JP2019040663A - 発電装置、制御装置、および制御プログラム - Google Patents

発電装置、制御装置、および制御プログラム Download PDF

Info

Publication number
JP2019040663A
JP2019040663A JP2017159236A JP2017159236A JP2019040663A JP 2019040663 A JP2019040663 A JP 2019040663A JP 2017159236 A JP2017159236 A JP 2017159236A JP 2017159236 A JP2017159236 A JP 2017159236A JP 2019040663 A JP2019040663 A JP 2019040663A
Authority
JP
Japan
Prior art keywords
reforming
unit
power generation
control
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017159236A
Other languages
English (en)
Inventor
亮 後藤
Ryo Goto
亮 後藤
毅史 山根
Takashi Yamane
毅史 山根
泰孝 秋澤
Yasutaka Akisawa
泰孝 秋澤
真紀 末廣
Masanori Suehiro
真紀 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017159236A priority Critical patent/JP2019040663A/ja
Publication of JP2019040663A publication Critical patent/JP2019040663A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】ユーザビリティの向上に資する発電装置、制御装置、および制御プログラムを提供する。【解決手段】発電装置1は、燃料電池24と、燃料電池24に供給される燃料ガスに原燃料ガスを改質する改質部22と、制御部10と、を備える。制御部10は、改質部22に供給される改質水の流量を制御する。また、制御部10は、改質部22に関連する温度に応じて、改質部22に供給される改質水の流量を増やすように制御する。【選択図】図3

Description

本開示は、発電装置、制御装置、および制御プログラムに関する。
固体酸化物形燃料電池(Solid Oxide Fuel Cell(以下、SOFCと記す))等のような燃料電池を備える発電装置には、改質器を備えるものがある。改質器は、原燃料ガス及び改質水を供給されて、例えば水素のような燃料ガスを生成する(例えば、特許文献1参照)。
特開2017−016816号公報
燃料電池を備える発電システムにおいては、発電開始前の起動時などに、燃料電池および/または改質器などの温度を適切に制御するのが望ましい。このような制御により、発電を良好に開始したり、燃料電池の劣化を軽減したりできれば、ユーザビリティの向上に資する。
本開示の目的は、ユーザビリティの向上に資する発電装置、制御装置、および制御プログラムを提供することにある。
一実施形態に係る発電装置は、
燃料電池と、前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、制御部と、を備える。
前記制御部は、前記改質部に供給される改質水の流量を制御する。
また、前記制御部は、前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御する。
一実施形態に係る制御装置は、
燃料電池と、前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、を備える発電装置を制御する。
前記制御装置は、前記改質部に供給される改質水の量を制御する。
また、前記制御装置は、前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御する。
一実施形態に係る制御プログラムは、
燃料電池と、前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、を備える発電装置を制御する制御装置に、
前記改質部に供給される改質水の量を制御するステップと、
前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御するステップと、
を実行させる。
一実施形態に係る発電装置、制御装置および制御プログラムによれば、ユーザビリティを向上させることができる。
一実施形態に係る発電装置の構成を概略的に示す機能ブロック図である。 一実施形態に係る発電装置の構成を部分的により詳細に示す機能ブロック図である。 一実施形態に係る発電装置の構成を部分的により詳細に示す機能ブロック図である。 一実施形態に係る発電装置の動作の一例を説明するフローチャートである。 一実施形態に係る発電装置の構成の変形例を概略的に示す機能ブロック図である。
以下、本開示の一実施形態について、図面を参照して説明する。まず、本実施形態に係る発電装置の構成を説明する。
図1は、一実施形態に係る発電装置の構成を概略的に示す機能ブロック図である。また、図2および図3は、図1に示した発電装置の構成の一部を、より詳細に示す機能ブロック図である。
図1に示すように、本実施形態に係る発電装置(発電ユニット)1は、貯湯タンク60と、負荷100と、商用電源(grid)200とに接続される。また、図1に示すように、発電装置1は、外部から原燃料ガス、水、および空気が供給されることにより発電し、発電した電力を負荷100等に供給する。
図1に示すように、発電装置1は、制御部10と、記憶部12と、燃料電池モジュール20と、原燃料ガスを供給するガス供給部32と、改質水を供給する改質水供給部34と、酸素含有ガスとしての空気を供給する空気供給部36と、インバータ40と、排熱回収処理部50と、循環水処理部52とを備える。
発電装置1は、以下にさらに詳細に述べられるように、種々の機能を実行するための制御および処理能力を提供するために、制御部10として少なくとも1つのプロセッサを含む。種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路(IC)として、または複数の通信可能に接続された集積回路、および/またはディスクリート回路(discrete circuits)として実現されてもよい。少なくとも1つのプロセッサは、種々の既知の技術に従って実現されることが可能である。
ある実施形態において、プロセッサは、1以上のデータ計算手続または処理を実行するために構成された、1以上の回路またはユニットを含む。例えば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC)、デジタル信号処理装置、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、またはこれらのデバイス若しくは構成の任意の組み合わせ、または他の既知のデバイス若しくは構成の組み合わせを含むことにより、以下に説明する機能を実行してもよい。
制御部10は、記憶部12と、燃料電池モジュール20と、ガス供給部32と、改質水供給部34と、空気供給部36と、インバータ40とに接続され、これらの各機能部をはじめとして発電装置1の全体を制御および管理する。制御部10は、記憶部12に記憶されているプログラムを取得して、このプログラムを実行することにより、発電装置1の各部に係る種々の機能を実現する。制御部10から他の機能部に制御信号または各種の情報などを送信する場合、制御部10と他の機能部とは、有線または無線により接続されていればよい。制御部10が行う本実施形態に特徴的な制御については、さらに後述する。また、本実施形態において、制御部10は、燃料電池モジュール20に含まれるセルスタックの稼働時間(例えば発電時間)を計測するなど、所定の時間を計測することができるものとする。
記憶部12は、制御部10から取得した情報を記憶する。また記憶部12は、制御部10によって実行されるプログラム等を記憶する。その他、記憶部12は、例えば制御部10による演算結果などの各種データも記憶する。さらに、記憶部12は、制御部10が動作する際のワークメモリ等も含むことができるものとして、以下説明する。記憶部12は、例えば半導体メモリまたは磁気ディスク等により構成することができるが、これらに限定されず、任意の記憶装置とすることができる。例えば、記憶部12は、光ディスクのような光学記憶装置としてもよいし、光磁気ディスクなどとしてもよい。
図1に示す燃料電池モジュール20は、図2により詳細に示すように、改質器22と、セルスタック24と、温度センサ82とを備えている。図2においては、図1に示した発電装置1のうち、制御部10、燃料電池モジュール20、および空気供給部36のみを示し、その他の機能部は省略している。図2に示すように、本実施形態において、燃料電池モジュール20は、2つの改質器22Aおよび改質器22Bと、4つのセルスタック24A,24B,24C,24Dとを備えている。以下、改質器22Aと改質器22Bとを特に区別しない場合、単に、改質器22のように総称する。同様に、以下、セルスタック24A,24B,24C,24Dを特に区別しない場合、単に、セルスタック24のように総称する。このように、本実施形態において、発電装置1は、燃料電池モジュール20を備えている。この燃料電池モジュール20は、燃料電池(セルスタック24)を含む。
燃料電池モジュール20のセルスタック24は、改質器22から供給される燃料ガス、および空気供給部36から供給される酸素含有ガスである空気を用いて発電する。燃料ガスは、例えば水素を含む。燃料電池モジュール20内で発電した直流電力は、インバータ40に出力される。燃料電池モジュール20は、ホットモジュールとも呼ばれる。燃料電池モジュール20において、セルスタック24は、発電に伴い発熱する。本開示において、実際に発電を行うセルスタック24を、適宜、「燃料電池」と記す。また、本開示において、セルスタック24を含めた任意の機能部を、適宜、「燃料電池」と総称することがある。例えば、「燃料電池」としては、単体のセル、セルスタック、または燃料電池モジュールなどが挙げられる。図2に示す例においては、発電装置1は4つの燃料電池を備えているが、本実施形態に係る発電装置は、1つ以上の任意の数の燃料電池を備えてもよい。
改質器22は、ガス供給部32から供給される原燃料ガス、および、改質水供給部34から供給される改質水を用いて、例えば、水素および/または一酸化炭素のような燃料ガスを生成する。すなわち、改質器22は、ガス供給部32から供給される原燃料ガスを、セルスタック22に供給される燃料ガスに改質する。例えば、改質器22は、改質水供給部34から供給される改質水を用いて水蒸気を生成する。さらに、改質器22は、生成した水蒸気を用いた水蒸気改質により、ガス供給部32から供給される原燃料ガスを用いて、水素および/または一酸化炭素のような燃料ガスを生成する。セルスタック24は、改質器22で生成された水素および/または一酸化炭素のような燃料ガスと、空気中の酸素とを反応させることにより、発電する。すなわち、本実施形態において、セルスタック24は、電気化学反応により発電する。
改質器22は、実際の構成としては、セルスタック24の上方に設置されてもよい。改質器22の出口には、セルスタック24の下方に出口のある配管が設置されている。改質器22は、この配管を通して、改質器22において生成された水素および/または一酸化炭素を、セルスタック24に供給する。
図2に示すように、改質器22Aおよび改質器22Bには、それぞれ別個にガス供給部32から原燃料ガスが供給される。また、図2に示すように、改質器22Aはセルスタック24Aおよび24Bに接続され、改質器22Bはセルスタック24Cおよび24Dに接続される。これらの接続により、改質器22Aおよび改質器22Bは、それぞれセルスタック24A,24Bおよびセルスタック24C,24Dに、水素および/または一酸化炭素のような燃料ガスを供給することができる。このように、本実施形態において、改質器22Aは、ガス供給部32からセルスタック24A,24Bに供給される原燃料ガスを、燃料ガスに改質する。また、本実施形態において、改質器22Bは、ガス供給部32からセルスタック24C,24Dに供給される原燃料ガスを、燃料ガスに改質する。
以下、セルスタック24は、SOFC(固体酸化物形燃料電池)であるとして説明する。しかしながら、本実施形態に係るセルスタック24はSOFCに限定されない。本実施形態に係るセルスタック24は、例えば固体高分子形燃料電池(Polymer Electrolyte Fuel Cell(PEFC))、リン酸形燃料電池(Phosphoric Acid Fuel Cell(PAFC))、および溶融炭酸塩形燃料電池(Molten Carbonate Fuel Cell(MCFC))などのような燃料電池で構成してもよい。なお、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24は、改質器22と同じ筺体内に含まれなくてもよく、前述したような燃料電池モジュール20を有していなくてもよい。また、セルスタック24が例えばPEFC等、SOFCと異なるタイプの場合、セルスタック24と改質器22が同じ筺体内であっても近傍に位置しなくてもよい。また、本実施形態において、セルスタック24は、図2に示すように、例えば単体で700W程度の発電ができるものを4つ備えている。この場合、燃料電池モジュール20は、全体として3kW程度の電力を出力することができる。しかしながら、本実施形態に係るセルスタック24および燃料電池モジュール20は、このような構成に限定されるものではなく、種々の構成を採用することができる。例えば、本実施形態に係る燃料電池モジュール20は、1つ以上の任意の個数のセルスタック24を備えてもよい。本実施形態において、発電装置1は、ガスを利用して発電を行う燃料電池を備えていればよい。したがって、例えば、発電装置1は、燃料電池として、セルスタック24ではなく、単に1つのみのセルを備える燃料電池を複数備えてもよい。また、本実施形態に係る燃料電池は、例えばPEFCのように、モジュールのない燃料電池としてもよい。
図1に示すガス供給部32は、図2により詳細に示すように、2つの流量計92Aおよび92Bと、2つのガスポンプ94Aおよびガスポンプ94Bと、を備えている。以下、流量計92Aと流量計92Bとを特に区別しない場合、単に、流量計92のように総称する。同様に、以下、空気ブロワ94Aと空気ブロワ94Bとを特に区別しない場合、単に、空気ブロワ94のように総称する。
ガス供給部32は、燃料電池モジュール20の改質器22に原燃料ガスを供給する。このとき、ガス供給部32は、制御部10からの制御信号に基づいて、改質器22に供給する燃料ガスの流量を制御する。またガス供給部32は、原燃料ガスの脱硫処理を行ってもよいし、原燃料ガスを予備的に加熱してもよい。原燃料ガスは、例えば、都市ガス、またはLPG等であるが、これらに限定されない。例えば、原燃料ガスは、燃料電池に応じて、天然ガスまたは石炭ガスなどとしてもよい。ガス供給部32の構成については、さらに後述する。
図2に示すように、ガス供給部32に供給される原燃料ガスは、1つの供給源から2つの経路に分岐されて、それぞれ流量計92Aおよび流量計92Bに供給される。また、図2に示すように、流量計92Aはガスポンプ94Aに接続され、流量計92Bはガスポンプ94Bに接続される。これらの接続により、ガスポンプ94Aおよびガスポンプ94Bは、それぞれ流量計92Aおよび流量計92Bを経た原燃料ガスを、それぞれ改質器22Aおよび改質器22Bに供給することができる。図2に示すように、ガス供給部32が供給する原燃料ガスの経路は、流量計92Aおよびガスポンプ94Aを経る第1のガスラインと、流量計92Bおよびガスポンプ94Bを経る第2のガスラインとを有している。本実施形態において、ガスポンプ94Aは改質器22Aに原燃料ガスを供給し、ガスポンプ94Bはセル改質器22Bに原燃料ガスを供給する。このように、本実施形態において、ガス供給部32は、燃料電池モジュール20(の改質器22)に原燃料ガスを供給する。図2に示す例においては、1つの供給源から2つの経路に分岐された原燃料ガスが、それぞれ流量計92Aおよび92Bに供給されている。しかしながら、例えば流量計92Aおよび92Bには、それぞれ別個の供給源から原燃料ガスが供給されるようにしてもよい。
流量計92Aおよび92Bは、それぞれを経て流れる原燃料ガスの流量を測定する。ここで、流量計92Aおよび92Bがそれぞれ計測する原燃料ガスの流量とは、例えば、単位時間あたりに原燃料ガスが流量計92Aまたは92Bを経て移動する量とすることができる。流量計92Aおよび92Bは、原燃料ガスの流量を計測できるものであれば、任意のものを採用することができる。
ガスポンプ94Aおよび94Bは、それぞれ流量計92Aおよび92Bを経た原燃料ガスを、燃料電池モジュール20の改質器22Aおよび改質器22Bにそれぞれ送出する。ガスポンプ94Aおよび94Bは、改質器22Aおよび22Bに原燃料ガスを送出できるものであれば、任意のものを採用することができる。
図2に示すように、ガス供給部32は、制御部10と有線または無線により通信可能に接続される。流量計92Aおよび流量計92Bがそれぞれ計測した原燃料ガスの流量の情報は、制御部10に送信される。これにより、制御部10は、流量計92Aおよび流量計92Bがそれぞれ計測した原燃料ガスの流量を把握することができる。また、制御部10は、ガス供給部32と通信可能に接続されることにより、ガスポンプ94Aおよび94Bがそれぞれ改質器22Aおよび22Bに送出するガスの流量を調整(増減)することができる。したがって、本実施形態において、制御部10は、改質器22Aに供給される原燃料ガスの流量および改質器22Bに供給され原燃料ガスの流量を調整することができる。
本実施形態に係る発電装置において、ガス供給部32は、図2に示すような構成に限定されるものではない。例えば、図2に示すガス供給部32においては、流量計92は、ガスポンプ94によって送出される前の原燃料ガスの流量を測定している。しかしながら、ガス供給部32において、流量計92は、ガスポンプ94によって送出された後の原燃料ガスの流量を測定してもよい。
図1に示す改質水供給部34は、図3により詳細に示すように、改質水タンク96と、2つの改質水ポンプ98Aおよび改質水ポンプ98Bと、を備えている。図3においては、図1に示した発電装置1のうち、制御部10、燃料電池モジュール20、および改質水供給部34のみを示し、その他の機能部は省略している。以下、改質水ポンプ98Aと改質水ポンプ98Bとを特に区別しない場合、単に、改質水ポンプ98のように総称する。
改質水供給部34は、燃料電池モジュール20の改質器22に改質水を供給する。このとき、改質水供給部34は、制御部10からの制御信号に基づいて、改質器22に供給する改質水の流量を制御する。改質水供給部34は、セルスタック24の排気から回収された水を原料として改質水を生成してもよい。
図3に示すように、改質水供給部34に供給される改質水は、1つの供給源から改質水タンク96に蓄えられ、それから2つの経路に分かれて、それぞれ改質器22Aおよび改質器22Bに供給される。
改質水タンク96は、改質水を溜めておくことができる。改質水タンク96は、必要に応じて、改質水の凍結を防止する凍結防止ヒータ等を備えてもよい。改質水タンク96は、適宜、外部から改質水を供給されたり、または外部に改質水を排出したりする機構を備えてもよい。
図3に示すように、改質水ポンプ98Aは、改質水タンク96と、改質器22Aとを物理的に接続することで、改質水の1つの経路を形成している。同様に、改質水ポンプ98Bは、改質水タンク96と、改質器22Bとを物理的に接続することで、改質水の1つの経路を形成している。改質水ポンプ98は、改質水タンク96から汲み上げた改質水を、改質器22に送出する。改質水ポンプ98は、改質水タンク96の改質水を改質器22に送出できるものであれば、任意のものを採用してもよい。例えば、改質水ポンプ98は、ポンプモータ式のポンプ等としてもよい。
図2に示す例においては、1つの改質水タンク96から2つの経路に分岐された改質水が、それぞれ改質水ポンプ98Aおよび改質水ポンプ98Bに汲み上げられる。しかしながら、例えば改質水ポンプ98Aおよび改質水ポンプ98Bには、それぞれ別個の改質水タンクから改質水が供給されるようにしてもよい。
図2に示すように、改質水供給部34は、制御部10と有線または無線により通信可能に接続される。これにより、制御部10は、改質水ポンプ98Aおよび改質水ポンプ98Bがそれぞれ改質器22Aおよび22Bに供給する改質水の流量を調整(増減)することができる。したがって、本実施形態において、制御部10は、改質器22Aに供給される改質水の流量および改質器22Bに供給される改質水の流量を調整することができる。
空気供給部36は、図1および図2に示すように、燃料電池モジュール20のセルスタック24に空気を供給する。このとき、空気供給部36は、制御部10からの制御信号に基づいて、セルスタック24に供給する空気の流量を制御する。本実施形態において、空気供給部36は、例えば空気ブロワ等によって構成することができる。また空気供給部36は、外部から取り込んだ空気を予備的に加熱して、セルスタック24に供給してもよい。空気を加熱する熱源として、セルスタック24の排熱が利用されてもよい。本実施形態において、空気供給部36は、セルスタック24が発電する際の電気化学反応に用いられる空気を供給する。空気供給部36が供給する気体は空気に限定されず、水素等の燃料ガスと反応して発電できる気体であればよい。例えば、空気供給部36は、酸素を含有する空気以外の気体を供給してもよい。
空気供給部36は、セルスタック24の下方に出口のある配管を通して、空気をセルスタック24に供給する。
図1に示すインバータ40は、燃料電池モジュール20内のセルスタック24に電気的に接続される。インバータ40は、セルスタック24が発電した直流電力を、交流電力に変換する。インバータ40から出力される交流電力は、分電盤などを介して、負荷100に供給される。負荷100は、分電盤などを介して、インバータ40から出力された電力を受電する。図1において、負荷100は、1つのみの部材として図示してあるが、負荷を構成する任意の個数の各種電気機器とすることができる。また、負荷100は、分電盤などを介して、商用電源200から受電することもできる。図1に示すように、インバータ40と制御部10とは、有線または無線により通信可能に接続されるようにしてもよい。この接続により、制御部10は、インバータ40による交流電力の出力を制御することができる。
排熱回収処理部50は、セルスタック24の発電により生じる排気から排熱を回収する。排熱回収処理部50は、例えば熱交換器等で構成することができる。排熱回収処理部50は、循環水処理部52および貯湯タンク60に接続される。
循環水処理部52は、貯湯タンク60から排熱回収処理部50へ水を循環させる。排熱回収処理部50に供給された水は、排熱回収処理部50で回収された排熱によって加熱され、貯湯タンク60に戻る。排熱回収処理部50は、排熱を回収した排気を外部に排出する。
貯湯タンク60は、排熱回収処理部50および循環水処理部52に接続される。貯湯タンク60は、燃料電池モジュール20のセルスタック24などから回収された排熱を利用して生成された湯を、貯えることができる。
図2に示すように、発電装置1は、改質器22に関連する温度を検出する温度センサ82を備えている。図2に示すように、本実施形態において、燃料電池モジュール20は、2つの温度センサ82Aおよび80Bを備えている。図2に示すように、温度センサ82Aは改質器22Aに関連する温度を検出し、温度センサ82Bは改質器22Bに関連する温度を検出する。以下、温度センサ82A,82Bを特に区別しない場合、単に、温度センサ82のように総称する。
ここで、温度センサ82が検出する「改質器22に関連する温度」とは、改質器22に関する各部位の温度とすることができる。例えば、温度センサ82は、図2に示すように、改質器22近傍の温度を検出する位置に設置することができる。ここで、温度センサ82が温度を検出する改質器22近傍とは、発電装置1において改質器22に関連する温度の測定に好適な位置、例えば改質器22が発生する熱が適度に伝導する位置とすることができる。例えば、温度センサ82が温度を検出する改質器22近傍とは、改質器22から燃料ガスが送出される出口(以下、「改質出口」と記す)近傍の温度としてもよい。また、本実施形態において、温度センサ82が温度を検出する改質器22近傍とは、例えば改質器22全体の温度としてもよいし、改質器22内部の温度などとしてもよい。以下、温度センサ80が温度を検出する改質器22近傍とは、改質出口の温度(以下、適宜「改質出口温度」と記す)とする場合について説明する。
温度センサ82は、例えば熱電対などにより構成することができる。この場合、例えば、改質器22から燃料ガスが送出される出口付近に、熱電対の温度検出部が挿入されるようにしてもよい。一方、温度センサ82は、当該温度センサ82を構成する素材によっては、過度の高熱を計測できない場合も想定される。このような場合、温度センサ82は、例えば改質器22から離れているが、改質器22が発生する熱が伝導する位置における温度を検出してもよい。
温度センサ82は、熱電対に限定されず、温度を測定できる部材であれば、任意のものを採用することができる。例えば、温度センサ82は、サーミスタまたは白金測温抵抗体としてもよい。温度センサ82は、制御部10に接続される。このため、図2に示すように、燃料電池モジュール20は、制御部10と有線または無線により通信可能に接続される。温度センサ82は、検出した温度に基づく信号を制御部10に送信する。この信号を受信することで、制御部10は、改質器22に関連する温度を把握することができる。
次に、本実施形態に係る発電装置1の動作について説明する。
まず、本実施形態に係る発電装置1は、上述したように、制御部10は、改質器22に供給される改質水の流量を制御する。ここで、制御部10は、改質水供給部34を制御することで、改質器22に供給される改質水の流量を制御することができる。また、本実施形態において、改質器22は、原燃料ガスを、セルスタック24に供給される燃料ガスに改質する。
本実施形態に係る発電装置1は、例えば起動時などにおいて、改質器22に関連する温度に応じて、改質器22に供給される改質水を増やす。これにより、本実施形態に係る発電装置1は、改質器22および/またはセルスタック24の温度が過度に上昇することを防ぐことができる。また、発電装置1は、図3に示すように、改質水の経路を2つ有している。すなわち、発電装置1は、改質水タンク96から改質水ポンプ98Aを経た改質水が改質器22Aに供給される経路と、改質水タンク96から改質水ポンプ98Bを経た改質水が改質器22B供給される経路とを有している。このように、改質水の経路が複数ある場合、本実施形態に係る発電装置1において、制御部10は、原燃料ガスを燃料ガスに改質する複数の改質器22a,22Bにそれぞれの経路を経て供給される改質水の流量を、それぞれの経路ごとに制御してもよい。これにより、本実施形態に係る発電装置1は、改質器22Aと改質器22Bとにおける温度差が大きくならないようにする。
ここで、本実施形態に係る発電装置1において、制御部10が、改質器22に供給される改質水の流量を制御する構成について説明する。本実施形態においては、スチームカーボン比に基づいて、改質器22に所定の燃料ガスとともに供給すべき改質水の流量を決めることができる。ここで、スチームカーボン比とは、原料炭化水素に含まれる炭素と、反応の際に添加する水蒸気のモル比である。以下、スチームカーボン比を、単に「S/C」と記す。ここで、スチーム(S)は、改質水に含まれるスチーム(HO)の量を示す。また、カーボン(C)は、燃料ガスの成分に含まれる炭素の量を示す。本実施形態においては、スチームの流量を変更して、S/Cを制御することができる。したがって、制御部10は、改質水供給部34が改質器22に供給する改質水の流量を制御することにより、スチームの流量を制御(増減)することができる。
本実施形態において、S/CのうちCは、例えば、原燃料ガスを供給するガス供給部32において、流量計92が計測する燃料ガスの流量から算出することができる。また、本実施形態において、S/CのうちSは、例えば、改質水を供給する改質水供給部34において、流量を算出することができる。具体的には、改質水ポンプ98がポンプモータを用いている場合には、ポンプモータの単位時間あたりの回転数などから、改質水の流量を算出することができる。以下に説明するように、本実施形態において、制御部10は、所定の条件に基づいてS/Cの目標値を設定し、当該目標値に向けて改質水および/または原燃料ガスの流量を制御する。
図4は、本実施形態に係る発電装置1の動作の例を説明するフローチャートである。
図4に示す処理が開始すると、制御部10は、発電装置1の起動処理を行う(ステップS11)。ステップS11においては、発電装置1の起動処理として、例えば、燃料電池モジュール20のセルスタック24が発電できる状態になる前段階の処理としてよい。また、発電装置1の起動処理として、各機能部の初期化をはじめとして各種の処理を行ってもよい。例えば、ステップS11において行う起動処理とは、以下のような処理とすることができる。すなわち、起動時において、改質器22に改質水が供給されていない場合、制御部10は、改質水供給部34から燃料電池モジュール20の改質器22に改質水が供給されるように制御する。そして、制御部10は、各セルスタック24において、燃焼触媒を暖めるために、セルスタック24の温度が上昇するように温度制御を行う。これにより、セルスタック24に燃料ガスを供給する前に、燃焼触媒を活性化させることができる。すなわち、このような温度制御により、改質器22からセルスタック24に燃料ガスが供給される前であって、改質器22において改質が行われる前の段階において、セルスタック24を温めることができる。このようにして、セルスタック24を通過して温められた原燃料ガスまたは燃料排ガスにより燃焼触媒を温めることができる。ステップS11において行う、その他の起動処理については、通常の燃料電池モジュール20の起動と同様に行うことができるため、より詳細な説明は省略する。
このように、本実施形態において、制御部10は、発電装置1の起動時において、改質器22に供給される改質水の流量を制御してもよい。また、制御部10は、発電装置1の起動時であって発電前において、改質器22に供給される改質水の流量を制御してもよい。また、制御部10は、発電装置1の停止時において、改質器22に供給される改質水の流量を制御してもよい。
ステップS11における起動処理が行われたら、制御部10は、温度センサ82が検出する改質部に関連する温度が所定の閾値以上であるか否か判定する(ステップS12)。以下、改質部(改質器22)に関連する温度は、改質出口温度Trである場合について説明する。また、所定の閾値は、500℃である場合について説明する。これは、改質出口温度Trが500℃程度以上になると、水蒸気改質反応が進み、水素が十分生成されるため、火炎が安定する傾向にあることによる。このようにして火炎が安定すれば、失火が生じるリスクが低くなるため、S/Cの目標値を高く設定することが可能になる。
ステップS12において改質出口温度Trが500℃以上でない、すなわち500℃未満であると判定されたら、制御部10は、ステップS13の処理に移行する。ステップS13において、制御部10は、S/Cの目標値を、一例として、固定値である2.5に設定する(ステップS13)。この数値2.5は、例えば、S/Cの目標値の初期値としてもよい。
一方、ステップS12において改質出口温度Trが500℃以上であると判定されたら、制御部10は、S/Cの目標値を、改質出口温度Trに応じて設定する(ステップS14)。ステップS14においては、次の式(1)に従って算出した値を、S/Cの目標値として設定する。
S/C目標値=2.5+(改質出口温度Tr−500)/100 式(1)
すなわち、この場合、S/Cの目標値の初期値に対して、改質出口温度Trに応じた加算分を付加する。
ステップS13またはステップS14においてS/Cの目標値が設定されたら、制御部10は、設定された目標値に向けて改質水などの供給を開始する(ステップS15)。ステップS15においては、制御部10は、S/Cが設定された目標値に近づくように、改質水および/または原燃料ガスの流量を制御する。具体的には、制御部10は、改質水を供給する改質水供給部34および/または原燃料ガスを供給するガス供給部32を制御することで、それぞれの流量を制御することができる。
このように、本実施形態において、制御部10は、改質器22に関連する温度に応じて、改質器22に供給される改質水の流量を増やすように制御する。この場合、制御部10は、改質器22に関連する温度が所定の閾値(例えば500℃)以上であると、当該温度に応じて、改質器22に供給される改質水の流量を増やすように制御してもよい。また、制御部10は、改質器22に関連する温度が所定の閾値(例えば500℃)未満であると、改質器22に供給される改質水の流量が不変になるように制御してもよい。
上記のような制御において、制御部10は、改質器22に供給される燃料ガスに含まれる炭素に対して、改質器22に供給される改質水に含まれるスチームのモル比(S/C)を増やすように制御してもよい。
以上説明したように、本実施形態に係る発電装置1は、改質出口温度Trが高くなるに従って、改質器22に供給される改質水の流量を増やすように制御する。このため、本実施形態に係る発電装置1は、改質器22/セルスタック24の温度が過度に高くならないようにすることができる。したがって、本実施形態に係る発電装置1は、燃料電池(セルスタック24)の劣化の進行度合いを抑制することができる。
また、本実施形態に係る発電装置1は、改質水供給部34から改質器22に改質水が供給される経路を複数有する場合、そのそれぞれの経路において、改質水の流量を制御する。したがって、改質器22を複数備える場合に、それぞれの温度を独立に制御するため、複数の改質器22に関連する温度のばらつきを小さくし、それぞれの温度差が大きくならないように制御することができる。
例えば、複数の改質器22のそれぞれについて個別に温度管理する構成においては、複数の改質器22に関連する温度のばらつきが大きいと、起動時に次のフェーズの動作にスムーズに移行できないことも想定される。また、例えば、複数の改質器22の全てについて一括して同じ温度管理を行う構成においては、複数の改質器22に関連する温度のばらつきが大きいと、まだ適切な温度に達していない改質器22も次のフェーズに進んでしまうことが懸念される。しかしながら、本実施形態に係る発電装置1は、複数の改質器22に関連する温度のばらつきを小さくし、それぞれの温度差が大きくならないように制御することができる。したがって、本実施形態に係る発電装置1によれば、起動時などに次のフェーズの動作にスムーズに移行することができ、発電を良好に開始することができる。
以上説明したように、本実施形態に係る発電装置1によれば、ユーザビリティの向上に資することができる。
上述した改質部に関連する温度の所定の閾値およびS/Cの目標値などの各数値は、本実施形態に係る発電装置1の構成・仕様によるものとして例示したものである。したがって、本実施形態において、上述の各数値は、発電装置の構成・仕様または要求などに応じて、適宜設定することができる。
本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。したがって、これらの変形および修正は本発明の範囲に含まれることに留意されたい。例えば、各機能部、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本発明の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
以上の開示においては、本実施形態として、SOFCとするセルスタック24を備える発電装置1について説明した。しかしながら、上述したように、本実施形態に係る発電装置1は、SOFCを備えるものに限定されず、例えばモジュールのないPEFCなど、各種の燃料電池を備えるものとすることができる。本開示において「燃料電池」とは、例えば発電システム、発電ユニット、燃料電池モジュール、ホットモジュール、セルスタック、またはセルなどを意味する。また、本開示における「燃料電池」は、燃料電池車に搭載される燃料電池であってもよい。
上述した実施形態において、発電装置1は、図2に示したように、4つのセルスタック24と、2つの改質器22とを備える例について説明した。しかしながら、本実施形態において、セルスタック24および改質器22の個数はそれぞれ限定されるものではない。本実施形態において、セルスタック24および改質器22は、それぞれ1つ以上の任意の個数としてもよい。改質器22が複数の場合、上述した改質器に関連する温度は、複数の改質器22に関連する温度のうち最大値、最小値、または平均値などに基づいて決めてもよい。また、セルスタック24が複数の場合、上述した燃料電池に関連する温度は、複数の改質器22のうち全部ではなく一部の温度に基づいて、決めてもよい。
本開示の実施形態は、図1に示す発電装置1の制御部10および記憶部12に相当する機能ブロックを、発電装置1の外部に有する構成として実現することもできる。このような実施形態の一例を図5に示す。図5に示す例においては、発電装置1を外部から制御する制御装置2は、制御部10と、記憶部12とを備える。図5に示す制御装置2の制御部10および記憶部12の機能は、図1に示す発電装置1の制御部10および記憶部12の機能とそれぞれ同等である。すなわち、本実施形態に係る制御装置2は、燃料電池(セルスタック24)を備える発電装置を制御する。制御装置2は、改質部に供給される改質水の量を制御する。また、制御装置2は、改質部に関連する温度に応じて、改質部に供給される改質水の流量を増やすように制御する。
また、本開示の実施形態は、例えば、図5に示す制御装置2に実行させる制御プログラムとして実現することもできる。すなわち、本実施形態に係る制御プログラムは、燃料電池(セルスタック24)を備える発電装置1を制御する制御装置2に、以下のステップを実行させる。すなわち、本実施形態に係る制御プログラムは、制御装置2に、改質部に供給される改質水の量を制御するステップを実行させる。また、本実施形態に係る制御プログラムは、制御装置2に、改質部に関連する温度に応じて、改質部に供給される改質水の流量を増やすように制御するステップを実行させる。
1 発電装置
2 制御装置
10 制御部
12 記憶部
20 燃料電池モジュール
22 改質器
24 セルスタック
32 ガス供給部
34 改質水供給部
36 空気供給部
40 インバータ
50 排熱回収処理部
52 循環水処理部
60 貯湯タンク
82 温度センサ
92 流量計
94 ガスポンプ
96 改質水タンク
98 改質水ポンプ
100 負荷
200 商用電源

Claims (11)

  1. 燃料電池と、
    前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、
    前記改質部に供給される改質水の流量を制御する制御部と、
    を備える発電装置であって、
    前記制御部は、前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御する、発電装置。
  2. 前記制御部は、前記発電装置の起動時であって発電前において、前記改質部に供給される改質水の流量を制御する、請求項1に記載の発電装置。
  3. 前記制御部は、前記発電装置の起動時および停止時の少なくとも一方において、前記改質部に供給される改質水の流量を制御する、請求項1または2に記載の発電装置。
  4. 前記改質部に改質水を供給する改質水供給部を備え、
    前記制御部は、前記改質水供給部が前記改質部に供給する改質水の流量を制御する、請求項1から3のいずれかに記載の発電装置。
  5. 前記改質部に原燃料ガスを供給するガス供給部を備え、
    前記制御部は、前記ガス供給部が前記改質部に供給する原燃料ガスの流量を制御する、請求項1から4のいずれかに記載の発電装置。
  6. 前記制御部は、前記温度が所定の閾値以上であると、当該温度に応じて、前記改質部に供給される改質水の流量を増やすように制御する、請求項1から5のいずれかに記載の発電装置。
  7. 前記制御部は、前記温度が所定の閾値未満であると、前記改質部に供給される改質水の流量が不変になるように制御する、請求項6に記載の発電装置。
  8. 前記制御部は、前記原燃料ガスを燃料ガスに改質する複数の改質部にそれぞれの経路を経て供給される改質水の流量を、前記それぞれの経路ごとに制御する、請求項1から7のいずれかに記載の発電装置。
  9. 前記制御部は、前記改質部に供給される燃料ガスに含まれる炭素に対して、前記改質部に供給される改質水に含まれるスチームのモル比を増やすように制御する、請求項1から8のいずれかに記載の発電装置。
  10. 燃料電池と、前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、を備える発電装置を制御する制御装置であって、
    前記制御装置は、前記改質部に供給される改質水の量を制御し、前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御する、制御装置。
  11. 燃料電池と、前記燃料電池に供給される燃料ガスに原燃料ガスを改質する改質部と、を備える発電装置を制御する制御装置に、
    前記改質部に供給される改質水の量を制御するステップと、
    前記改質部に関連する温度に応じて、前記改質部に供給される改質水の流量を増やすように制御するステップと、
    を実行させる、制御プログラム。
JP2017159236A 2017-08-22 2017-08-22 発電装置、制御装置、および制御プログラム Pending JP2019040663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159236A JP2019040663A (ja) 2017-08-22 2017-08-22 発電装置、制御装置、および制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159236A JP2019040663A (ja) 2017-08-22 2017-08-22 発電装置、制御装置、および制御プログラム

Publications (1)

Publication Number Publication Date
JP2019040663A true JP2019040663A (ja) 2019-03-14

Family

ID=65727428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159236A Pending JP2019040663A (ja) 2017-08-22 2017-08-22 発電装置、制御装置、および制御プログラム

Country Status (1)

Country Link
JP (1) JP2019040663A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093345A (ja) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd 燃料電池システム
JP2006302881A (ja) * 2005-03-25 2006-11-02 Kyocera Corp 燃料電池組立体
WO2009063616A1 (ja) * 2007-11-13 2009-05-22 Panasonic Corporation 燃料処理装置およびその起動方法
JP2011207715A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 水素製造装置及び燃料電池システム
WO2012004963A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 燃料電池システムおよびその運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093345A (ja) * 2003-09-19 2005-04-07 Aisin Seiki Co Ltd 燃料電池システム
JP2006302881A (ja) * 2005-03-25 2006-11-02 Kyocera Corp 燃料電池組立体
WO2009063616A1 (ja) * 2007-11-13 2009-05-22 Panasonic Corporation 燃料処理装置およびその起動方法
JP2011207715A (ja) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp 水素製造装置及び燃料電池システム
WO2012004963A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 燃料電池システムおよびその運転方法

Similar Documents

Publication Publication Date Title
JP4045755B2 (ja) 燃料電池システム
JPWO2007091632A1 (ja) 燃料電池システム
JP2006273619A (ja) 改質装置
JP5874022B2 (ja) 発電システムおよびその運転方法
JP6857846B2 (ja) 燃料電池システムおよびその運転方法
US20130149623A1 (en) Fuel cell system and method of operating the same
KR102168486B1 (ko) 연료 전지 스택 온도의 제어 시스템 및 제어 방법
JP6495563B1 (ja) 発電装置、制御装置、および制御プログラム
WO2019021751A1 (ja) 発電装置、制御装置及び制御プログラム
JP6942017B2 (ja) 燃料電池装置
JP2019040663A (ja) 発電装置、制御装置、および制御プログラム
US20130252122A1 (en) Power generator and method of operating the same
JP2019036487A (ja) 発電装置、制御装置、および制御プログラム
WO2015039673A1 (en) Fuel cell system and operation method thereof
JP2004288387A (ja) 燃料電池発電システム
JP7005628B2 (ja) 発電装置、制御装置及び制御プログラム
JP6912928B2 (ja) 発電装置、制御装置、および制御プログラム
JP2019009066A (ja) 発電装置、制御装置及び制御プログラム
JP2016110968A (ja) 燃料電池システム
JP2006179346A (ja) 燃料電池発電システム及びその運転方法
JP2021099897A (ja) 燃料電池システム
WO2018199251A1 (ja) 発電装置、制御装置、および制御プログラム
WO2019003942A1 (ja) 発電装置、制御装置、および制御プログラム
JP2019046629A (ja) 発電装置、制御装置、および制御プログラム
JP4221662B2 (ja) 燃料電池発電装置とその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210921