先ず、背景技術の燃料電池システムの概略を図11に基づいて説明する。図11は、背景技術の燃料電池システムの概略を示すブロック図であるが、説明の便宜上、構成の一部は省略している。図11に示すように、背景技術の燃料電池システム101は、改質器111や、蒸発器112、FC113、凝縮器114、オフガス燃焼器115、熱交換器116、制御装置117などから構成されており、排熱を給湯に利用するコジェネレーションとして定置されるものである。
この点、改質器111は、メタン・プロパン等の改質燃料を水蒸気と反応させて、水素リッチな改質ガスを製造する水蒸気改質タイプのものであり、改質部122や、熱交換部123、COシフト部124、CO選択酸化部125などから構成され、さらに、改質反応を進めるために必要な改質熱を発生させる燃焼部121が付設されている。
また、蒸発器112は、改質器111に投入される水蒸気を製造するものであり、改質器111の燃焼部121の排気ガスを熱源として、改質水から水蒸気を製造している。
また、FC113は、改質器111で製造された改質ガス中の水素に対して、空気中の酸素を電気化学的に反応させる燃料電池本体であり、これにより、発電が行われる。
また、凝縮器114は、配管152を流れる冷却水により、FC113で使い残した水素を含むオフガス又は、改質器111で製造された改質ガスから熱を取り出すものであり、これにより、オフガス又は改質ガスに含まれる水蒸気を低減させることができる。尚、凝縮器114を通過して高温となった冷却水は、配管152を介して、図示しない貯湯槽内に向かう。
また、オフガス燃焼器115は、FC113で使い残した水素を含むオフガス又は、改質器111で製造された改質ガスを燃焼するための機器である。
また、熱交換器116は、配管151を流れる冷却水により、オフガス燃焼器115の排気ガスから熱を取り出すものである。尚、熱交換器116を通過して高温となった冷却水は、配管151を介して、FC113の暖機に使用される。また、この冷却水の熱を利用して、図示しない貯湯槽内の水が暖められる。
また、制御装置117は、背景技術の燃料電池システム101を操作するものである。図11では、制御装置117に対して、蒸発器112に改質水を供給するための改質水ポンプ131や、改質器111に改質原料を供給するための改質原料ポンプ132、改質器111の燃焼部121に燃焼原料を供給するための燃焼原料ポンプ132が接続されており、それらのポンプ131,132,133を操作することにより、各供給量を制御することができる。さらに、図11では、制御装置117に対して、改質器111からFC113に向かう配管に設けられた開閉弁141や、改質器111から凝縮器114に向かう配管に設けられた開閉弁142、FC113の出口に設けられた開閉弁145、凝縮器114から改質器111の燃焼部121に向かう配管に設けられた開閉弁143、凝縮器114からオフガス燃焼器125に向かう配管に設けられた開閉弁144、が接続されており、それらの開閉弁141,142,143,144,145の開閉を操作することにより、改質ガス又はオフガスの流れを制御することができる。尚、制御装置117には、上述したポンプ131,132,133や開閉弁141,142,143,144,145以外の操作要素(アクチュエータ)や、検出要素(センサ)なども接続されており、背景技術の燃料電池システム101におけるプロセス制御を構築している。
そして、背景技術の燃料電池システム101においては、起動時では、改質器111の燃焼部121に対して、燃焼エアが供給されるとともに、燃焼原料ポンプ132で燃焼原料が供給されることにより、改質器111の暖機が行われる。このとき、改質器111の燃焼部121の排気ガスは、蒸発器112を通過して排気される。従って、改質水ポンプ131により供給された改質水は、蒸発器112で排気ガスから熱を奪って蒸気となり、さらに、改質原料ポンプ132で供給される改質原料とともに改質器111に投入されることによって、改質ガスとなる。尚、改質ガスに含まれる一酸化炭素は、COシフト部124で低減の後、CO浄化エアが混合させられることにより、改質器111のCO選択酸化部125で酸化され、その濃度は所定値にまで下げられる。また、起動時では、図12に示すように、開閉弁141,145が閉じられる一方で開閉弁142が開けられ、開閉弁143が閉じられる一方で開閉弁144が開けられる。従って、改質器111で製造された改質ガスは、FC113を通過することなく、開閉弁142を介して、凝縮器114を通過し、さらに、改質器111の燃焼部121に向かうことなく、開閉弁144を介し、オフガス燃焼器115に送られて燃焼される。そして、オフガス燃焼器115の排気ガスは、熱交換器116を通過して排気される。このとき、熱交換器116では、配管151を流れる冷却水により、オフガス燃焼器115の排気ガスから熱が取り出されるので、熱交換器116を通過して高温となった冷却水は、配管151を介して、FC113を通過することにより、FC113の暖機に使用することができる。
その後、背景技術の燃料電池システム101においては、改質器111の暖機が完了すると、図13に示すように、開閉弁141,145が開けられる一方で開閉弁142が閉じられて、改質器111で製造された改質ガスがFC113を通過することにより、発電が開始される。このとき、FC113で使い残した水素を含むオフガスは、凝縮器114を通過し、さらに、改質器111の燃焼部121に向かうことなく、開閉弁144を介し、オフガス燃焼器115に送られて燃焼される。そして、オフガス燃焼器115の排気ガスは、熱交換器116を通過して排気される。
さらに、背景技術の燃料電池システム101においては、発電時には、図14に示すように、開閉弁143が開けられる一方で開閉弁144が閉じられる。このとき、FC113で使い残した水素を含むオフガスは、オフガス燃焼器115に向かうことなく、開閉弁143を介し、改質器111の燃焼部121に送られて燃焼される。
そして、背景技術の燃料電池システム101において、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定されており、これにより、改質器111における適切な改質反応・熱交換を得ている。また、燃焼原料ポンプ132で供給される燃焼原料の投入量も、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定されており、これにより、改質器111の改質部122や、熱交換部123、COシフト部124、CO選択酸化部125などの各部の熱バランスが保たれるように設計されている。
この点、特許文献1によれば、改質器111の改質媒質が経時劣化する場合には、改質原料ポンプ132で供給される改質原料の投入量及び改質水ポンプ131により供給される改質水の投入量を、改質ガスの温度に基づいてコントロールすれば、改質ガスの成分変動・CO濃度の増大を防止することができることが記載されている。
特表2002−542143号公報
以下、本発明の実施の形態を図面を参照にして説明する。図1は、第1実施の形態の燃料電池システムの概略を示したブロック図である。図1に示すように、第1実施の形態の燃料電池システム1Aは、「背景技術」の欄で説明した背景技術の燃料電池システム101(図11乃至図14参照)を改良したものであるので、背景技術の燃料電池システム101(図11乃至図14参照)と同一の構成については、同一の符号を付して説明を省略し、異なった点を中心に説明する。
すなわち、背景技術の燃料電池システム101(図11乃至図14参照)に対して、第1実施の形態の燃料電池システム1Aは、図1に示すように、改質原料ポンプ132と改質器111との間に設けられた第1流量センサ11と、燃焼原料ポンプ133と改質器111との間に設けられた第2流量センサ12と、凝縮器114の入口側に設けられた水素濃度センサ13と、改質器111のCO選択酸化部125に設けられた温度センサ14とが増設されており、各センサ11,12,13,14は制御装置117に接続されている。また、開閉弁141の手前に設けられた凝縮器118が増設されている。
この点、第1流量センサ11は、改質器111に投入される改質原料の実流量を測定するものである。また、第2流量センサ12は、改質器111の燃焼部121に投入される燃焼原料の実流量を測定するものである。また、水素濃度センサ13は、FC113で使い残した水素を含むオフガス又は、改質器111で製造された改質ガスの水素濃度を測定するものである。また、温度センサ14は、改質器111のCO選択酸化部125の温度を測定するものである。
また、凝縮器118は、発電時においてFC113に供給するために必要な水蒸気量以上の水蒸気を除去し改質ガス中の水蒸気を低減するものである。これにより、必要量以上の水蒸気がFC113に供給されないので、いわゆるFC113内のフラッディングを防止できる。
そして、第1実施の形態の燃料電池システム1Aでは、図2乃至図4に示されたフローチャートのいずれかを制御装置117が実行することにより、システムの起動が行われる。尚、図2乃至図4に示されたフローチャートのいずれか一つを実行するプログラムは、制御装置117の不揮発メモリに記憶される。
ここで、図2に示すフローチャートについて説明すると、先ず、S11において、システムの起動が開始される。このとき、開閉弁141,142,143,144,145は、開閉弁141,145が閉じられる一方で開閉弁142が開けられ、開閉弁143が閉じられる一方で開閉弁144が開けられる(図12参照)。また、改質器111の燃焼部121に対して、燃焼原料ポンプ132により燃焼原料が投入されるとともに、図示しないポンプ等により燃焼エアが投入される。次のS12では、改質原料及び改質水が投入される。具体的には、改質器111に対して、改質原料ポンプ132により改質原料が投入されるとともに、改質水ポンプ131により蒸発器112を介して改質水が投入される。
このとき、「背景技術」の欄で説明したように、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定され、また、燃焼原料ポンプ132で供給される燃焼原料の投入量も、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定される。
次のS13では、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であるか否かを判断する。ここで、改質器111のCO選択酸化部125の温度Tは温度センサ14で測定される。このとき、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断する場合には(S13:YES)、S14に進んで、改質水流量制御を行う。ここで、起動を開始してから所定温度T0までの昇温途中は、S14を実行しないシーケンスとしてもよい。例えば、起動から予め決められた所定時間はS14を実行しない、あるいは、温度が最小規定値Tmin(又は所定温度T0)以上に上昇するまでS14を実行せず、温度がいちど最小規定値Tmin(又は所定温度T0)以上になった時点からS14を実行してもよい。
ここで、S14の改質水流量制御とは、改質水ポンプ131により供給される改質水の投入量を調節する制御をいい、改質器111のCO選択酸化部125の温度Tが最小規定値Tminより小さい場合には、改質水ポンプ131により供給される改質水の投入量を所定量少なくして供給する一方、改質器111のCO選択酸化部125の温度Tが最大規定値Tmaxより大きい場合には、改質水ポンプ131により供給される改質水の投入量を所定量多くして供給する。
そして、S14の改質水流量制御を行った後は、S15に進む。また、上述したS13において、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断しない場合にも(S13:NO)、S15に進む。このS15では、システムの起動が完了したか否かを判断する。この判断は、最適な発電が行われることを確保するために行われるものであり、具体的には、改質器111の温度とFC113の温度に基づいて判断される。尚、FC113の温度は、図示しない温度センサにより測定される。このとき、システムの起動が完了したと判断しない場合には(S15:NO)、S13に戻って、上述した処理を繰り返す。一方、システムの起動が完了したと判断する場合には(S15:YES)、発電を開始するシーケンスに進んでいく。
次に、図3に示すフローチャートについて説明すると、先ず、S21において、システムの起動が開始される。このとき、開閉弁141,142,143,144,145は、開閉弁141,145が閉じられる一方で開閉弁142が開けられ、開閉弁143が閉じられる一方で開閉弁144が開けられる(図12参照)。また、改質器111の燃焼部121に対して、燃焼原料ポンプ132により燃焼原料が投入されるとともに、図示しないポンプにより燃焼エアが投入される。次のS22では、改質原料及び改質水が投入される。具体的には、改質器111に対して、改質原料ポンプ132により改質原料が投入されるとともに、改質水ポンプ131により蒸発器112を介して改質水が投入される。
このとき、「背景技術」の欄で説明したように、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定され、また、燃焼原料ポンプ132で供給される燃焼原料の投入量も、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定される。
次のS23では、余剰熱量Qの演算を行う。ここで、余剰熱量Qとは、改質器111における燃焼熱量から、改質反応を進めるために必要な改質熱の熱量(以下、「改質熱量」という)を引いた熱量をいい、下記の4つの計算方法のいずれかにより求められる。
(1) 第1の計算方法は、第1流量センサ11で測定された改質原料の実流量と第2流量センサ12で測定された燃焼原料の実流量から計算する方法である。
(2) 第2の計算方法は、改質原料ポンプ132への改質原料の指示量と燃焼原料ポンプ133への燃焼原料の指示量から計算する方法である。
(3) 第3の計算方法は、第1流量センサ11で測定された改質原料の実流量と第2流量センサ12で測定された燃焼原料の実流量に水素濃度センサ13の測定値も加えて計算する方法である。
(4) 第4の計算方法は、改質原料ポンプ132への改質原料の指示量と燃焼原料ポンプ133への燃焼原料の指示量に水素濃度センサ13の測定値も加えて計算する方法である。
そして、上記の4つの計算方法のいずれかにより余剰熱量Qを求めた後は、S24に進んで、余剰熱量Qが「0」より大きいか否かを判断する。このとき、余剰熱量Qが「0」より大きいと判断する場合には(S24:YES)、S25に進んで、改質水流量制御を行う。
ここで、S25の改質水流量制御とは、改質水ポンプ131により供給される改質水の投入量を調節する制御をいい、図6の制御マップに基づいて行われる。すなわち、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定された水量に加えて、図6に示すように、余剰熱量Qに一定の割合で比例する水量が加算されて投入される。尚、図6の制御マップは、制御装置117の不揮発メモリに記憶される。
そして、図3に戻り、S25の改質水流量制御を行った後は、S26に進む。また、上述したS24において、余剰熱量Qが「0」より大きいと判断しない場合にも(S24:NO)、S26に進む。このS26では、システムの起動が完了したか否かを判断する。この判断は、最適な発電が行われることを確保するために行われるものであり、具体的には、改質器111の温度とFC113の温度に基づいて判断される。尚、FC113の温度は、図示しない温度センサにより測定される。このとき、システムの起動が完了したと判断しない場合には(S26:NO)、S26自身に戻って、この判断を繰り返す。一方、システムの起動が完了したと判断する場合には(S26:YES)、発電を開始するシーケンスに進んでいく。
次に、図4に示すフローチャートについて説明すると、先ず、S31において、システムの起動が開始される。このとき、開閉弁141,142,143,144,145は、開閉弁141,145が閉じられる一方で開閉弁142が開けられ、開閉弁143が閉じられる一方で開閉弁144が開けられる(図12参照)。また、改質器111の燃焼部121に対して、燃焼原料ポンプ132により燃焼原料が投入されるとともに、図示しないポンプにより燃焼エアが投入される。次のS32では、改質原料及び改質水が投入される。具体的には、改質器111に対して、改質原料ポンプ132により改質原料が投入されるとともに、改質水ポンプ131により蒸発器112を介して改質水が投入される。
このとき、「背景技術」の欄で説明したように、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定され、また、燃焼原料ポンプ132で供給される燃焼原料の投入量も、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定される。
次のS33では、余剰熱量Qの演算を行う。ここで、余剰熱量Qとは、図3のS23で説明したものと同様であり、改質器111における燃焼熱量から改質熱量を引いた熱量をいい、下記の4つの計算方法のいずれかにより求められる。
(1) 第1の計算方法は、第1流量センサ11で測定された改質原料の実流量と第2流量センサ12で測定された燃焼原料の実流量から計算する方法である。
(2) 第2の計算方法は、改質原料ポンプ132への改質原料の指示量と燃焼原料ポンプ133への燃焼原料の指示量から計算する方法である。
(3) 第3の計算方法は、第1流量センサ11で測定された改質原料の実流量と第2流量センサ12で測定された燃焼原料の実流量に水素濃度センサ13の測定値も加えて計算する方法である。
(4) 第4の計算方法は、改質原料ポンプ132への改質原料の指示量と燃焼原料ポンプ133への燃焼原料の指示量に水素濃度センサ13の測定値も加えて計算する方法である。
そして、図4に戻り、上記の4つの計算方法のいずれかにより余剰熱量Qを求めた後は、S34に進んで、余剰熱量Qが「0」より大きいか否かを判断する。このとき、余剰熱量Qが「0」より大きいと判断する場合には(S34:YES)、S35に進んで、改質水流量制御を行う。
ここで、S35の改質水流量制御とは、図3のS25で説明したものと同様であり、改質水ポンプ131により供給される改質水の投入量を調節する制御をいい、図6の制御マップに基づいて行われる。すなわち、改質水ポンプ131により供給される改質水の投入量は、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定された水量に加えて、図6に示すように、余剰熱量Qに一定の割合で比例する水量が加算されて投入される。尚、図6の制御マップは、制御装置117の不揮発メモリに記憶される。
そして、図4に戻り、S35の改質水流量制御を行った後は、S36に進む。また、上述したS34において、余剰熱量Qが「0」より大きいと判断しない場合にも(S34:NO)、S36に進む。
このS36では、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であるか否かを判断する。ここで、改質器111のCO選択酸化部125の温度Tは温度センサ14で測定される。このとき、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断する場合には(S36:YES)、S37に進んで、改質水流量制御を行う。ここで、起動を開始してから所定温度T0までの昇温途中は、S37を実行しないシーケンスとしてもよい。例えば、起動から予め決められた所定時間はS37を実行しない、あるいは、温度が最小規定値Tmin(又は所定温度T0)以上に上昇するまでS37を実行せず、温度がいちど最小規定値Tmin(又は所定温度T0)以上になった時点からS37を実行してもよい。
ここで、S37の改質水流量制御とは、図2のS14で説明したものと同様であり、改質水ポンプ131により供給される改質水の投入量を調節する制御をいい、改質器111のCO選択酸化部125の温度Tが最小規定値Tminより小さい場合には、改質水ポンプ131により供給される改質水の投入量を所定量少なくして供給する一方、改質器111のCO選択酸化部125の温度Tが最大規定値Tmaxより大きい場合には、改質水ポンプ131により供給される改質水の投入量を所定量多くして供給する。
そして、図4に戻り、S37の改質水流量制御を行った後は、S38に進む。また、上述したS36において、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断しない場合にも(S36:NO)、S38に進む。このS38では、システムの起動が完了したか否かを判断する。この判断は、最適な発電が行われることを確保するために行われるものであり、具体的には、改質器111の温度とFC113の温度に基づいて判断される。尚、FC113の温度は、図示しない温度センサにより測定される。このとき、システムの起動が完了したと判断しない場合には(S38:NO)、S36に戻って、上述した処理を繰り返す。一方、システムの起動が完了したと判断する場合には(S38:YES)、発電を開始するシーケンスに進んでいく。
また、第1実施の形態の燃料電池システム1Aでは、図5に示されたフローチャートを制御装置117が実行することにより、システムの発電が開始される。尚、図5に示されたフローチャートを実行するプログラムは、制御装置117の不揮発メモリに記憶される。
ここで、図5に示すフローチャートについて説明すると、先ず、S41において、上述した図2乃至図4に示すフローチャートによりシステムの起動が開始・完了すると、図5に戻り、S42において、システムの発電が開始される。このとき、開閉弁141,142,143,144,145は、開閉弁141,145が開けられる一方で開閉弁142が閉じられ(図13参照)、開閉弁143が開けられる一方で開閉弁144が閉じられる(図14参照)。
このとき、上述した起動時から継続して、改質器111の燃焼部121に対し、燃焼原料ポンプ132により燃焼原料が投入されるとともに、図示しないポンプにより燃焼エアが投入されるが、さらに、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガスが、開閉弁143を介して、改質器111の燃焼部121に対して投入される。また、上述した起動時と同様にして、改質器111に対して、改質原料ポンプ132により改質原料が投入されるとともに、改質水ポンプ131により蒸発器112を介して改質水が投入される。尚、各投入量は、起動時とは異なるが、この点は、後述する図7を説明する際に言及する。
そして、次のS43では、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であるか否かを判断する。ここで、改質器111のCO選択酸化部125の温度Tは温度センサ14で測定される。このとき、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断する場合には(S43:YES)、S44に進んで、改質水流量制御を行う。
ここで、S44の改質水流量制御とは、図2のS14と図4のS36で説明したものと同様であり、改質水ポンプ131により供給される改質水の投入量を調節する制御をいい、改質器111のCO選択酸化部125の温度Tが最小規定値Tminより小さい場合には、改質水ポンプ131により供給される改質水の投入量を所定量少なくして供給する一方、改質器111のCO選択酸化部125の温度Tが最大規定値Tmaxより大きい場合には、改質水ポンプ131により供給される改質水の投入量を所定量多くして供給する。
そして、図5に戻り、S44の改質水流量制御を行った後は、S43に戻って、上述した処理を繰り返す。また、上述したS43において、改質器111のCO選択酸化部125の温度Tが最小規定値Tminから最大規定値Tmaxの範囲外であると判断しない場合にも(S43:NO)、S43に戻って、上述した処理を繰り返す。
以上より、第1実施の形態の燃料電池システム1Aにおいて、図2乃至図4に示されたフローチャートのいずれかを制御装置117が実行することにより、システムの起動が行われ、さらに、引き続いて、図5に示されたフローチャートを制御装置117が実行することにより、システムの発電が開始されると、改質水の水量及び「S/C(スチーム・カーボン比)」の時間的変動は、例えば、図7に示すようになる。
ここで、「S/C」は、改質原料ポンプ132で供給される改質原料の投入量に対する改質水ポンプ131により供給される改質水の投入量の割合をいう。また、図7の実線は第1実施の形態の燃料電池システム1A(図1参照)を示し、図7の点線は背景技術の燃料電池システム101(図11乃至図14参照)を示す。図7で示された例では、背景技術の燃料電池システム101(図11乃至図14参照)と比較して、第1実施の形態の燃料電池システム1A(図1参照)では、起動時の直後から定格発電の直前に渡って、改質水の水量及び「S/C」がともに大きい。これは、システムの起動が行われた際に、改質水流量制御(少なくとも、図2のS14、図3のS25、図4のS35,S37のいずれか一つ)が行われたことによって、改質水ポンプ131により供給される改質水の投入量が、改質原料ポンプ132で供給される改質原料の投入量に基づいて決定された水量に加えて、さらに、水量が加算されて投入されためである。
尚、図2のS14及び/又は図4のS37の改質水流量制御のみが行われた場合において、改質器111のCO選択酸化部125の温度Tが最小規定値Tminより小さいときには、改質水ポンプ131により供給される改質水の投入量を所定量少なくして供給するので、このようなケースでは、図7とは異なり、背景技術の燃料電池システム101(図11乃至図14参照)と比較して、第1実施の形態の燃料電池システム1A(図1参照)では、起動時の直後から定格発電の直前に渡って、改質水の水量及び「S/C」がともに小さくなる。
また、図7で示された例では、背景技術の燃料電池システム101(図11乃至図14参照)と比較して、第1実施の形態の燃料電池システム1A(図1参照)では、定格発電の全般に渡って、改質水の水量及び「S/C」がともに一致する。これは、システムの発電が行われた際に、改質水流量制御(図5のS44)が行われなかったことにある。従って、システムの発電が行われた際に、改質水流量制御(図5のS44)が行われると、改質器111のCO選択酸化部125の温度Tが最小規定値Tmaxより大きいときには、改質水ポンプ131により供給される改質水の投入量を所定量多くして供給するとともに、改質器111のCO選択酸化部125の温度Tが最小規定値Tminより小さいときには、改質水ポンプ131により供給される改質水の投入量を所定量少なくして供給するので、このようなケースでは、図7とは異なり、背景技術の燃料電池システム101(図11乃至図14参照)と比較して、第1実施の形態の燃料電池システム1A(図1参照)では、起動時の直後から定格発電の直前に渡って、改質水の水量及び「S/C」はともに大きくなったり小さくなったりする。
以上詳細に説明したように、第1実施の形態の燃料電池システム1Aでは、図2又は、図4、図5に示されたフローチャートのいずれかを制御装置117が実行すると、運転中(システムの起動時又は発電時)に、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、改質器111のCO選択酸化部125の温度を測定する温度センサ14の測定結果に基づいて(図2のS13、図4のS36、図5のS43)、制御装置117が操作するので(図2のS14、4のS37、図5のS44)、これにより、改質反応を進めるために必要な改質水の水量よりも多い水量又は少ない水量を改質器111に投入し、その増加・減少水量をもって改質器111を冷却・加熱して、改質器111の各部122,123,124,125の温度が使用範囲を外れることを防止できるので、運転中の改質器111の温度バランスを保持することにより、運転が停止されることを防止するとともに、改質器111の各部122,123,124,125や改質器111内の触媒などの性能劣化・寿命劣化を防止することができる。
特に、第1実施の形態の燃料電池システム1Aでは、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、改質器111のCO選択酸化部125の温度を測定する温度センサ14の測定結果に基づいて(図2のS13、図4のS36、図5のS43)、制御装置117が操作するので(図2のS14、4のS37、図5のS44)、これにより、改質器111のCO選択酸化部125に浄化エアを平常通り供給しながら、改質器111のCO選択酸化部125の温度が使用範囲を外れることを防止できるので、改質ガス中に含まれる一酸化炭素の濃度を安定させることができる。
また、第1実施の形態の燃料電池システム1Aでは、図2乃至図5に示されたフローチャートのいずれかを制御装置117が実行し、改質水流量制御(図2のS14、図3のS25、図4のS35,S37、図5の44)が行われると、改質反応を進めるために必要な改質水の水量よりも多い水量が改質器111に投入されるケースが多く、このケースでは、改質器111で製造された改質ガスには、通常よりも多くの水蒸気を含むことになる。
しかしながら、第1実施の形態の燃料電池システム1Aでは、図1に示すように、改質器111で製造された改質ガス中の水蒸気を低減するための凝縮器118を備えているので、凝縮器118をより働かせれば、改質器111で製造された改質ガスに含まれる水蒸気量を通常の量に低減させることができる。これにより、発電時に必要量以上の水蒸気がFC113に供給されないので、いわゆるFC113内のフラッディングを防止でき、第1実施の形態の燃料電池システム1Aの安定した運転に役立つことができる。
また、第1実施の形態の燃料電池システム1Aでは、図1に示すように、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガス中の水蒸気を低減するための凝縮器114を備えているので、凝縮器114をより働かせれば、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガスに含まれる水蒸気量を通常の量に低減させることができる。これにより、凝縮器114から改質器111の燃焼部121に至るまでの配管又は、凝縮器114からオフガス燃焼器115に至るまでの配管において、水蒸気が凝縮することを防ぐことができ、もって、改質器111の燃焼部121又はオフガス燃焼器115における燃焼が安定し、あるいは、改質器111の燃焼部121又はオフガス燃焼器115の着火不良を防止することができ、第1実施の形態の燃料電池システム1Aの安定した運転に役立つことができる。
尚、本発明は上記実施の形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、図1に示す第1実施の形態の燃料電池システム1Aを改良し、図8に示す第2実施の形態の燃料電池システム1Bにしても、同様な効果を得ることができる。この点、図8に示す第2実施の形態の燃料電池システム1Bは、図1に示す第1実施の形態の燃料電池システム1Aと比較して、開閉弁143,144や、オフガス燃焼器115、熱交換器116、配管151が削除されている(図8と図1を比較参照)。
そして、システムの起動時では、図9に示すように、開閉弁141,145が閉じられる一方で開閉弁142が開けられ、改質器111で製造された改質ガスが、凝縮器114を介して、改質器111の燃焼部121に投入され、システムの発電時では、図10に示すように、開閉弁141,145が開けられる一方で開閉弁142が閉じられ、FC113で使い残した水素を含むオフガスが、凝縮器114を介して、改質器111の燃焼部121に投入される。
すなわち、第2実施の形態の燃料電池システム1Bでも、図2又は、図4、図5に示されたフローチャートのいずれかを制御装置117が実行すると、運転中(システムの起動時又は発電時)に、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、改質器111のCO選択酸化部125の温度を測定する温度センサ14の測定結果に基づいて(図2のS13、図4のS36、図5のS43)、制御装置117が操作するので(図2のS14、4のS37、図5のS44)、これにより、改質反応を進めるために必要な改質水の水量よりも多い水量又は少ない水量を改質器111に投入し、その増加・減少水量をもって改質器111を冷却・加熱して、改質器111の各部122,123,124,125の温度が使用範囲を外れることを防止できるので、運転中の改質器111の温度バランスを保持することにより、運転が停止されることを防止するとともに、改質器111の各部122,123,124,125や改質器111内の触媒などの性能劣化・寿命劣化を防止することができる。
特に、第2実施の形態の燃料電池システム1Bでも、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、改質器111のCO選択酸化部125の温度を測定する温度センサ14の測定結果に基づいて(図2のS13、図4のS36、図5のS43)、制御装置117が操作するので(図2のS14、4のS37、図5のS44)、これにより、改質器111のCO選択酸化部125に浄化エアを平常通り供給しながら、改質器111のCO選択酸化部125の温度が使用範囲を外れることを防止できるので、改質ガス中に含まれる一酸化炭素の濃度を安定させることができる。
また、第2実施の形態の燃料電池システム1Bでも、図2乃至図5に示されたフローチャートのいずれかを制御装置117が実行し、改質水流量制御(図2のS14、図3のS25、図4のS35,S37、図5の44)が行われると、改質反応を進めるために必要な改質水の水量よりも多い水量が改質器111に投入されるケースが多く、このケースでは、改質器111で製造された改質ガスには、通常よりも多くの水蒸気を含むことになる。
しかしながら、第2実施の形態の燃料電池システム1Bでは、図8乃至図10に示すように、改質器111で製造された改質ガス中の水蒸気を低減するための凝縮器118を備えているので、凝縮器118をより働かせれば、改質器111で製造された改質ガスに含まれる水蒸気量を通常の量に低減させることができる。これにより、発電時に必要量以上の水蒸気がFC113に供給されないので、いわゆるFC113内のフラッディングを防止でき、第2実施の形態の燃料電池システム1Bの安定した運転に役立つことができる。
また、第2実施の形態の燃料電池システム1Bでは、図8乃至図10に示すように、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガス中の水蒸気を低減するための凝縮器114を備えているので、凝縮器114をより働かせれば、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガスに含まれる水蒸気量を通常の量に低減させることができる。これにより、凝縮器114から改質器111の燃焼部121に至るまでの配管において、水蒸気が凝縮することを防ぐことができ、もって、改質器111の燃焼部121における燃焼が安定し、あるいは、改質器111の燃焼部121の着火不良を防止することができ、第2実施の形態の燃料電池システム1Bの安定した運転に役立つことができる。
また、第2実施の形態の燃料電池システム1Bでは、改質器111で製造された改質ガス又は、FC113で使い残した水素を含むオフガスが改質器111の燃焼部121のみで燃焼される。従って、改質器111を起動させる際には、改質器111の燃焼部121に対し、改質原料ポンプ132で供給される改質原料の投入量に基づいて投入量が決定される燃焼原料に加え、FC113で使い残した水素を含むオフガスも投入され、改質器111に多くの余剰熱量Qが発生しやすい状態にあるので、上述した効果をより発揮することができる。
また、図8に示す第2実施の形態の燃料電池システム1Bでは、図1に示す第1実施の形態の燃料電池システム1Aと比較して、オフガス燃焼器115が削除されており(図8と図1を比較参照)、システムの起動時において、改質器111で製造された改質ガスは改質器111の燃焼部121で燃焼され、システムの発電時においても、FC113で使い残した水素を含むオフガスは改質器111の燃焼部121で燃焼される。これにより、図8に示す第2実施の形態の燃料電池システム1Bでは、システムの簡素化が実現され、システムの起動時において、改質器111で製造された改質ガスを改質器111の暖機に使用される構成になっている。すなわち、図8に示す第2実施の形態の燃料電池システム1Bでは、オフガス燃焼器115(図1参照)が削除されており、コスト低減・システムの小型化・オフガス燃焼器115(図1参照)に関連する機器の消費電力の節約を図ることができ、さらに、図1に示す第1実施の形態の燃料電池システム1AではFC113の暖機のみに使用された起動時の排熱を、改質器111の暖機に使用できるので、起動時のエネルギーの低減も図ることができる。
また、図8に示す第2実施の形態の燃料電池システム1Bでは、図1に示す第1実施の形態の燃料電池システム1Aと比較して、開閉弁143,144や、オフガス燃焼器115、熱交換器116、配管151が削除されていることから(図8と図1を比較参照)、部品点数の削除による信頼性の向上や、オフガス燃焼器115(図1参照)の削除による安全性の向上も期待できる。
尚、本実施の形態の燃料電池システム1A,1Bでは、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、改質器111のCO選択酸化部125の温度を測定する温度センサ14の測定結果に基づいて(図2のS13、図4のS36、図5のS43)、制御装置117が操作しているが(図2のS14、図4のS37、図5のS44)、この点、改質器111の改質部122や、熱交換部123、COシフト部124の温度を温度センサで測定し、これらの温度センサの測定結果に基づいて、改質器111に投入される改質水の流量を調節する改質水ポンプ131を、制御装置117が操作してもよい。