる。
上記絶縁材料を粒状結晶半導体2の上から塗布して、アルミニウムとシリコンの共晶温度である577℃以下の温度で加熱することによって充填して絶縁体層3とする。加熱温度
が577℃を超えると、アルミニウムとシリコンとの合金層15が溶融し始めるために、基板
1と粒状結晶半導体2との接合が不安定となり、場合によっては粒状結晶半導体2が基板1から離脱して発電電流を取り出せなくなる。絶縁体層3を形成した後、粒状結晶半導体2の表面を洗浄するために、弗酸を含む洗浄液で洗浄する。
半導体層4は例えばSiから成り、気相成長法等で例えばシラン化合物の気相にn型を呈するためのリン系化合物の気相、またはp型を呈するホウ素系化合物の気相を微量導入して形成する。膜質としては結晶質、非晶質、結晶質と非晶質とが混在する場合のどちらでもよいが、光線透過率を考慮すると結晶質または結晶質と非晶質とが混在するものがよい。粒状結晶半導体2がない部分で入射光の一部が半導体層4を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。
半導体層4中の微量元素の濃度は例えば1×1016〜1021原子/cm台程度である。さらに、半導体層4は粒状結晶半導体2の表面の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成することによってpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することが可能となる。なお、その外郭に逆導電型、つまりn型を呈するP、As等、またはp型を呈するB、Al、Ga等の元素が微量含まれている粒状結晶半導体2を用いる場合には、半導体層4はなくてもよく、その上に下記の透明導電層5を形成してもよい。
半導体層4上、または粒状結晶半導体2として外郭に逆導電型の元素を微量含んでいる場合には、粒状結晶半導体2上に他方の電極を兼ねる透明導電層5を形成する。透明導電層5は、SnO、In、ITO、ZnO、TiO等から選ばれる1種または複数の酸化物系膜などから成り、スパッタリング法、気相成長法、あるいは塗布焼成法等で形成する。透明導電層5は膜厚を選べば反射防止膜としての効果も期待できる。なお、透明導電層5は透明であることが必要であり、粒状結晶半導体2がない部分で入射光の一部が透明導電層5を透過し、下部の基板1で反射して粒状結晶半導体2に照射されることで、光電変換装置全体に照射される光エネルギーを効率よく粒状結晶半導体2に照射することが可能となる。透明導電層5は半導体層4あるいは粒状結晶半導体2の表面に沿って形成し、粒状結晶半導体2の凸曲面形状に沿って形成することが望ましい。粒状結晶半導体2の凸曲面状の表面に沿って形成するとpn接合の面積を広く稼ぐことができ、粒状結晶半導体2の内部で生成したキャリアを効率よく収集することができる。
半導体層4あるいは透明導電層5上に保護層(不図示)を形成してもよい。このような保護層としては透明誘電体の特性を持つものがよく、CVD法やPVD法等で例えば酸化珪素、酸化セシウム、酸化アルミニウム、窒化珪素、酸化チタン、SiO−TiO、酸化タンタル、酸化イットリウム等を単一組成または複数組成で単層または組み合わせて半導体層4または透明導電層5上に形成する。保護層は、光の入射面に接しているために、透明性が必要であり、また半導体層4または透明導電層5と外部との間のリークを防止するために、誘電体であることが必要である。なお、保護層の膜厚を最適化すれば反射防止膜としての機能も期待できる。
直列抵抗値を低くするために、半導体層4または透明導電層5の上に上部電極として一定間隔のフィンガー電極部(不図示)およびバスバー電極部(不図示)から成るパターン電極を設けて直接または間接的に半導体層4と接続してもよい。
他方の電極を兼ねる透明導電層5上に透光性カバー体7を透明導電層5の形状に沿うように設ける。粒状結晶半導体2間の隙間に入射した光エネルギーを透光性カバー体7で粒状結晶半導体2の方向に屈折させて、隙間に隣接する粒状結晶半導体2に引き込む。また
、透明導電層5の形状に沿うように透光性カバー体7を設けているので、透明導電層5の露出を無くし、湿度等の直接的な攻撃を防止する。透光性カバー体7で連続するレンズ形状を形成するには、光電変換装置の面積に対する全粒状結晶半導体2の投影面積比が80%以上が必要である。なぜなら、80%未満では、粒状結晶半導体2間の隙間が広くなることから、透光性カバー体7の基板と反対の面が基板に対して平行な部分が形成されてしまい、粒状結晶半導体2間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体2に引き込むことができなくなり、光電変換特性の向上が小さくなってしまうからである。
透光性カバー体7の材料としては、光学的に透明であり、透光性カバー体7自体が熱によって軟化する熱可塑性をもって透明導電層5の形状に沿うことができるものであれば良く、樹脂フィルムが好適である。例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂とするその形成方法としては、フィルム状にして透明導電層5上に配置して、上部からドライヤー等で軟化温度上の熱風を吹き付けて透明導電層5の形状に沿うように形成する方法(ここでは熱風法という)、有機溶媒等に溶解させてその溶液を透明導電層5上に塗布した後に乾燥させて透明導電層5の形状に沿うように形成する方法(ここでは塗布法という)、基板1上の粒状結晶半導体2の凹凸形状のネガ形状の型を耐熱材料で形成し、型と透明導電層5間にフィルム状のものを挟んで加熱しながら加圧する方法(ここでは型形成法という)等があるが、より簡便な塗布法、或いは環境的にも問題が少ない熱風法が好ましい。透光性カバー体7の膜厚としては、粒状結晶半導体2の粒径にもよるが、例えば20〜100μm程度であり
、20μm未満では薄すぎて効果が得られにくく層としても形成し辛くなり、100μmを超
えると透光性カバー体7がだれて透明導電層5の形状に沿った形状が得られず、また狭い粒状結晶半導体2間の隙間に入りにくくなり効果が得られにくくなる。
このよう光電変換装置は、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外表面に沿って、他方の電極および透光性カバー体を順次形成してなるので、他方の電極の上に透光性カバー体を比較的均一に覆うことによって、信頼性を保ちながら、粒状光電変換体間の隙間に入射した光エネルギーを隙間に隣接する粒状結晶半導体に効率よく引き込むことができ、これにより光電変換特性が高く信頼性の高い光電変換装置を提供することが可能となる。また、この場合、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体の間の下部に絶縁体層を設け、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外形に沿って、他方の電極を形成する工程と、他方の電極の上に透光性の樹脂フィルムを配設し、該樹脂フィルムを軟化点以上の温度で加熱することにより粒状光電変換体の外表面に沿って変形させる工程とを、順次行なうことにより図1に示す光電変換装置を簡便に作製することができる。
次に、さらに光電変換装置の信頼性を向上させた本発明の図2の構造および参考としての図3の構造を説明する。図2は、図1で示した光電変換装置の透光性カバー体7上に透光性保護板8を設けた光電変換装置を示した断面図である。単に透光性カバー体7上に透光性保護板8を設けると、透光性カバー体7と透光性保護板8との間に空気層9が挟まれることによって、入射してきた光エネルギーが透光性保護板8全面と空気層9との界面で反射されてエネルギーロスが発生する。そこで、エネルギーロスを少なくするために、透光性保護板8の裏面と粒状結晶半導体2の頂上部の透光性カバー体7の一部を密着させることによって、光エネルギーの反射する界面を減らし、透光性保護板8を設けることによるエネルギーロスを軽減させることが可能となる。
図2に示す光電変換装置の作製方法としては、図1で形成した光電変換装置の透光性カバー体7上に透光性保護板8をのせて、加圧しながら加熱することによって、透光性カバー体7を軟化させて透光性カバー体7の一部を透光性保護板8と密着させる。透光性保護
板8としては、光学的に透明で、透光性カバー体7よりも耐熱性があればよく、ガラス或いはポリカボネート、PET(ポリエチレンテレフタレート)等の透明樹脂等がある。このように、図2に示す光電変換装置は、一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体の間の下部に絶縁体層を設け、多数個の粒状光電変換体の上部および絶縁体層の上に、粒状光電変換体および絶縁体層の外表面に沿って他方の電極を形成する工程と、他方の電極の上に透光性の樹脂フィルム、この樹脂フィルムより屈折率の低い透光性の充填材および透光性保護板を順次配設してラミネート加工を施す工程とを、順次行なうことによって簡便に作製することができる。
また、図3は、図1で示した光電変換装置の透光性カバー体7と透光性保護板8との間に光学的に透明な充填材10を設けた様子を示す断面図である。ここで、透光性カバー体7と充填材10との屈折率の大小関係は、充填材10が透光性カバー体7よりも小さいことが望ましい。入射してきた光エネルギーが充填材10を通って透光性カバー体7に入る時に、光エネルギーが粒状結晶半導体2側に屈折して粒状結晶半導体2に取り込むことが可能となる。例えば透光性カバー体7がEVA(n=1.49)の場合は、ポリフッ化ビニリデン(n=1.42)、シリコーン樹脂(n=1.43)等を用いる。その形成方法としては、図1で形成した光電変換装置の透光性カバー体7と透光性保護板8との間に透明充填材10を挟んでラミネーターでラミネートするか、図1の透光性カバー体7の形成前で、光電変換装置の透明導電層5上にフィルム状の透光性カバー体7、フィルム状の透明充填材10及び透光性保護板8を順次重ねてラミネーターでラミネートする。
また、図2において、粒状結晶半導体2の粒径が多少ばらつく場合があり、透光性保護板8の裏面も微小なうねりがあるために、透光性保護板8の裏面と全ての粒状結晶半導体2の頂上部の透光性カバー体7の一部とを密着させることが困難となる場合がある。そこで、図4に示すように、透光性カバー体7と透光性保護板8との間に、透光性緩衝層11と透光性樹脂フィルム12を設ける。
透光性緩衝層11は、粒状結晶半導体2の粒径のばらつきと透光性保護板8の裏面の微小なうねりを吸収する役目を持ち、光学的に透明で、軟化温度が透光性カバー体7と同等か、より低い材料であれば良く、例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂から成る。
また、透光性樹脂フィルム12は、モジュール形成時に軟化した透光性緩衝層11が流れて空気層9が透光性緩衝層11の材料で埋まらないように空気層9を維持する役目を持ち、光学的に透明で、軟化温度が透光性カバー体7および透光性緩衝層11より高い材料であれば良く、例えばPET(ポリエチレンテレフタレート)やフッ素系樹脂等から成る。
これらの形成方法としては、図1で形成した光電変換装置の透光性カバー体7上に、透光性樹脂フィルム12、透光性緩衝層11、透光性保護板8を順次載せて、ラミネーターで真空加圧しながら加熱することによって、透光性カバー体7を軟化させてその一部を透光性樹脂フィルム12と密着させ、透光性緩衝層11が軟化して透光性樹脂フィルム12と透光性保護板8との間の高さのばらつきを吸収する。
さらに、図4における粒状結晶半導体2の頂部の透光性カバー体7と透光性樹脂フィルム12との接触をより安定化させるために、図5に示すように、予め透光性樹脂フィルム12の透光性カバー体7と接する側の面に、第2緩衝層13として透光性カバー体7と同じ材料から成るものを設ける。その形成方法としては、図4の説明で示した形成方法において、予め透光性樹脂フィルム12の透光性カバー体7と接する側の面に、第2緩衝層13として透光性カバー体7と同じ材料のものを被覆して形成すればよい。
なお、本発明の光電変換装置の裏面に、図4あるいは図5に示すような充填剤14、耐候性材料15を設けてもよい。充填剤14は熱可塑性樹脂であればよく、例えばアクリル、ポリエチレン、EVA(エチレンビニルアセテート)、シリコーン系樹脂、その他の透明な熱可塑性樹脂から成る。耐候性材料15は耐候性のある材料からなっていれば良く、例えばポリフッ化ビニル(PVF)、エチレン−4フッ化エチレン共重合体(ETFE)、ポリ3フッ化塩化エチレン(PCTFE)等のフッ素樹脂やポリエチレンテレフタレート(PET)等の樹脂、或いはこれらの樹脂を使ってアルミ箔や金属酸化膜を挟んで張り合わせたシート、ガラス、ステンレス等の金属シート等から成る。
次に、本発明の光電変換装置をより具体化した実施例について説明する。
以下のようにして作製した試料を用いた。アルミニウム基板上に直径約0.2〜0.6mmのp型シリコン粒子をアルミニウムとシリコンの共晶温度である577℃以上の温度で約10分
加熱してシリコン粒子をアルミニウム合金に接合した。その上に絶縁体層3を充填した。その後p型シリコン粒子の上部表面を洗浄し、シリコン粒子2と絶縁体層3の上にn型結晶質シリコンと非晶質シリコンとの混晶の半導体層4を300nmの厚みに形成し、さらに
透明導電層5としてITO膜を80nmの厚みに形成した。
上記のようにして、シリコン粒子の基板の面積に対する投影面積比を変えて作製した光電変換装置の光電変換効率を測定し初期値とした。その後、120℃のホットプレートにの
せ、透明導電層5上に厚み50μmのEVAフィルムをのせて、ドライヤーで200℃の熱風
を当てることで、透明導電層5の形状に沿って透明材料層を形成して光電変換効率を測定した。その時の光電変換効率を初期値を1とした場合の変化を表1に示す。
Figure 0004780951
比較例1−1,1−2は、光電変換効率の変化がいずれも1.02と小さかった。外観を確認したところ、透明材料層の表面が平面な部分があり、シリコン粒子の基板の面積に対する投影面積比が80%未満と小さいために透明材料層の表面が平面な部分ができたので、シリコン粒間の隙間に入射した光エネルギーがそのまま反射して、光電変換装置外に放出されたことにより効率の寄与が小さかったものと考えられる。
一方、試料1,2,3は光電変換効率の変化が大きかった。外観を確認したところ、比較例1で観察された透明材料層の表面が平面な部分認められず、シリコン粒子間の隙間に入射した光エネルギーが効率よくシリコン粒子に取り込まれたためと考えられる。
また、実施例1と同様にシリコン粒子の基板の面積に対する投影面積比を85%にして(透明材料層無し)形成した光電変換装置の光電変換効率を測定し初期値とした。そして、透明材料層上に透光性保護板として3mm厚のガラス板、或いは0.5mm厚のPETシー
トをのせて光電変換効率を測定した(比較例2,3)。次に、透明材料層上に、上記の透光性保護板をのせて加圧しながら120℃まで加熱して透光性保護板の裏面とシリコン粒子
の頂上部の透明材料の一部を密着させて試料を作製し、光電変換効率を測定した(例4,5)。以上のようにして、測定した光電変換効率を初期値を1とした場合の変化を表2に示す。
Figure 0004780951
比較例2,3では光電変換効率が透光性保護板の反射率に比例して低下した。一方、試料4,5では、光電変換効率の低下率が比較例よりも小さかった。これは、透光性保護板の裏面とシリコン粒子の頂上部の透明材料の一部を密着させたことによって、透光性保護板の裏面の界面での反射が軽減されたためと考えられる。
また、上記のようにシリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、透明導電層上に透明材料として厚み50μmのEVAフィルム、透明充填材として0.4mm厚のポリフッ化ビニリデ
ンシート及び透光性保護板として3mm厚のガラス板、或いは0.5mm厚のPETシート
を順次のせてラミネーターでラミネート加工を施して試料を作製し、光電変換効率を測定した(試料6,7)。その時の光電変換効率を初期値を1とした場合の変化を表3に示す。
Figure 0004780951
試料6,7共に光電変換効率は初期値よりも向上し、透明充填材の屈折率を透明材料の屈折率よりも小さくしたことによって、シリコン粒子間の隙間に入射した光エネルギーがシリコン粒子に取り込まれたためと考えられる。
実施例1のようにして、シリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、EVAのキシレン溶液を光電変換装置の透明導電層5上に塗布し、120℃のホットプレートにのせてキシレン
を蒸発させることで、透明導電層5の形状に沿って透光性カバー体7を形成した。
次に、透光性保護板8としての3mm厚のガラス板、透光性緩衝層11としての0.8mm
厚のEVA、透光性樹脂フィルム12としての0.5mm厚のPETシート、透光性カバー体
7を有する光電変換装置(受光面はガラス板側)、0.4mm厚のEVA、PET/金属酸
化膜/PETを貼り合わせて成る耐候性材料15を順次載せて、ラミネーターでラミネート加工を施して試料8とした。
また、試料8と同様にして、透光性緩衝層11と透光性樹脂フィルム12を用いなかった試料を作製し、試料9とした。以上の試料の光電変換効率を測定し、そのときの光電変換効率を初期値の1とした場合の変化を表4に示す。
Figure 0004780951
試料9では、光電変換効率の変化率が0.94となり、外観を確認したところ、透光性保護板8の裏面と粒状結晶半導体2の頂部の透光性カバー体7が接触していないシリコン粒子(粒状結晶半導体2)が一部あり、透光性カバー体7が接触していない個所で光のロスが発生したものと考えられる。
一方、試料8は光電変換効率の変化率は小さかった。外観を確認したところ、試料9で見られた透光性カバー体7が接触していないシリコン粒子が見られず、シリコン粒子全ての頂部の透光性カバー体7が透光性樹脂フィルム12に接触しており、シリコン粒子間の隙間に入射した光が効率よくシリコン粒子に取り込まれたためと考えられる。
実施例1のようにして、シリコン粒子の基板の面積に対する投影面積比を85%にして作製した光電変換装置の光電変換効率を測定し初期値とした。その後、EVAのキシレン溶液を光電変換装置の透明導電層5上に塗布し、120℃のホットプレートにのせてキシレン
を蒸発させることで、透明導電層5の形状に沿って透光性カバー体7を形成した。
次に、透光性保護板8としての3mm厚のガラス板、透光性緩衝層11としての0.8mm
厚のEVA、透光性樹脂フィルム12としての、透光性カバー体7と接する側の面に第2緩衝層13である30μm厚のEVAが被覆されている0.5mm厚のPETシート、透光性カバ
ー体7を有する光電変換装置(受光面は、ガラス板側)、0.4mm厚のEVA、PET/
金属酸化膜/PETを貼り合わせて成る耐候性材料15を順次載せて、ラミネーターでラミネート加工を施して試料10とした。以上の試料の光電変換効率を測定し、そのときの光電変換効率を初期値の1とした場合の変化を表4に示す。
試料10は、試料8よりもさらに光電変換効率の変化率が小さかった。外観を確認したところ、試料8では透光性カバー体7と透光性樹脂フィルム12との接触面の面積にばらつきが生じていた。一方、試料10では、透光性カバー体7と透光性樹脂フィルム12との接触面の面積が比較的安定しており、シリコン粒子間の隙間に入射した光がより効率よくシリコン粒子に取り込まれたためと考えられる。
以上のことから、本発明の光電変換装置によれば、信頼性を維持する構造で変換効率を
向上させることが可能となり、より高性能の光電変換装置を作製できることが確認できた。
参考としての本発明の光電変換装置の一実施形態を示す断面図である。 本発明の光電変換装置の他の実施形態を示す断面図である。 参考としての光電変換装置の他の実施形態を示す断面図である。 本発明の光電変換装置の他の実施形態を示す断面図である。 発明の光電変換装置の他の実施形態を示す断面図である。 従来の光電変換装置を示す断面図である。
1・・・基板
2・・・第一導電型の粒状結晶半導体
3・・・絶縁体層
4・・・逆導電型の半導体層
5・・・透明導電層
6・・・基板のアルミニウムと粒状結晶半導体のシリコンとの合金層
7・・・透光性カバー体
8・・・透光性保護板
9・・・空気層
10・・・透明充填材
11・・・透光性緩衝層
12・・・透光性樹脂フィルム
13・・・第2緩衝層
14・・・充填剤
15・・・耐候性材料
21・・・中心が第一導電型の粒状結晶半導体
22・・・粒状結晶半導体の逆導電型の外郭
23・・・第1のアルミニウム箔
24・・・絶縁体層
25・・・金属接合部
26・・・第2のアルミニウム箔
27・・・球状レンズ

Claims (3)

  1. 一方の電極となる基板の一主面上に、光電変換を行なう粒状光電変換体の多数個を配設するとともに、これら多数個の粒状光電変換体間の下部に絶縁体層を設け、前記多数個の粒状光電変換体の上部および前記絶縁体層の上に、これら粒状光電変換体および前記絶縁体層の表面に沿って他方の電極を設け、該他方の電極の上にその表面に沿って透光性カバー体を設け、該透光性カバー体における隣接する前記粒状光電変換体の頂上部同士の間に対応する部位において空気層を介するとともに前記透光性カバー体における前記頂上部に対応する部位において接着された透光性保護板を設けてなることを特徴とする光電変換装置。
  2. 前記透光性保護板は前記透光性カバー体側の面に透光性緩衝層および透光性樹脂フィルムが順次積層されており、前記透光性カバー体および前記透光性緩衝層は熱可塑性材料から成り、前記透光性樹脂フィルムは前記透光性カバー体および前記透光性緩衝層よりも軟化温度が高いことを特徴とする請求項1に記載の光電変換装置。
  3. 前記透光性樹脂フィルムは、前記透光性カバー体側の面が前記透光性カバー体と同じ熱可塑性材料で被覆されていることを特徴とする請求項2に記載の光電変換装置。
JP2004340350A 2003-11-27 2004-11-25 光電変換装置 Expired - Fee Related JP4780951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340350A JP4780951B2 (ja) 2003-11-27 2004-11-25 光電変換装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003398179 2003-11-27
JP2003398179 2003-11-27
JP2004340350A JP4780951B2 (ja) 2003-11-27 2004-11-25 光電変換装置

Publications (2)

Publication Number Publication Date
JP2005183945A JP2005183945A (ja) 2005-07-07
JP4780951B2 true JP4780951B2 (ja) 2011-09-28

Family

ID=34797324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340350A Expired - Fee Related JP4780951B2 (ja) 2003-11-27 2004-11-25 光電変換装置

Country Status (1)

Country Link
JP (1) JP4780951B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956023B2 (ja) * 2006-03-16 2012-06-20 京セラ株式会社 光電変換装置の製造方法
JP4969337B2 (ja) * 2006-11-27 2012-07-04 京セラ株式会社 光電変換装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266032A (ja) * 1998-03-18 1999-09-28 Hitachi Ltd 回折面を持つ集光装置、集熱装置、光検出器及び人工光の光電変換装置
JPH11317534A (ja) * 1998-04-30 1999-11-16 Konica Corp 太陽電池及びその製造方法
JP2002299656A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 光電変換装置
JP2003101046A (ja) * 2001-09-26 2003-04-04 Kyocera Corp 光電変換装置
JP2003317970A (ja) * 2002-04-25 2003-11-07 Dainippon Printing Co Ltd 球状有機el素子
KR100652916B1 (ko) * 2002-05-02 2006-12-01 죠스케 나카다 수광 또는 발광용 패널 및 그 제조 방법

Also Published As

Publication number Publication date
JP2005183945A (ja) 2005-07-07

Similar Documents

Publication Publication Date Title
EP1968121B1 (en) Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JP2613719B2 (ja) 太陽電池モジュールの製造方法
KR100325955B1 (ko) 태양전지모듈및태양전지모듈용보강부재
CN101490852B (zh) 全密封的非平面太阳能电池
JP3288876B2 (ja) 太陽電池モジュール及びその製造方法
JPH0936405A (ja) 太陽電池モジュール及びその製造方法
US20090293934A1 (en) Photoelectric Conversion Device
JP2004288898A (ja) 太陽電池モジュールの製造方法
JP2007067203A (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
TW201126730A (en) Solar cell and method for manufacturing the same
TW200415798A (en) Solar cell and solar cell module using the same
JPWO2017217219A1 (ja) 太陽電池及びその製造方法、並びに太陽電池モジュール
JP2000141531A (ja) 太陽電池用カバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP4780951B2 (ja) 光電変換装置
KR101747344B1 (ko) 태양전지 모듈
WO2014050193A1 (ja) 光電変換モジュール
JP4969337B2 (ja) 光電変換装置
JP2009094501A (ja) 光電変換装置
JP2008277423A (ja) 光電変換装置
JP2001313401A (ja) 光電変換装置
JP2002016272A (ja) 光電変換装置
JP2008060207A (ja) 光電変換装置
JP2009224757A (ja) 光電変換装置
JP2007134440A (ja) 光電変換装置
WO2024048332A1 (ja) 太陽電池素子、および太陽電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees