JP4777417B2 - 半導体メモリおよびテストシステム - Google Patents

半導体メモリおよびテストシステム Download PDF

Info

Publication number
JP4777417B2
JP4777417B2 JP2008507312A JP2008507312A JP4777417B2 JP 4777417 B2 JP4777417 B2 JP 4777417B2 JP 2008507312 A JP2008507312 A JP 2008507312A JP 2008507312 A JP2008507312 A JP 2008507312A JP 4777417 B2 JP4777417 B2 JP 4777417B2
Authority
JP
Japan
Prior art keywords
address
defect
semiconductor memory
data
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008507312A
Other languages
English (en)
Other versions
JPWO2007110926A1 (ja
Inventor
広之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of JPWO2007110926A1 publication Critical patent/JPWO2007110926A1/ja
Application granted granted Critical
Publication of JP4777417B2 publication Critical patent/JP4777417B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/026Detection or location of defective auxiliary circuits, e.g. defective refresh counters in sense amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/1201Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices

Description

本発明は、不良を救済するための冗長回路を有する半導体メモリ、および半導体メモリをテストするためのテストシステムに関する。
一般に、半導体メモリは、基板中の格子欠陥および製造工程で発生する異物に起因して発生する不良を救済し、歩留を向上するために、冗長回路を有している。具体的には、DRAM等の半導体メモリは、正規のワード線およびビット線に加えて冗長ワード線および冗長ビット線を有している。そして、テスト工程において、メモリセルの不良が検出された場合、不良のワード線またはビット線を冗長ワード線または冗長ビット線に置き換えるために、半導体メモリ上に形成されたヒューズ回路がプログラムされる。冗長回路を使用して不良のメモリセルを救済することで、半導体メモリの歩留は向上する。
テスト工程において、ヒューズ回路は、所定の規則にしたがってプログラムされる。例えば、ワード線不良は、冗長ワード線を用いて救済され、ビット線不良は、冗長ビット線を用いて救済される。シングルビット不良は、冗長ワード線および冗長ビット線のいずれかを優先的に使用して救済される。例えば、LSIテスタおよびヒューズ回路をプログラムするヒューズブロー装置が、冗長ワード線を優先して使用する場合、シングルビット不良は、冗長ワード線を用いて救済され、さらに不良があるときに、冗長ビット線が使用される。
例えば、半導体メモリの製造条件の変動により、センスアンプの動作マージンが僅かに不足する場合、ビット線不良が発生せずに複数のシングルビット不良が散発的に発生する場合がある。このような場合、シングルビット不良は、同じビット線で発生するため、冗長ビット線を用いて救済するほうが、冗長ワード線を用いて救済するよりも救済効率がよい。しかし、LSIテスタおよびヒューズブロー装置が、冗長ワード線を優先するように設定されている場合、シングルビット不良は、冗長ワード線を用いて救済される。この結果、救済効率が低下し、半導体メモリの歩留が低下する場合がある。
例えば、特許文献1等には、動作マージンの不足によるシングルビット不良が発生した場合、シングルビット不良がビット線不良と判定されるまで、正常なメモリセルをLSIテスタにより不良化する手法が記載されている。
特開2003−7091号公報
正常なメモリセルをLSIテスタにより不良化するためには、LSIテスタのテストプログラムを変更し、あるいはLSIテスタそのものを交換する必要がある。このため、テスト設計が複雑になり、テストコストが増加する。
本発明の目的は、テスト装置等のテスト環境を変えることなく、半導体メモリの不良の救済効率を向上することで、テストコストを削減することである。
セルアレイは、メモリセルに接続されたワード線、ビット線と、冗長メモリセルに接続された冗長ワード線、冗長ビット線を有する。読み出し部は、メモリセルに保持されているデータを読み出す。不良検出入力部は、半導体メモリをテストするテスト装置から不良検出信号を受ける。ダミー不良出力部は、不良検出入力部が不良検出信号を受けてから所定の期間、ダミー不良信号を出力する。データ出力部は、ダミー不良信号が活性化している間、読み出し部から出力される読み出しデータの論理を反転する。このため、テスト装置あるいはテストプログラムを変更することなく、擬似的な不良を半導体メモリにより発生できる。すなわち、テスト環境を変えることなく、シングルビット不良を所望のビット線不良またはワード線不良に置き換えることができる。この結果、救済効率を向上でき、テストコストを削減できる。
例えば、回数記憶回路は、セルアレイがアクセスされる回数を示すアクセス回数を記憶する。ダミー不良出力部は、不良検出信号を受けた後、セルアレイがアクセス回数だけアクセスされるまでダミー不良信号を活性化する。これにより、テスト装置のプログラムに応じて、半導体メモリの内部で任意の数の不良を擬似的に発生できる。すなわち、半導体メモリの動作仕様を、テスト装置の環境に合わせて変更できる。
例えば、ダミー不良出力部は、アドレス入力部に順次供給されるアクセスアドレスが、不良アドレス保持部に保持された不良アドレスに一致することを検出するアドレス比較回路を有している。ダミー不良出力部は、不良検出信号を受けた後、アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、不良アドレスがアクセスされる毎にダミー不良信号を出力する。これにより、不良が検出されたメモリセルに接続されたビット線またはワード線のみに着目して擬似的な不良を発生できる。したがって、テスト装置が複数のビット線または複数のワード線を飛び飛びにアクセスしてテストを実施する場合にも、不良のメモリセルが接続されたビット線不良またはワード線不良を、テスト装置に認識させることができる。
テスト装置等のテスト環境を変えることなく、半導体メモリの不良の救済効率を向上でき、テストコストを削減できる。
以下、本発明の実施形態を図面を用いて説明する。図中、太線で示した信号線は、複数本で構成されている。また、太線が接続されているブロックの一部は、複数の回路で構成されている。信号が伝達される信号線には、信号名と同じ符号を使用する。図中の二重丸は、外部端子を示している。
図1は、本発明の第1の実施形態における半導体メモリを示している。半導体メモリMEMは、例えば、ダイナミックメモリセルを有するDRAMである。メモリMEMは、コマンド入力部10、アドレス入力部12、不良検出入力部14、ダミー不良出力部16、データ入出力部18、アレイ制御部20、冗長ヒューズ回路22およびメモリコア24を有している。
コマンド入力部10は、コマンド端子CMDに供給されるコマンドCMD(外部アクセスコマンド)を受け、受けたコマンドCMDをアレイ制御部20に出力する。この実施形態では、読み出しコマンド、書き込みコマンドおよびリフレッシュコマンドが、コマンドCMDとしてコマンド入力部10に供給される。
アドレス入力部12は、アドレス端子ADに供給される外部アドレスADを受け、受けた外部アドレスADをロウアドレスRAD(上位アドレス)およびコラムアドレスCAD(下位アドレス)としてメモリコア24に出力する。外部アドレスADは、アクセスするメモリセルMCを示す。ロウアドレスRADは、ワード線WLを選択するために使用される。コラムアドレスCADは、ビット線BL、/BLを選択するために使用される。ロウアドレスRADおよびコラムアドレスCADは、アドレス端子ADに同時に供給される。
不良検出入力部14は、テストモード信号TESTの活性化中のみ動作し、不良検出信号FDETの活性化に応答して不良検出信号FDET1を所定の期間活性化する。ダミー不良出力部16は、テストモード信号TESTの活性化中のみ動作し、不良検出信号FDET1の活性化に応答して、データ反転信号DINV(ダミー不良信号)を所定の期間活性化する。この実施形態では、データ反転信号DINVは、後述する図3に示すように、例えば、予め設定された4アクセスサイクル期間活性化される。
データ入出力部18は、読み出し動作時にデータバスDBを介してメモリコア24から出力される読み出しデータをデータ端子DT(DT0−7)に出力し、書き込み動作時にデータ端子DTで受ける書き込みデータを、データバスDBを介してメモリコア24に出力する。データ端子DTは、読み出しデータおよび書き込みデータに共通の端子である。データ入出力部18は、読み出しデータを出力するデータ出力部および書き込みデータを入力するデータ入力部として機能する。また、データ入出力部18は、データ反転信号DINVの活性化中、センスアンプSAからデータバスDBを介して供給される読み出しデータの論理レベルを反転し、反転したデータをデータ端子DTに出力する。
アレイ制御部20は、メモリコア24のアクセス動作を実行するために、コマンドCMDに応答してセルアレイARYをアクセスするための制御信号CNTを出力する。制御信号CNTとして、ワード線WLの選択するためのワード線制御信号、センスアンプSAを活性化するためのセンスアンプ制御信号、コラムスイッチを選択するためのコラムスイッチ制御信号、ビット線BL、/BLをプリチャージするためのプリチャージ制御信号等がある。
冗長ヒューズ回路22は、不良のワード線WL(通常ワード線)を冗長ワード線RWLに切り替えるためのロウ冗長ヒューズ回路と、不良のビット線対BL、/BL(通常ビット線)を冗長ビット線対RBL、/RBLに切り替えるためのコラム冗長ヒューズ回路とを有している。冗長ヒューズ回路22のヒューズは、メモリMEMのテスト工程でプログラムされる。プログラム結果に応じて、アドレス情報を含む冗長制御信号REDが出力される。冗長制御信号REDにより示されるワード線WL(あるいはビット線対BL、/BL)に対するアクセスコマンドCMDが供給されたとき、そのワード線WL(あるいはビット線対BL、/BL)の選択が禁止され、冗長ワード線RWL(あるいは冗長ビット線対RBL、/RBL)が選択される。これにより、不良は救済される。
メモリコア24は、ロウアドレスデコーダRDEC、コラムアドレスデコーダCDEC、センスアンプSA、コラムスイッチCSW、リードアンプRA、ライトアンプWAおよびセルアレイARYを有している。セルアレイARYは、ダイナミックメモリセルMCと、ダイナミックメモリセルMCに接続されたワード線WLおよびビット線対BL、/BLを有している。メモリセルMCは、ワード線WLとビット線対BL、/BLとの交差部分に形成される。
また、セルアレイARYは、冗長メモリセルRMCと、冗長メモリセルRMCに接続された冗長ワード線RWLおよび冗長ビット線対RBL、/RBLを有している。図では、冗長ビット線対RBL、/RBLを1本の信号線により表している。冗長メモリセルRMCは、冗長ワード線RWLとビット線対BL、/BL、RBL、/RBLとの交差部分、および冗長ビット線対RBL、/RBLとワード線WL、RWLとの交差部分に形成される。この実施形態では、セルアレイARYは、例えば、4本の冗長ワード線RWL(冗長回路)と4組の冗長ビット線対RBL、/RBL(冗長回路)を有している。これにより、例えば、8つのメモリセルMCの不良(シングルビット不良)を救済できる。あるいは、4つのワード線不良と4つのビット線不良を救済できる。
ロウアドレスデコーダRDECは、ワード線WLのいずれかを選択するために、アドレス入力部12からのロウアドレスRADをデコードする。コラムアドレスデコーダCDECは、データ端子DTのビット数に対応する8組のビット線対BL、/BLを選択するために、アドレス入力部12からのコラムアドレスCADをデコードする。センスアンプSAは、ビット線対BL、/BLに読み出されたデータ信号の信号量の差を増幅する。センスアンプSAは、メモリセルMCに保持されているデータを読み出す読み出し部として機能する。コラムスイッチCSWは、コラムアドレスCADに応じて、ビット線BL、/BLをデータバス線DBに接続する。
リードアンプRAは、読み出し動作時に、コラムスイッチCSWを介して出力される相補の読み出しデータを増幅する。ライトアンプWAは、書き込み動作時に、データバスDBを介して供給される相補の書き込みデータを増幅し、ビット線対BL、/BLに供給する。
図2は、本発明の第1の実施形態のテストシステムTSを示している。テストシステムTSは、図1に示したメモリMEM、メモリMEMの動作をテストするLSIテスタ、およびメモリMEMの冗長ヒューズ回路22をLSIテスタのテスト結果(ヒューズ情報FINF)に応じてプログラムするヒューズブロー装置で構成される。ヒューズ情報FINFは、不良アドレスの情報と、使用する冗長ワード線RWLまたは冗長ビット線対RBL、/RBLの情報を含んでいる。例えば、ヒューズ情報FINFが冗長ワード線RWLの番号情報を含む場合、その番号に対応する冗長ワード線RWLを用いて不良が救済される。ヒューズ情報FINFが冗長ビット線対RBL、/RBLの番号情報を含む場合、その番号に対応する冗長ビット線対RBL、/RBLを用いて不良が救済される。
LSIテスタは、特定の動作テストを実施している間、テストモード信号TESTを活性化する。LSIテスタは、特定の動作テスト中にメモリセルMCの不良を検出したときに、不良検出信号FDETを活性化する。この活性化により、メモリMEMは、後述する図3に示すように、データ端子DTに出力する読み出しデータの論理レベルを強制的に反転する。すなわち、メモリMEMは、正常なメモリセルMCを擬似的に不良にする。
図3は、第1の実施形態におけるメモリMEMの動作テスト方法を示している。この例では、図2に示したLSIテスタは、不良を検出するための通常のテストNTESTを実施し、その後、テストモード信号TESTを高レベルに活性化し、センスアンプSAの動作マージンテストSATESTを実施する。ここで、通常のテストは、電圧やタイミングに依存しないソリッド不良を検出するために、例えば、マーチングパターンを用いて実施される。図中の読み出しデータDT0−7中の”T”、”/T”は、それぞれあるデータの論理値と、そのデータの論理を反転した論理値を示している。動作テストは、例えば、複数のメモリMEMが形成された半導体ウエハを用いて実施される。
通常のテスト期間NTEST中、LSIテスタは、メモリMEMを書き込みアクセスするためにコマンドCMDおよびアドレスADをメモリMEMに順次に供給し、メモリMEMを読み出しアクセスして読み出しデータDTを順次に読み出し、期待値(書き込みデータ)と比較する(図3(a))。なお、書き込みデータは、図に示した期間より前にメモリMEMに予め書き込まれる。
次に、LSIテスタは、動作マージンテストSATESTを実施するために、テストモード信号TESTを活性化する(図3(b))。そして、LSIテスタは、メモリMEMを書き込みアクセスした後、読み出しアクセスし、読み出しデータDTを順次に読み出し、データ入出力部18から出力される読み出しデータを期待値データEXPD(書き込みデータ)と比較する(図3(c))。この例では、センスアンプSAの動作マージンを評価するために、LSIテスタは、動作マージンテストSATEST中、同じコラムアドレス(CAD)をメモリMEMに供給する。LSIテスタは、3回目の読み出し動作時に、期待値EXPD(T)と異なっている誤ったデータ(/T)を読み出すことでメモリセルMCの不良を検出し、不良検出信号FDETを高レベルに活性化する(図3(d))。不良が検出されたメモリセルMCの不良の情報(アドレスADおよびデータ端子DTの番号等)は、LSIテスタ内部に保持される。
メモリMEMの不良検出入力部14は、不良検出信号FDETの活性化に応答して不良検出信号FDET1を高レベルに活性化する(図3(e))。メモリMEMのダミー不良出力部16は、不良検出信号FDET1の活性化に応答してデータ反転信号DINVを高レベルに活性化する(図3(f))。データ反転信号DINVの活性化期間は、例えば、4回のアクセスサイクルに対応する期間P1に等しく、期間P1に実行されるアクセスサイクルの数(4回)は、冗長ワード線RWLの数に等しい。
データ入出力部18は、データ反転信号DINVの活性化中に、データバスDBを介して供給される読み出しデータTの論理レベルを反転し、反転データ/Tとしてデータ端子DTに出力する(図3(g))。反転データ/Tは、4回出力される。これにより、LSIテスタは、同じコラムアドレスCADにおいて、冗長ワード線RWLの数より1回多いシングルビット不良を検出する。LSIテスタは、これらの不良を、1つの冗長ワード線RWLでは救済できないが、1つの冗長ビット線対RBL、/RBLにより救済できると判断する。すなわち、メモリMEMが、冗長ワード線RWLの数以上の擬似的な不良を発生することで、LSIテスタおよびテストプログラムを変更することなく、所望の冗長ビット線対RBL、/RBLまたは冗長ワード線RWLを使用して不良の救済が可能になる。
LSIテスタは、不良アドレスと、冗長ビット線対RBL、/RBLを使用するという情報を、ヒューズ情報FINFとしてヒューズブロー装置に転送する。ヒューズブロー装置は、LSIテスタから受けたヒューズ情報FINFに応じて冗長ヒューズ回路22をプログラムする。したがって、センスアンプSAの動作マージンが不足し、シングルビット不良が散発的に発生する場合に、テスト環境を変えることなく、冗長ビット線対RBL、/RBLを用いて不良を救済でき、不良の原因であるセンスアンプSAの使用を停止できる。この結果、救済効率を向上できる。また、センスアンプSAの動作マージンの不足により、不良を救済したメモリMEMが、市場で不良になることを防止できる。すなわち、メモリMEMの信頼性を向上できる。
図4は、図3に示した動作マージンテストSATESTにおけるセルアレイARYの状態を示している。ビット線対BL、/BLおよび冗長ビット線対RBL、/RBLは、1本の信号線で示している。また、ビット線対BL、/BLおよび冗長ビット線対RBL、/RBLは、例えば、ビットDT0のみを示している。メモリMEMは、ビット不良(図中の黒丸)の発生をLSIテスタから受けると(FDET)、その後の4ビットの読み出したデータの論理レベルを強制的に反転する(図中の白丸)。すなわち、メモリMEMは、自身の機能を用いて、正常に動作するメモリセルMCを擬似的に不良化する。換言すれば、従来のLSIテスタおよびテストプログラムに改良を加えることなく、センスアンプSAに起因するシングルビット不良を、ビット線不良に置き換えることができる。これにより、図3で説明したように、LSIテスタは、発生した不良を一度に救済するために冗長ビット線対RBL、/RBLの使用を決定する。この結果、救済効率を向上できる。
以上、第1の実施形態では、LSIテスタあるいはLSIテスタが実施するテストプログラムを変更することなく、擬似的な不良を発生できる。すなわち、テスト環境を変えることなく、シングルビット不良を所望のビット線不良またはワード線不良を置き換えることができ、救済効率を向上できる。
図5は、本発明の第2の実施形態における半導体メモリを示している。第1の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第1の実施形態のコマンド入力部10およびダミー不良出力部16の代わりにコマンド入力部10Aおよびダミー不良出力部16Aを有している。また、半導体メモリMEMは、モードレジスタ26(回数記憶回路)を有している。その他の構成は、第1の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
コマンド入力部10Aは、第1の実施形態のコマンド入力部10の機能に加えて、コマンド端子CMDを介してモードレジスタ設定コマンドを受ける機能を有している。モードレジスタ26は、モードレジスタ設定コマンドとともに供給される外部アドレスADまたはデータDTに応じて、メモリMEMを動作させるための複数種の動作モードを設定する。モードレジスタ26は、モードレジスタ設定コマンドがテストモードコマンドを示すときに、テストモード信号TESTを活性化する。モードレジスタ26は、モードレジスタ設定コマンドがテストモード解除コマンドを示すときに、テストモード信号TESTを非活性化する。また、モードレジスタ26は、モードレジスタ設定コマンドが不良出力設定コマンドを示すときに、アドレス端子ADまたはデータ端子DTで受ける値を、セルアレイARYをアクセスする回数を示すアクセス回数NMとして記憶する。モードレジスタ26は、記憶しているアクセス回数NMを示すアクセス回数信号NMを出力する。アクセス回数NMとして、冗長ワード線RWLまたは冗長ビット線対RBL、/RBLの数以上(すなわち、例えば”4”以上)が記憶される。
ダミー不良出力部16Aは、アクセスサイクル数をカウントするカウンタ(図示せず)を有している。アクセスサイクルを示す情報は、例えば、アレイ制御部から出力される。カウンタは、不良検出信号FDET1に応答して動作を開始する。ダミー不良出力部16Aは、不良検出信号FDET1を受けた後、カウンタのカウンタ値がアクセス回数NMに到達するまでの期間、データ反転信号DINVを活性化する。このように、この実施形態では、メモリMEMは、モードレジスタ26の設定によりテストモードに移行し、モードレジスタ26に設定されたアクセス回数NMに対応する期間、データDTの論理レベルを反転する。
以上、第2の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、データDTの論理レベルを反転する期間を示すアクセス回数NMを、メモリMEMの動作テストを実施するLSIテスタのテストプログラムに合わせて変更できる。このため、LSIテスタのテストプログラムを変更することなく、センスアンプSAが起因するシングルビット不良を、ライン不良に置き換えることができる。
図6は、本発明の第3の実施形態における半導体メモリを示している。第1および第2の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第2の実施形態のモードレジスタ26の代わりにモードレジスタ26Bを有している。また、半導体メモリMEMは、第2の実施形態のダミー不良出力部16Aと、ヒューズ回路28とを有している。その他の構成は、第1の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
モードレジスタ26Bは、第2の実施形態のモードレジスタ26からアクセス回数NMを記憶する機能およびアクセス回数信号NMを出力する機能を除いて構成されている。ヒューズ回路28は、内蔵するヒューズのプログラム状態に応じた値を示すアクセス回数信号NMを出力する。このように、ヒューズ回路28は、セルアレイARYをアクセスする回数を示すアクセス回数NMを記憶する回数記憶回路として機能する。例えば、ヒューズ回路28は、ヒューズがブローされていない状態で、”4回”を示すアクセス回数信号NMを出力し、ヒューズがブローされた後、”0回”を示すアクセス回数信号NMを出力する。ヒューズ回路28のヒューズは、冗長ヒューズ回路22がプログラムされた後にブローされる。データ入出力部18は、各データ端子DT毎に入力バッファおよび出力バッファを有しており、電源ノイズが発生しやすい。本実施形態では、動作テストが実施された後に、データDTの論理レベルが、データ入出力部18の誤動作等により誤って反転されることを防止できる。
以上、第3の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、動作テストが実施され、メモリMEMが出荷された後に、メモリMEMの誤動作を防止できる。
図7は、本発明の第4の実施形態における半導体メモリを示している。第1および第2の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第2の実施形態のダミー不良出力部16の代わりにダミー不良出力部16Cを有している。また、半導体メモリMEMは、新たに不良アドレス保持部30を有している。その他の構成は、第2の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
不良アドレス保持部30は、外部端子FAD、AINFを介して不良アドレスFADおよびアドレス情報AINFを受け、受けた不良アドレスFADおよびアドレス情報AINFを保持する。例えば、不良アドレスFADおよびアドレス情報AINFは、メモリMEMをテストするLSIテスタから供給される。LSIテスタは、不良のメモリセルMCを示すロウアドレスRADまたはコラムアドレスCADを不良アドレスFADとして出力し、不良アドレスFADがロウアドレスRADまたはコラムアドレスCADであることを示すアドレス情報AINFを出力する。例えば、不良アドレスFADは、アドレス情報AINFが高論理レベルのときロウアドレスRADであり、アドレス情報AINFが低論理レベルのときコラムアドレスCADである。なお、不良アドレス保持部30は、複数組の不良アドレスFADおよびアドレス情報AINFを保持するために複数の保持回路(図示せず)を有している。図では、複数の保持回路を示すために、不良アドレス保持部30の枠を重複している。
ダミー不良出力部16Cは、アドレス比較回路32および一致カウンタ34を有している。アドレス比較回路32は、アドレス情報AINFがロウアドレスを示すとき、すなわち、不良アドレスFADがワード線WLを示すときに、不良アドレスFADとメモリコア24に供給されるロウアドレスRAD(アクセスアドレス)とを比較する。また、アドレス比較回路32は、アドレス情報AINFがコラムアドレスを示すとき、すなわち、不良アドレスFADがビット線対BL、/BLを示すときに、不良アドレスFADとメモリコア24に供給されるコラムアドレスCAD(アクセスアドレス)とを比較する。
この実施形態では、アドレス情報AINFとともに不良アドレスFADが供給されるため、不良アドレス端子FADの数を少なくできる。また、アドレス比較回路32で比較するアドレスのビット数を少なくできる。端子数および回路規模を小さくできるため、メモリMEMのチップサイズを小さくできる。
アドレス比較回路32は、アクセスアドレスが不良アドレスFADに一致することを検出したときに、一致信号COIN(例えば、正のパルス信号)を出力する。なお、アドレス比較回路32は、複数の不良アドレスFADをアクセスアドレスと比較するために、複数の比較器(図示せず)を有している。このため、一致信号COINは、複数の不良アドレスFAD毎に出力される。
一致カウンタ34は、一致信号COINの出力回数(=アドレス比較回路32での一致回数)をカウントし、出力回数がモードレジスタ26に設定されたアクセス回数NMになるまで、不良アドレスFADがアクセスされる毎に、一致信号COINに同期してデータ反転信号DINVを活性化する。この実施形態では、アクセス回数NMは、冗長ワード線RWLの数、または冗長ビット線対RBL、/RBLの数と同じであり、例えば”4”である。
なお、一致カウンタ34は、複数の不良アドレスFADにそれぞれ対応する一致信号COINをカウントするために複数のサブカウンタ(図示せず)と、サブカウンタの出力を受けるOR回路(図示せず)とを有している。OR回路は、サブカウンタのいずれかがアクセス回数NMをカウントしたときに、データ反転信号DINVを活性化する。ダミー不良出力部16Cは、不良検出信号FDET1の活性化に応答して動作を開始し、全てのサブカウンタのカウンタ値がアクセス回数NMになったときに、データ反転信号DINVの活性化に応答して動作を停止し、リセットされる。
この実施形態では、不良のメモリセルMC(シングルビット不良)がLSIテスタ等により検出された後、不良のメモリセルMCが接続されたワード線WLまたはビット線BL、/BLを示すアドレスADが不良アドレスFADに一致するときのみ、読み出しデータの論理が反転される。例えば、センスアンプSAの動作マージンテストでは、複数のビット線対BL、/BLが飛び飛びにアクセスされる場合がある。この場合にも、不良のメモリセルMCに接続されたビット線対BL、/BL(不良ビット線)に対するアクセス数が、冗長ワード線RWLの数を超えるまで、不良ビット線に対応する読み出しデータの論理が反転される。
また、複数の保持回路、複数の比較器および複数のサブカウンタが形成されるため、複数のメモリセルMCの不良(シングルビット不良)を、それぞれビット線不良またはワード線不良に置き換えることができる。アドレス情報AINFに応じてビット線不良とワード線不良とを混在して擬似的に検出させることもできる。したがって、セルアレイARY内の複数箇所で発生するシングルビット不良を、任意の冗長ビット線対RBL、/RBLまたは冗長ワード線RWLを用いて救済できる。
図8は、第4の実施形態におけるメモリMEMの動作テスト方法を示している。上述した図3と同じ動作については、詳細な説明を省略する。この例は、センスアンプSAの動作マージンテストSATESTを実施中の状態を示している。このため、テストモード信号TESTは、高論理レベルに維持される。テストデータは、メモリMEMに予め書き込まれている。
例えば、動作マージンテストSATESTは、互いに隣接したコラムアドレスCAD(a、b、c)のアクセスを繰り返しながら、ロウアドレスRAD(A、B、C、D、E)を順次シフトして実施される。LSIテスタは、ロウアドレスRAD=A、コラムアドレスCAD=bのメモリセルMCの不良を検出し、不良検出信号FDETを高レベルに活性化する(図8(a))。また、LSIテスタは、不良検出信号FDETの活性化に同期して、不良アドレスFADおよびアドレス情報AINFを出力する(図8(b))。ここで、不良アドレスFADは、コラムアドレスCAD(=b)であり、アドレス情報AINFはコラムアドレスを示す。不良アドレスFADおよびアドレス情報AINFは、メモリMEMのアドレス比較回路32に供給される。
メモリMEMの不良検出入力部14は、図3と同様に、不良検出信号FDETの活性化に応答して不良検出信号FDET1を高レベルに活性化する(図8(c))。メモリMEMのダミー不良出力部16Cは、不良検出信号FDET1の活性化に応答して、コラムアドレスCADが”b”のアクセスを検出したときに、一致信号COINを活性化する(図8(d))。データ入出力部18は、データ反転信号DINVの活性化中に、データバスDBを介して供給される読み出しデータTの論理レベルを反転し、反転データ/Tとしてデータ端子DTに出力する(図8(e))。一致信号COINは、モードレジスタ26から出力されるアクセス回数信号NMが示す数だけ出力される。この結果、読み出しデータの論理レベルは、例えば、最大で4回反転される。したがって、LSIテスタは、同じビット線対BL、/BLに接続された5つのメモリセルMCの不良を検出し、冗長ビット線対RBL、/RBLによる冗長が必要と判断する。
図9は、図8に示した動作マージンテストSATESTにおけるセルアレイARYの状態を示している。図中の図形は、上述した図4の図形と同じ意味を持つ。ビット線対BL、/BLに付した符号a、b、cは、図8に示したコラムアドレスCADを示す。ワード線WLに付した符号A、B、C、D、Eは、図8に示したロウアドレスRADを示す。白丸の数字は、ビット不良(図中の黒丸)の発生をLSIテスタから受けた後に、LSIテスタがアクセスするメモリセルMCの順序を示している。この例では、メモリMEMは、不良のメモリセルMC(黒丸)に接続されたビット線対BL、/BLに対するアクセスが4回発生するまで(3、6、9、12番目のアクセス)、そのアクセス毎に読み出しデータの論理が反転される。
以上、第4の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、この実施形態では、不良が検出されたメモリセルMCに接続されたビット線対BL、/BLまたはワード線WLのみに着目して擬似的な不良を発生できる。したがって、複数のビット線対BL、/BLまたは複数のワード線WLを飛び飛びにアクセスしてテストが実施される場合にも、LSIテスタは、不良のメモリセルMCに接続されたビット線対BL、/BLの不良またはワード線WLの不良を判断できる。
図10は、本発明の第5の実施形態における半導体メモリを示している。第1および第2の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第2の実施形態のデータ入出力部18の代わりにデータ入出力部18Dを有している。また、半導体メモリMEMは、メモリコア24とデータ入出力部18Dの間に、圧縮制御部36を有している。その他の構成は、第2の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
圧縮制御部36は、データ入出力部18Dから1ビットのデータDT0を受けるデータ圧縮制御回路38と、データ入出力部18Dから8ビットのデータDT0−7を受けるスイッチ回路40とを有している。データ圧縮制御回路38は、データ圧縮テストモード中のみ動作する。メモリMEMは、テストコマンドにより、モードレジスタ26の対応するビットがセットされたとき、通常動作モードからデータ圧縮テストモードに移行し、モードレジスタ26の対応するビットがリセットされたときデータ圧縮テストモードから通常動作モードに復帰する。データ圧縮制御回路38は、データ端子DT0で受けた書き込みデータを8ビットの書き込みデータWDT0−7に分配する。論理が全て同じ書き込みデータWDT0−7は、スイッチ回路40を介して対応するメモリセルMCに書き込まれる。また、データ圧縮制御回路38は、スイッチ回路40から出力される読み出しデータRDT(8ビット)のビット値の一致/不一致を比較し、全てのビット値が同じときにデータ端子DT0に低論理レベルを出力し(不良なし)、ビット値が互いに相違するときにデータ端子DT0に高論理レベルを出力する(不良あり)。
スイッチ回路40は、データ圧縮テストモード中に、データ圧縮制御回路38を介してデータDT0−7を入出力し、通常動作モード中に、データバスDBに対してデータDT0−7を直接入出力する。データ圧縮テストモード中、LSIテスタ等は、データ端子DT0のみに書き込みデータを出力し、データ端子DT0からテスト結果を受ける。LSIテスタは、低論理レベルのデータDT0がテスト結果として出力されたときに不良がないと判定し、高論理レベルのデータDT0がテスト結果として出力されたときに不良があると判定する。データ圧縮テストでは、1本のデータ端子DT0を用いて8ビットのデータに対するテストが実施できる。このため、テストボードに多数のメモリMEMを搭載してテストを実施でき、テストコストを削減できる。
データ入出力部18Dは、通常動作モードでのテスト中に、データ反転信号DINVの活性化を受けたときに、読み出しデータDT0−7の論理レベルを反転してデータ端子DT0−7に出力する。すなわち、通常動作モードでのテスト中の動作は、第2の実施形態と同じである。データ入出力部18Dは、データ圧縮テストモード中に、データ反転信号DINVの活性化を受けたときに、テスト結果によらずデータ端子DT0に高論理レベルを出力する。すなわち、データ入出力部18Dは、データ反転信号DINVが活性化している間、一致を示す論理を反転して出力する。これにより、通常のテストだけでなく、データ圧縮テストにおいてもメモリMEMから不良情報を強制的に出力できる。この結果、メモリMEMをテストするLSIテスタ等は、テストプログラムで評価される動作マージンに応じて、冗長ワード線RWLおよび冗長ビット線対RBL、/RBLのうち最適なラインを選択できる。
以上、第5の実施形態においても、上述した第1および第2の実施形態と同様の効果を得ることができる。さらに、この実施形態では、データ圧縮テスト機能を有するメモリMEMにおいても、LSIテスタのテストプログラムを変更することなく、メモリMEM内の特定の回路の動作マージンが起因するシングルビット不良を、ワード線不良またはビット線不良に置き換えることができる。
図11は、本発明の第6の実施形態における半導体メモリを示している。第1、第4および第5の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第4の実施形態のデータ入出力部18の代わりにデータ入出力部18Dを有している。また、半導体メモリMEMは、メモリコア24とデータ入出力部18Dの間に、圧縮制御部36を有している。その他の構成は、第4の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
この実施形態では、第4の実施形態と同様に、通常動作モードでのテストでは、メモリセルMCのシングルビット不良が検出された後、不良が発生したメモリセルMCと同じビット線BL、/BLに接続されたメモリセルMCがアクセスされる毎に、アクセス回数信号NMが示す回数だけ読み出しデータの論理を反転する。データ圧縮テストモードでは、メモリセルMCのシングルビット不良が検出された後、不良が発生したメモリセルMCと同じビット線BL、/BLに接続されたメモリセルMCがアクセスされる毎に、不良を示す論理レベル(=高論理レベル)が、アクセス回数NMだけデータ端子DT0から出力される。以上、第6の実施形態においても、上述した第1、第4および第5の実施形態と同様の効果を得ることができる。
図12は、本発明の第7の実施形態における半導体メモリを示している。第1および第2の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第2の実施形態のモードレジスタ26の代わりにモードレジスタ26Gを有している。また、半導体メモリMEMは、外部端子CMD、AD、DTに接続された自己テスト部42Gを有している。その他の構成は、第2の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
メモリMEMは、テストコマンドにより、モードレジスタ26Gの対応するビットがセットされたとき、通常動作モードから自己テストモードに移行する。モードレジスタ26Gは、自己テストモード中、自己テストモード信号STESTを活性化し、通常動作モード中、自己テストモード信号STESTを非活性化する。メモリMEMは、モードレジスタ26Gの対応するビットがリセットされたとき自己テストモードから通常動作モードに復帰する。
自己テスト部42Gは、自己テストモード信号STESTの活性化中(自己テストモード中)に、複数の書き込みテストパターン(書き込みアクセスパターン)を生成し、生成したテストパターンを内部コマンドICMD(書き込みコマンド)、内部アドレスIAD(書き込みアドレス)および内部書き込みデータIDT0−7としてメモリコア24に向けて順次に出力する。この後、自己テスト部42Gは、複数の読み出しテストパターン(読み出しアクセスパターン)を生成し、生成したテストパターンを内部コマンドICMD(読み出しコマンド)および内部アドレスIAD(読み出しアドレス)としてメモリコア24に向けて順次に出力する。
自己テスト部42Gは、センスアンプSAから順次に読み出される読み出しデータIDT0−7を期待値と比較する。自己テスト部42Gは、読み出しデータIDT0−7が期待値と異なるときにメモリセルMCの不良を検出し、不良検出信号FDETを活性化する。この後のメモリMEMの動作は、上述した第2の実施形態と同じである。自己テスト部42Gは、検出した不良の情報(アドレス、データ端子DTの番号等)を保持する。自己テスト部42Gは、自己テストを完了した後、メモリMEMに接続されたLSIテスタ等から供給される不良情報出力コマンドに応答して、不良の情報を出力する。また、例えば、メモリMEMに、不良を救済するための電気ヒューズとこの電気ヒューズのプログラムに応じて動作する冗長回路等を搭載し、電気ヒューズを不良の情報に基づいてプログラムすることにより、試験装置を用いることなく、メモリMEM自身で不良を救済できる。
なお、自己テスト部42Gは、最後の4つの読み出しテストパターンのいずれかでメモリセルMCの不良を検出した場合、不良のメモリセルMCに接続されたビット線対BL、/BLを選択するために、複数の読み出しテストパターン(読み出しアクセスパターン)をさらに生成し、追加の読み出しアクセスを実施する。これにより、テストの最後に不良が検出される場合にも、シングルビット不良をビット線不良に置き換えることができる。
以上、第7の実施形態においても、上述した第1および第2の実施形態と同様の効果を得ることができる。さらに、この実施形態では、自己テスト機能を有するメモリMEMにおいても、メモリMEM内の特定の回路の動作マージンが起因するシングルビット不良を、ワード線不良またはビット線不良に置き換えることができる。LSIテスタは、自己テスト部42Gに保持された擬似的な不良を含む不良の情報に基づいて、テストプログラムを変更することなく、メモリMEM内の特定の回路の動作マージンが起因するシングルビット不良を、ワード線不良またはビット線不良に置き換えることができる。
図13は、本発明の第8の実施形態における半導体メモリを示している。第1、第2、第4および第7の実施形態で説明した要素と同一の要素については、同一の符号を付し、これ等については、詳細な説明を省略する。この実施形態の半導体メモリMEMは、第4の実施形態のモードレジスタ26の代わりにモードレジスタ26Gを有している。また、半導体メモリMEMは、第7の実施形態と同様に、外部端子CMD、AD、DTに接続された自己テスト部42Hを有している。その他の構成は、第4の実施形態と同じである。すなわち、半導体メモリMEMは、DRAMとして形成されている。
自己テスト部42Hは、第7の実施形態の自己テスト部42Gに、不良アドレスFADおよびアドレス情報AINFを出力する機能を追加して構成されている。不良アドレスFADおよびアドレス情報AINFは、第4の実施形態のLSIテスタの動作と同様に、不良検出信号FDETの活性化に同期して出力される。以上、第8の実施形態においても、上述した第1、第4および第7の実施形態と同様の効果を得ることができる。
なお、上述した実施形態では、本発明をDRAMに適用する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、本発明を、擬似SRAM、SRAMあるいはフラッシュメモリ等に適用してもよい。擬似SRAMは、DRAMのメモリセルを有し、SRAMと同じ入出力インタフェースを有し、メモリセルのリフレッシュ動作を内部で自動的に実行するメモリである。本発明を適用する半導体メモリは、クロック非同期式でもよく、クロック同期式でもよい。
上述した実施形態では、主に、センスアンプSAが起因するシングルビット不良を、ビット線不良に置き換える例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、ロウデコーダRDECやワード線WLが起因するシングルビット不良を、ワード線不良に置き換えてもよい。この場合、データDTの論理レベルを反転する期間は、冗長ビット線対RBL、/RBLの数以上のアクセスサイクル数に対応する期間になる。具体的には、アクセス回数NMは、冗長ビット線対RBL、/RBLの数以上に設定される。
上述した第5および第6の実施形態では、本発明を、データ端子DT0に供給される書き込みデータを他のデータDT1−7に分配するデータ圧縮テスト機能を有する半導体メモリMEMに適用する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、本発明を、圧縮制御部36に期待値レジスタおよびビット演算回路(例えば、EOR回路)が形成される半導体メモリMEMに適用してもよい。期待値レジスタは、データ圧縮テストにおいて、1ビットの書き込みデータを他のビットに分配する際に、ビット演算をするための値が格納されるレジスタである。例えば、ビット演算回路は、期待値レジスタに保持された”55(16進数)”と、論理0の1ビットデータを分配した”00(16進数)”をEOR演算し、”55”を書き込みデータとしてセルアレイARYに出力する。その後の読み出しアクセスでは、データ圧縮制御回路は、期待値レジスタに保持された値を期待値として、読み出しデータが正しいか否かを判定する。
上述した実施形態では、本発明を、ビット線対BL、/BLを有する半導体メモリMEMに適用する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、本発明を、ビット線BLのみを有する半導体メモリMEMに適用してもよい。
さらに、第7および第8の実施形態に、第5および第6の実施形態に示した圧縮制御部36を形成してもよい。
以上の実施形態に関して、さらに以下の付記を開示する。
(付記1)
メモリセルに接続されたワード線、ビット線と、冗長メモリセルに接続された冗長ワード線、冗長ビット線とを有するセルアレイと、
前記メモリセルに保持されているデータを読み出す読み出し部と、
不良検出信号を受ける不良検出入力部と、
前記不良検出入力部が前記不良検出信号を受けてから所定の期間、ダミー不良信号を出力するダミー不良出力部と、
前記ダミー不良信号が活性化している間、前記読み出し回路から出力される読み出しデータの論理を反転するデータ出力部とを備えていることを特徴とする半導体メモリ。
(付記2)
付記1記載の半導体メモリにおいて、
外部アクセスコマンドに応答して、前記セルアレイをアクセスするための制御信号を生成するアレイ制御部と、
前記セルアレイがアクセスされる回数を示すアクセス回数を記憶する回数記憶回路とを備え、
前記ダミー不良出力部は、前記不良検出信号を受けた後、前記セルアレイが前記アクセス回数だけアクセスされるまで前記ダミー不良信号を活性化することを特徴とする半導体メモリ。
(付記3)
付記2記載の半導体メモリにおいて、
不良のメモリセルに接続されたワード線を救済するための複数の冗長ワード線を備え、
前記回数記憶回路が記憶する前記アクセス回数は、前記冗長ワード線の数以上であることを特徴とする半導体メモリ。
(付記4)
付記2記載の半導体メモリにおいて、
不良のメモリセルに接続されたビット線を救済するための複数の冗長ビット線を備え、
前記回数記憶回路が記憶する前記アクセス回数は、前記冗長ビット線の数以上であることを特徴とする半導体メモリ。
(付記5)
付記2記載の半導体メモリにおいて、
前記回数記憶回路は、半導体メモリの外部から設定される前記アクセス回数を記憶するモードレジスタであることを特徴とする半導体メモリ。
(付記6)
付記2記載の半導体メモリにおいて、
前記回数記憶回路は、ヒューズを有し、ヒューズのプログラムに応じて前記アクセス回数を記憶するヒューズ回路であることを特徴とする半導体メモリ。
(付記7)
付記1記載の半導体メモリにおいて、
アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
前記ダミー不良出力部は、
前記アドレス入力部に順次供給されるアクセスアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
(付記8)
付記7記載の半導体メモリにおいて、
前記アドレス入力部は、前記ワード線を選択するためのロウアドレスおよび前記ビット線を選択するためのコラムアドレスを前記アクセスアドレスとして受け、
前記アドレス比較回路は、前記不良アドレスが前記ワード線を示すときに、前記不良アドレスを前記ロウアドレスと比較し、前記不良アドレスが前記ビット線を示すときに、前記不良アドレスを前記コラムアドレスと比較することを特徴とする半導体メモリ。
(付記9)
付記7記載の半導体メモリにおいて、
前記不良アドレス保持部は、複数の不良アドレスを保持し、
前記アドレス比較回路は、前記アクセスアドレスを前記複数の不良アドレスとそれぞれ比較し、前記複数の不良アドレス毎に、一致を検出する回数が予め設定されたアクセス回数になるまで前記ダミー不良信号を出力することを特徴とする半導体メモリ。
(付記10)
付記7記載の半導体メモリにおいて、
不良のメモリセルに接続されたワード線を救済するための複数の冗長ワード線を備え、
予め設定された前記アクセス回数は、前記冗長ワード線の数以上であることを特徴とする半導体メモリ。
(付記11)
付記7記載の半導体メモリにおいて、
不良のメモリセルに接続されたビット線を救済するための複数の冗長ビット線を備え、
予め設定された前記アクセス回数は、前記冗長ビット線の数以上であることを特徴とする半導体メモリ。
(付記12)
付記1記載の半導体メモリにおいて、
書き込みデータを受ける複数のデータ端子と、
データ圧縮テストモード中に動作し、データ端子のいずれかで受ける書き込みデータを複数のメモリセルに書き込むために分配し、複数のメモリセルから読み出されるデータの一致または不一致を示す論理を、前記データ出力部を介して前記データ端子のいずれかに前記読み出しデータとして出力する圧縮制御部を備え、
前記データ出力部は、前記ダミー不良信号が活性化している間、一致を示す論理を反転して出力することを特徴とする半導体メモリ。
(付記13)
付記12記載の半導体メモリにおいて、
アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
前記ダミー不良出力部は、
前記アドレス入力部に順次供給されるアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
(付記14)
付記1記載の半導体メモリにおいて、
自己テストモード中に動作し、前記セルアレイを書き込みアクセスおよび読み出しアクセスし、前記データ出力部からの読み出しデータを期待値と比較することで前記メモリセルの不良を検出し、検出した不良の情報を保持し、前記メモリセルのいずれかの不良を検出したときに前記不良検出信号を出力する自己テスト部を備えていることを特徴とする半導体メモリ。
(付記15)
付記14記載の半導体メモリにおいて、
アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
前記ダミー不良出力部は、
前記アドレス入力部に順次供給されるアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
(付記16)
付記14記載の半導体メモリにおいて、
前記自己テスト部は、前記メモリセルを順次に所定の回数アクセスすることでテストを実施し、前記メモリセルのいずれかの不良を最後のアクセス時に検出した場合、不良のメモリセルに接続されたワード線またはビット線を選択するための複数の読み出しアクセスをさらに実施することを特徴とする半導体メモリ。
(付記17)
付記14記載の半導体メモリにおいて、
前記自己テスト部は、保持している不良の情報を、半導体メモリの外部から供給される不良情報出力コマンドに応答して出力することを特徴とする半導体メモリ。
(付記18)
付記1記載の半導体メモリにおいて、
半導体メモリをテストモードに移行するテスト端子を備え、
前記不良検出入力部および前記ダミー不良出力部は、前記テストモード中のみ動作することを特徴とする半導体メモリ。
(付記19)
付記1記載の半導体メモリにおいて、
半導体メモリの動作モードを設定するモードレジスタを備え、
前記不良検出入力部および前記ダミー不良出力部は、前記モードレジスタにより動作モードがテストモードに設定されるときのみ動作することを特徴とする半導体メモリ。
(付記20)
半導体メモリと、この半導体メモリをテストするテスト装置とで構成されるテストシステムであって、
前記半導体メモリは、
メモリセルに接続されたワード線、ビット線と、冗長メモリセルに接続された冗長ワード線、冗長ビット線とを有するセルアレイと、
前記メモリセルに保持されているデータを読み出す読み出し部と、
不良検出信号を受ける不良検出入力部と、
前記不良検出入力部が前記不良検出信号を受けてから所定の期間、ダミー不良信号を出力するダミー不良出力部と、
前記ダミー不良信号が活性化している間、前記読み出し回路から出力される読み出しデータの論理を反転するデータ出力部とを備え、
前記テスト装置は、
前記セルアレイを書き込みアクセスおよび読み出しアクセスし、前記データ出力部からの読み出しデータを期待値と比較することで前記メモリセルの不良を検出し、検出した不良の情報を保持し、前記メモリセルのいずれかの不良を検出したときに前記不良検出信号を出力することを特徴とするテストシステム。
以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。
本発明は、不良を救済するための冗長回路を有する半導体メモリに適用できる。
本発明の第1の実施形態における半導体メモリを示すブロック図である。 本発明の第1の実施形態のテストシステムを示すブロック図である。 第1の実施形態におけるメモリの動作テスト方法を示すタイミング図である。 図3に示した動作マージンテストにおけるセルアレイの状態を示す説明図である。 本発明の第2の実施形態における半導体メモリを示すブロック図である。 本発明の第3の実施形態における半導体メモリを示すブロック図である。 本発明の第4の実施形態における半導体メモリを示すブロック図である。 第4の実施形態におけるメモリの動作テスト方法を示すタイミング図である。 図8に示した動作マージンテストにおけるセルアレイの状態を示す説明図である。 本発明の第5の実施形態における半導体メモリを示すブロック図である。 本発明の第6の実施形態における半導体メモリを示すブロック図である。 本発明の第7の実施形態における半導体メモリを示すブロック図である。 本発明の第8の実施形態における半導体メモリを示すブロック図である。

Claims (10)

  1. メモリセルに接続されたワード線、ビット線と、冗長メモリセルに接続された冗長ワード線、冗長ビット線とを有するセルアレイと、
    前記メモリセルに保持されているデータを読み出す読み出し部と、
    不良検出信号を受ける不良検出入力部と、
    前記不良検出入力部が前記不良検出信号を受けてから所定の期間、ダミー不良信号を出力するダミー不良出力部と、
    前記ダミー不良信号が活性化している間、前記読み出し回路から出力される読み出しデータの論理を反転するデータ出力部とを備えていることを特徴とする半導体メモリ。
  2. 請求項1記載の半導体メモリにおいて、
    外部アクセスコマンドに応答して、前記セルアレイをアクセスするための制御信号を生成するアレイ制御部と、
    前記セルアレイがアクセスされる回数を示すアクセス回数を記憶する回数記憶回路とを備え、
    前記ダミー不良出力部は、前記不良検出信号を受けた後、前記セルアレイが前記アクセス回数だけアクセスされるまで前記ダミー不良信号を活性化することを特徴とする半導体メモリ。
  3. 請求項1記載の半導体メモリにおいて、
    アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
    外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
    前記ダミー不良出力部は、
    前記アドレス入力部に順次供給されるアクセスアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
  4. 請求項3記載の半導体メモリにおいて、
    前記アドレス入力部は、前記ワード線を選択するためのロウアドレスおよび前記ビット線を選択するためのコラムアドレスを前記アクセスアドレスとして受け、
    前記アドレス比較回路は、前記不良アドレスが前記ワード線を示すときに、前記不良アドレスを前記ロウアドレスと比較し、前記不良アドレスが前記ビット線を示すときに、前記不良アドレスを前記コラムアドレスと比較することを特徴とする半導体メモリ。
  5. 請求項1記載の半導体メモリにおいて、
    書き込みデータを受ける複数のデータ端子と、
    データ圧縮テストモード中に動作し、データ端子のいずれかで受ける書き込みデータを複数のメモリセルに書き込むために分配し、複数のメモリセルから読み出されるデータの一致または不一致を示す論理を、前記データ出力部を介して前記データ端子のいずれかに前記読み出しデータとして出力する圧縮制御部を備え、
    前記データ出力部は、前記ダミー不良信号が活性化している間、一致を示す論理を反転して出力することを特徴とする半導体メモリ。
  6. 請求項5記載の半導体メモリにおいて、
    アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
    外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
    前記ダミー不良出力部は、
    前記アドレス入力部に順次供給されるアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
  7. 請求項1記載の半導体メモリにおいて、
    自己テストモード中に動作し、前記セルアレイを書き込みアクセスおよび読み出しアクセスし、前記データ出力部からの読み出しデータを期待値と比較することで前記メモリセルの不良を検出し、検出した不良の情報を保持し、前記メモリセルのいずれかの不良を検出したときに前記不良検出信号を出力する自己テスト部を備えていることを特徴とする半導体メモリ。
  8. 請求項7記載の半導体メモリにおいて、
    アクセスするメモリセルを示すアドレスを受けるアドレス入力部と、
    外部から供給される不良アドレスを保持する不良アドレス保持部とを備え、
    前記ダミー不良出力部は、
    前記アドレス入力部に順次供給されるアドレスが、前記不良アドレス保持部に保持された前記不良アドレスに一致することを検出するアドレス比較回路を有し、前記不良検出信号を受けた後、前記アドレス比較回路により一致を検出する回数が予め設定されたアクセス回数になるまで、前記不良アドレスがアクセスされる毎に前記ダミー不良信号を出力することを特徴とする半導体メモリ。
  9. 請求項7記載の半導体メモリにおいて、
    前記自己テスト部は、前記メモリセルを順次に所定の回数アクセスすることでテストを実施し、前記メモリセルのいずれかの不良を最後のアクセス時に検出した場合、不良のメモリセルに接続されたワード線またはビット線を選択するための複数の読み出しアクセスをさらに実施することを特徴とする半導体メモリ。
  10. 半導体メモリと、この半導体メモリをテストするテスト装置とで構成されるテストシステムであって、
    前記半導体メモリは、
    メモリセルに接続されたワード線、ビット線と、冗長メモリセルに接続された冗長ワード線、冗長ビット線とを有するセルアレイと、
    前記メモリセルに保持されているデータを読み出す読み出し部と、
    不良検出信号を受ける不良検出入力部と、
    前記不良検出入力部が前記不良検出信号を受けてから所定の期間、ダミー不良信号を出力するダミー不良出力部と、
    前記ダミー不良信号が活性化している間、前記読み出し回路から出力される読み出しデータの論理を反転するデータ出力部とを備え、
    前記テスト装置は、
    前記セルアレイを書き込みアクセスおよび読み出しアクセスし、前記データ出力部からの読み出しデータを期待値と比較することで前記メモリセルの不良を検出し、検出した不良の情報を保持し、前記メモリセルのいずれかの不良を検出したときに前記不良検出信号を出力することを特徴とするテストシステム。
JP2008507312A 2006-03-28 2006-03-28 半導体メモリおよびテストシステム Expired - Fee Related JP4777417B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306266 WO2007110926A1 (ja) 2006-03-28 2006-03-28 半導体メモリおよびテストシステム

Publications (2)

Publication Number Publication Date
JPWO2007110926A1 JPWO2007110926A1 (ja) 2009-08-06
JP4777417B2 true JP4777417B2 (ja) 2011-09-21

Family

ID=38540866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008507312A Expired - Fee Related JP4777417B2 (ja) 2006-03-28 2006-03-28 半導体メモリおよびテストシステム

Country Status (7)

Country Link
US (1) US7719914B2 (ja)
EP (1) EP2003652B1 (ja)
JP (1) JP4777417B2 (ja)
KR (1) KR100959848B1 (ja)
CN (1) CN101405818B (ja)
DE (1) DE602006018369D1 (ja)
WO (1) WO2007110926A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406290B (zh) * 2009-06-26 2013-08-21 Etron Technology Inc 一種字元線缺陷之偵測裝置與方法
CN102376348B (zh) * 2010-08-20 2013-11-27 中国科学院微电子研究所 一种低功耗的动态随机存储器
KR20130072086A (ko) * 2011-12-21 2013-07-01 에스케이하이닉스 주식회사 퓨즈 회로 및 이의 검증 방법
KR102003894B1 (ko) * 2012-09-20 2019-07-25 에스케이하이닉스 주식회사 셀 어레이, 메모리 및 이를 포함하는 메모리 시스템
KR20170033593A (ko) 2015-09-17 2017-03-27 에스케이하이닉스 주식회사 반도체장치 및 반도체시스템
KR102650154B1 (ko) 2016-12-08 2024-03-22 삼성전자주식회사 가상 페일 생성기를 포함하는 메모리 장치 및 그것의 메모리 셀 리페어 방법
JPWO2020153054A1 (ja) * 2019-01-22 2021-12-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
JP6994649B2 (ja) * 2019-07-09 2022-01-14 パナソニックIpマネジメント株式会社 半導体メモリデバイス、エラー通知方法
US11960759B2 (en) * 2022-06-28 2024-04-16 Macronix International Co., Ltd. Memory device and data searching method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182893A (ja) * 1993-12-24 1995-07-21 Mitsubishi Electric Corp 半導体記憶装置
KR19980052127A (ko) * 1996-12-24 1998-09-25 구자홍 메모리 검사기의 비교 장치
JPH11102598A (ja) 1997-09-29 1999-04-13 Toshiba Corp メモリ不良救済解析装置
US6282145B1 (en) * 1999-01-14 2001-08-28 Silicon Storage Technology, Inc. Array architecture and operating methods for digital multilevel nonvolatile memory integrated circuit system
JP2001035187A (ja) * 1999-07-21 2001-02-09 Hitachi Ltd 半導体装置およびその冗長救済方法
JP2003509804A (ja) * 1999-09-15 2003-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ メモリ検査方法
JP2001273788A (ja) * 2000-03-29 2001-10-05 Hitachi Ltd 半導体記憶装置
US6563743B2 (en) * 2000-11-27 2003-05-13 Hitachi, Ltd. Semiconductor device having dummy cells and semiconductor device having dummy cells for redundancy
JP2003007091A (ja) 2001-06-21 2003-01-10 Mitsubishi Electric Corp 半導体記憶装置の不良ビット救済装置および方法
JP2004220722A (ja) * 2003-01-16 2004-08-05 Renesas Technology Corp 半導体記憶装置
JP2005063529A (ja) 2003-08-08 2005-03-10 Matsushita Electric Ind Co Ltd 半導体記憶装置
KR100716660B1 (ko) * 2004-05-06 2007-05-09 주식회사 하이닉스반도체 반도체 메모리 소자

Also Published As

Publication number Publication date
EP2003652A9 (en) 2009-04-08
CN101405818A (zh) 2009-04-08
KR100959848B1 (ko) 2010-05-27
EP2003652A4 (en) 2009-07-01
JPWO2007110926A1 (ja) 2009-08-06
CN101405818B (zh) 2012-10-03
US20090027982A1 (en) 2009-01-29
KR20080098080A (ko) 2008-11-06
WO2007110926A1 (ja) 2007-10-04
DE602006018369D1 (de) 2010-12-30
US7719914B2 (en) 2010-05-18
EP2003652B1 (en) 2010-11-17
EP2003652A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4777417B2 (ja) 半導体メモリおよびテストシステム
KR100901404B1 (ko) 패리티 셀 어레이를 구비한 메모리 회로
KR100265765B1 (ko) 빌트인 셀프 테스트 회로를 구비한 결함구제회로 및 이를 사용한 결함구제방법
KR102117633B1 (ko) 셀프 리페어 장치
JP4952137B2 (ja) 半導体メモリおよびシステム
JP5127737B2 (ja) 半導体装置
WO2009116117A1 (ja) 半導体メモリ、システム、半導体メモリの動作方法および半導体メモリの製造方法
US8913451B2 (en) Memory device and test method thereof
US20010005014A1 (en) Semiconductor storage device having redundancy circuit for replacement of defect cells under tests
CN108511029B (zh) 一种fpga中双端口sram阵列的内建自测和修复系统及其方法
JP4353329B2 (ja) 半導体記憶装置及びそのテスト方法
JP2006268971A (ja) 半導体記憶装置及びそのテスト方法
US7372750B2 (en) Integrated memory circuit and method for repairing a single bit error
US8429470B2 (en) Memory devices, testing systems and methods
JP4824083B2 (ja) 半導体メモリ
JP4257342B2 (ja) 半導体記憶装置、メモリモジュール及びメモリモジュールの検査方法
JP2005100542A (ja) 半導体記憶装置とそのテスト方法
JP5212100B2 (ja) 半導体メモリおよびメモリシステム
US20080151659A1 (en) Semiconductor memory device
US11640843B2 (en) Semiconductor memory device and operating method thereof
JP2013161509A (ja) 半導体装置の冗長救済方法
JP2011134386A (ja) 半導体装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees